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Abstract. We enter the details of two recent articles concerning as many chemotaxis models, one nonlinear and
the other linear, and both with produced chemoattractant and saturated chemorepellent. More precisely, we are
referring respectively to the papers “Boundedness in a nonlinear attraction-repulsion Keller–Segel system with production
and consumption”, by S. Frassu, C. van der Mee and G. Viglialoro [J. Math. Anal. Appl. 504(2):125428, 2021] and
“Boundedness in a chemotaxis system with consumed chemoattractant and produced chemorepellent”, by S. Frassu and
G. Viglialoro [Nonlinear Anal. 213:112505, 2021]. These works, when properly analyzed, leave open room for some
improvement of their results. We generalize the outcomes of the mentioned articles, establish other statements and put
all the claims together; in particular, we select the sharpest ones and schematize them. Moreover, we complement our
research also when logistic sources are considered in the overall study.

1. Preamble

For details and discussions on the meaning of the forthcoming model, especially in the frame of chemotaxis phe-
nomena and related variants, as well as for mathematical motivations and connected state of the art, we refer to [1, 2].
These articles will be often cited throughout this work.

2. Presentation of the Theorems

Let Ω ⊂ Rn, n ≥ 2, be a bounded and smooth domain, χ, ξ, δ > 0,m1,m2,m3 ∈ R, f(u), g(u) and h(u) be reasonably
regular functions generalizing the prototypes f(u) = Kuα, g(u) = γul, and h(u) = ku− µuβ with K, γ, µ > 0, k ∈ R
and suitable α, l, β > 0. Once nonnegative initial configurations u0 and v0 are fixed, we aim at deriving sufficient
conditions involving the above data so to ensure that the following attraction-repulsion chemotaxis model

(1)



ut = ∇ · ((u+ 1)m1−1∇u− χu(u+ 1)m2−1∇v + ξu(u+ 1)m3−1∇w) + h(u) in Ω× (0, Tmax),

vt = ∆v − f(u)v in Ω× (0, Tmax),

0 = ∆w − δw + g(u) in Ω× (0, Tmax),

uν = vν = wν = 0 on ∂Ω× (0, Tmax),

u(x, 0) = u0(x), v(x, 0) = v0(x) x ∈ Ω̄,

admits classical solutions which are global and uniformly bounded in time. Specifically, we look for nonnegative
functions u = u(x, t), v = v(x, t), w = w(x, t) defined for (x, t) ∈ Ω̄× [0, Tmax), and Tmax =∞, with the properties that

(2)

{
u, v ∈ C0(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞)), w ∈ C0(Ω̄× [0,∞)) ∩ C2,0(Ω̄× (0,∞)),

(u, v, w) ∈ (L∞((0,∞);L∞(Ω)))3,

and pointwisely satisfying all the relations in problem (1).
To this scope, let f , g and h be such that

(3) f, g ∈ C1(R) with 0 ≤ f(s) ≤ Ksα and γsl ≤ g(s) ≤ γs(s+1)l−1, for some K, γ, α > 0, l ≥ 1 and all s ≥ 0,

and

(4) h ∈ C1(R) with h(0) ≥ 0 and h(s) ≤ ks− µsβ , for some k ∈ R, µ > 0, β > 1 and all s ≥ 0.
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Then we prove these two theorems.

Theorem 2.1. Let Ω be a smooth and bounded domain of Rn, with n ≥ 2, χ, ξ, δ positive reals, l ≥ 1 and h ≡ 0.
Moreover, for α > 0 and m1,m2,m3 ∈ R, let f and g fulfill (3) for each of the following cases:

Ai) α ∈
(
0, 1

n

]
and m1 > min

{
2m2 − (m3 + l),max

{
2m2 − 1, n−2

n

}
,m2 − 1

n

}
=: A,

Aii) α ∈
(

1
n ,

2
n

)
and m1 > m2 + α− 2

n =: B,
Aiii) α ∈

[
2
n , 1
]
and m1 > m2 + nα−2

nα−1 =: C.
Then for any initial data (u0, v0) ∈ (W 1,∞(Ω))2, with u0, v0 ≥ 0 on Ω̄, there exists a unique triplet (u, v, w) of
nonnegative functions, uniformly bounded in time and classically solving problem (1).

Theorem 2.2. Under the same hypotheses of Theorem 2.1 and β > 1, let h comply with (4). Moreover, for α > 0
and m1,m2,m3 ∈ R, let f and g fulfill (3) for each of the following cases:
Aiv) α ∈

(
0, 1

n

]
and m1 > min {2m2 − (m3 + l), 2m2 − β} =: D,

Av) α ∈
(

1
n , 1
)
and m1 > min {2m2 + 1− (m3 + l), 2m2 + 1− β} =: E.

Then the same claim holds true.

