$\frac{J / A+A / 568 / A 126}{(\text { Brescia+, 2014) }} \quad$ SDSS-DR9 photometric redshifts

A catalogue of photometric redshifts for the SDSS-DR9 galaxies.

Brescia M., Cavuoti S., Longo G., De Stefano V. <Astron. Astrophys. 568, A126 (2014)> $=2014 \mathrm{~A} \& \mathrm{~A} . \mathrm{F}$ 58A.126B

ADC_Keywords: Galaxy catalogs ; Galaxies, photometry ; Photometry, SDSS ;
Redshifts

Keywords: techniques: photometric - galaxies: distances and redshifts -

```
    galaxies: photometry - methods: data analysis
```

- catalogs

Abstract:
Accurate photometric redshifts for large samples of galaxies are among
the main products of modern multiband digital surveys. Over the last
decade, the Sloan Digital Sky Survey (SDSS) has become a sort of
benchmark against which to test the various methods. We present an
application of a new method to the estimation of photometric redshifts
for the galaxies in the SDSS Data Release 9 (SDSSDR9). Photometric
redshifts for more than 143 million galaxies were produced. The MLPQNA
(Multi Layer Perceptron with Quasi Newton
Algorithm) model provided
within the framework of the DAMEWARE (DAta Mining and Exploration Web

Application REsource) is an interpolative method derived from machine
learning models. The obtained redshifts have an overall uncertainty of
sigma=0.023 with a very small average bias of about $3 \times 10^{\wedge}-5$, and a
fraction of catastrophic outliers of about 5\%. This result is slightly
better than what was already available in the literature, particularly
in terms of the smaller fraction of catastrophic outliers.

Description:
We present an application of a machine learning method to the
estimation of photometric redshifts for the galaxies in the SDSS Data

Release 9 (SDSS-DR9). Photometric redshifts for more than 143 million
galaxies were produced. The MLPQNA (Multi Layer Perceptron with Quasi

Newton Algorithm) model provided within the framework of the DAMEWARE
(DAta Mining and Exploration Web Application REsource) is an
interpolative method derived from machine learning models. The
obtained redshifts have an overall uncertainty of $\sigma=0.023$ with a
very small average bias of about 3×10^{-5} and a fraction of
catastrophic outliers of about 5\%. After removal of the catastrophic
outliers, the uncertainty is about $\sigma=0.017$. The catalogue files
report in their name the range of DEC degrees related to the included
objects.
File Summary:
\qquad
\qquad
FileName Lrecl Records Explanations

ReadMe	80		This file
r00_01.dat	186	3174048	Photo-z for objects with
DEC in [+00,	+01 [deg	
r01_02.dat	186	2622557	Photo-z for objects with
DEC in [+01,	+02 [deg	
r02_03.dat	186	2425949	Photo-z for objects with


```
r65_70.dat 186 1677346 Photo-z for objects with
DEC in [+65, +70[ deg
r70_85.dat 186 1337222 Photo-z for objects with
DEC in [+70, +85[ deg
r-01_00.dat 186 3182508 Photo-z for objects with
DEC in [-01, +00[ deg
r-02_01.dat 186 2471559 Photo-z for objects with
DEC ín [-02, -01[ deg
r-04-02.dat 186 3808610 Photo-z for objects with
DEC in [-04, -02[ deg
r-06_-04.dat 186 2637920 Photo-z for objects with
DEC in [-06, -04[ deg
r-08_06.dat 186 2661702 Photo-z for objects with
DEC in [-08, -06[ deg
r-10_08.dat 186 2006992 Photo-z for objects with
DEC in [-10, -08[ deg
r-15_-10.dat 186 2175039 Photo-z for objects with
DEC in [-15, -10[ deg
r-20_-15.dat 186 1693609 Photo-z for objects with
DEC in [-20, -15[ deg
r-30_-20.dat 186 702996 Photo-z for objects with
DEC in [-30, -20[ deg
rspecial.dat 186 18006 *Photo-z for special SDSS
objects
fits/*
5 9 ~ T a b l e s ~ a s ~ f i t s ~ f i l e s
```

Note on rspecial.dat: photo-z for SDSS special objects with a mismatch between
photometric and spectroscopic class assignment.

See also:
http://www.sdss.org : SDSS Home Page
Byte-by-byte Description of file: r*.dat

Bytes Format Units Label Explanations
\qquad
1- 19 I19 --- objID Unique SDSS
identifier

$\begin{aligned} & 21-29 \\ & (\mathrm{~J} 2000) \end{aligned}$	F9. 5	deg	RAdeg	Right Ascension
31-39	F9.5	deg	DEdeg	Declination (J2000)
41-46	F6. 3	mag	umag	[0/40] u-band PSF
magnitude				
magnitude				
$55-60$	F6. 3	mag	rmag	[0/40] r-band PSF
$62-67$	F6. 3	mag	imag	[0/40] i-band PSF
$69-74$ magnitude	F6.3	mag	zmag	[0/40] z-band PSF
$76-81$	F6.3	mag	e_umag	? $=99.999$ u-band PSF
$\begin{gathered} \text { magnitude } \\ 83-88 \end{gathered}$	$\begin{aligned} & \text { error } \\ & \text { F6. } 3 \end{aligned}$	mag	e gmag	? $=99.999$ g-band PSF
magnitude	error			
90-95	F6. 3	mag	e_rmag	? $=99.999$ r-band PSF
magnitude	error			
97-102	F6.3	mag	e_imag	? $=99.999$ i-band PSF
magnitude	error			
104-109	F6.3	mag	e_zmag	? $=99.999$ z-band PSF
magnitude	error			
111-116	F6. 3	mag	extu	? $=99.999$ Extinction
in u-band				
118-123	F6. 3	mag	extg	? $=99.999$ Extinction
in $9-b$ and				
125-130	F6. 3	mag	extr	? $=99.999$ Extinction
in r-band				
132-137	F6. 3	mag	exti	? $=99.999$ Extinction
in i-band				
139-144	F6. 3	mag	extz	? $=99.999$ Extinction
in z -band				
146-152	F7. 3	mag	u-g	u-g color index from
PSF SDSS magnitudes				
154-160	F7. 3	mag	$g-r$	g-r color index from
PSF SDSS magnitudes				
162-168	F7. 3	mag	r-i	r-i color index from
PSF SDSS magnitudes				
170-176	F7. 3	mag	i-z	i-z color index from
PSF SDSS magnitudes				
178-184	F7. 5	---	zphot	Estimated photometric
redshift				
186	I1		q_zphot	[0/3] Quality Flag of
the zphot:	: $0=n$ n			

$$
1=\mathrm{high},
$$

2=medium, 3=1ow

Acknowledgements:
Massimo Brescia, bresciamax(at)gmail.com
(End) Massimo Brescia [INAF-OACN, Italy], Patricia Vannier [CDS] 15-Jul-2014

