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ABSTRACT 
Neural Network models (NN) have emerged as 
important components for applications of adaptive 
control theories. Their basic generalization capability, 
based on acquired knowledge, together with execution 
rapidity and correlation ability between input stimula, 
are basic attributes to consider NN as an extremely 
powerful tool for on-line control of complex systems. By 
a control system point of view, not only accuracy and 
speed, but also, in some cases, a high level of adaptation 
capability is required in order to match all working 
phases of the whole system during its lifetime. This is 
particularly remarkable for a new generation ground-
based telescope control system. Infact, strong changes in 
terms of system speed and instantaneous position error 
tolerance are necessary, especially in case of trajectory 
disturb induced by wind shake. The classical control 
scheme adopted in such a system is based on the 
Proportional Integral (PI) filter, already applied and 
implemented on a large amount of new generation 
telescopes, considered as a standard in this technological 
environment. In this paper we introduce the concept of a 
new approach, the Neural Variable Structure 
Proportional Integral, (NVSPI), related to the 
implementation of a standard Multi Layer Perceptron 
(MLP) network in new generation ground-based Alt-Az 
telescope control systems. Its main purpose is to 
improve adaptive capability of the Variable Structure 
Proportional Integral model, (VSPI), an already 
innovative control scheme recently introduced by 
authors [1], based on a modified version of classical PI 
control model, in terms of flexibility and accuracy of the 
dynamic response range also in presence of wind noise 
effects. The realization of a powerful well tested and 
validated telescope model simulation system allowed the 
possibility to directly compare performances of the two 
control schemes on simulated tracking trajectories, 
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revealing extremely encouraging results in terms of 
NVSPI control robustness and reliability. 
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1. INTRODUCTION 
During an astronomical observation, the main telescope 
operations are pointing (reaching the target object) and 
tracking (following the object during its apparent 
motion). These phases are executed in sequence without 
a well defined transition phase between them. The whole 
collect of astronomical data is performed along tracking. 
This makes tracking the most important phase during an 
entire object observation cycle. During this phase there 
is a slow dynamical coupling of the two main axes 
(azimuth and altitude). The altitude axis stops its motion 
when crosses the meridian, while the azimuth axis 
increases its velocity, near the zenith up to about 
1000”/s. Furthermore, wind buffeting on telescope 
structure introduces a considerable disturb, especially on 
altitude axis. As a consequence the speed dynamic range 
is about 40 db, with a RMS tolerable error not greater 
than 0.15” in order to guarantee an optimal image 
quality during the observations. The optimal image 
quality can be guaranteed only by maintaining the total 
telescope tracking RMS error lower than arcsec/pixel 
resolution, induced by technical features of the 
instrument Charge Coupled Device (CCD) mounted on 
the telescope. This makes evident the strong dynamic 
changes of control requirements. It will be desirable to 
have a control system able to modify dynamically its 
response, in terms of its parameters variation, in order to 
match exactly the whole system dynamic range and to 
follow the tracking trajectory without affecting the 
observation performance. 

2. CONTROL ARCHITECTURE 
During telescope control system development, error 
analysis is one of the most careful aspects to take into 
account. In this context, errors can be classified as 
systematic and random errors. In the first case, using 
appropriate LookUp Tables (LUT), it is possible to 
identify and to correct this kind of errors. In the latter 
case, the presence of random effects, such as ball 
bearing rolling errors or wind shake as well, affects the 
axes instantaneous position and it depends from system 
actual speed [1]. It is clear that a dependence of control 
parameters from axes speed is needed. Unfortunately, 
this dependence of noise effects from speed cannot be 
systematically identified, due to their random nature. 
The random error correction capability depends only by 
intrinsic control system adaptive nature. 



