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In this paper, we derive a new 2D brittle fracture model for thin shells via dimension
reduction, where the admissible displacements are only normal to the shell surface. The
main steps include to endow the shell with a small thickness, to express the three-
dimensional energy in terms of the variational model of brittle fracture in linear elasticity,
and to study the I'-limit of the functional as the thickness tends to zero.

The numerical discretization is tackled by first approximating the fracture through
a phase field, following an Ambrosio—Tortorelli like approach, and then resorting to an
alternating minimization procedure, where the irreversibility of the crack propagation
is rigorously imposed via an inequality constraint. The minimization is enriched with
an anisotropic mesh adaptation driven by an a posteriori error estimator, which allows
us to sharply track the whole crack path by optimizing the shape, the size, and the
orientation of the mesh elements.

Finally, the overall algorithm is successfully assessed on two Riemannian settings
and proves not to bias the crack propagation.
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1. Introduction

The problem of finding reasonable two-dimensional (2D) models of elasticity for
plates and shells dates back to more than 100 years ago with contributions of
J. Bernoulli, L. Euler, G. R. Kirchhoff, T. von Kdarméan and many others (see, e.g.
the Kirchhoff-Love plate theory and the Foppl-von-Kérman equationsmHW).

In recent works, a 2D model is usually obtained as a limit of a 3D one: the
target surface (shell or plate) is endowed with a fictitious thickness p > 0 and the
limit as p — 0 is studied. Considering the variational framework of elasticity, such a
limit is computed in terms of I'-convergence 28 In the context of linearized elasticity,
a comprehensive work by Ciarlet about 2D models can be found in Ref. 23] for
thin plates and in Ref. [24] for thin shells. In these monographs, the convergence of
the solution to the 3D model is considered, avoiding the notion of I'-convergence.
A justification of the above results in terms of I'-convergence has been provided
successively in Ref. Related works in the case of nonlinear elasticity can be
found, for instance, in Refs. 42} [43] and 441

In this paper, we develop and analyze a new 2D model of brittle fractures
on thin shells, moving from the variational theory of brittle fractures in linearly
elastic materials® Accordingly, the total energy of a body U C R3 subject to a
displacement u: U — R3? is given by

%/Uéé(u)  &(u)dz + KH(T), (1.1)

where € is the stiffness tensor, &(u) stands for the symmetric gradient of u, J, is
the jump set of u, H? denotes the 2D Hausdorff measure, and x > 0 is the toughness
of the material. Because of compactness issues, the natural domain of definition of
functional (1)) is SBD(U) or GSBD(U), the space of (generalized) special functions
of bounded deformation. We refer to Refs. 5l 221 and 29 for further details on these
spaces. In this setting, we can find a dimension reduction result in Ref. 14, where
the authors investigate thin films bonded to a stiff substrate. In case of nonlinear
or anti-planar elasticity, where the bulk energy in () is expressed in terms of
the full gradient Vu, the domain of the energy functional simplifies to SBV(U) or
GSBV (U ) Such an approach has been used to investigate dimension reduction
problems in Refs. 12| 13 and However, all the cited works are obtained for a
planar setting, i.e. the target 2D surface is a subset of R2.

The main contribution of this paper is the derivation of a brittle fracture model
for general surfaces. As in (I]), we stick to linearized elasticity. Analogously to
the anti-plane shear setting, which has been the first one tackled in the variational
formulation of fractures32 we only consider displacement fields normal to the sur-
face. The advantage of this choice is that the displacement field can be described
by a scalar function, since its direction is fixed, so that we can still adopt the
space GSBV. We defer the general case to future work.

In more detail, in Sec. [2 we introduce the geometric setting by considering a 2D
surface ¢(w) C R3, where w C R? is open, bounded, with Lipschitz boundary, and
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¢:w — R? is an immersion. We endow this surface with a thickness p > 0, so that
our reference configuration becomes ®(€,), with Q, := wx (=5, §) and ® a suitable
extension of ¢. We start with a strong formulation of brittle fracture, where a state
of the system is described by a pair displacement-fracture (u, K) for K C ®(Q,)
closed and u € C1(®(£2,)\K;R?). In this setting, we express the functional (L)
in curvilinear coordinates on €2,. After a second change of variables, we remove
the dependence of the integration domain on the thickness, passing from €, to €2;.
Then, we restrict the admissible displacements to those which are normal to the
surface. As a standard approach in free-discontinuity problems® the functional is
relaxed to GSBV(€). Section is devoted to the I'-convergence analysis as the
thickness tends to zero. The limit functional will be defined for u € GSBV(£)

independent of x3 by

1/ 2 N/ T / 2
= blul* dx + = Vu' AVudz + & \/ Vi AvyvadH?, 1.2
2 Ja, e 2 Jo, Tu 12

where A is a symmetric positive definite matrix related to the metric tensor
of ¢p(w), b is a function of the stiffness C and of the curvature of the surface, y > 0
is the second Lamé coefficient, and v, is the approximate unit normal to J,. In
contrast to the Euclidean setting, the geometry of the surface and the magnitude
of the displacement |u| directly contribute to the energy of the elastic shell due
to curvature effects. Moreover, all the quantities in (L2 are independent of 3, so
that the integrals could be written on w.

Section [Z4] introduces the regularized reduced model based on a phase-field
approximation of (L2)) in the sense of Ambrosio and Tortorelli X8

1
Fe(u,v) := 5/ blul* dz + %/(UQ +1.)Vu' AVu dz

+ Ii/ [é(l —v)?Va+ EV’UTAV’U] dx

foru € H'(w), v € H'(w;[0,1]). Loosely speaking, v is a regularization of the crack
set such that where v is close to one the material is sound, while where v < 1, a
fracture is detected.

The minimization of the functional F. is used to simulate the fracture process
driven by a time-dependent boundary condition g. Following Ref. B, according to
a quasi-static approximation, at each time t; a new state (u(t;),v(¢;)) of the thin
shell is computed as the limit as j — oo of the alternating minimization

uj = argmin{F:(u,v;_1) : u € H'(w),u = g(t;) on dw}, (1.3)

: a
vj = argmin {.Fg(ujm) + ;Hv - v(ti,l)H%z(w) cv e H (w),v < v(tifl)},
(1.4)

where a > 0 is a fixed parameter and 7 > 0 is the time increment. In particular,
the new state (u(t;),v(t;)) is a critical point of F.(u,v) + g=[jv — v(ti_l)H%g(w). We
refer to Definitions [3.1] and and Proposition B.1] for further details.
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We note that the inequality constraint in (L4)) takes care of the irreversibility
condition, i.e. no healing of the crack is allowed B%5253 Ag in Ref.[3, the presence of
an L2-penalization in (C4]) ensures the convergence to a unilateral gradient flow in
the time continuous limit. Instead, to approximate a quasi-static evolution of the
crack as in Refs. [T}, 21 4} [17, 20, 52| 53] and [65, we choose o small enough.

Following Ref. [I0, we couple the alternating minimization with an anisotropic
mesh adaptation procedure. The rationale is that the phase field v is close to one
in large portions of the domain, while it exhibits very steep gradients to reach zero
in a thin neighborhood of the crack. For this reason, the mesh needs to be very
fine only across the crack. As an alternative, to ensure accuracy, one should resort
to a very fine uniform grid. This might be prohibitive from a computational point
of view, whereas an adaptive mesh significantly contains the computational effort
of the algorithm. Moreover, compared to isotropic adapted meshes 222 anisotropic
grids further improve the efficiency of the numerical scheme, since the triangles can
be stretched along the crack.

Since the alternating minimization (L3)—(4) is discretized in a finite element
setting 1020 i Sec. B2 we derive an anisotropic a posteriori error estimator to mea-
sure the distance from an exact critical point. This estimator drives the generation
of the new anisotropic adapted mesh relying on a metric based strategy proposed
in Refs. [40], 55 and 56, as detailed in Sec.dl Compared to the numerical approaches
of Refs. [T6] [I7, 20} and [T1l the main novelty is that we now take care of the
inequality constraint in (4] exactly®253 This implies that the Euler-Lagrange
conditions satisfied by a critical point (u,v) of F(u,v) + g=[jv — v(ti_l)H%g(w) are
expressed by a variational inequality rather than an equality, in contrast to Ref.
where a penalization of the irreversibility condition is adopted and to Refs. [16l and
[I7 where v is set to 0 where v(t;—1) is below a certain threshold.

Finally, in Sec. B we assess the proposed model and the anisotropic discretiza-
tion on two non-Euclidean settings, i.e. a piece of a cylinder and a piece of a sphere.
This verification allows us to establish the reliability of the new dimensionally
reduced brittle fracture model and of the anisotropic mesh adaptation procedure,
which does not bias the evolution of the crack path.

2. The Two-Dimensional Model

Before providing the technical details, we clarify some basic notation.

Given an open subset U C R”, we denote the space of functions of bounded
variation by BV(U) and the space of special functions of bounded wvariation
by SBV(U). The set of generalized special functions of bounded variation is indicated
by GSBV(U). Furthermore, we define the following function spaces:

SBV?(U) := {u € SBV(U):Vu € L*(U),H" (S,) < oo},
GSBV?(U) := {u € GSBV(U):Vu € L*({U),H"'(S,) < oo},
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where Vu denotes the approximate gradient of u, S, is the discontinuity set of u,
and H"~! stands for the (n— 1)-dimensional Hausdorff measure. We refer to Refs.
and for all the definitions and details on the theory of functions of bounded
variation. We recall here that, for u € GSBV(U), the set S, is H" !-rectifiable.
We will denote by v, the approximate unit normal to S, whereas, for a generic
rectifiable set K, we denote by vk the associated approximate unit normal. We
further note that GSBV?(U), unlike GSBV(U), is a vector space (see Ref. [30).
Throughout the paper, we systematically use the Einstein summation conven-
tion, where Greek indices take values 1 and 2, and Latin indices run from 1 to 3.