When the logistic term h does not take part in the model, problem (1) has been already analyzed in [1] for the
nonlinear diffusion and sensitivities case, and in [2] for the linear scenario; nevertheless, in these papers only small
values of α are considered. Precisely, for α belonging to (0, 1

2 + 1
n ), boundedness is ensured:

• in [1, Theorem 2.1] for m1,m2,m3 ∈ R and l ≥ 1, under the assumption

m1 > min

{
2m2 + 1− (m3 + l),max

{
2m2,

n− 2

n

}}
=: F ;

• in [2, Theorem 2.1] for either m1 = m2 = m3 = l = 1, under the assumption

ξ >

(
8

n

2
n
2 (n2 )n+1(n2 − 1)(n2 + n)

(n2 + 1)
n
2 +1

) 2
n

‖χv0‖
4
n

L∞(Ω) =: G,

or in [2, Theorem 2.2] for m1 = m2 = m3 = 1 and any l > 1.
In light of Theorems 2.1 and 2.2, herein we develop an analysis dealing also with values of α larger than 1

2 + 1
n .

Additionally, for α belonging to some sub-intervals of (0, 1
2 + 1

n ) we improve [1, Theorem 2.1] and [2, Theorems 2.1
and 2.2]. On the other hand, the introduction of h allows us to obtain further generalizations and/or claims.

All this aspects are put together into Table 1. It, when possible, also indicates which of the assumptions taken from
[1, Theorem 2.1], [2, Theorems 2.1 and 2.2], and Theorems 2.1 and 2.2 are the mildest leading to boundedness.

m2 m3 l α m1 χ ξ Reference Implication

1 1 1 [ 2
n , 1) 1 R+ > G Remark 3, generalizing [2, Th. 2.1]

1 1 > 1 [ 2
n , 1) 1 R+ R+ Remark 3, generalizing [2, Th. 2.2]

R R ≥ 1 ( 1
n , 1) > F R+ R+ Remark 3, generalizing [1, Th. 2.1]

R R ≥ 1 (0, 1
n ] > A R+ R+ Th. 2.1 ∗ and ∗∗

R R ≥ 1 ( 1
n ,

2
n ) > B R+ R+ Th. 2.1 ∗

R R ≥ 1 [ 2
n , 1] > C R+ R+ Th. 2.1

m2 m3 l β α m1 χ ξ k µ Reference

1 1 1 > 2 ( 1
n , 1) 1 R+ R+ R R+ Th. 2.2

R R ≥ 1 > 1 (0, 1
n ] > D R+ R+ R R+ Th. 2.2

R R ≥ 1 > 1 ( 1
n , 1) > E R+ R+ R R+ Th. 2.2

Table 1. Schematization collecting the ranges of the parameters involved in model (1) for which boundedness of its solutions
is established for any fixed initial distribution u0 and v0. The symbol ∗ stands for “improves [2, Th. 2.1] and recovers [2, Th.
2.2]” and ∗∗ for “improves [1, Th. 2.1]”. (A,B, C,D, E,F are defined above.)
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3. Local well posedness, boundedness criterion, main estimates and analysis of parameters

For Ω, χ, ξ, δ, m1,m2,m3 and f, g, h as above, from now on with u, v, w ≥ 0 we refer to functions of (x, t) ∈
Ω̄× [0, Tmax), for some finite Tmax, classically solving problem (1) when nonnegative initial data (u0, v0) ∈ (W 1,∞(Ω))2

are provided. In particular, u satisfies

(5)
∫

Ω

u(x, t)dx ≤ m0 for all t ∈ (0, Tmax),

whilst v is such that
0 ≤ v ≤ ‖v0‖L∞(Ω) in Ω× (0, Tmax).

Further, globality and boundedness of (u, v, w) (in the sense of (2)) are ensured whenever (boundedness criterion) the
u-component belongs to L∞((0, Tmax);Lp(Ω)), with p > 1 arbitrarily large, and uniformly with respect t ∈ (0, Tmax).

These basic statements can be proved by standard reasoning; in particular, when h ≡ 0 they verbatim follow from
[1, Lemmas 4.1 and 4.2] and relation (5) is the well-known mass conservation property. Conversely, in the presence
of the logistic terms h as in (4), some straightforward adjustments have to be considered and the L1-bound of u is
consequence of an integration of the first equation in (1) and an application of the Hölder inequality: precisely for
k+ = max{k, 0}

d

dt

∫
Ω

u =

∫
Ω

h(u) = k

∫
Ω

u− µ
∫

Ω

uβ ≤ k+

∫
Ω

u− µ

|Ω|β−1

(∫
Ω

u

)β
for all t ∈ (0, Tmax),

and we can conclude by invoking an ODI-comparison argument.
In our computations, beyond the above positions, some uniform bounds of ‖v(·, t)‖W 1,s(Ω) are required. In this

sense, the following lemma gets the most out from Lp-Lq (parabolic) maximal regularity; this is a cornerstone and
for some small values of α the succeeding W 1,s-estimates are sharper than the W 1,2-estimates derived in [1, 2], and
therein employed.

Lemma 3.1. There exists c0 > 0 such that v fulfills

(6)
∫

Ω

|∇v(·, t)|s ≤ c0 on (0, Tmax)

 for all s ∈ [1,∞) if α ∈
(
0, 1

n

]
,

for all s ∈
[
1, n

(nα−1)

)
if α ∈

(
1
n , 1
]
.

Proof. For each α ∈ (0, 1], there is ρ > 1
2 such that for all s ∈

[
1
α ,

n
(nα−1)+

)
we have 1

2 < ρ < 1 − n
2

(
α − 1

s

)
. From

1− ρ− n
2

(
α− 1

s

)
> 0, the claim follows invoking properties related to the Neumann heat semigroup, exactly as done

in the second part of [1, Lemma 5.1]. �

We will make use of this technical result.

