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ABSTRACT

Context. Accurate photometric redshifts for large samples of galaxies are among the main products of modern multiband digital
surveys. Over the last decade, the Sloan Digital Sky Survey (SDSS) has become a sort of benchmark against which to test the various
methods.
Aims. We present an application of a new method to the estimation of photometric redshifts for the galaxies in the SDSS Data
Release 9 (SDSS-DR9). Photometric redshifts for more than 143 million galaxies were produced.
Methods. The Multi Layer Perceptron with Quasi Newton Algorithm (MLPQNA) model, provided within the framework of the
DAta Mining and Exploration Web Application REsource (DAMEWARE), is an interpolative method derived from machine learning
models.
Results. The obtained redshifts have an overall uncertainty of σ = 0.023 with a very small average bias of ∼3 × 10−5, and a fraction
of catastrophic outliers (|Δz| > 2σ) of ∼5%. This result is slightly better than what was already available in the literature in terms of
the smaller fraction of catastrophic outliers as well.
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1. Introduction

In the last few years, photometric redshifts (photo-z) for large
samples of normal or active galaxies have become crucial for
a variety of cosmological applications (Scranton et al. 2005;
Myers et al. 2006; Hennawi et al. 2006; Giannantonio et al.
2008) and many different methods of evaluating them have

been presented and extensively discussed in the literature (cf.
Hildebrandt et al. 2010). The problem of deriving accurate pho-
tometric redshifts has become even more cogent because of the
huge amount of data produced by most ongoing and planned
photometric surveys (cf. PANNSTARS: Kaiser 2004, KIDS1,
EUCLID: Laureijs et al. 2011) aimed at explaining weak lensing
to prove the dark components of the universe.

Without entering into details that can be found elsewhere, it
is worth a reminder that, broadly speaking, all photo-z methods
are based on the interpolation of some a priori knowledge rep-
resented by sets of templates, and differ only in one or both of
the following aspects: (i) the way in which the a priori knowl-
edge base (KB) is constructed (higher accuracy spectroscopic
redshifts or, rather, empirically or theoretically derived spectral
energy distributions or SEDs); and (ii) the interpolation/fitting
algorithm employed.

In all methods, the main source of uncertainty is the fact
that the function mapping the colour space into the spectro-
scopic redshift space is just an oversimplified approximation of

� The produced catalogue, composed by 58 tables is only available
at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568/A126
1 http://www.astro-wise.org/projects/KIDS/

the complex and otherwise unknown relation existing between
colours and the redshift (as an example, see Csabai et al. 2003).
Among the various interpolative methods, we shall just quote
a few: i) polynomial fitting (Connolly et al. 1995); ii) nearest
neighbours (Csabai et al. 2003); iii) neural networks (D’Abrusco
et al. 2007; Yéche et al. 2010 and references therein); iv) support
vector machines (Wadadekar 2005); v) regression trees (Carliles
et al. 2010); vi) Gaussian processes (Way & Srivastava 2006;
Bonfield et al. 2010); and vii) diffusion maps (Freeman et al.
2009).

In this paper, we focus on the application to the galax-
ies contained in the SDSS Data Release 9 (DR9, Paris et al.
2012), of the Multi Layer Perceptron with Quasi Newton
Algorithm (MLPQNA) method already described in detail else-
where (Brescia et al. 2012, 2013), hence we refer to these
papers for all the mathematical and technical details. In the
framework of the PHAT1 contest (Hildebrandt et al. 2010),
which blindly compared most existing methods for photo-z eval-
uation, the MLPQNA method proved to be among the two
best empirical methods to date (Cavuoti et al. 2012). This in
spite of the very limited base of knowledge available for the
contest (∼500 objects only).

The MLPQNA is just one among the many data min-
ing methods publicly available under the DAta Mining
and Exploration Web Application REsource infrastructure
(DAMEWARE; Brescia et al. 2014).

In the next section (Sect. 2), we describe the data set used
as the knowledge base, while in Sect. 3 we describe the experi-
ments and discuss their outcome. In Sect. 4, we describe the re-
sulting catalogue of photometric redshifts and a short summary
of the work is given in Sect. 5.
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Fig. 1. Distributions of the five psfMag type
magnitudes. For each magnitude the light grey
area is referred to the whole spectroscopic sam-
ple, while the black area represents the objects
sampled in our knowledge base.