2.1. Geometric setting

Let w C R? be an open and bounded set, and let ¢ € C?(w;R3) be an injective
immersion, i.e. the tangent vectors a, = 0,¢ are linearly independent. Defining the
normal to the surface ¢(w), we obtain the basis {a1,as, a3}

. _a1Xaz
vector ag = Tarxas]?

of R3. In Fig. [ we find an illustration of this configuration. The contravariant
basis {a'} is defined by @’ - a; = 0%, where & denotes the Kronecker delta, az = a®.
The covariant components of the metric tensor are given by aqp := aq - ag. We set
(a*®) := (aap)~" which is its contravariant component matrix. Note that a®’ =
a® - a’. Moreover, we simply define a := det(a;;).

The covariant components b, g, the mixed components b2 of the curvature ten-
sor, and the Christoffel symbols I' ; are defined by

bap = azlaap, bz :=a""bsg, FZB = a’0qag, (2.1)
respectively. Note that we omit the dependence on spatial variable when not explic-
itly needed.

Remark 2.1. By the assumptions on ¢, we obtain that there exist two positive
constants ¢ and C', both independent of x € w, such that
¢ < anpC®C? < CI¢)* for all ¢ € R2. (2.2)

We further make use of the continuity of ¢ on the compact set @ to obtain upper
and lower bounds for all the quantities in (ZT).

Fig. 1. Geometric setting of the surface.
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In this work, we only deal with manifolds that are covered by one single chart ¢.
To deal with more complex manifolds, e.g. compact manifolds, such as a sphere or
a torus, we have to resort to more than one chart, each one satisfying (Z2)), and
then to glue them properly.

We now modify the surface ¢(w) by adding a thickness, p > 0, as illustrated in
Fig. @ Thus, we define Q, := w x (=4, %) and the map ®:Q, — R3 by

O(z) == ¢(x1,22) + x3a3 for all x = (x1,22,23) € Q, (2.3)

with ¢(w) = ®(w x {0}), that is, ¢(w) is the middle surface of ®(€2,). We recall
that in view of Theorems 3.1-1 in Ref. 24]it is not restrictive to assume that ® is a
diffeomorphism.

Concerning the notation related to ®(€2,), symbols with or without a hat are
associated with the original Cartesian (®(2,)) or curvilinear (£2,) coordinate sys-
tem, respectively. In particular, it is understood that x € Q, with & = ®(z) when
related in the same statement. We define the covariant basis g; := 0;® and the
corresponding metric tensor g;; := g; - g;. By (Z3)), we obtain

Ja = Qo + 2300a3 and g3 = a3z = a® = ¢°.

The contravariant basis {g'} denotes the dual basis of the covariant basis, i.e.
gi- g = 6. It follows that the inverse of (g;;) is given by g/ := ¢*- ¢7. Additionally,
we define g := det(g;;). For the mapping ®, we also introduce the corresponding
Christoffel symbols, denoted by A¥; := g* - dig;, such that the symmetry condition,
A}; = A%, holds.

i

2.2. The reference model

In order to derive the 2D model, we start from the brittle fracture energy from
Francfort and Marigo® in the original Cartesian coordinates, given by
N 1 o N
E(i,K,) == = / Ce(a) : é(0) ds + kH*(K,), (2.4)
2 Ja@o\g,
for u € Cl(@(Qp)\f(p);R?’) describing the displacement field and for Kp C ®(Q))

a closed and H2-rectifiable set describing the fracture. The constant £ > 0 denotes

Fig. 2. Geometric setting of the thickened surface.
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the toughness, which is a material-dependent constant. The stiffness tensor € is
given by

. ijkl

C = NI 4 (567 4 57 5TR)

with Lamé coefficients A > 0 and g > 0. The symbol : in ([24) denotes the usual

tensor product

Ce(i): e(a) = 6"Me

€ ()€ ().

Furthermore, €(4) denotes the strain given by the symmetric gradient
1
e(d) = = (Va+ (Va)") &, (a):= 5(81-@- + 0j;).

We remark that the following symmetries hold:

sjigkl ikl

& & ~ klij

C and éij (ﬂ) = éji (ﬂ)

Following the strategy of Ref. 24, we express (2] in terms of curvilinear coor-
dinates. For this purpose, we express the vector field @ in terms of the covariant
basis, by defining u;: 2, — R such that

a(#) = ui(2)g'(z) or equivalently u;(x) = 0(2) - g;(z). (2.5)

For K, := ®Y(K,), u € CYQ,\K,;R%) and @& € CH®(Q,\K,):R3) related
by @.3), we get
JR 1 —
E(a, Ky) = 5 / Ce(u) : e(u)y/gda + K/ Vi, lig'vic, ] /g dM?,
Q\K, K,

(2.6)
where [V, |1, is the kth component of the unit normal to the surface K ,, €(u) stands
for the strain in the curvilinear setting

1
€ij (u) = 5((%71] + ajui) — ’U,kA?ﬁ
and C is the elasticity tensor in the curvilinear framework
Cikl .= \giI gkl 4 (gt gt + gilgT®).

A simple scaling in the variable x3 provides an integration domain independent
of p, namely,
Q-0 11
Tyt g WithQ::lewx<——7—).
$'—>($1,$2,p$3) 22
For any closed set K, C Q,, we let K := !
field ¢, we add a subscript p to denote the composition with m,, i.e. ¢, ;== qom,.

(K,). For any scalar, vector, or tensor
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In particular, for all u € C'(Q,\K,;R?) we define u, := wo m, and, for w €
CHQ\K;R?),

1
€ap,p(w) = 5(0aws + Opwa) — wihlg ,
1 1 i
€as,p(w) 1= 3 Oaws + ;83wa — kaa?,}p
1 k
633}p(w) = ;83103 - U}kA33’p. (27)

One can easily check that €,(u,) = €(u) o 7,, so that the energy functional (Z.0])
can be written as

E(ﬂ,f() = g o Crep(up) @ €5(up) /g, da
+ HP/K \/[DPVK]igzj [Drvklj/g, dH?, (2.8)

where D? := diag(1,1,1/p).

Hereafter, we restrict the model to the case of displacements that are normal
to the middle surface, i.e. of the form u = (0,0, u3), so that (23] is equivalent to
4 = us3g® = usa®. Hence, the whole problem can be expressed in terms of a scalar
function u and, with a slight abuse of notation, we set e(u) := €(0,0,u) for all
u € CH(Q\K,).

Since Ay = a30;a3 = 0, by (Z7) we obtain, for all u, € C1(Q\K),

1 1
€ap,p(up) = _Aiﬁ,pum €as,p(Up) = §8aup7 €33,p(Up) = ;(%,up. (2.9)

Finally, we recall Theorems 3.2-1 and 3.3-1 in Ref. 24 which state some impor-
tant convergence results of the geometric quantities in ([Z.8]), for p — 0.

Proposition 2.1. With the definitions above there holds the following:

90 = a+0(p),
9" =a* +0(p), g3°=0, g’=1, (2.10)
Agﬁ,p = baﬁ + O(p),
where we recall that g = det(g;;) and a = det(ai;). The convergence rates, as

p — 0, are uniform, i.e. they do not depend on x € §2. Furthermore, there exist
¢,C' > 0 such that, for every p > 0 sufficiently small,

o < g1, C'¢ SOICP and cl¢? < g6 <O for all¢ e R®. (2.11)
Proposition 2.2. The following relations hold:
Cg,@or _ )\aaﬁaor + M(aaoaﬁr + aa-raﬁo) + O(p)7 Cg,@o?) _ O7

Co¥ = pa® + 0(p), CP° =X’ +0(p), CP** =0 CP* =x+2u
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The convergence rates as p — 0 are uniform, i.e. they do not depend on x € ).
Furthermore, there exist some constants ¢,C' > 0 such that, for p > 0 sufficiently
small,

M < C’ijlMiijl < CIM*  for all M € R**3 symmetric, (2.12)
where |-| stands for the Frobenius norm.

As a consequence of Proposition 2l we can rewrite ([2.8)) as

E(u, K) = B o Crey(uy) : €,(up)\ /g, da
+HP/K \/[VK]QQS‘B[VK]g+ %[VK]g\/%d’Hz. (2'13)

2.3. Dimenstion reduction

With a view to the limit for p — 0, we rescale the energy in ([ZI3) by p~!

and observe that, as long as p > 0, such a scaling does not change the “three-
dimensional” minimizer of the functional.

It is a standard, in the theory of free discontinuity problems, to relax the func-
tional ZI3) from C'(Q\K) to the space GSBV(Q) and to replace the set K with
the discontinuity set S,. Hence, for all w € GSBV(Q) and for all p > 0, we define
the functional

Golw) = 5 [ Coeptwrsenu et [ \[lndagi s + S Iy aa,

The current goal is the computation of the I'-limit of the sequence of functionals
G, as p — 0. For this purpose, we introduce the function space:

U = {u € GSBV?*(Q): dsu = 0, [1,]3 = 0}.

Remark 2.2. Conditions dsu = 0 and [v,]3 = 0 imply that u € U is independent
of 3. This can be easily checked for u € U N SBV?(Q), since the third component
of the distributional derivative Du is zero, so that u is constant with respect to x3.
By a truncation argument, this can be extended to every u € U. Therefore, we can
identify U with GSBV?(w).