2.1 Standard Approach: Static Control 
Structure 
In the classical approach, the control design 
methodology, based on a unique controller able to 
satisfy all the above demands in all system working 
phases, has the limit that it cannot guarantee the required 
precision in all working phases. For example, a classical 
PI structure can introduce additional noise, (system 
oscillation and instability), when its integral action is 
employed in presence of a high error trend. Doing so, it 
is impossible to respect all required demands for both 
pointing and tracking phases. On the other hand the 
dynamic use of different controllers in sequence can 
introduce noise during transition between themselves, 
generating discontinuities during the most careful 
working phases of the telescope. Furthermore, an 
optimized controller for tracking phase, in presence of 
low position errors, would have some problems in case 
of unexpected error variations due to external stimula, 
such as wind buffeting. Therefore the natural evolution 
of a controller able to outcome all the limits of the above 
models is represented by developing a control system 
able to perform a self-tuning of its parameters according 
to different working phases. Doing so, it will be possible 
to avoid either problem related to the transitions between 
different controllers and to the presence of unexpected 
position error variations. Such a controller would be able 
to adapt self parameters according to position error, axis 
position and speed as well. A typical example of such a 
controller is the PI + Anti Windup (PI+AW), (Fig. 
2.1-1), where there is not a real variability in terms of its 
parameters but rather the use of the anti windup device 
able to increase the performance in case of system 
actuators saturation. Unfortunately, this kind of 
controllers has not the versatility level required by our 
control system. 
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Fig. 2.1-1 - PI + AW control scheme 

2.2 Innovative Approach: Variable Structure 
Controller 
 
In a recent paper, [1], we proposed a VSPI, (Fig. 2.2-1), 
able to correct the problem of actuators saturation and 

able to adapt itself to different variations of position 
instantaneous error. 
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Fig. 2.2-1 - VSPI control scheme 

The laws related to the classical PI and to our VSPI 
model are as follows: 
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The VSPI scheme represents a more versatile solution, 
where both the integral and proportional actions are 
weighted on the position instantaneous error value. The 
controller’s parameters are therefore variable, making 
the controller itself able to optimize its performance in 
all working phases. The limit of this approach is that the 
parameter’s variation law is one-dimensional, depending 
only on the position instantaneous error, without taking 
into account other system parameters variation, able to 
modify global system behavior. Furthermore it does not 
represent a self-adaptive control system, because there is 
not a direct feedback on the dynamic parameter 
variations. It would be desirable to introduce in the 
control system a tool able to “observe” the global system 
behavior and related control subsystem action, to 
“analyze” in real time the accuracy level of controller 
response and to “operate” in order to optimize the 
performance. These considerations are the basic 
concepts deriving the decision to investigate an approach 
based on the introduction of a neural network in the 
control system, starting from the statement that such a 
tool makes of the self-adaptation its main dowry. 

3. VSPI OPTIMIZATION WITH NEURAL 
NETWORK 

Fixed structure controllers have shown a weakness in 
optimizing the telescope performance in terms of 
position error amount in the whole required dynamic 
range. On the contrary a variable structure controller, 
with the ability to modify itself during operations, 
according to the instantaneous error values, has reached 



the best global performance in the case of a sophisticate 
system where tracking noises are reduced by means of a 
good system design [1]. A more sophisticated control, 
taking into account system status, actual speed and 
characterization, could be necessary for systems where 
torque noise problems could arise during the system 
lifetime itself, such as bearing and gear consumption or 
dust, or in the case of high frequency perturbations, such 
as wind buffeting. Usually the resulting errors are due to 
the inability of a PI based controller to respond in time. 
In order to improve the control system speed 
performance, an observer, based on a neural network, 
can be added to the VSPI controller in order to impose 
high frequency torque offsets directly to the power 
amplifier without affecting the VSPI control still 
devoted to system stabilization. In practice, an element 
known in the control system theory as a feed-forward 
gain, but able to adapt itself to instantaneous system 
requirements. 