Lemma 3.2. Let n ∈ N, with n ≥ 2, m1 >
n−2
n , m2,m3 ∈ R and α ∈ (0, 1]. Then there is s ∈ [1,∞), such that for

proper p, q ∈ [1,∞), θ and θ′, µ and µ′ conjugate exponents, we have that

a1 =

m1+p−1
2

(
1− 1

(p+2m2−m1−1)θ

)
m1+p−1

2 + 1
n −

1
2

, a2 =
q
(

1
s −

1
2θ′

)
q
s + 1

n −
1
2

,

a3 =

m1+p−1
2

(
1− 1

2αµ

)
m1+p−1

2 + 1
n −

1
2

, a4 =
q
(

1
s −

1
2(q−1)µ′

)
q
s + 1

n −
1
2

,

κ1 =

p
2

(
1− 1

p

)
m1+p−1

2 + 1
n −

1
2

, κ2 =
q − 1

2

q + 1
n −

1
2

,

belong to the interval (0, 1). If, additionally,

(7) α ∈
(

0,
1

n

]
and m2 −m1 <

1

n
,

(8) α ∈
(

1

n
,

2

n

)
and m2 −m1 <

2

n
− α,

or

(9) α ∈
[

2

n
, 1

]
and m2 −m1 <

2− nα
nα− 1

,
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these futher relations hold true:

β1 + γ1 =
p+ 2m2 −m1 − 1

m1 + p− 1
a1 +

1

q
a2 ∈ (0, 1) and β2 + γ2 =

2α

m1 + p− 1
a3 +

q − 1

q
a4 ∈ (0, 1).

Proof. For any s ≥ 1, let θ′ > max
{
n
2 ,

s
2

}
and µ > max

{
1

2α ,
n
2

}
. Thereafter, for

(10)

q > max
{

(n−2)
n θ′, s

2µ′ + 1
}

p > max
{

2− 2
n −m1,

1
θ − 2m2 +m1 + 1, (2m2−m1−1)(n−2)θ−nm1+n

n−(n−2)θ , 2αµ(n−2)
n −m1 + 1

}
,

it can be seen that ai, k2 ∈ (0, 1), for any i = 1, 2, 3, 4. On the other hand, k1 ∈ (0, 1) also thanks to the assumption
m1 >

n−2
n .

As to the second part, we distinguish three cases: α ∈
(
0, 1

n

]
, α ∈

(
1
n ,

2
n

)
and α ∈

[
2
n , 1
]
. (We insert Figure 1 to

clarify the proof, by focusing on the relation involving the values of α, s and θ′ in terms of assumptions (7), (8), (9).)
◦ α ∈

(
0, 1

n

]
. For s > 2µ′

2µ′−1 arbitrarily large, consistently with (10), we take p = q = s and θ′ = sω, for some
ω > 1

2 . Computations provide

0 < β1 + γ1 =
s+ 2m2 −m1 − 1− 1

θ

m1 + s− 2 + 2
n

+
2− 1

ω

s+ 2s
n

,

and

0 < β2 + γ2 =
2α− 1

µ

m1 + s− 2 + 2
n

+
2s− 2− s

µ′

s+ 2s
n

.

In light of the above positions, the largeness of s infers θ arbitrarily close to 1. Further, by choosing ω
approaching 1

2 , continuity arguments imply that β1 + γ1 < 1 whenever restriction (7) is satisfied, whereas
β2 + γ2 < 1 comes from µ > n

2 .

◦ α ∈
(

1
n ,

2
n

)
. First let s be arbitrarily close to n

nα−1 and let q = p
2 fulfill (10). Then, in these circumstances it

holds that max
{
s
2 ,

n
2

}
= s

2 , so that restriction on θ′ reads θ′ > s
2 . Subsequently,

0 < β1 + γ1 =
p+ 2m2 −m1 − 1− 1

θ

m1 + p− 2 + 2
n

+
2− s

θ′

p+ 2s
n − s

,

and

0 < β2 + γ2 =
2α− 1

µ

m1 + p− 2 + 2
n

+
p− 2− s

µ′

p+ 2s
n − s

.

Since from θ′ > s
2 we have that θ′ approaches n

2(nα−1) , similar arguments used above imply that upon enlarging
p one can see that condition (8) leads to β1 + γ1 < 1. On the other hand, in order to have β2 + γ2 < 1 we have
to invoke the above constrain on µ, i.e., µ > 1

2α .

◦ α ∈
[

2
n , 1
]
. We only have to consider in the previous case that now θ′ > n

2 , so concluding thanks to (9).
�

Remark 1. In view of its importance in the computations, we have to point out that from the above lemma s can
be chosen arbitrarily large only when α ∈

(
0, 1

n

]
. In particular, as we will see, in such an interval the terms

∫
Ω

(u +

1)p+2m2−m1−1|∇v|2 and
∫

Ω
(u + 1)2α|∇v|2(q−1), appearing in our reasoning, can be treated in two alternative ways:

either invoking the Young inequality or the Gagliardo–Nirenberg one.