2. The data

The Sloan Digital Sky Survey (SDSS, York et al. 2000), is the
forerunner of modern wide-field surveys. It combines multi-
band photometry and fiber-based spectroscopy, thus providing
both photometric data for a very large number of objects and
spectroscopic information for a smaller, but still significant, sub-
sample of the same population. Hence, it provides all infor-
mation needed to constrain the fit of an interpolating function
mapping the photometric features into the spectroscopic redshift
space. This is the main reason why most, if not all, photomet-
ric redshifts methods have been tested on the various data re-
leases of the SDSS which, over the years, has become a sort of
benchmark data set against which to test old and new methods.

To form our KB we extracted from the spectroscopic
sub-sample of the SDSS-DR9 all objects with specClass
galaxy together with their photometry. In particular, we used
the (ps f Mag) magnitudes and related colours, rejecting all ob-
jects with missing or non-detected information in any of the
SDSS photometric bands.

We obtain the cuts in the magnitude by considering the lim-
its within which the photometric parameter space sampled by the
spectroscopic objects is significantly covered. Within these lim-
its, the neural algorithm during the training phase is exposed,
in every region of the cleaned parameter space, to a number
of examples sufficiently large to facilitate learning. Obviously,
the less populated the region of the parameter space, the smaller
the accuracy of the final result. An additional implication is that
the less populated a region of the parameter space, the smaller
the capability to correctly learn the rule for peculiar or rare ob-
jects. The resulting psf magnitude limits are listed in Table 1,
while Fig. 1 shows the psf magnitude distributions in the knowl-
edge base. As also described in Oyaizu et al. 2008, we trained
our model on the spectroscopic sample up to the magnitude
limit of ps f Mag_r < 23.0. By considering a photometric limit
of r < 22.2, the resulting fainter limit in the training set cov-
ers the complete photometric region of interest without intro-
ducing boundary effects for photometric redshifts of galaxies
having magnitudes near the ps f Mag_r limit. All this is taken

Table 1. The ps f Mag type magnitude limits derived in each band dur-
ing the knowledge base definition.

Band Lower limit Upper limit
u 16.97 26.79
g 15.91 24.97
r 15.41 22.94
i 15.00 23.34
z 14.17 23.04

into account by the complete spectroscopic KB, which consists
of 497, 339 objects.

3. Experiments and discussion

In machine learning supervised methods it is common practice
to use the available KB to build at least three disjoint subsets
for every experiment: one (training set) for training purposes,
i.e. to train the method in order to acquire the hidden correlation
among the input features necessary to perform the regression;
the second one (validation set) to check the training, in particu-
lar, against a loss of generalization capabilities (a phenomenon
also known as overfitting); and the third one (test set) to evaluate
the overall performances of the model (Brescia et al. 2013).

In this work, the validation was performed during training
by applying the standard leave-one-out k-fold cross validation
mechanism (Geisser 1975). We would like to stress that none
of the objects included in the training (and validation) sample
were included in the test sample and only the test data were used
to generate the statistics. In other words, the test was blind, i.e.
based only on objects never submitted to the network.

We decided to populate the training and the test set with 30%
and 70% of the objects in the KB, namely with 149, 997
and 347, 342 objects, respectively. This decision, which might
seem a little anomalous since it is common practice for machine
learning methods to operate with data sets of reversed propor-
tion, was dictated by the large number of examples present in the
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Fig. 2. Spectroscopic redshift distribution of objects included in the
training set (black line) and test set (grey line).

knowledge base and by the specificity of the MLPQNA method,
which can overfit (with a loss of generalization capability) the
data when exposed to a very large number of examples. The his-
togram in Fig. 2 shows the distribution of the objects in the KB
as a function of the zspec in both training and test sets.

In order to ensure that the KB provided a proper coverage
of the parameter space, the data were split into the two data sets
by random extraction. In other words, by randomly shuffling and
splitting the original dataset, we replicated several times the ex-
traction sequence, and evaluated the average of their output. This
mechanism prevents possible biases induced by fluctuations in
the coverage of the parameter space, namely small differences in
the redshift distribution of training and test samples used in the
experiments.