3.1 The NN model: Multi Layer Perceptron 
A particular class of networks which has received 
considerable attention in the area of artificial neural 
networks is MultiLayer Perceptron (MLP). A typical 
MLP model structure can be denoted in block diagram 
form as shown in Fig. 3.1-1 with three weight matrices 
U, V and W, [2]. The multilayer network represents a 
nonlinear map f() where: 
o = f(x) = F[WF[VF[Ux]]] and the elements of U, V and 
W are adjustable weights. 
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Fig. 3.1-1 - block diagram of a three layer neural 
network 

Such networks have been used successfully in pattern 
recognition, where the weights are adjusted to minimize 
a suitable error function. From a system-theoretical point 
of view, the multilayer network represents merely a 
versatile nonlinear map. In our approach we will use 
such a neural network as a subsystem encapsulated into 
the VSPI control system. First of all, it is necessary to 
address the following problem: if NN are introduced for 
control purpose in dynamic systems, their approximation 
capabilities must be well understood when a finite 
number of layers with a specified number of nodes in 
each layer is present in the network, (see Fig. 3.1-2). 

 
Fig. 3.1-2 - MLP (MultiLayer Perceptron) 

architecture 

In particular, all network inputs chosen must guarantee a 
correlation between them to be useful for feature 
learning by the network. This will assure that the control 
problem is well posed. In the last section we shall 
discuss our approach to achieve this concept in our 
model. The adjustment of the weights of the NN, when 
the latter is used as a component in a dynamic control 
system, can be considered as the adaptive part (the brain) 
of the control process needed to improve performance in 
terms of optimal response in a wide bandwidth to the 
input signal. BP (BackPropagation) is one of the 
computationally efficient methods for the adjustment of 
the weights of specified NN models. In such a method, 
the partial derivatives of an error criterion as regards the 
weights in a MLP are determined and the weights in turn 
are adjusted along the negative gradient to minimize the 
error function. The structure of the weight matrices used 
to compute the derivatives is seen to be identical to that 
in the original network, while the signal flow is in the 
opposite direction (this justifies the term 
BackPropagation). This concept is also strongly related 
to the powerful concept of feedback in the control 
system theory. In the classical approach the neural 
control architecture is based on a control subsystem 
represented by a NN and a reference model that can be 
realized either by a specialized NN or any classical 
identification model. The control law is then based on 
comparison between reference model and controlled 
system output. In particular two distinct approaches to 
the adaptive control are normally used, [2]: direct 
control, where the parameters of the controller are 
directly adjusted to reduce some norm of the output 
error, and the indirect control, where the parameters are 
estimated at any time instant and the parameter vector of 
the controller is chosen assuming that the estimation 
represents the true value of the plant parameter vector. 

3.1.1 First Classical Neuro Controller Approach: 
Direct Adaptive Control 
In conventional direct adaptive control theory, methods 
for adjusting the parameters of a controller based on the 



measured output error rely on concepts such as 
correlating the two signals, respectively reference model 
signal and controlled system one. At present there are 
not well fixed methods for directly adjusting the 
parameters of the neural controller, [2]. This is due to 
the nonlinear nature of both the system and the 
controller. Also, BackPropagation cannot be used 
directly, since the exact system reference model is 
unknown and hence cannot be used to generate the 
desired partial derivatives. The basic direct adaptive 
control architecture is illustrated in Fig. 3.1-3. 
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Fig. 3.1-3 - Direct adaptive control using neural 

networks 

3.1.2 Second Classical Neuro Controller Approach: 
Indirect Adaptive Control 
When indirect adaptive control is used to control a 
nonlinear system, the model parameters are updated 
using the identification error. The controller parameters 
are adjusted by backpropagating the error between the 
identified model and the reference model outputs 
through the identified model, [2]. A block diagram of 
such an adaptive system is shown in Fig. 3.1-4. 
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Fig. 3.1-4 -Indirect adaptive control using neural 
networks 

Both identification and control can be carried out at 
every instant or after processing the data over finite 
intervals. When external noise is present, identification 
is carried out at every instant while control parameter 
updating is carried out over a slower time scale, to 
assure robustness of the system performance. Limits of 
the latter model are that the specified model used to 
identify the system depends critically on the prior 
information available. Also in the two approaches 
described above is tacitly assumed that the reference 
model is linear. 