4. A priori estimates and proof of the Theorems

4.1. The non-logistic case. Recalling the globality criterion mentioned in §3, let us define the functional y(t) :=∫
Ω

(u + 1)p +
∫

Ω
|∇v|2q, with p, q > 1 properly large (and, when required, with p = q), and let us dedicate to derive

the desired uniform bound of
∫

Ω
up.

In the spirit of Remark 1, let us start by analyzing the evolution in time of the functional y(t) by relying on the
Young inequality.

Lemma 4.1. Let α ∈
(
0, 1

n

]
. If m1,m2,m3 ∈ R comply with either m1 > 2m2−(m3+l) or m1 > max

{
2m2 − 1, n−2

n

}
,

then there exist p, q > 1 such that (u, v, w) satisfies for some c16, c17, c18 > 0

(11)
d

dt

(∫
Ω

(u+ 1)p +

∫
Ω

|∇v|2q
)

+ c16

∫
Ω

|∇|∇v|q|2 + c17

∫
Ω

|∇(u+ 1)
m1+p−1

2 |2 ≤ c18 on (0, Tmax).
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n = 10
n = 4

n = 3

n = 2

α

0 2/n1/n 1

s ∈ [1,∞)

↓
θ′ ≈ ∞

s ∈ [1, n
nα−1 )

↓
θ′ ' n

2(nα−1)

s ∈ [1, n
nα−1 )

↓
θ′ ' n/2

0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0.2

0.4

0.6
m2 −m1

Figure 1. The colored lines, functions of α, represent the supremum of the difference m2 −m1 for some space dimension n.
Moreover, for the sub-intervals (0, 1/n], (1/n, 2/n) and [2/n, 1] of α, the corresponding range of s and choice of θ′ are also
indicated.

Proof. Let p = q > 1 sufficiently large; moreover, in view of Remark 1, from now on, when necessary we will tacitly
enlarge these parameters.

In the first part of the proof we focus on the estimate of the term d
dt

∫
Ω

(u+1)p. Standard testing procedures provide

d

dt

∫
Ω

(u+ 1)p =

∫
Ω

p(u+ 1)p−1ut = −p(p− 1)

∫
Ω

(u+ 1)p+m1−3|∇u|2 + p(p− 1)χ

∫
Ω

u(u+ 1)m2+p−3∇u · ∇v

− p(p− 1)ξ

∫
Ω

u(u+ 1)m3+p−3∇u · ∇w on (0, Tmax).

By reasoning as in [1, Lemma 5.2], we obtain for ε1, ε2, σ̃ positive, and for all t ∈ (0, Tmax), some c1 > 0 such that

d

dt

∫
Ω

(u+ 1)p ≤ −p(p− 1)

∫
Ω

(u+ 1)p+m1−3|∇u|2 + p(p− 1)χ

∫
Ω

u(u+ 1)m2+p−3∇u · ∇v

+

(
ε1 + σ̃ − p(p− 1)ξγ

2p−1(m3 + p− 1)

)∫
Ω

(u+ 1)m3+p+l−1 + ε2

∫
Ω

|∇(u+ 1)
m1+p−1

2 |2 + c1.

(12)

Let us now discuss the cases m1 > 2m2 − (m3 + l) and m1 > max
{

2m2 − 1, n−2
n

}
, respectively. A double application

of the Young inequality in (12) and bound (6) give

p(p− 1)χ

∫
Ω

u(u+ 1)m2+p−3∇u · ∇v ≤ ε3
∫

Ω

(u+ 1)p+m1−3|∇u|2 + c2

∫
Ω

(u+ 1)p+2m2−m1−1|∇v|2

≤ ε3
∫

Ω

(u+ 1)p+m1−3|∇u|2 + ε4

∫
Ω

|∇v|s + c3

∫
Ω

(u+ 1)
(p+2m2−m1−1)s

s−2

≤ ε3
∫

Ω

(u+ 1)p+m1−3|∇u|2 + c3

∫
Ω

(u+ 1)
(p+2m2−m1−1)s

s−2 + c4 on (0, Tmax),

(13)

with ε3, ε4 > 0 and some positive c2, c3, c4. From m1 > 2m2 − (m3 + l), we have (p+2m2−m1−1)s
s−2 < (m3 + p + l − 1),

and for every ε5 > 0, Young’s inequality yields some c5 > 0 entailing

(14) c3

∫
Ω

(u+ 1)
(p+2m2−m1−1)s

s−2 ≤ ε5
∫

Ω

(u+ 1)m3+p+l−1 + c5 for all (0, Tmax).
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Now, we note that m1 > 2m2 − 1 implies (p+2m2−m1−1)s
s−2 < p, and the Young inequality allows us to rephrase (14) in

an alternative way:

(15) c3

∫
Ω

(u+ 1)
(p+2m2−m1−1)s

s−2 ≤ ε6
∫

Ω

(u+ 1)p + c6 on (0, Tmax),

with ε6 > 0 and positive c6. Further, an application of the Gagliardo–Nirenberg inequality and property (5) yield

θ =

n(m1+p−1)
2

(
1− 1

p

)
1− n

2 + n(m1+p−1)
2

∈ (0, 1),

so giving for c7, c8 > 0∫
Ω

(u+ 1)p = ‖(u+ 1)
m1+p−1

2 ‖
2p

m1+p−1

L
2p

m1+p−1 (Ω)

≤ c7‖∇(u+ 1)
m1+p−1

2 ‖
2p

m1+p−1 θ

L2(Ω) ‖(u+ 1)
m1+p−1

2 ‖
2p

m1+p−1 (1−θ)

L
2

m1+p−1 (Ω)
+ c7‖(u+ 1)

m1+p−1
2 ‖

2p
m1+p−1

L
2

m1+p−1 (Ω)

≤ c8
(∫

Ω

|∇(u+ 1)
m1+p−1

2 |2
)κ1

+ c8 for all t ∈ (0, Tmax).