Once the data sets were produced, we checked which types
of flux combinations were more effective, in terms of magnitudes
or related colours, and therefore we performed and compared
two experiments with two different sets of features: (i) MAG;
using the five SDSS psfMag magnitudes; and (ii) MIXED, re-
placing the magnitudes with the derived colours and leaving only
the r psfMag as pivot magnitude. The best combination turned
out to be the MIXED type. From the data mining point of view
this is rather surprising since the amount of information should
not change when applying linear combinations between features.
From the physical point of view, however, the better perfor-
mances of the MIXED experiment can be easily understood by
noticing that even though colours are derived as a subtraction of
magnitudes, the content of information is quite different, since
an ordering relationship is implicitly assumed, thus increasing
the amount of information in the final output (i.e., flux gradients
instead of fluxes). The additional pivot magnitude used in the
experiment serves to remove the degeneracy in the luminosity
class for a specific galaxy type.

Individual experiments, as well as their comparison with re-
sults provided by others, were evaluated in a consistent and
objective manner using a homogeneous and standard set of
statistical indicators:

– the bias, defined as the mean value of the residuals Δz =
zspec − zphot;

– the standard deviation (σ) of the residuals;
– the normalized median absolute deviation or NMAD of the

residuals, defined as NMAD(Δz) = 1.48×Median (|Δz|) and;
– all the above quantities also calculated on the normalized

residuals, i.e. Δznorm =
zspec−zphot

1+zspec
·

Furthermore, as an overall estimate of the accuracy of the final
results we use the prescription in CLSI 2006, deriving the overall
uncertainty (OU) defined as biasnorm ± σnorm.

Fig. 3. Spectroscopic versus photometric redshifts for SDSS
DR9 galaxies of the blind test set.

In Table 2, we list our results, which we also compare with
those obtained by Laurino et al. (2011). These authors, on the
SDSS Data Release 7 objects, used a machine learning model
with a slightly more complex architecture, called weak gated
experts (WGE) and which, to the best of our knowledge has
achieved the highest accuracy to date.

In the second half of the table, we list the fraction of outliers,
i.e. the fraction of objects for which the photometric redshift es-
timate deviates more than 0.15 in absolute value, or deviating
more than 1, or 2σ from the spectroscopic value.

Summarizing, MLPQNA achieves the very small bias
of ∼3 × 10−5, and a normalized standard deviation of 0.023.
Moreover, our method leads to a very small fraction of outliers,
i.e. less than 0.04% and ∼5.4% using the |Δznorm | > 0.15 and
the 2σ criteria, respectively.

In Fig. 3, we plot the photometric redshift estimates versus
the spectroscopic redshift values for all objects in the test set.
After the rejection of catastrophic outliers, as defined by the
|Δznorm| > 2σ (Δznorm), we obtain a σnorm of ∼0.0174, which
is larger than NMADnorm. This is exactly what is to be ex-
pected according to Mobasher et al. (2007). In fact, in the case
where photo-z are empirical, it is always useful to analyse the
direct correlation between the NMADnorm and the standard de-
viation σnorm calculated on data that are not catastrophic out-
liers. In these cases, a correct photo-z prediction occurs when-
ever the quantity NMADnorm is lower than the σnorm for the
cleaned sample.

For empirical methods, the σ (Δznorm) overestimates the the-
oretical Gaussian σ, mainly due to catastrophic outliers and to
the intrinsic training error.

In order to better characterize the performances of the ex-
periment, we also computed the statistics on subsets of the test
data binned according to either redshift or magnitude range (see
Figs. 4 to 7).

As far as redshifts are concerned, as shown in Table 2, we
built the first subset using objects in the redshift range start-
ing from z = 0 up to the redshift z1 = 0.11549, which in-
cludes 50% of the objects in the test set; the second subset
uses the range from z1 = 0.115 to z2 = 0.177 (correspond-
ing to an additional 25% of the sample); the third subset uses
the range z2 = 0.177 to z3 = 0.345 (corresponding to an addi-
tional 15%) and, finally, the fourth subset includes all remain-
ing objects (redshift >z3 = 0.345). We also derived statistics in
the redshift range [0.05, 0.6] corresponding to the same range
covered in Laurino et al. (2011) (in order to allow for a fair
comparison).

The behaviour of the residuals as a function of the magnitude
in the SDSS r band was instead studied in the three bins listed in
Table 3.
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Table 2. Results for the MIXED experiment (see text).