3.2 Innovative Neuro Controller Approach: 
NVSPI Model 
Our approach in the control system architecture can be 
considered hybrid, in the sense that it combines the 
control design approaches seen before, (VSPI + NN = 
NVSPI), to obtain an optimized adaptive control system, 
able to correct telescope axes position in case of 
unpredictable and unexpected position errors. The 
control main device is the VSPI structure mentioned 
above that, during default operative conditions, (low 
position errors), and also in case of limited increase of 
error conditions, is able to carry out the optimal 
corrections needed. When the increase of the error or 
any unexpected wrong condition occurs, the VSPI is not 
able to completely correct the system performance. To 
prevent such critical events, we provide an additional 
tool, working with the VSPI, able to introduce an 
additional term in the control law input to the system in 
order to correct the error. This additional tool is a NN, 
representing the adaptive self-tuning capability of our 
control system structure. 

3.2.1 NVSPI Learning Architecture 
Fig. 3.2-1 illustrates the NVSPI control architecture 
during the off-line learning phase. Using a MLP network 
with BP learning algorithm, this phase consists of a 
serial presentation of a learning set of input-output data 
couples (reference position trajectories in this case) 
through the system in order to teach the NN to recognize 
fault condition of the VSPI response. The learning phase 
diagram is shown in Fig. 3.2-1.  
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Fig. 3.2-1 -NVSPI off-line learning control scheme 



In desired conditions, input reference position U and 
output actual position Y should be the same. The 
presence of noise introduces an error term e = Y - U. 
This term represents the input of the VSPI. The latter,  
laws (1.1) and (1.2) generates the output P(e) that is one 
of the NN inputs, together with the position error term e 
and the system reference position input U. Through the 
forward part of the BP algorithm the NN gives its output 
N(U, e, P(e)). The laws related to the forward part of BP 
algorithm are: 
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where the terms mean : 
U  system reference position input; 
 Y  system actual position output; 
e  VSPI input (position error); 
 P(e)  VSPI output (system required 
position); 
Oi  NN input (U, e, P(e));  
 Oh  input of the NN output layer; 
net_input(h) global input of generic hidden layer;
 net_input(j) global input of the NN output 
layer; 
f(o)  neuron activation function ; 
 N(U, e, P(e)) NN output function; 
 
 The formula (3.4) is normalized with a constant 
coefficient k, representing the system coefficient and 
added to the P(e) term. This sum is the input to the 
system to be controlled. Finally the system output Y is 
compared with the P(e) term, (3.9), to evaluate the 
performance of both VSPI and NN and this difference is 
backpropagated through the NN, using the backward 
part of the BP algorithm, to adjust the weight matrix of 
the network along the steepest descent of the error 
gradient. Below laws for this part of the BP algorithm 
are shown: 
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where the terms mean : 
 
ε   little constant a priori fixed; 

 ε   output layer delta function 
δ”   hidden layer delta function; 
 wji(new)  weight updating law 
η    learning rate;   

 α   momentum factor 
k  system coefficient 
 
This phase ends when the difference between Y and P(e) 
is smaller than a little fixed constant. The choice of the 
NN input space is based on the consideration that both 
system input U and error term e are trivially correlated 
and give together information needed about system state. 
Furthermore, third term P(e), VSPI output gives 
information to the net about VSPI response in terms of 
its parameters and its level of correction input for the 
telescope axes. Finally, based on system against VSPI 
response, the NN will be able to understand the 
correlation between its behavior, system performance 
and VSPI response and will carry out internal adaptation 
adjusting its own weight matrix, in order to give a better 
response at the next output. From a practical point of 
view, a slow learning will be needed, in terms of weight 
adjustment and learning rate and momentum factor 
choices, together with a not too small error constant ε 
fixed, in order to perform a better generalization during 
on-line working. 