Since κ1 ∈ (0, 1) (see Lemma 3.2), for any positive ε7 thanks to the Young inequality we arrive for some positive c9 > 0
at

ε6

∫
Ω

(u+ 1)p ≤ ε7
∫

Ω

|∇(u+ 1)
m1+p−1

2 |2 + c9 on (0, Tmax).(16)

By plugging estimate (13) into relation (12), and by relying on bound (14) (or, alternatively to (14), relations (15)
and (16)), infer for appropriate ε̃1, ε̃2 > 0 and proper c10 > 0

d

dt

∫
Ω

(u+ 1)p ≤
(
− 4p(p− 1)

(m1 + p− 1)2
+ ε̃1

)∫
Ω

|∇(u+ 1)
m1+p−1

2 |2

+

(
ε̃2 −

p(p− 1)ξγ

2p−1(m3 + p− 1)

)∫
Ω

(u+ 1)m3+p+l−1 + c10 for all t ∈ (0, Tmax),

(17)

where we also exploited that

(18)
∫

Ω

(u+ 1)p+m1−3|∇u|2 =
4

(m1 + p− 1)2

∫
Ω

|∇(u+ 1)
m1+p−1

2 |2 on (0, Tmax).

Now, as to the term d
dt

∫
Ω
|∇v|2q of the functional y(t), reasoning similarly as in [1, Lemma 5.3], we obtain for some

c11, c12 > 0

(19)
d

dt

∫
Ω

|∇v|2q + q

∫
Ω

|∇v|2q−2|D2v|2 ≤ c11

∫
Ω

u2α|∇v|2q−2 + c12 on (0, Tmax).

Moreover, Young’s inequalities and bound (6) give for every arbitrary ε8, ε9 > 0 and some c13, c14, c15 > 0

c11

∫
Ω

u2α|∇v|2q−2 ≤ ε8
∫

Ω

(u+ 1)m3+p+l−1 + c13

∫
Ω

|∇v|
2(q−1)(m3+p+l−1)
m3+p+l−1−2α

≤ ε8
∫

Ω

(u+ 1)m3+p+l−1 + ε9

∫
Ω

|∇v|s + c14 ≤ ε8
∫

Ω

(u+ 1)m3+p+l−1 + c15 for all t ∈ (0, Tmax).

(20)

Therefore, by inserting relation (20) into (19) and adding (17), we have the claim for a proper choice of ε̃1, ε̃2, ε8 and
some positive c16, c17, c18, also by taking into account the relation (see [1, page 17])

(21) |∇|∇v|q|2 =
q2

4
|∇v|2q−4|∇|∇v|2|2 = q2|∇v|2q−4|D2v∇v|2 ≤ q2|∇v|2q−2|D2v|2.

�

Let us now turn our attention when, as mentioned before, the Gagliardo–Nirenberg inequality is employed. In this
case, we can derive information not only for α ∈

(
0, 1

n

]
but also for α ∈

(
1
n , 1
]
.

Lemma 4.2. If m1,m2 ∈ R and α > 0 are taken accordingly to (7), (8), (9), then there exist p, q > 1 such that
(u, v, w) satisfies a similar inequality as in (11).
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Proof. For s, p and q taken accordingly to Lemma 3.2 (in particular, p = q for α ∈
(
0, 1

n

]
, and q = p

2 for α ∈
(

1
n , 1
]
),

let θ, θ′, µ, µ′, a1, a2, a3, a4 and β1, β2, γ1, γ2 be therein defined.
With a view to Lemma 4.1, by manipulating relation (12) and focusing on the first inequality in (13) and on (19),

proper ε1, σ̃ lead to

d

dt

(∫
Ω

(u+ 1)p +

∫
Ω

|∇v|2q
)

+ q

∫
Ω

|∇v|2q−2|D2v|2 ≤
(
− 4p(p− 1)

(m1 + p− 1)2
+ ε̃1

)∫
Ω

|∇(u+ 1)
m1+p−1

2 |2

+ c2

∫
Ω

(u+ 1)p+2m2−m1−1|∇v|2 + c11

∫
Ω

u2α|∇v|2q−2 + c19 on (0, Tmax),

(22)

for some c19 > 0 (we also used relation (18)). In this way, we can estimate the second and third integral on the
right-hand side of (22) by applying the Hölder inequality so to have

(23)
∫

Ω

(u+ 1)p+2m2−m1−1|∇v|2 ≤
(∫

Ω

(u+ 1)(p+2m2−m1−1)θ

) 1
θ
(∫

Ω

|∇v|2θ
′
) 1
θ′

on (0, Tmax),

and

(24)
∫

Ω

(u+ 1)2α|∇v|2q−2 ≤
(∫

Ω

(u+ 1)2αµ

) 1
µ
(∫

Ω

|∇v|2(q−1)µ′
) 1
µ′

on (0, Tmax).