As stated in Theorem 1] below, the I'-limit of G, turns out to be

1
Go(u) := 5/QcaB‘”bagbm-|u|2\/Eda:

+ g/ a®Pd,udsur/adx + Ii/ v/ [Vu]aa®B[v] s/ adH?
Q Su

where

caﬁar = )\2:\/; aaﬁaor _'_M(aao’aﬁ‘r + aaraﬁo)'
o
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Remark 2.3. Analogously to (212)), there exist two constants ¢, C' > 0, such that
cM|? < co‘ﬁ‘”Mang. < CIMJ?*  for all M € R?*? symmetric.
This implies that, when Go(u) < oo, we have bygu € L?(€).

We are now ready to state the result describing the 2D model in terms of a
I'-convergence argument as the thickness p of €1, tends to zero.

Theorem 2.1. Let G,: L*(Q) — R be defined by
G,(u) for u € GSBV?(Q)
Gp(u) = ‘
+00 otherwise
and Go: L'(Q2) — R by
Go(u) foruel
Go(u) = {

+00 otherwise.

Then, G, I'-converges to Go with respect to the L'-topology as p — 0.
Proof. The proof follows directly from Propositions and 24 below. |

In order to prove Proposition 2.3, we further need the next auxiliary lemma.

Lemma 2.1. Let {p;}, with pe > 0, be a null sequence. Let uy be such that uy — u
in LY(Q) as £ — oo and

sup G, (ug) < oo. (2.14)
eN

Then, u € U and, up to a subsequence, €ag,p,(Ue) = —bapu and dous — Ou weakly
in L?(Q). Furthermore,

lim [V, ]3| dH? = 0.

{— 00 S
ve

Proof. Throughout the proof, C' > 0 denotes a generic constant, independent
of x € Q2 and of py.

Since G, (u¢) is bounded, we have that u, € GSBV?(Q). From (Z3), we have
that, for sufficiently large ¢,

Vel =) "|2€as,p, (ue)]” + |pe€ss,p, (we)|?

<4 i, (we)|* < CCTF €, (ur)ens p, (ur), (2.15)
4,7

where the last inequality follows from (ZI2). Furthermore, from Proposition 1]
we infer that

« 1 2
C< [Vue]agpf[Vue]ﬁ + p—Q([VW]g) and C < g,,. (2.16)

4
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As a consequence, there holds
C (/ |Vug|* do + HQ(SW)> < Gp, (ug) < sup G,, (ug) < +o0.
Q ‘

Because of the L'-convergence of ug, |lug|1(q) is uniformly bounded. Thus, by
compactness properties of GSBV?(Q) (see, e.g. Theorem 4.36 in Ref. [6), there holds
u € GSBV?(Q) and Vuy — Vu weakly in L?(;R").
Applying Theorem 5.8 from Ref. [0l we obtain
/|83u|2dx < liminf/|83w|2dx.
Hence, using [29) and ([2TH), we have
/|83u|2 dz < liminf p? / |€33aﬂz (W)|2dx < Climinf p2G,, (us) = 0,

which yields dsu = 0. Now, we show that [1,]3 = 0. From Theorem 5.22 in Ref. [6]
this lower semi-continuity property follows: For every p > 0,

/su \/[V“]“aaﬁ [uls + ;—21[%]312\/5&12

I
< liminf/ \/[uw]aaaﬁ[uw]ﬁ + ﬁ—2|[uw]3|2\/adﬂ2. (2.17)
S

{— 00
ug

This yields that, for every p > 0,

1 2 . aBly i V 2 -
_N/S,uHVu]B‘\/ad/H Shmmf/sw \/[Vw]aa Blvu,lp + ﬁzH uz]Bf VadH?.

P {—00
(2.18)
From Proposition 21 ([Z14)), and ZT4]), for sufficiently large ¢ we deduce
1 2
/ \/[Vuﬁ]aaaﬁ[yuz]ﬁ + ~_2|[Vu£]3| \/Ed'HQ
S, P
« 1 2
< /S \/[Vuz]agpeﬁ[yw]b’ + p_QHVuz]3{ \/gpzd’H2 + CVpe+ Cpy
g ¢

< Gy, (ug) + Cy/pe + Cpy. (2.19)

By assumption (2I4)), the right-hand side of (ZI9) turns out to be uniformly
bounded. Thus, combining ([ZI8) and [ZI9), we derive

/ |[vu]s|VadH? < C/p  for every j > 0.
S

The previous inequality implies that [v,]s =0 on S, so that u € U.
As in (2.I5), we obtain that |[Oauelr2(q) and |l€ap,,(ue)| r2(q) are uniformly
bounded. Then, the weak convergence follows from (29)) and (ZI0I). |

We now prove the lim inf-inequality.
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Proposition 2.3. Under the same hypotheses as in Theorem[Z1] there holds Gy <
I-liminf, o G,.

Proof. Let {p¢}, with p; > 0, be a null sequence, and let uy be a sequence con-

verging in L'(Q2) to u € L'(Q). Without loss of generality, we can assume that

liminf, o0 Gp, (we) = limy_o0 Gp, (ug) < 00. From Lemma[2] it follows that u € U.
After some algebraic manipulations, we have

gp[ (U,[) = Iép(?u) + IS) (UZ) + Ifgf)(w) + Ifg?)(U,g) (2.20)

with

1 2\
(1) R H aff ot ao BT at  Bo
Ipz (’LL@) T 2 ‘/Q ()\+ QMgpz gpe +M(gﬂe gpz +gp£ gpe )>

X €ap,p, (uf)ed‘r,ﬂz (uﬁ)\/ 9pe dz

1 A ?
2 L «@
) = [t 2 (e () + exa (u) ) Ve

19 (ug) = 20 /Q 052 €0 o (116) €33, (1) Tl

« 1 2
Iézl) (up) = K/S \/[Vuz]agpf[yw]ﬁ + FHVW]?J VIpe du?.
uy 4

We now prove the lim inf-inequality for Ig), 1, gf) and Iéf), whereas the term Iéf)

need not be estimated, being non-negative.

From pointwise convergence (up to a subsequence) of u, almost everywhere
and from Proposition 2] we derive the pointwise convergence of the integrand
of Ig)(uz). Hence, by Fatou lemma, we obtain

1
5/ P by gbyr [ul*Va da gliginflgj>(uz). (2.21)
Q C o0

In view of ([ZZ), the map v — [ a*’vavgy/ade is a norm in L*(Q) and is

therefore weakly lower semi-continuous in L2(£2). Hence, using the weak convergence
€a3.p, (ue) = $0qu in L?(Q) proved in Lemma 1] we obtain

1
—/ aaﬁaauagu\/adx < hminf/ a®Peqs oo (U0)€p3,p, (wr)V/adz.
4 Q L— 00 Q ’ !

From (22]) and from Proposition 2] for sufficiently large ¢ it holds

/ a*’ €a3,p, (1) €p3,p, (W) V/a da
Q

< /Qg,‘?feag,pg () €830, (1) \/Gpe Az + C/pr Y | €as,p0 ()| 7202
«
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namely,
B[ a*P8,u- 9uv/ade < liminf T (u). (2.22)
2 - l— 00 ‘

Proceeding as in (ZI7)—-(@219), for every s > 0, we have that

K/Su \/ [Va) 0a®P[vy] s/ ad H?

1
< liminf/i/ \/[uw]aaaﬁ[uw]@ + ﬁ—2{[uw]3{2\/5d7{2
Su,

{— 00

l— 00 7

. o 1 2
< hmmffﬂ/g \/[Vw]agpf[vw]ﬁ + p—2|[vw]3| VI dH? +Cype
»
= lim inf I (uy). (2.23)

Summing up (Z2I)-(2Z23) and using that I, ,Sf) is non-negative, we deduce that
Go(u) < liminf G,, (ue),
£—r00

which concludes the proof. O

In the next proposition, we prove the lim sup-inequality.

Proposition 2.4. Under the same hypotheses as in Theorem 21 there holds
F—limsupp%o G, < Go.

Proof. Let {p;}, with p; > 0, be a sequence such that py — 0 as £ — oco. We
can assume that Go(u) < +oo and thus u € U, otherwise, from Proposition 23] we
have that liminf, , G,, (u) = +o00 and there is nothing to prove. Moreover, setting
uf := (=P)VuAP for P > 0, we clearly have that «” — w in L*(Q) and Go(u”) —
Go(u) for P — 400. Therefore, we may just consider u € SBV?(Q) N L>(Q).

We pick the sequence uy in SBV?(Q) N L>°(Q) defined for all £ € N by

up(x) = u(xy, x2) exp ( ao‘ﬁbag pe arg) for © = (21,22, 23) € Q.

A+ 20
It turns out that u, — u in L'(Q) as £ — oo and that wu, is bounded in L>().
Starting from (220, we show that each term I,Sf) (ug) (for k =1,2,3,4) converges
as expected.