3.2.2 NVSPI On-line Architecture 
In Fig. 3.2-2 it is shown the block diagram of our final 
control system after NN learning phase. At this time all 
basic choices about NN parameters, (i.e. number of 
hidden layers, number of hidden and output nodes, best 
values of learning rate η and momentum factor α), are 
fixed. 
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Fig. 3.2-2 -NVSPI on-line control scheme 



If the training set data used has been appropriate, in 
terms of number and quality of samples, the net will be 
able to carry out its better generalization on both 
validation and input test data sets. In particular, the net 
contribution will be proportional to the response level of 
the VSPI, adding to P(e) the best value in order to 
dynamically correct system behavior. This feature gives 
to the NN a role of a typical observer of the control flow, 
able to modify, if needed, the control contribute to the 
main system. The net, infact, controls VSPI performance 
directly during both off-line and on-line working phases, 
and system performance directly in the off-line phase 
and indirectly during on-line phase. 

3.3 The NVSPI Experiment 
In order to test and verify the goodness of NVSPI 
theoretical investigation in a sense of a better tracking 
control, we have carry out an experiment on a real 
telescope model, by comparing tracking performances 
between VSPI and NVSPI solutions. In the following 
best results are reported and discussed, together with a 
brief description of the telescope model used. 

3.3.1 The telescope system model 
In this section it is introduced a brief description of the 
telescope system model, realized in order to represent 
the black box “System” as shown in scheme of Fig. 
3.2-1and Fig. 3.2-2. Details of the system model are 
beyond the scope of the present study and are referred to 
specific papers [5], [6]. A real implementation of the 
control system block has been obtained by modeling the 
VST (VLT Survey Telescope), an Alt-Azimuthal 2.5m 
telescope actually under integration by our group, 
planned to be located in the ESO (European Southern 
Observatory) VLT (Very Large Telescope) observatory 
facility at Cerro Paranal, Atacama desert, Chile. It is a 
survey wide field imaging instrument, with a corrected 
FOV (Field of View) of 1 squared degree, basically used 
to furnish a well defined target observational map for the 
VLT, the largest ground-based telescope in the world, 
[5]. The model has been obtained by means of the 
mechanical design and Finite Element Analysis data and 
a simulation in time and frequency domains has been 
performed in order to evaluate its tracking performance 
in perturbed conditions, mainly due to wind shake. As 
usually applied in telescope modeling, the structure is 
organized by modeling the two main axes (azimuth and 
altitude) by a number of inertias joined by stiffnesses 
and structural dampings.  
 

  

 
Fig. 3.3-1 – telescope model (main axes) block 

diagrams 

The axis gear is represented by the motor and teeth 
contact stiffness and damping, Fig. 3.3-1. Four motors 
per axis are used in a symmetrical configuration, 
implementing a preload scheme which makes negligible 
the gear backlash. Also the motor inertia is taken into 
account, properly scaled by the transmission ratio. The 
dynamic of the mechanical system can be summarized 
by 2nd order differential equations in matrix form as: 

J F KΘ Θ Θ
.. .
+ + = T

 
where J, F, K, T are the inertia, viscous damping, 
stiffness and torque matrix respectively, and Θ is the 
angular position vector. The speed and position 
controllers have to be tuned to guarantee the two most 
important requirements: an extremely low tracking error 
and a good disturbance rejection. The absolute RMS 
tracking error must be as low as possible in order to 
guarantee the image quality during the observations. 
Furthermore, the stability robustness of the closed loop 
must be guaranteed with proper gain and phase margins, 
to reject structural parameter changes of the controlled 
system and/or environment modifications. The main 
external disturbance to consider in this analysis is the 
wind shake. The wind mainly affects the altitude 
performance, because the altitude axis is subjected to a 
greater wind torque. The azimuth rotation is much more 



protected by the co-rotating enclosure. The site chosen 
for VST is sometimes windy. Therefore a wind effect 
analysis has been carried out in the following taking into 
account the Chilean site weather statistics. The azimuth 
axis in an Alt-Az telescope can assume very high speeds 
when altitude axis is close to zenith, especially when 
crossing the meridian, where the speed reaches its 
maximum. On the contrary when altitude angle is low, 
azimuth moves very slow [5]. Therefore the position 
control can be difficult for azimuth, since the dynamic 
speed range is wide. The same thing does not apply to 
altitude axis, whose speed range is bounded up to a low 
value depending on the latitude of the site: for VST the 
maximum speed is about 13 arcsec/sec. 