By invoking the Gagliardo–Nirenberg inequality and bound (5), we obtain for some c20, c21 > 0

(∫
Ω

(u+ 1)(p+2m2−m1−1)θ

) 1
θ

= ‖(u+ 1)
m1+p−1

2 ‖
2(p+2m2−m1−1)

m1+p−1

L
2(p+2m2−m1−1)

m1+p−1
θ
(Ω)

(25)

≤ c20‖∇(u+ 1)
m1+p−1

2 ‖
2(p+2m2−m1−1)

m1+p−1 a1

L2(Ω) ‖(u+ 1)
m1+p−1

2 ‖
2(p+2m2−m1−1)

m1+p−1 (1−a1)

L
2

m1+p−1 (Ω)
+ c20‖(u+ 1)

m1+p−1
2 ‖

2(p+2m2−m1−1)
m1+p−1

L
2

m1+p−1 (Ω)

≤ c21

(∫
Ω

|∇(u+ 1)
m1+p−1

2 |2
)β1

+ c21 for all t ∈ (0, Tmax),

and for some c22, c23 > 0

(∫
Ω

(u+ 1)2αµ

) 1
µ

= ‖(u+ 1)
m1+p−1

2 ‖
4α

m1+p−1

L
4αµ

m1+p−1 (Ω)

(26)

≤ c22‖∇(u+ 1)
m1+p−1

2 ‖
4α

m1+p−1a3

L2(Ω) ‖(u+ 1)
m1+p−1

2 ‖
4α

m1+p−1 (1−a3)

L
2

m1+p−1 (Ω)
+ c22‖(u+ 1)

m1+p−1
2 ‖

4α
m1+p−1

L
2

m1+p−1 (Ω)

≤ c23

(∫
Ω

|∇(u+ 1)
m1+p−1

2 |2
)β2

+ c23 for all t ∈ (0, Tmax).

In a similar way, we can again apply the Gagliardo–Nirenberg inequality and bound (6) and get for some c24, c25 > 0

(∫
Ω

|∇v|2θ
′
) 1
θ′

= ‖|∇v|q‖
2
q

L
2θ′
q (Ω)

≤ c24‖∇|∇v|q‖
2
q a2

L2(Ω)‖|∇v|
q‖

2
q (1−a2)

L
s
q (Ω)

+ c24‖|∇v|q‖
2
q

L
s
q (Ω)

(27)

≤ c25

(∫
Ω

|∇|∇v|q|2
)γ1

+ c25 for all t ∈ (0, Tmax),

and for some c26, c27 > 0

(∫
Ω

|∇v|2(q−1)µ′
) 1
µ′

= ‖|∇v|q‖
2(q−1)
q

L
2(q−1)
q

µ′
(Ω)

≤ c26‖∇|∇v|q‖
2(q−1)
q a4

L2(Ω) ‖|∇v|q‖
2(q−1)
q (1−a4)

L
s
q (Ω)

+ c26‖|∇v|q‖
2(q−1)
q

L
s
q (Ω)

(28)

≤ c27

(∫
Ω

|∇|∇v|q|2
)γ2

+ c27 for every t ∈ (0, Tmax).
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By plugging (23) and (24) into (22) and taking into account (25), (26), (27), (28), we deduce for a proper ε̃1, once
inequality (21) is considered, the following estimate for some c28, c29, c30, c31, c32 > 0:

d

dt

(∫
Ω

(u+ 1)p +

∫
Ω

|∇v|2q
)

+ c28

∫
Ω

|∇|∇v|q|2 + c29

∫
Ω

|∇(u+ 1)
m1+p−1

2 |2 − c30

≤ c31

(∫
Ω

|∇(u+ 1)
m1+p−1

2 |2
)β1

(∫
Ω

|∇|∇v|q|2
)γ1

+ c31

(∫
Ω

|∇(u+ 1)
m1+p−1

2 |2
)β1

+ c31

(∫
Ω

|∇|∇v|q|2
)γ1

+ c32

(∫
Ω

|∇(u+ 1)
m1+p−1

2 |2
)β2

(∫
Ω

|∇|∇v|q|2
)γ2

+ c32

(∫
Ω

|∇(u+ 1)
m1+p−1

2 |2
)β2

+ c32

(∫
Ω

|∇|∇v|q|2
)γ2

on (0, Tmax).

(29)

Since by Lemma 3.2 we have that β1 + γ1 < 1 and β2 + γ2 < 1, and in particular β1, γ1, β2, γ2 ∈ (0, 1), we can treat
the two integral products and the remaining four addenda of the right-hand side in a such way that eventually they
are absorbed by the two integral terms involving the gradients in the left one. More exactly, to the products we apply

ad1bd2 ≤ ε(a+ b) + c with a, b ≥ 0, d1, d2 > 0 such that d1 + d2 < 1, for all ε > 0 and some c > 0

(achievable by means of applications of Young’s inequality), and to the other terms the Young inequality. In this
way, the resulting linear combination of

∫
Ω
|∇|∇v|q|2 and

∫
Ω
|∇(u+ 1)

m1+p−1
2 |2 can be turned into c28

2

∫
Ω
|∇|∇v|q|2 +

c29
2

∫
Ω
|∇(u+ 1)

m1+p−1
2 |2, which coming back to (29) infers what claimed. �

4.2. The logistic case. For the logistic case we retrace part of the computations above connected to the usage of the
Young inequality only.