Since all the functions involved in the exponential are uniformly bounded, it
holds |ug| < Clu| for some constant C' > 0. Moreover, we deduce from (ZI0) in
Proposition 2] that

|€as.pe(ue)| = [Adg , uel < Clbagul + Cpglul. (2.24)
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Since u, bapg € L>(2), the right-hand side of ([2.24) is bounded, and hence, in view

of (Z9) and PropositionZI] €ap,p, (1¢) — —bapu in L*(Q). From I2) (replacing A
22

with 55— L) we infer that there exists a constant C' > 0 such that
2)‘lu af o1 2
N2 9 T 1957 90T + 957957 ) €appe (We)€or o, (1e) < C D |€as o, (ue)]™.
a,f3
Therefore, by the dominated convergence theorem, it follows that
1
lim I( D(ug) = —/ P bosbor [ul?Vadz. (2.25)
{—00 2 9]

Moving to the term I,gf), we have that |€as(ug)| < Cldaul € L3(2), so that,
using (ZTIT]), we deduce that

lim T (u,) = E/ a®P 9 udsur/ada. (2.26)
l— o0 2 9]
Since it holds that

Sue = Su7 [Vug]?) = 07 and [Vuz]a = [Vu]ou
and thanks to Proposition 2.1l we obtain

B 150 = i [ ol

= H/S [Vu]aa®B[v] sv/a dH. (2.27)

u

Finally, we show that Iéf) (ug) — 0. With this aim, we note that

aaﬁbab’U@

€33,p, (Ue) = o

and, therefore, by Proposition 21l we have
’ggfeaﬁ,pg (ug) + aaﬁbaguA < Cpelug|.
Exploiting the fact that u, € L>°(Q) and the uniformly bound of ,/g,,, we deduce
112 (ue)] < Cpgllull e ey

which implies that I, éf)(w) — 0. Eventually, this inequality, together with (225])—
(Z27), implies that limy o G, (u¢) = Go(u), which concludes the proof. O

We point out that the limit functional Gy (or Gp) is actually 2D. Since the inte-
grands do not depend on x3, as explained in Remark 2.2] we can simply replace €
with the 2D domain w. Hence, for u € GSBV?(w) we have

1
Go(u) = §/co‘ﬁ‘”ba5bm|u|2\/adx+%/ao‘ﬁaauagu\/ada:

w

+n/s v/ [Vu]aa®®[vy] g v/adH! .
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Introducing the notation
b:=c""bogborv/a and A:=(a"P)\/a,

we can rewrite G as

1
Go(u) = 5/ blul*dz + %/ VuTAVuda:—F/@/ \/ vl AvyadH?.
w w Su

Note that, due to ([Z2), the symmetric matrix A(z) € R?*? is positive definite,
uniformly with respect to z € w, i.e. there exist 0 < a < 8 < 400 such that

al¢* < A(z)¢ - ¢ < BI¢)* for every z € w  and every ¢ € R2.

2.4. The regularized reduced model

The numerical minimization of the functional Gy can be tackled via phase-field
models (see, e.g. Refs. 10,16, 17 and [20). The seminal idea can be ascribed to Refs.[7]
and [8, where the authors introduce an additional smooth variable, the phase field,
which describes the fracture set. The results of Refs.[7land[8 have been generalized in
many ways BISBIESEN i Juding the case of vector displacements22 In our setting,
we need a slightly more general result compared with Ref. 35 as we have to take
into account the spatial dependence of A in the phase-field term. The I'-convergence
result is stated in Theorem below, whose proof is provided in Appendix A.

Theorem 2.2. For e > 0, let n. > 0 be such that n-/e — 0 as € — 0. Define the
family of functionals {F:}eso, with F.: L' (w) x L*(w) — R such that

Fe(u,v) == %/ bluf? dz + g/(v2 +7:)Vu ' AVudz

+I€/ [%E(l—v)?\/g—kEVvTAVv] du, (2.28)

for all w € HY(w),v € HY(w;[0,1]) and F-(u,v) := +oo otherwise. Then Gy =
I-lim._,o F. in the L'-topology.

Proof. See 0

We remark that, loosely speaking, for small ¢, the phase field minimizing F.
is close to zero where the gradient of the displacement w is large, whereas it
approaches 1 elsewhere. This implies that the material is sound where v is close
to 1, whereas a fracture is detected where v < 1. In particular, the third integral
in (Z28) converges to the length of the crack set.

With a view to the numerical approximation of the functional F., for small ¢ >
0, we restrict the function space to H'(w) x H'(w; [0, 1]), and omit the subscript ¢,
as it will be fixed in the numerical test cases. Moreover, for all u € H'(w), v €
H'(w;[0,1]), we introduce the stored elastic energy

1
E(u,v) = 5 / blul*dz + g/(v2 +1.)Vu AVu dz (2.29)
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and the dissipation potential

D(v) = Ii/ [41—6(1 —v)2/a+eVo AVy| dz, (2.30)
so that
F(u,v) = E(u,v) + D(v). (2.31)

Note that F(u,v) is Frchet-differentiable in H'(w) x [H(w) N L>®(w)] (see, e.g.
Proposition 1.1 in Ref. 20), with

OuF (u, )] = / bugp da:+u/(v2 +1.)Vu AVdz,

OpF (u,v)[y)] = u/ vpVu ' AVudzr + m/

w w

[%(U — 1)y/a+2: Vol AVY | da,

for all u,p € H'(w), v,9 € H'(w) N L= (w).

3. The Discrete Setting: A Finite Element Approximation

Let w C R? be a polygonal domain, and let {7, }x~0 be a family of triangulations
of w. For every h > 0, we denote by T a generic element of 7;, and we set hp :=
diam(7'), where h = maxre7, hr. Furthermore, we denote by V), the set of all the
vertices of 7j, and define Ny, := #V},.

The discretization is cast in the space

Ay, = {u € H' (W) :u|lr € Py(T), for every T € Tp},

of piecewise continuous linear finite elements, whose Lagrangian basis is denoted
by {fl}lli " . We assume that this basis satisfies the non-positivity condition

/vngAvgmda: <0 Vime{l,...,Nu}, | #m. (3.1)

For the particular choice A = I, with I the identity matrix, this condition is satis-
fied when 7} is an acute-angle mesh, and it ensures a discrete maximum principle
in A3,,2559 i ¢, that the phase field takes values in [0,1] along the evolution (cf.
Proposition 6.14 in Ref. 3]). In the present context, the matrix A corresponds to a
metric tensor of a Riemannian manifold multiplied by a positive function. Thus, by
coordinate transformation, condition (1) is fulfilled if the triangulation is acute in
the Riemannian space. Indeed, according to the notation of Sec. Bl the tangential
gradient is

Vri = (Vi - (Va, ¢*)g°)ls Vi e CH (o)),

where @ is an extension of 4 to ®(,), which is characterized by a thickness p.
Then, by coordinate transformation, ([3.I]) is equivalent to

Vil&od™ )V, (mop HNdz <0 Vime{l,...,Ny}, I #m.
()
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In general, the space A&}, is endowed with the norm on H'(w). However, we also
adopt the norm

vl = (/ |Hh(02)|dx) for all v € A},

where II;, denotes the Lagrangian interpolant associated with the space X}.
We introduce now the discrete counterpart of the elastic energy ([Z29) and of
the dissipation potential ([Z30): for every u,v € Ap,, 0 <wv < 1, let

1
Enlu,v) == 5/ blul*dz + g/(Hh(’l}2) + 1)V " AVudz,

Dp(v) := m/ [41—81_1;1((1 —v)>)Va+eVo AVo| dz,

which leads to the definition of the discrete phase-field energy (Z31)) by
Fn(u,v) := Ep(u,v) + Dp(v) foru,v € Ay, 0 <v <1,

It holds that Fy,(u,v) is Fréchet differentiable with
OuFn(u, )] = / bup dx + ,u/ (Hh(vz) + 1) Vu'AVpdz,

OpFn(u,v)[9)] = u/ 1T, (vp) Vu " AVudz

1
+ n/ [2—€Hh((v — 1)Y)Va+2e Vo AVY| dz,
for all u, v, p, ¥ € A},.

Remark 3.1. In general, the energy functional F is discretized via restriction to
the finite element space, i.e. by setting Fp, := F|x, x.x, - Here, following Refs. 2] and
[0, we define F}, using the operator II;,. This ensures that also the discrete phase
field takes values in [0, 1] (see Proposition 6.14 in Ref. B)).

3.1. An alternating minimization scheme

In order to approximate a quasi-static fracture evolution, we adopt here the scheme
used in Refs. 10l 16, 17 and 20, which is based on an alternating minimization
procedure. For a given time interval, [0,Ty], with Ty > 0, we consider the time
step 7 = %, where k£ € N is the number of time steps, and we denote the time
levels by t; := it for i € {0,...,k}. Let g be the time-dependent Dirichlet bound-
ary condition for the displacement field, assumed to be an absolutely continuous
function in AC([0, T]; W1?(w)), with p > 2. The adopted alternating minimization
scheme works as follows: Let ug, vg € X}, the assigned initial values. Then, for every
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i €{1,...,k} and every j € N, we inductively set u; o := u;—1, v;0 = v;—1 and
wi j := argmin{&, (u,v; j—1) : u € Xp,u = g(t;) on dw}, (3.2)
. o
v;,j = argmin {Fh(uimv) + ;H’U — vi,1||%(h (v € X, v < v¢,1}7 (3.3)

where @ > 0 is a tuning parameter. As shown in Proposition Bl there exists a
subsequence j,, such that (u; j,,, v; ;,. ) admits a limit in &} x &, as m — co. Thus,
we set
u; i= lim w;j, and v = lim v, .
m—0o0 m—0o0

The inequality constraint in ([33) enforces the irreversibility of the fracture.
In this way, the phase field is constrained to decrease in time to avoid any crack
healing. Moreover, the constraint v > 0 is no longer required, since the adopted
discretization automatically guarantees v; j > 0 (see also Remark B.1)).

Following Theorems 4.3, 5.13 and 5.17 in Ref. 3] we can show that, in the time
continuous limit, the algorithm B2))-([.3) detects a unilateral L2-gradient flow for
the functional Fj. Moreover, we obtain full consistency when h — 0, namely, a
sequence of L2-gradient flows of F}, converge to an L?-gradient flow of F.

As for the additional parameter a, we assume that it is very small, so that a
gradient flow of Fj, is expected to be close to a quasi-static evolution along critical
points 5357 The choice o = 0, made in Ref. 2] in order to directly obtain a quasi-
static evolution, does not ensure an energy balance when A — 0.