3.3.2 NVSPI vs. VSPI test using wind disturbance 
analysis 
In this analysis a VSPI has been used as speed and 
position loop controllers, which ideally guarantees zero 
error to a ramp input (similar to the usual real 
observation conditions) after the transient phase (i.e. 
from pointing to tracking). This is a little bit different 
from the classical control scheme adopted in telescope 
main axis servo systems, where a static PI controller is 
used, adding Notch filters at specific frequencies. The 
use of VSPI has been successfully implemented limiting 
the investigation to “small” error case (i.e. to the 
tracking phase control). This choice reduces the 
complexity of the model simulated. Details of Simulink 
models used for simulation are described in [6]. Then we 
have applied the same tracking conditions to NVSPI 
system, by comparing tracking error results, as detailed 
in the following. A ground-based telescope works in 
open air and is only partially protected by a co-rotating 
enclosure, so the main external disturbance to the axes 
control system is certainly the wind. Therefore, the 
performance of a telescope position control servo system 
depends on its ability to minimize changes in position 
due to the wind. The altitude axis is certainly the most 
influenced by the wind disturbance and so most of the 
analysis will be focused on it. An approach to evaluate 
the effect of the wind on the telescope performance is 
based on the description of the power spectral density of 
the wind by the Von Karman spectrum (Ravensbergen, 
1994):                             
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where v is the mean wind speed, I is the turbulence 
intensity, f the frequency, L the outer scale of 
turbulence. Three simulations have been carried out with 
the data shown in Tab. 3-1 (where α is a wind speed 
reduction factor): 
 

α I L [m] 
1 0.15 79 

0.98 0.15 3.2 
0.63 0.12 3.2 

Tab. 3-1 – Simulation data 

These data refer to three different conditions: α=1, i.e. 
no wind speed reduction, shows the extreme situation of 
the telescope completely in open air; α=0.98 refers to 
the not favorable situation of the telescope observing in 
the direction of the wind, a scenario usually avoided 
whenever possible in real observations; α=0.63 refers to 
a more realistic situation of the telescope properly 
protected by the enclosure and some wind screens. The 
wind speed range used in the simulation has been chosen 
up to v=18 m/s; over this value no observation is usually 
performed in the ESO Cerro Paranal observatory. The 
wind presence problem anyway should be limited to a 
low percentage of telescope usage time; the wind speed 
is above 12 m/s in about 11% of the time, above 15 m/s 
only in the 5% of the time (Fig. 3.3-2, approximately 
obtained from Sarazin, 1999). 
 

 
Fig. 3.3-2 - Time %  vs. Wind Speed in Paranal 

 

 
Fig. 3.3-3 - PSD of axis rotation due to the wind 

disturbance torque Sθ(f) (α=0.98 dashed line, 
α=0.63 continuous line) 



The PSD of the altitude axis rotation due to the 
disturbance torque (Fig. 3.3-3) can be obtained by 
multiplying the spectrum modified by the introduction of 
aerodynamic correction factor, [6], with the square of 
the disturbance transfer function D(f): 

D f f
f
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The amplitude of the disturbance as calculated with this 
approach depends on data mutuated from VLT wind 
tunnel tests and related experience. The RMS 
displacement error due to the torque disturbance induced 
by the wind is represented as a function of the 
bandwidth of the control loop in Fig. 3.3-4.  
 