Ref. |bias| σ NMAD rms |biasnorm| σnorm NMADnorm RMSnorm

Overall 0.000030 0.028 0.0196 0.028 0.000574 0.023 0.0172 0.023
[0, z1] 0.008259 0.022 0.0179 0.023 0.007895 0.020 0.0167 0.022
]z1, z2] 0.008975 0.023 0.0195 0.025 0.007828 0.020 0.0171 0.022
]z2, z3] 0.006664 0.035 0.0234 0.035 0.005640 0.028 0.0188 0.029
>z3 0.008568 0.037 0.0255 0.038 0.005705 0.024 0.0177 0.025
[0.05, 0.6] 0.002224 0.026 0.0188 0.026 0.001643 0.022 0.0163 0.022
Laurino et al. 0.015 0.015 0.016 0.021 0.014 0.013 0.013 0.019

|Δz| |Δz| |Δz| |Δznorm| |Δznorm| |Δznorm| Skewness Kurtosis
>0.15 >1σ >2σ >0.15 >1σ >2σ

Overall 0.12% 22.61% 5.16% 0.04% 23.57% 5.43% 1.37 × 10−16 1.8
[0, z1] 0.03% 27.30% 6.56% 0.02% 27.02% 6.62% 9.73 × 10−17 1.8
]z1, z2] 0.02% 28.13% 7.16% 0.01% 28.28% 7.20% 1.23 × 10−15 1.8
]z2, z3] 0.36% 22.51% 6.57% 0.08% 22.54% 6.67% 8.03 × 10−16 1.8
>z3 0.50% 20.56% 4.17% 0.16% 22.02% 4.34% −1.13 × 10−15 1.8
[0.05, 0.6] 0.11% 22.84% 5.44% 0.03% 23.62% 5.51% 2.24 × 10−15 1.8

Notes. The table is split in two parts. In the upper half we provide standard statistical indicators (see text for an explanation) used to evaluate
the performances of photo-z methods. We also include the same indicators for Laurino et al. (2011). In the lower half of the table, we report the
fraction (in percentage) of outliers computed using a fixed threshold of 0.15, the more meaningful 1, and 2σ clipping thresholds and the values
of skewness and kurtosis of the σ (Δznorm) distributions. The redshift range starting from z = 0 up to the redshift z1 = 0.115 includes 50% of the
objects in the test set; the second redshift bin, using the range from z1 = 0.115 to z2 = 0.177, corresponds to an additional 25% of the sample; the
third bin, using the range z2 = 0.177 to z3 = 0.345, corresponds to an additional 15% and, finally, the fourth bin includes all remaining objects
(redshift >z3 = 0.345). The last row reports the statistics in the redshift range [0.05, 0.6] corresponding to the same range covered in Laurino et al.
(2011).

Table 3. Test set data distribution with r mag binning.

Mag bin (r) Test objects |biasnorm| σnorm Quality flag Skewness Kurtosis

All 347, 342 0.000574 0.023 – 1.37 × 10−16 1.8
[15.4, 20.4] 321, 514 0.000539 0.022 1 −1.92 × 10−17 1.8
]20.4, 22.2] 25, 375 0.001067 0.032 2 6.34 × 10−18 1.8
]22.2, 23.0[ 453 0.001745 0.028 3 4.37 × 10−16 1.8

Notes. The table is ordered on the r mag intervals (first column). The second column reports the number of objects within the related bin. Column 3
lists the assigned photo-z quality flag. Finally, Cols. 4 and 5 list the skewness and kurtosis of the distribution of the residuals, respectively.

Using these information, we assigned a photo-z quality flag
(from 1 as best quality to 3 as worst quality) to all objects in
all r mag bins, following both the r mag completeness limit and
theσnorm trend as criteria. The results are summarized in Table 3.

As expected, the σnorm error also still remains acceptable
slightly outside the r magnitude completeness limit (r < 22.2).
In this region, however, the number of training points is rather
small, and for the reasons stated above, the predicted redshifts
need to be taken with some caution since, given the selection
criteria applied to select the targets for the spectroscopic sur-
vey, it is very likely that not all galaxy types are present in the
knowledge base and that the much wider population of objects
with photometric observations only is not well represented in the
training set.

In the already mentioned PHAT1 contest, however,
MLPQNA obtained very good results using a KB of size
(i.e. ∼500 objects) similar to that used for training in the last
magnitude bin.

In order to better characterize the distribution of the resid-
uals in terms of Gaussianity of the distributions, we fitted a
Gaussianity to the residuals in the various quality bins obtaining
the kurtosis and skewness listed in Table 3. The distributions

of residuals appear to be quite symmetric even though they are
slightly leptokurtic.

4. The photometric catalogue

To produce the final catalogue, we downloaded from the SDSS
DR9 data server2 all objects falling within the declination
range [−30◦,+85◦] and detected in all SDSS bands.