Since u — Fp(u,v) is a convex map, the minimization (32) is equivalent to

O0uln (i j,vij—1)[p] =0 for every ¢ € &j, with ¢ =0 on Jw. (3.4)

The minimization (B3], instead, is equivalent to the variational inequality (cf.
Chap. 3 of Ref. [50)

o Fh (i j,vi5)[vi; — ] + %/ Wy ((vij —vim1)(viy —))de <0 (3.5)

w

for all ¥ € A}, with ¢ < wv;_q.
These remarks justify the following definition of a critical point of F},, subject
to the inequality constraint in ([B3]).

Definition 3.1. Let u,v,0 € A}, with 0 < 0 < 1. We define (u,v) as a discrete
critical point with bound v if the following two conditions hold:

Ouln(u,v)[p] =0 Ve e Xy, withe=0 ondw, (3.6)

OvFn(u,v)[v — ] + %/ (v — 0)(v —))dz <0 Vb € &y, with ¢ < .

(3.7)
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Note that, relations ([B.8)-(B7) are equivalent to the single inequality

OuEn(u, v)[@] + OpFn(u,v)[v — Y] + %/ I, ((v — 0)(v — ¥))dx <0,

w

for all p € A}, with ¢ =0 on Jw and for all ¥ € X}, with ¢ < 0.
We will also employ the continuous counterpart of Definition BT}

Definition 3.2. Let v € H'(w) and v,o € H'(w;[0,1]). We define (u,v) as a
critical point with bound v if the following two conditions hold:

DuE(u,v)[p] =0 Vo€ H'(w), withp=0 on duw,
8v]:(u,v)[v—¢]+%/(v—ﬁ)(v—w)dxSO Vo€ H'(wi[0,1]), with ¢ < @.

Following the idea of Proposition 2 in Ref. 21, we show the convergence of the
minimization scheme [B2)-B3]) to a discrete critical point. The result can easily
be extended to a space-continuous scheme where A}, is replaced by H'(w) in ([B:2))

and (33).

Proposition 3.1. Let i € {1,....k} and (u;;,v; ;) be defined as in [B2)-B3).
Then, (u;;,vi ;) converges, up to a subsequence, as j — oo to a discrete critical
point (u;,v;) € Xy, X Xp, with bound v;_1.

Proof. We have that, for all j € N
v v

Fn(wi g, vig) + 5= llvig —vicll%, < Faltij—1,vi-1) + —llvij—1 — vie1l%,
2T 2T

«

2T

Since A is uniformly positive definite, the sequence (u; j,v; ;) is bounded in A}, x
X}. Hence, we can extract a subsequence ji such that, for some u;, v;,w € Xj, we

< Fin(ui0,0i0) + 5=llvio — vic1 %, -

have
Vum-k — V’U,i7 Vi g, = Vis  Vij,—1 — W as k — oo. (38)

This also implies u; j, , — u; and v; 5, , — v; as k — oo.
We now prove that (u;, v;) is a discrete critical point. In view of ([B4) and (3.3),
there holds for all k € N and for all ¢, % € X with ¢ =0 on dw and ¢ < v;_3

0 = 0un(tijy s vijp—1)[p);

«
0 < 0uFn(uijy, i)W — vig) + - / U ((vije — vie1)(® — vi 5, ))da.
Passing to the limit for £k — oo, it follows that

0= augh (Ui, U)) [(p]?

N (3.9)
0 < OpFn(ui,vi)[1h — vi] + ;/ (v — vi—1) (¢ — ;) da.

w
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We recall that the last inequality implies that v; is a solution of ([33]) with displace-
ment u;.

It remains to show that v; = w. By B2)-B3)) and by the convergence result
in (B8], we have that

«

Wm Fi (i g, Vige—1) + 5= Vige—1 — vie1ll%,

o 2
Fn(ui,w) + §||w—v¢71||xh Jim 5

. [0
< lm Fp(tijy, s Vigy o) + 5=

2
T k—oo o ||Uiajk—1 - Ui—lHXh

«
= Fnlus, vi) + ;HW - Ui71||%(h'

By strict convexity, (33) has a unique solution. Hence, v; = w. Inequalities ([39)
imply that (u;,v;) is a discrete critical point with bound v;_1. O

3.2. An anisotropic a posteriori error analysis

Goal of this section is to quantify the error associated with a computed discrete
critical point through the minimization (32)-(@3]). In particular, we exploit the
benefits led by the employment of an anisotropically adapted mesh. We adopt the
setting in Ref. 39 to recover the anisotropic information, and we consider a reference
triangle T, so that, for T € 7y, there exists an affine map Rp:T — T, with
R (%) = Mrd + 0p for all # € T, where My € R2*2 is invertible and 07 € R? is
the shift vector. We choose T' as the equilateral triangle inscribed in the unit circle
with one vertex at (0, 1). Hence, if T € T}, has vertices (z1,y1), (22, y2), (3, y3), we
have

1 (V3(xe —x1) 223 — 21 — 29 1 ({z1+22+23
MT = — and 9T = — .
3\V3(y2 —y1) 2y3—y1— e S\yr+y2+us
We consider the singular value decomposition My = UTZTVTT , of the matrix
My, with Up = [r7.1,172], Vi € R?*? orthogonal and X € R**? diagonal with
entries 071 > or2 > 0. Hence, for every vector z € R” the following inequality
holds

or2|z| <|Mrz| < orilzl. (3.10)

Geometrically, the left singular vectors rr; identify the directions of the semiaxes
of the ellipse circumscribed to T, while the singular values o7 ; measure the corre-
sponding lengths, with ¢ = 1,2. The deformation of T' is quantified by the aspect
ratio sy := o1 /o072 > 1, where sp = 1 for equilateral triangles. The matrices Ur
and Vp apply rotations, whereas the matrix Xp deforms the element (see Fig. [)).
We denote by @|; := uo Ry the pull-back on the reference triangle of a generic
function u: T — R, and we set é := R;l(e) for all e € E;, NT, where Ej, represents
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-
g

Fig. 3. Geometric sketch of the affine map Ry, together with the main anisotropic quantities.

the skeleton of 7,. We recall here the anisotropic interpolation error estimates
derived in Refs. [39 and [40) for the quasi-interpolant operator @, 26458560

Lemma 3.1. Assume that #(Ar) < N and diam(R;'(Ar)) < Ca for every
T € Ty, with #(-) and diam(-) the cardinality and the diameter of a given set, and
Ar = {Uger, K: K NT # (0} the patch of elements associated with T. Then, for
every T € Ty, every e € Ey, with e € OT, and every u € H (A7), there hold

1
= Quul=(r) < Cs—— M7 VullL2ag), s=0,1
T

)

he

1/2
— ML Vul|2(am,
e ) M Ve

lu— Quuull (o) < Co (

where C; = C;(T,N,Ca) fori=0,1,2.

We also provide the anisotropic error estimate associated with the Lagrangian
interpolant II;, (for the proof, see Proposition 3.3 in Ref. [I0)), together with the
equivalence result between the standard H* (A7 )-seminorm and the corresponding
anisotropic counterpart:

Lemma 3.2. Let v,¢) € X, and T € Ty,. Then, we have
H”w - Hh(m/’)HB(T) = éh%|v|W1‘°°(T)vaHB(TV
where C = C(T).
From ([BI0), we directly infer the following Lemma:

Lemma 3.3. Let z € H'(w) and T € Ty,. Then, we have

1Mz V2]l 12ar)

0 5 —
2= V2l 2 an

<ori-
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Finally, we introduce the notation for the jump of the conormal derivative of a
function w € A},

|(Vw|lr — Vw|r)TAvp| one€ B, 3T, T €Tp:TNT =e

[AVw] :=
2‘VU}|}—AVT’ onec€ E,if3T € Tp:e COwNnNIT,

with v the unit outward normal vector to T'. Moreover, we define the edge length
function hgr: 9T — R by hor = h, for e € £, N OT.

Theorem 3.1. Let (up,vn) € X X Xy be a discrete critical point with bound
Oy, € Xp. For every T € Ty, we define the quantities

1
v (un, vn) = [|p(un, va)ll L2(r) + EH(U’QL — 0 (i) AV R o )

H 2
+ Q\/ﬁﬂv hor (v, + 1) [AVUR]| L2 o)

p(un, vp) = bup, — 2pv, Vg, AV, — p(vi +n.)Vay, - div(A),

Ke
pr(un,vn) = |lq(un, vn)llL2(ry + \/ﬁﬂ V haT[[AVUh]]HLz(aT)

h2 K
+ —L || uVuy AVu, + —Va vn W (1)
oT,2 2e L2(T)
ah -
V - 9
+ p— IV (v = On)ll 22 (1)

R

5 (v, — 1)va — 2keVuy, - div(A) + %(vh — Tp,).

q(up,vp) == ;thuZAVuh +
Then, we have

|0uE (un, vn)lel| < C D yr(un, on)IMFVell2ar) Vo € Hy(w), (3.11)
TETh

and

O F (un, vp)[on — Y] + % /(Uh — ) (vn — )dz

w

<C Y prlun o) [ MV = o)l aay (3.12)
TETh

for all b € HY(Q) with 1 < ¥y,

Proof. The linearity of ¢ — 9,& (un,vp)[p] yields

|8u€(uhy Uh)[@” S }aug(uhy U}L)[SD - @h” + }aug(uh, Uh)[@h] | . (313)
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We consider the first term on the right-hand side. Using the divergence theorem
and the fact that every second derivative of up|r is zero, we have

OuE (up,vp)[e — pr] = Z {/Tbuh(cp — p)dx — M/T(2thuZAVvh

TETh

+ (v 4 1)V, - div(A)) (¢ — ¢p)dz

+u/ (vh + 1)V, Avp(p — soh)dx}
T

=> {/Tp(%vh)(s@—soh)dx

TETh

+5 [k nlavale - soh>dx}.