 
Fig. 3.3-4 - Tracking error vs. bandwidth of the 

control loop (α=0.98 dashed line, α=0.63 
continuous line) 

Most of the disturbance effect is concentrated below 
1Hz. Higher is the bandwidth, better is the disturbance 
rejection; in practice the bandwidth is limited by the 
dynamic of the telescope, mainly by the locked rotor 
frequency (Ravensbergen, 1994). The bandwidth 
estimated for VST is about 3Hz, sufficient to contrast 
effectively the wind disturbance. Better error estimation 
is obtained from the time domain analysis reported in the 
following. 
The wind disturbance effect has been studied, for both 
VSPI and NVSPI cases, in the time domain simulating a 
tracking at a speed of 10 arcsec/sec (almost the 
maximum velocity for altitude), generating torque 
disturbance time series as a sum of sine waves with 
amplitudes determined from the power spectral density 
and with random phases (Andersen, 1994): 

( ) ( ) ( )∑ +Δ=
N

kkk tffft S
1

2cos2 φπτ
τ  

where Δf = 0.01 Hz is the frequency resolution, N = 
10000 the number of frequency samples, φk random 
phase angles. Two case studies have been considered 
(α=0.63, α=0.98), skipping the not realistic “open air” 
condition (α=1) used before only for comparison. Two 
sets of simulations have been carried out at increasing 
wind speeds. It should be considered that since 
observing in the direction of the wind is not a preferred 
scenario the α=0.63 case can be considered the more 
realistic observation condition, having properly set the 
wind screens and the whole enclosure. The interpolation 

 the NVSPI vs. VSPI data results is reported in Fig. 
3.3-5. 
  

of

 
Fig. 3.3-5 – Control model RMS tracking error vs. 

wind speed (α=0.63 case) (VSPI upper line, 
NVSPI lower line) 

In the following we report test results obtained by 
comparing tracking performances in both VSPI and 
NVSPI models, applied to the more realistic case of 
wind disturbance (α=0.63). In the more negative case, 
(α=0.98), both models respond with approximately the 
same behavior, showing an expected high disturb to 
telescope tracking performance in pessimistic conditions 
where almost no wind disturbance reduction is achieved 
and the observations are done in the wind direction. The 
conditions created in the simulation are referred to the 
case of a simplified telescope control model in presence 
a good wind speed reduction inside the enclosure, thanks 
to a proper setting of wind-screens and not observing in 
the wind direction. Both control schemes have been 
applied to a simulation data set composed by an input 
trajectory, obtained by an astrometry loop, to be 
followed by the telescope model in time windows of 50 
seconds. The training set for the NVSPI has been 
organized by means of 1000 several trajectories, of the 
same time length and at different altitude ranging from 
30 up to 80 elevation degree. During input data 
presentation the wind disturbance ratio was introduced 
according the law described above. The learning phase 



has not been organized in the classical batch algorithm 
(weight adjustment after a complete training set 
presentation), but in the form of weight adjustment on 
single input pattern. This strategy has been conditioned 
by the NVSPI internal structure and learning data 
composition rule. The test set has been composed by 
trajectories of the same time length, with different 
altitude degrees (partially belonging to original training 

t).  In the following table, Tab. 3-2, only the network 
tain  

are listed. 

T PARAMETER VALUE 

se
and learning phase parameters, ob ing best
performance, 
 
NVSPI EXPERIMEN
Input Nodes 3 
Hidden Nodes Level 1 5 
Hidden Nodes Level 2 3 
Output Nodes 1 
Best Learning Rate 0.07 
Best Momentum Factor 0.23 
Training Patterns (trajectories pre- 1000 
calculated) 
Test Patterns (used for validation and 
comparison with VSPI) 

100 

Training and Test pattern Time Duration 50 sec 
A
and test patterns 

ltitude axis angle range used for training 30 - 80 

Tab. 3-2– NVSPI neural network experiment main 
parameters 

The best results obtained, by comparing models 
implementing VSPI and NVSPI respectively, have been 
obtained with above network parameters and, in 
particular, the figures reported below are referred to the 
best experiment results for test trajectory set for azimuth 
and altitude. In the first scheme of each figure showed, 
for each figure, the input trajectory is reported (axis 
position/time duration), while the second one shows the 
RMS tracking error obtained during tracking simulation, 
expressed as arcsec/sec. For the azimuth axis, (Fig. 
3.3-6), both VSPI and NVSPI control schemes are able 
to maintain reference trajectory displacement well under 
the system requirements (< 0.21 arcsec), as already 
expected from the low disturb induced by wind on this 
axis, though there is a st ng evidence of a better 
behavior of the NVSPI control scheme in terms of axis 
stability and quick reaction to wind shake.  