We underline that all empirical photo-z methods suffer from
a poor capability to extrapolate outside the range of distributions
imposed by the training. In other words, outside the limits of
magnitudes and zspec used in the training set, these methods do
not ensure optimal performances. hence, to remain in a safe con-
dition, we performed a selection of objects in the final catalogue
according to the same selection done on the training and test
sample limits.

Furthermore, the SDSS DR9 hosts objects that are spectro-
scopically recognized as galaxies, but whose photometric class
is different. In most cases, such objects are photometrically clas-
sified as stars. From the spectral point of view indeed, there is

2 http://skyserver.sdss3.org/CasJobs/
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Fig. 4. Distribution of the residuals in two redshift bins. All objects
a), zspec within the range [0.05, 0.6] b). The plotted range is −0.15 ≤
|Δznorm| ≤ 0.15.
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Fig. 5. Distribution of the residuals in three ps f Mag_r magnitude bins,
respectively, [15.4, 20.4] a), ]20.4, 22.2] b) and ]22.2, 23.0[ c). The plot-
ted range is −0.15 ≤ |Δznorm| ≤ 0.15.
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Fig. 6. Distribution of the residuals in zspec bins, respectively, [0, z1]
a), ]z1, z2] b). The plotted range is −0.15 ≤ |Δz| ≤ 0.15. The limits are
z1 = 0.115, z2 = 0.177, respectively.
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Fig. 7. Distribution of the residuals in zspec bins, respectively, ]z2, z3]
a), >z3 b). The plotted range is −0.15 ≤ |Δz| ≤ 0.15. The limits are
z2 = 0.177, z3 = 0.345, respectively.

a zspec value assigned to most of such objects, although they
are lost from any photometric search based on galaxy type.
Hence, for reasons of completeness, we added such objects to the
photo-z photometric catalogue, retrieving them through a special
SQL query (see Appendix C).

For convenience, the whole catalogue was split in 59 files,
containing a total of 143 584 848 objects with the estimated
photo-z. Among them, the file with suffix specialObjects
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includes the photo-z for special objects with a mismatch be-
tween photometric and spectroscopic class assignment. The
other 58 files forming the final catalogue correspond to different
declination ranges and each is structured in 24 columns
containing:

– Col. 1: the SDSS-DR9 object identification;
– Cols. 2 and 3: right ascension and declination;
– Cols. 4–8: the u, g, r, i, and z PSF magnitudes;
– Cols. 9–13: the ps f Mag_err error for all magnitudes;
– Cols. 14–18: the extinction for each magnitude;
– Cols. 19–22: the colours derived from ugriz ps f Mag type

magnitudes;
– Col. 23: the estimated photo-z; and
– Col. 24: quality flag of the photo-z obtained from the in-

formation gathered during the analysis of the test set. The
value 1 stands for the best photo-z accuracy, the value 2 for
photo-z with lower accuracy, and the value 3 for the photo-z
related to objects outside the ps f Mag_r completeness limit.

5. Conclusions

The MLPQNA neural network was applied to the SDSS-DR9
photometric galaxy data, using a knowledge base derived from
the SDSS-DR9 spectroscopic sub-sample.

After a set of experiments, best results were obtained with
a two hidden layer network, using a combination of the four
SDSS colours (obtained from the SDSS psfMag) plus the pivot
magnitude psfMag in the r band. This yields a normalized over-
all uncertainty of σ = 0.023 with a very small average bias
of ∼3× 10−5, a low NMAD, and a low fraction of outliers (∼5%
at 2σ and ∼0.1% at 0.15). After the rejection of catastrophic
outliers, the residual uncertainty is σ = 0.0174.

The trained network was then used to process the galaxies in
the SDSS-DR9, matching the above outlined selection criteria,
and to produce the complete photometric catalogue. This cata-
logue consists of photo-z estimates for more than 143 million
SDSS-DR9 galaxies.
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Appendix A: Spectroscopic query

The following SQL code has been used to obtain the spectro-
scopic KB to train and test the model.