Hence, by the Cauchy—Schwarz inequality

st e =l < 3 { ool llo = el
TeT

I
+ 5”(“121 + ns)[[AVUh]]HL2(aT)||SD = ¢nllr2or) }

We now select pp := Qpe. By Lemma [3] we can estimate

I
8u(€ 9 - v SO 9 2 5 —
it e =l < €5 T (1ot o+ 5

s e [ R O

(3.14)

where C3 := max{Cy, Cs}.

We now deal with the second contribution on the right-hand side of BI3).
Using ([3.0), LemmasBIland Lemma[33] and the fact that @, preserves the bound-
ary values, we obtain

|0uE (un, vn)[@n]| = |8uE (un, vn)[wn] — Buln(un, va)lpn]|

> i = (o) AVun| oy (V0
TeTh

IN

= Voullzzry + IVl L2 (r))

Ca Z 079 H vh Hh(vh AvuhHm(T)HMTVQPHLz(AT)?
TeTh

IN
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with C4y := 1 4+ Cy. This last estimate, combined with (BI4), provides esti-
mate (3IT).

Let us now deal with (312). By @), for every v € H'(w) and every ¢, € X,
with 0 <, ¢, < vy, we have

O F (un,vn)[vn, — Y] + %/(Uh — p)(vp — )dz

< Oy F(un, vp)[vn — ] + 2 / (v — On) (v —1p)da
T w

«

— OuFn(un, vn)[vh — n] — ;/ Iy (v — On) (v — 9¥n)) dz

<0, F(un o)l — v+ % [ (0n = )0~ v) da

w

(I
+ Op F(un, vn)[vn — ¥n] — OuFn(un, vn)[vn — ¥n]
an

+ %/(vh — 0n)(vn — ¢n)da — %/ T, ((on — ) (vn — ¢n))da,  (3.15)

(I11)

where, in the second inequality, we have added and subtracted the terms

81)]:(1”1, Uh)hph] and % fw (Uh — f)}ﬂlﬁh dz.
We consider the term (I). After integrating by parts on each element T' € Tp,
we obtain

o F (un, vp)[on — Y] + %/(vh — Op)(n — p)da

w

= Z {M/th(ibh — ) Vuy, AVupda + % /T(Uh — 1) (¢n —)Vada

TETh

— 2&5/ Vo, - div(A) (¢, — )dx + K&‘/ [AVor] (¢ — )da
T T

T

« -
+= / (vn — On)(¥n — w)dx}
T
which can be bounded by the Cauchy—Schwarz inequality as
« ~
o F (un, vn)[thn — ¥] + = / (vn — Op)(Yn — )dz

w

< llgun, vn)ll L2y lon = ¥l zar

TeTh

+ ke Z ||[[Avvhﬂ||L2(aT)H¢h - ¢HL2(3T)' (3.16)
TeTh
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We then choose 1, = @, and note that Qp (v —vy) = ¥, — v, and Y — by, = 1h —
v, —Qn (1) —vp,). This choice, together with Lemma[B1] allows us to rewrite (B.10]) as

OuFn (n, vn)[Yn — ] + %/(Uh — o) (Y — ¥)da

w

Ke
< , —— [V hor[AV
< 3T€ZT}L <|q(uh o)l 221y + \/WHV ar[ UhﬂHp(aT))
|| M7V (@ = vn)| 2 a - (3.17)

Next, we estimate term (II). The equality
(vn = D)(vn = ¥n) = a((vn — 1)(vn — ¥n)) = vn(vh — ¥n) — a(vn(vn — ¥n))
yields
O F (un, vn)[vn — ¥n] — 0uFn(un, vn)lvn — Vi)

- Z {“/T(Uh(“h — ) — 10 (Uh(vh — ¢}1))>Vu;AVuh dx

TETh
K
+oz / (Uh(Uh — ) — I (vn (vn — ¢h)))\/ad$}-
T
Thus, thanks to the Cauchy—Schwarz inequality, to Lemma [3.2] and to the choice
of 1y, we obtain

O F (un, vn)[vn — n] — OuFn(un, vr)[vn — ¥n]

<y

R
N, AVuy, + i\/a th(vh — ¥n) — Uy (v (vn — wh))HLQ(T)

TET L2(T)
~ K
<C E h% MVUIAVU}L + 2—\/5 |’Uh|W1,oo(T)||V(¢h — Uh)HLQ(T)'
£ 2
TeTh L2(T)

Now, since ¢y, — vy, = [Qn(¥ — vp) — (¥ — vp)] + ¥ — vp, by exploiting Lemma [3]
for s = 1 and Lemma [3.3, we conclude that

Oy F (wh, vn)[n — n] — OuFn(un, vn)[vn — n]

<CCy > hy
TETh

|Uh|W1~oo(T)
L2(T)

uVu,TAVuh + 2%\/5

1
x (aHM;V(w — 'Uh)HL2(AT) +||[V(y - ’Uh)HL2(AT))

§C5Z£

a
TeTh T2

x || M7 V(% —vn)|

[vR w10 (1)
L2(7)

uVu,TAVuh + ;—E Vva

|L2(AT), (3.18)
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with C5 = 2CCy. We proceed in a similar way on term (IIT) in BI5), so that we
obtain

2 [ = )on =)o =S [ Mu((on = i) on — s

T w
« 1
< —|Tz
<> 2

TeTh

(on = ) (o — $n) = Ta((on — B0)(on — )

L2(T)

- ah? 1 N
<C > TT|T|2 [vn = Bnlwroo () IV (¥r — o)l L2 (1)
TETh

a h? 5
<G5 > LV (v — )| 2y | Mg V(% — o) || 27y, (3.19)
TET; ToT2
h

where, in the last inequality, we have also exploited the property that vy, — vy is
piecewise affine. Combining estimates (BI7)—(B19), we deduce result (B12). O

With a view to the mesh adaptation procedure, we combine (BI1)) and (BI2)
in a single estimate, i.e.

OuE (un, vn) @] + Op F (un, vp)[vn — ] + %/(vh — Op)(vn — ¢)da

w

<C Y [yr(un, vn) |ME Vol L2(ar) + pr(un, vn)|| M7 V(¢ — o)l L2 am)
TeTh
(3.20)

for all ¢ € H'(w) with ¢ = 0 on dw, and for all ¢ € H'(w) with ¢ < ¥y

It is evident that result (B220) is not yet useful in practice since it depends on the
generic functions ¢ and 1. As detailed in the next section, to make computable the
right-hand side of (320)), we follow the approach in Ref. 10, first picking ¢ = u—wuy,
and ¢ = v, i.e. setting

E(un,vn) =Y Er(un,vn), (3.21)
TET

Er(un, vn) == Y7 (un, vn) | M7V (u — un)|l 22 (ar)

+ pr(un, vp) || MLV (0 — vy, (3.22)

)HL?(AT)’

for any T' € Ty, and then resorting to a gradient recovery procedure to replace the
derivatives of v and v.

4. From the Estimator to the Mesh

To commute Z(up,vp) into an actual a posteriori error estimator able to drive a
mesh adaptation procedure, we follow the metric-based approach in Refs. [10, [506]
and [37. This consists of an iterative procedure, so that, at each iteration j, with
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j >0, (i) we compute the error estimator in the current mesh, E ). (i) we derive
the metric tensor field, MU+1); (iii) we build the new adapted mesh, 7, D We
now detail these three steps.

i) Forevery T € T(j ) and every w € H'(w), using the singular value decomposition
(i) y 5 y , using g p :
Mz = UrX7V,!, we can rewrite the norm HM;VwH?LQ(AT) in Ep(un,vp) as

2
|MFV] 2, = [E2UF V0] 2o, = Z/A o2 |rrs - Voo ’da
=1 T

2
= Z U%,i r}'—,i Gr(w)rr,
i=1
where Gr: H' (A1) — L?(Ar; R?*2) is the symmetric semipositive definite matrix

/ |0y w|*dx O wdswdx
AT AT

QT(w) =
Ow Oyw dx / |0ow|? d
AT AT

From (322)), we obtain

2 2
Er (un, vn) = v (un, vn) (Z o7 v, Gr(u — Uh)rT,z‘)
i=1

2

+ pr(un, vp) (E UTerlgT Uh)rT,i>

Now, the first-order partial derivatives of u and v in Gr are replaced via the well-

known Zienkiewicz—Zhu recovery procedure /8364 g0 that we obtain the local a pos-

teriort error estimator

=

2
=% (un, vn) = vr(un, vn) (Z 0T Tr, gﬁ’(“h)”ﬂ)
=1

+ pr(un, vn) (ZUTerng(Uh)rTl> ) (4.1)

i=1
where [gﬁ(wh)]ij = fAT (Owp, — R (wy))(0jwp, — RI (wp))dx, with i, j = 1,2, wy, €
Xy, and where [R(wy,), R?(wy,)] T denotes the recovered gradient of wy,.

(ii) Two criteria drive the derivation of the metric, i.e. the minimization of the
number of the mesh elements for a given accuracy TOL on the global error estimator,

ER(Um’l}h) = Z E?(Umvh)?

TETh
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and the error equidistribution,
- TOL
:?(Uh,vh) < Ok
#Tn
For this purpose, we first scale ([@1I)) with respect to the area |T| = |T|op. 07,2 of
the element T € 7,7, such that

=X (un,vn) = arYr(st,r7.1),
where

al 3
ar = |T|(or,1072)2,

N

1
Tr(sr,rr1) = (ST 7 D (wn, vn)rr + o 7, FT(uh,vh)rT,2> )
T

_ =R . —=R
Ly (un, vn) = Vo (un, vi)Gp (un) + o (wn, vn) G (vn),

y Yk, Uh = Up, U
T (n,vn) = L); and Py (un, vn) = f)T(—)y
(Tlor.1or2)2 (Tlor1072)%
G _ _Gr(wn)

Gr(wy) ==

|T|0T,10T72 with wy, = up, vp.
Note that the quantity Y7 (s, rr 1) implicitly depends also on rp 2 via the orthonor-
mality condition r}—’er}g =0.