Lemma 4.3. If m1,m2,m3 ∈ R comply with m1 > 2m2 − (m3 + l) or m1 > 2m2 − β whenever α ∈
(
0, 1

n

]
, or

m1 > 2m2 + 1 − (m3 + l) or m1 > 2m2 + 1 − β whenever α ∈
(

1
n , 1
)
, then there exist p, q > 1 such that (u, v, w)

satisfies a similar inequality as in (11).

Proof. As in Lemma 4.1, in view of inequality (13) and the properties of the logistic h in (4), relation (12) now becomes
for some positive c33

d

dt

∫
Ω

(u+ 1)p ≤ (−p(p− 1) + ε3)

∫
Ω

(u+ 1)p+m1−3|∇u|2 + c3

∫
Ω

(u+ 1)
(p+2m2−m1−1)s

s−2

+

(
ε1 + σ̃ − p(p− 1)ξγ

2p−1(m3 + p− 1)

)∫
Ω

(u+ 1)m3+p+l−1 + ε2

∫
Ω

|∇(u+ 1)
m1+p−1

2 |2

+ pk+

∫
Ω

(u+ 1)p − pµ
∫

Ω

(u+ 1)p−1uβ + c33 for all t ∈ (0, Tmax).

(30)

Applying the inequality (A+B)p ≤ 2p−1(Ap +Bp) with A,B ≥ 0 and p > 1 to the last integral in (30), implies that
−uβ ≤ − 1

2β−1 (u+ 1)β + 1; therefore

(31) − pµ
∫

Ω

(u+ 1)p−1uβ ≤ − pµ

2β−1

∫
Ω

(u+ 1)p−1+β + pµ

∫
Ω

(u+ 1)p−1 on (0, Tmax).

Henceforth, by taking into account the Young inequality, we have that for t ∈ (0, Tmax)

(32) pk+

∫
Ω

(u+ 1)p ≤ δ1
∫

Ω

(u+ 1)p−1+β + c34 and pµ

∫
Ω

(u+ 1)p−1 ≤ δ2
∫

Ω

(u+ 1)p−1+β + c35,

with δ1, δ2 > 0 and some c34, c35 > 0.
Case 1: α ∈

(
0, 1

n

]
and m1 > 2m2− (m3 + l) or m1 > 2m2−β. For m1 > 2m2− (m3 + l) we refer to Lemma 4.1

and we take in mind inequality (14). Conversely, when m1 > 2m2 − β, we have that (recall s may be arbitrary large)
(p+2m2−m1−1)s

s−2 < p− 1 + β, and by means of the Young inequality estimate (14) can alternatively read

(33) c3

∫
Ω

(u+ 1)
(p+2m2−m1−1)s

s−2 ≤ δ3
∫

Ω

(u+ 1)p−1+β + c36 on (0, Tmax),

with δ3 > 0 and positive c36. By inserting estimates (31) and (32) into relation (30), as well as taking into account
(14) (or, alternatively to (14), bound (33)), for suitable ε̂, ε̃2, δ̃ > 0 and some c37 > 0 we arrive at

d

dt

∫
Ω

(u+ 1)p ≤
(
− 4p(p− 1)

(m1 + p− 1)2
+ ε̂

)∫
Ω

|∇(u+ 1)
m1+p−1

2 |2 +

(
ε̃2 −

p(p− 1)ξγ

2p−1(m3 + p− 1)

)∫
Ω

(u+ 1)m3+p+l−1

+
(
δ̃ − pµ

2β−1

)∫
Ω

(u+ 1)p−1+β + c37 for all t ∈ (0, Tmax),
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where we used again relation (18). We conclude reasoning exactly as in the second part of the proof of Lemma 4.1
and by choosing suitable ε̂, ε̃2, δ̃, ε8.

Case 2: α ∈
(

1
n , 1
)
and m1 > 2m2 + 1 − (m3 + l) or m1 > 2m2 + 1 − β. Accordingly to Remark 1, since now s

cannot increase arbitrarily, relations (14) and (33) have to be differently discussed. In particular, for some c̄1 > 0 we
can estimate relation (13) as follows:

p(p− 1)χ

∫
Ω

u(u+ 1)m2+p−3∇u · ∇v ≤ ε3
∫

Ω

(u+ 1)p+m1−3|∇u|2 + c2

∫
Ω

(u+ 1)p+2m2−m1−1|∇v|2

≤ ε3
∫

Ω

(u+ 1)p+m1−3|∇u|2 + ε4

∫
Ω

|∇v|2(p+1) + c̄1

∫
Ω

(u+ 1)
(p+2m2−m1−1)(p+1)

p on (0, Tmax).

Now, if m1 > 2m2 + 1− (m3 + l), then some p sufficiently large infers to (p+2m2−m1−1)(p+1)
p < p+m3 + l− 1, so that

for any positive ε̄1 and some c̄2 > 0 we have

c̄1

∫
Ω

(u+ 1)
(p+2m2−m1−1)(p+1)

p ≤ ε̄1
∫

Ω

(u+ 1)p+m3+l−1 + c̄2 on (0, Tmax).