SELECT
p.objid, s.specObjID, p.ra, p.dec,
p.psfMag_u, p.psfMag_g, p.psfMag_r, p.psfMag_i,
p.psfMag_z, p.psfmagerr_u, p.psfmagerr_g,
p.psfmagerr_r, p.psfmagerr_i, p.psfmagerr_z,
p.fiberMag_u, p.fiberMag_g, p.fiberMag_r,
p.fiberMag_i, p.fiberMag_z, p.fibermagerr_u,
p.fibermagerr_g, p.fibermagerr_r,
p.fibermagerr_i, p.fibermagerr_z,
p.petroMag_u, p.petroMag_g, p.petroMag_r,
p.petroMag_i, p.petroMag_z, p.petromagerr_u,
p.petromagerr_g, p.petromagerr_r,
p.petromagerr_i, p.petromagerr_z,

p.modelMag_u, p.modelMag_g, p.modelMag_r,
p.modelMag_i, p.modelMag_z,
p.modelmagerr_u, p.modelmagerr_g,
p.modelmagerr_r, p.modelmagerr_i,
p.modelmagerr_z,
p.extinction_u, p.extinction_g,
p.extinction_r, p.extinction_i,
p.extinction_z, s.z as zspec,
s.zErr as zspec_err, s.zWarning,
s.class, s.subclass, s.primTarget

INTO
mydb.galaxies_spec

FROM
PhotoObjAll as p,
SpecObj as s

WHERE
s.class = ’GALAXY’ AND s.zWarning = 0 AND
p.mode = 1 AND p.SpecObjID = s.SpecObjID AND
dbo.fPhotoFlags(’PEAKCENTER’) != 0 AND
dbo.fPhotoFlags(’NOTCHECKED’) != 0 AND
dbo.fPhotoFlags(’DEBLEND_NOPEAK’) != 0 AND
dbo.fPhotoFlags(’PSF_FLUX_INTERP’) != 0 AND
dbo.fPhotoFlags(’BAD_COUNTS_ERROR’) != 0 AND
dbo.fPhotoFlags(’INTERP_CENTER’) != 0

Appendix B: Photometric query

The produced photometric catalogue with the estimated photo-z
has been taken from SDSS DR9 service, by applying the fol-
lowing SQL query. The reported code here is referred to a DEC
range between 60 and 65 deg, as an example.

SELECT
p.objid, p.ra, p.dec,
p.psfMag_u, p.psfMag_g, p.psfMag_r,
p.psfMag_i, p.psfMag_z,
p.psfmagerr_u, p.psfmagerr_g,
p.psfmagerr_r, p.psfmagerr_i,
p.psfmagerr_z,
p.extinction_u, p.extinction_g,
p.extinction_r, p.extinction_i,
p.extinction_z

INTO
mydb.p60_p65

FROM
Galaxy as p

WHERE
p.mode = 1 AND
dbo.fPhotoFlags(’PEAKCENTER’) != 0 AND
dbo.fPhotoFlags(’NOTCHECKED’) != 0 AND
dbo.fPhotoFlags(’DEBLEND_NOPEAK’) != 0 AND
dbo.fPhotoFlags(’PSF_FLUX_INTERP’) != 0 AND
dbo.fPhotoFlags(’BAD_COUNTS_ERROR’) != 0 AND
dbo.fPhotoFlags(’INTERP_CENTER’) != 0 AND
p.dec >= 60 AND p.dec <65

Appendix C: Special query

Below we report the SQL code used for the query needed to
integrate the photo-z catalogue with objects spectroscopically
recognized as galaxies, but photometrically assigned to different
classes within the SDSS DR9.
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SELECT
p.objid, p.ra, p.dec,
p.psfMag_u, p.psfMag_g, p.psfMag_r,
p.psfMag_i, p.psfMag_z,
p.psfmagerr_u, p.psfmagerr_g,
p.psfmagerr_r, p.psfmagerr_i,
p.psfmagerr_z, p.extinction_u,
p.extinction_g, p.extinction_r,
p.extinction_i, p.extinction_z

INTO
mydb.photoerror

FROM
PhotoObjAll as p,
SpecObj as s

WHERE
s.class = ’GALAXY’ AND p.type != 3 AND

p.mode = 1 AND
dbo.fPhotoFlags(’PEAKCENTER’) != 0 AND
dbo.fPhotoFlags(’NOTCHECKED’) != 0 AND
dbo.fPhotoFlags(’DEBLEND_NOPEAK’) != 0 AND
dbo.fPhotoFlags(’PSF_FLUX_INTERP’) != 0 AND
dbo.fPhotoFlags(’BAD_COUNTS_ERROR’) != 0 AND
dbo.fPhotoFlags(’INTERP_CENTER’) != 0 AND
p.SpecObjID = s.SpecObjID
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