 

ro

 

 
Fig. 3.3-6 – Azimuth axis test. Tracking RMS result 

using VSPI (left figure) and NVSPI (right figure) 

In the case of altitude, Fig. 3.3-7, the NVSPI control 
scheme seems to react essentially better than VSPI 
model, maintaining RMS error under 0.16 arcsec against 
0.54 arcsec obtained by VSPI model. The high 
capability of the NVSPI to introduce a very quick 
reaction to wind shake displacement gives to the neural 
network a role of an adaptive feed-forward gain in the 
control system architecture. The encouraging results 



obtained by such a neural control model show the 
possibility to obtain high control performances as result 
of a not very complex optimization process of classical 
PI filter, making it comparable with modern more 
complex control schemes, also in case of a quasi real 
time control process as telescope tracking.    

 

 

 
Fig. 3.3-7 - Altitude axis test. Tracking RMS result 

using VSPI (left figure) and NVSPI (right figure) 

 

4. DISCUSSION AND CONCLUSION 
In this paper a preliminary theoretical study of the 
introduction of a neural network in an Alt-Az telescope 
axes control system has been presented. The well known 
self adaptation and generalization capabilities of such a 
tool are useful to improve the entire system performance 
and to add more versatility to the VSPI control structure, 
especially when the VSPI is not able to give the best 
correction in real time (in presence of wind disturbance). 
The adaptation level of the entire system will be 
sensitively increased, not only as regards the 
instantaneous position error trend, but also as to the 
work phase transition, avoiding problems concerning 
unexpected high noise and actuators saturation. This 
capability, also, will dynamically assure the best control 
performance during both pointing and tracking phases. 
The choice of a MLP model is not a fixed constraint. 
RBFs (Radial Basis Functions) and recurrent models are 
also adequate. In particular RBFs seem to be effective 
models when input space is not too large, [3]. Their use 
will be object of future improvements. For a telescope of 
the class of the VST usually the maximum admitted 
tracking RMS error is about 0.15 arcsec, a value which 
does not affect the image quality even in good seeing 
conditions, because the arcsec/pixel resolution is 0.21. 
According to this simulation results, the disturbance 
effect would increase with wind speed as foreseen, 
especially for the VSPI control scheme; in the NVSPI, 
with α=0.63 case, up to 12 m/s the effect could be 
considered not really performance limiting, while at 
higher wind speeds, also in good seeing conditions, a 
negative effect could be noticed in both VSPI and 
NVSPI control models, see Tab. 4-1.  



 
V  

[m/s] 
Night 

Time %  
(with 
wind 

speed > 
V) 

RMS 
Tracking 

Error (arcsec) 
(VSPI model) 

RMS 
Tracking 

Error (arcsec) 
(NVSPI 
model) 

3 77 0.02 0.005 
6 50 0.10 0.03 
9 24 0.30 0.09 

12 11 0.54 0.16 
15 5 0.80 0.26 
18 2 1.10 0.38 

Tab. 4-1 – NVSPI vs. VSPI altitude axis tracking 
performance at different estimated site wind 

speed percentage 

However the problem can be limited to a low percentage 
of telescope usage time; the wind speed, as already 
stated, is above 12 m/s in about 11% of the time, above 
15 m/s only in the 5% of the time. During the most 
windy nights, in principle it is possible to re-schedule 
the less performance demanding observation programs, 
e.g. engineering tests on the telescope and its 
instrumentation.  
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