Conversely, and in a similar way, for m1 > 2m2 + 1− β we have for any positive ε̄2 and some c̄3 > 0

c̄1

∫
Ω

(u+ 1)
(p+2m2−m1−1)(p+1)

p ≤ ε̄2
∫

Ω

(u+ 1)p−1+β + c̄3 on (0, Tmax).

The remaining part of the proof follows as the previous case, by taking into account [1, Lemma 5.3-Lemma 5.4] for
the term dealing with

∫
Ω
|∇v|2(p+1). �

As a by-product of what now obtained we are in a position to conclude.

4.3. Proof of Theorems 2.1 and 2.2.

Proof. Let (u0, v0) ∈ (W 1,∞(Ω))2 with u0, v0 ≥ 0 on Ω̄. For f and g as in (3) and, respectively, for f , g as in (3) and
h as in (4), let α > 0 and let m1,m2,m3 ∈ R comply with Ai), Aii) and Aiii), respectively, Aiv) and Av). Then, we
refer to Lemmas 4.1 and 4.2, respectively, Lemma 4.3 and obtain for some C1, C2, C3 > 0

(34) y′(t) + C1

∫
Ω

|∇(u+ 1)
m1+p−1

2 |2 + C2

∫
Ω

|∇|∇v|q|2 ≤ C3 on (0, Tmax).

Successively, the Gagliardo–Nirenberg inequality again makes that some positive constants c38, c39 imply from the one
hand ∫

Ω

(u+ 1)p ≤ c38

(∫
Ω

|∇(u+ 1)
m1+p−1

2 |2
)κ1

+ c38 for all t ∈ (0, Tmax),

(as already done in (16)), and from the other

(35)
∫

Ω

|∇v|2q = |||∇v|q||2L2(Ω)≤ c39||∇|∇v|q||2κ2

L2(Ω)|||∇v|
q||2(1−κ2)

L
1
q (Ω)

+c39|||∇v|q||2
L

1
q (Ω)

on (0, Tmax),

with κ2 already defined in Lemma 3.2. Subsequently, the Ls-bound of ∇v in (6) infers some c40 > 0 such that∫
Ω

|∇v|2q ≤ c40

(∫
Ω

|∇|∇v|q|2
)κ2

+ c40 for all t ∈ (0, Tmax).

In the same flavour of [1, Lemma 5.4], by using the estimates involving
∫

Ω
(u+ 1)p and

∫
Ω
|∇v|2q, relation (34) provides

positive constants c41 and c42, and κ = min{ 1
κ1
, 1
κ2
} such thaty

′(t) ≤ c41 − c42y
κ(t) for all t ∈ (0, Tmax),

y(0) =
∫

Ω
(u0 + 1)p +

∫
Ω
|∇v0|2q.

Finally, ODE comparison principles imply u ∈ L∞((0, Tmax);Lp(Ω)), and the conclusion is a consequence of the
boundedness criterion in §3. �

Remark 2 (On the validity of Theorem 2.2 for α = 1). Some rearrangements on the above derived results could allow
us to analyze Theorem 2.2 also when α = 1. In this case, boundedness is achieved by requiring the additional condition
m3 > 2− l or, alternatively, β > 2. Conversely, for β = 2 and m1 = m2 = m3 = 1 also a largeness assumption on µ
of the type µ > K(n)‖χv0‖

4
n

L∞(Ω) (with K(n) > 0) have to be invoked.
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Remark 3 (On the validity of the theorems in [1] and [2] for α ≥ 1
2 + 1

n ). In the proofs of [1, Theorem 2.1] and
[2, Theorems 2.1 and 2.2], it is seen that the L2 uniform estimate of ∇v is used to control some integral on ∂Ω
(and this allows us to avoid to restrict our study to convex domains), as well as to deal with the term

∫
Ω
|∇v|2p with

the Gagliardo–Nirenberg inequality; for instance we are referring to [2, (28) and (39)], respectively. Such finiteness
of
∫

Ω
|∇v|2 is related to the values of α in these articles: α ∈

(
0, 1

2 + 1
n

)
(see [2, Lemma 4.1]). Apparently only

∇v ∈ L∞((0, Tmax);L1(Ω)) suffices to address these issues. Indeed, as far as the topological property of Ω is concerned,
we can invoke [3, (3.10) of Proposition 8] with s = 1; on the other hand, for the question tied to the employment of the
Gagliardo–Nirenberg inequality, we may operate as done in (35). As a consequence, in view of Lemma 3.1, we have
that ∇v ∈ L∞((0, Tmax);L1(Ω)), so that [1, Theorem 2.1] and [2, Theorems 2.1 and 2.2] hold true for any α ∈ (0, 1].
In particular, some comments have to be given for the case α = 1; specifically, after some adjustments, [1, Theorem
2.1] applies by adding on the parameter m3 the condition m3 > 2 − l. On the other hand, since this restriction is
automatically satisfied for m1 = m2 = m3 = 1 and l > 1, [2, Theorem 2.2] can be as well extended to α = 1. Finally,
as to the validity of [2, Theorem 2.1], also the limit case requires a largeness assumption on ξ, but this is less sharper
than that corresponding to α < 1.
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