Thus, to minimize the cardinality of the mesh (or, likewise, to maximize the
triangle area) while enforcing the local accuracy TOL/ #7710 )7 we are led to solve the
local constrained minimization problem

min TT(5T7rT,1)7
sp>1,rp €S
S! being the unit sphere. Following Ref. 38, we can analytically compute the unique
solution to this problem, given by

P L
S = —19 y Yri1 =Vr2,
T2

with {vp;, U7} the eigenpair of I'r(up,vp) for i = 1,2, with 91 > Yo and
v}—ﬂ-vT,j = 0j;. Finally, the equidistribution criterion allows us to compute the
optimal lengths

. TOL O \° nd o TOL Do\’
ot \/§|T|#771(j) 7.9 ne \/§|T|#7;l(j) V%, )

The metric field MU+Y is approximated by a piecewise tensor, provided by

; 1 T 1 T
MU |7 = [ R + (o757 T2 T2 (4.3)
1 2

5
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foreach T € Th(j ) (see Ref. [0). We remark that the mismatch between the index ()
for the mesh and (j+1) for the metric is due to the predictive feature of the adaptive
algorithm, which exploits the information on the current mesh to extrapolate the
“optimal” mesh for the next iteration.

(iii) This step is committed to a metric-based mesh generator. In particular, we
choose the FreeFEM environment#® The metric M@+1) becomes the input to the
built-in function adaptmesh, which provides the anisotropic adapted mesh 7;1(] ),

5. Numerical Examples

Next step is to properly combine the minimization in [B2)-(B3) together with the
adaptation procedure detailed in the previous section. With this aim, we resort
to an approach that is a variant to Algorithms 2 and 3 in Ref. 10 itemized in
Algorithm [ below.

Algorithm 1 Alternating Minimization + Anisotropic Mesh Adaptation for Shells

1: Input: TOL, TOL,,, TOL,, MaxIt, a, 7, ug, vo, T,
2: for i =0 to k do

3: j — 0; Uj,0 <= UQ; Vi,0 < Vo
4 repeat
5 m <0
6: repeat
7 jj+Lime—m+1
8 Ui 5 argmin{gh(u,vi,j_l) Tu € Xém),u = g(t;) on 8w}
. !

9: Vi j argmln{}'h(uimv) + ;Hv —viq|%, v E X,gm)m < vil}
10: until m = MaxIt or ||v;; — v j—1]cc < TOL,
11: compute M™+1) based on [E3)
12: generate 771(m+1) associated with M(m+1)

1 1
13: Vij nger )(’Ui,j); Vi—1 < Him«k )(Ui—l)

(m+1) __(m)
14: until % < TOL,, and Hvi,j - Ui,j—l”oo < TOL,,
h

15: u; + argmin{&, (u,v; ;) 1 u € X,gm+1)7u = g(t;) on Ow}

. o
16: v; argmm{]-"h(ui,v) + EHU — vl-_1||%(h T E Xémﬂ)’v < w_l}

17: 7;1(0) _ h(m,+1)

18: end for
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The procedure consists of three main loops: the outermost cycle steps over the
quasi-static time advancing, the intermediate one manages the update of the mesh,
while the innermost loop controls the optimization of the physical variables u and v.
This last phase is supervised by a maximum number MaxIt of iterations, together
with a control on the increment of the phase field, to within the tolerance TOL,. In
order to recover the possible lack of accuracy on v, the same check on the increment
is also required in the intermediate loop, in combination with a stagnation of the
mesh cardinality, up to a tolerance TOL,,.

The minimization performed in lines 9 and 16 are carried out by an interior point
method using the package IPOPTS2 included in FreeFEM.48 IPOPT is a common
large-scale nonlinear optimization tool based on the interior point algorithm 52 Both
equality and inequality constraints can be tackled via suitable slack variables. The
bound on the phase field can be directly enforced as a box constraint. Among
the input parameters of IPOPT, the user has to also provide the gradient of the
functional and of the constraint with respect to the phase field.

The metric computation in line 11 is driven by u, = u;; and v, = v;;. The
operator Hflmﬂ) is the Lagrangian interpolant associated with the mesh 7,™ eval-
uated at the vertices of the mesh 771(m+1)7 which is employed to project the phase
field on the newly adapted mesh before the next iteration.

Table [ gathers the values adopted in the numerical assessment for both the
input parameters to Algorithm [I] and for the physical quantities involved in func-
tional (Z28)). For a sensitivity analysis with respect to some of these parameters in
the anti-plane case we refer to Ref. Ol In the tests below, following Refs. [17, 20l and
[T0, we consider notched specimens characterized by a thin slit to model the initial
crack. The time-dependent boundary condition in ([B.2]) is assumed to be linear.
For technical reasons related to the definition of space GSBV(w), we extend the
physical domain beyond the Dirichlet boundary. Such an extension turns out to be
advisable also for the phase field in order to avoid an underestimate of the fracture
energy when the damage approaches the Dirichlet boundary.

5.1. A piece of a cylinder

We consider a piece of cylindrical surface with radius R = 1 and length L. As the
map ¢, we choose cylindrical coordinates

Rcosx
(x,y) — | Rsinz for all (z,y) €w = (—g, g) x (0,L). (5.1)
Y

Table 1. Input parameters to Algorithm [[l and physical quantities for functional ([Z28]).

TOL TOL TOL, MaxIt T e n K A "

103 10—2 2.10—3 8 102 5.1073 10—° 1 0 1
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With this at hand, we have

1

— 0 —R 0

(a*f) = | R? . (bap) = and +/a = R.
0 1 0 O

For the crack initialization, we define the notch I' := [-1072,107?] x [0,0.3], so
that the computation takes place in w\I'. We also set

t  on [1073,7/2] x {0},
g(t):=¢ —t on[-7/2,—-1073] x {0}, (5.2)
0  elsewhere.

The extended domain adopted in such a case is wU (=%, §) x (—0.1,0].

In Fig. @, we show the phase field computed for L = 1 as well as a zoom in on
the mesh close to the crack, where it exhibits a strong directional behavior.

Note that the term [ ¢*#77bgb,,|u|?y/adz in the functional (Z28) adds some
energy even though the displacement is constant, due to a curvature effect. Fur-
thermore, the boundary condition creates some tension along the boundary itself.
Thus, if the length L is sufficiently large, a crack is generated along the boundary
before the original crack fully develops. This phenomenon is confirmed in Fig. Bl
where we set L = 2. The initial crack propagates until ¢t = 2.83. Then, at ¢t = 2.84
the surface suddenly breaks along the Dirichlet boundary. To contain this effect,
we pick the Lamé coefficient A equals to zero in Table [l

We now weaken the surface by introducing holes. In particular, we consider
the two configurations in Fig. [0l characterized by a single hole with radius 0.15
centered at (0.3,0.75) and by three holes with radius 0.08 and centers (—0.2,0.88),
(—0.2,0.68), (—0.2,0.48). In both cases, the crack bends entering the holes. This
confirms that the crack path is not biased by the anisotropic mesh adaptation,
consistently with what observed in Ref. [10L

In Fig. [l we provide more quantitative information about the physics of the
problem and the mesh adaptation procedure for all the considered configurations. In

Enlarged mesh along the

t=19 t=191 crack

Fig. 4. Piece of a cylinder: phase field at two consecutive times and detail of the mesh around
the crack for L = 1.
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Fig. 6.

three-hole (right) configuration for L = 1.

1.2

0.8

0.6

0.4

crack length

0.2

Fig. 7.

Almi et al.

t=1.91

oo

t=2.83

t =284

Fig. 5. Piece of a cylinder: phase field at three times for L = 2.

’\

Piece of a cylinder: phase field at time ¢t = 2.97 and ¢ = 1.46 for the single-hole (left) and

number of triangles

time

12000

10000

8000

6000

4000

2000

time

Piece of a cylinder: crack length (left) and number of triangles (right) as functions of time
for the configurations in Fig.H (a), in Fig.[6 left, (b), and in Fig. [ right, (c).

particular, in the left panel, we plot the time evolution of the quantity x~ Dy, (vp,),
which I'-converges to the length of the crack (see Sec. 24 and [Appendix A)), while,
in the right panel, we show the trend of the cardinality of the mesh. Both the crack
length and the number of triangles exhibit a similar trend since the most relevant
phenomena occur around the crack path.
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t=1.19 t=1.20 t=1.30

Fig. 8.
times.

t=131 t=1.45 t =1.46

Piece of a cylinder: specimen deformation for the three-hole configuration at different
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Finally, we consider the effect, i.e. the deformation, induced by the crack prop-
agation on the specimen for the three-hole configuration. With this aim, we apply
to the undeformed surface the computed displacement u; along the normal direc-
tion a3. However, for visualization purposes, we remove the points of the surface
where the phase field is below a certain threshold, here set to 1072, to model
the physical crack. Figure B gathers 12 snapshots tracking the whole evolution
of the crack, from the undamaged initial configuration to the complete breaking of
the specimen.

5.2. A piece of a sphere

As a second test case, we consider a portion of a sphere with radius R = 1. We
adopt the parametrization

COS T COS Y
(x,y) — R | sinzcosy for (z,y) € w:= (—7,%) x (-7, 7),
siny

for some 0 < < m,0 <y < 5. With this setting, we have

- 0 9

1 2 cos 0

(a*f) = "2 oSty , (bap) = —R( 0 Y 1) and +/a = R?cosy.
0 1

We set T = 5 and we make two different choices for y. Concerning the initial
notch, we choose I' := [-1072,1073] x [~%,0.3 — 7] and we select g as in (52)) for
the Dirichlet boundary condition.

Figure [ shows on the left the final phase field at t = 2.38 and for § = %.
Analogously as in the previous section, we modify the plain configuration by digging
a hole with center at (—0.25,0.5) and radius 0.15. The associated function vy, for

y = %, is displayed on the right of Fig. [0l for ¢ = 2.64. The choice for § avoids

s

Fig. 9. Piece of a sphere: phase field for the plain (left) and for the single-hole (right) configura-
tion.
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the generation of a secondary crack along the Dirichlet boundary, consistently with
what remarked for the piece of cylinder test case.

Appendix A. Proof of Theorem

In order to prove Theorem 221 we need the following two lemmas.

Lemma A.1. Let I CR, f,g € C'(I) with f,g > 0 in I. Assume that (uc,v:) —

(u,v) in L'(I) as e — 0 and that

li f— 21,,712 i _ 2 112

imin vZull*de + K 45(1 ) f +elv|7g| dz < +oo. (A1)
I I

e—0

Then, there holds v =1 a.e. and

/ VfgdH® <11m1nf/{ (1 —v)*f +elvl] g] dz. (A.2)

Proof. Up to a subsequence, we assume that the liminf in (A is actually a limit.
All the involved limits in the proof are considered as ¢ — 0.

We have v = 1 a.e. in I, since otherwise = [,(1 — v<)?f dz — 4o0. In order to
prove (A2), we fix yp € S, and § > 0 such that Bs(yo) C I. Arguing as in Refs.
and [I8 we find a sequence (yc)eso in B%(yo) such that v (y.) — 0. Since ve — 1
a.e. in I, there exist y*,y~ € Bs(yo) such that 5y~ < yo < y* and v.(y*) — 1.

It is easy to compute that

+

y v
1 = lim (/ (1 — v )l do —|—/ (1— vE)v;dx> < liminf (1 —ve)|vl|da.
e—0 Ye .

=0 JBs(yo)

Therefore, by Young’s inequality we obtain

inf \/f g<hm1nf/( )(1—ve)|vé|\/fgd$
Bs(yo

B;(yo)
< liminf {i(l — )’ f + €|v2|29} da.
=0 /B, (yo) 4e

For each element in any discrete set {y1,...,yn} C Sy (with N < #5S,,) we can
repeat the above argument for all § > 0 such that Bs(yx) N Bs(ye) = 0 for k # ¢,
in order to obtain

Nlnf\/ g<z 1nf \/ g<hm1nf/[ (1 —ve)2f +elvl| g] dz. (A.3)
5

Because of (A, the right-hand side of (A3) is uniformly bounded. Therefore,
#S, must be finite and we can conclude (A2]) by taking the limit as § — 0. O

The lim sup-inequality is first shown for a certain class of functions which are
dense in the set GSBV?(w) N L' (w) 2D
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Lemma A.2. Let u € SBV?(w) be such that

(1) S, is the intersection of w with a finite number of pairwise disjoint (n — 1)-
simplezes,

(2) H" M (Su\Su) =0

(3) u € Wk(w\S,) for all k € N.

Then, there exists a sequence (uc,v.) converging to (u,1) in L'(w) as e — 0 such
that

lim sup Fe (e, ve) < F(u,v). (A4)

e—0

Proof. Throughout the proof, C' > 0 denotes an arbitrary constant independent
of € > 0, which may vary from line to line, and the limits are considered as ¢ — 0.

For the construction of a recovery sequence of u, we choose a smooth cut off
function ¢:R — R with ¢ = 1 on B1(0) and ¢ = 0 on R\By(0). For all z € w,
define 7(z) = dist(a: S.) and ¢.(z) = ¢(Z2) for all £ > 0, where 4. := /&7 In
this way, we have %= — 0 and 2= — 0. Let us consider the functions u. = (1 — ¢c)u
on w. Then, we have us € H' ( ) ue = u on w\Bs_(Sy) and u. — u in LY (w).

In order to construct the recovery sequence corresponding to v = 1, a.e., we
define ¢:[0,00) — [0,1] by o(t) = 1 — exp(—%), which solves the initial value
problem

, 1

o = 5(1 —o0), o(0)=0.

We note that o is a strictly increasing, Lipschitz continuous function and o(t) — 1
as t — oo. For simplicity of notation, we set

T 3
o((,x) = (C\/g@) and 7T(z) = m forall ( e R", z € w.

We note that by the properties of A and by Sec. 3.2.34 in Ref. [34] we can define
0 < d = infcw @(VT,z) and co > D := sup,c, ¢(V7,z). Furthermore, we set
55 = E for all € > 0 and

~ €
pe = De ((55—21n<1_|_6>)7

so that p. — 0 as € — 0. Now we define, for every ¢t > 0 and for every x € w,

as(t)::{o o foreelndg UE(J;):%(@).

min {1,(1+¢)o(t —d.)} otherwise €

Now, the sequence (u.,v:) will be used as the recovery sequence for (u,1). It is
easy to check that, for sufficiently small ¢ > 0, there holds v. = 1 on w\B,, (Sy)
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and v, = 0 on Bs, (S,). Moreover, Vv, = 0 in Bs_(S,) and in w\B,_(S.), so that

Fe(ue,ve) :/b|u5|2dx—|—/ v?VuZAVusdx
w ‘*’\Bcis(su)

1
+n5/Vu€TAVusdx+—/ Vadz
w € Bég(su)

1
—|—/ {—(1 —v)? + £<p2(Vve,a:)] Vadz. (A.5)
By (Su)\Bs. (Su) L4€

Let us now estimate the integrals on the right-hand side of ([AZH), separately.
Since u. — u in L(w), we have

/ bluc|* de — / blu?dz ase — 0. (A.6)
As shown in Refs. [8, 35 and [31, we observe that
/ v2Vu, AVu, dz < /VuTAVu dz, (A7)
wW\Bs_ (Su) w
ns/ Vu! AVu.dz — 0 ase — 0, (A.8)
1

— Vadr -0 ase— 0. (A.9)

48 Bés (Su)

Concerning the last term in (AJ), we introduce the notation

1
Ke(ve) := / [4—(1 —v)? + 5(,02(Vv€,a:)] Vadz.
Bps (S'u)\B5s (Su) €

Precisely, we need to show that

limsuplCE(vg)g/ \/ VT AVoy/adH" 1. (A.10)
Su

e—0

This inequality, together with [A26)—([A9), allows us to conclude the assertion (A4)
by taking the limsup in (A]).

By the assumption on S,,, it holds S, = vazl Si for some N € N and for some
pairwise disjoint (n — 1)-simplexes S_i, .. 7@, so that, for sufficiently small ¢ > 0,
we can rewrite g (ve) as

N
R -+ (V)| Vade,
i—1 Y Bo. (Si)\Bs. (S7) de

Hence, without loss of generality, we may assume that S, itself is an (n— 1)-simplex.
We consider the (n — 1)-dimensional hyperplane v;- which contains S,.

As illustrated in Fig. 10, we split the integration domain for K. in several parts,
namely,

St ={rcw:zx=y+ty, forsomey €S, and t >0}, St:=S5,+uSsSHt
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St

u

vt

C

Fig. 10. Splitting of the integration domain for ..

9Bs_ (5)
8BPE (Su)

So+

and we consider

Ke(ve) = Kel gyo (ve) + Kel g (0) + Kel o s (ve), (A.11)
where, for U C w, we set
1
Keluer) = | 00?4 e (Vo) Vads, (A1)
UNBy. (Su)\Bs. (S.) L4€

First of all, note that, for all z € w\S,, we have

1, %(x))( Vr(z) T(2)V[z = p(V7(x), x)]
o

V() = 0e (

€ Vr(z),z) ©2(VT1(x),x) > (A-13)

In S+ we have that V7(z) = v, is constant, and = + (v, z) is Lipschitz con-

tinuous. Hence, [(AT3]) yields
1 .
()
5

-2
and from (AJ2]) we can estimate

1 F2)\\>
Ke ve) < 1+052/ —(1—(76(—))
|S,IJ—( ) ( P ) Sj,—LﬁBpE(Su)\B&E(Su) [45 5
~ 2
ol (@)‘ ]\/de.

Together with the Coarea formula (see, e.g. Theorem 2.93 in Ref. [6]), we obtain

Pe 1 t 2
Kelgpo(ve) < 1+cp52/ / _(1_06(7»
|S1T( )= ( ) 5. JSEtNoB.(S.) 4e ep(Vu, )

7 (oem)

2

¢*(Vue,2) < (1+C7())?,

1
+ =
£

1

£

2] VadH "t de. (A.14)



Math. Models Methods Appl. Sci. 2021.31:37-81. Downloaded from www.worldscientific.com
by POLITECNICO DI MILANO on 11/15/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

A dimension-reduction model for brittle fractures on thin shells with mesh adaptivity 75

We apply the coordinate transformation x +— x + tv,, which maps S, to S+ N
OB;(S.), to the inner integral of (A1), obtaining

re | ¢ 2
1L \Ve < 53 0 Ve \ T /3
K@<t ont [ [ [ (- (i)

1], t
o
E\ep(vy, z + try)

g

2
1 VadtdH" 1, (A.15)

where we additionally used the fact that y/a is Lipschitz and bounded away from
zZero.
Note that, by construction,

ron Lte b — 1t = = €
o.(t) = 5 €XP 5 for . <t <é.—2In T2

and ¢/ = 0 otherwise. Thus, o’ is decreasing in (., o0) with supremum (1 + )/2.
Hence, with 7. := d.e(p(vy, z) + Cp:) we can compute

psl
[ e
E) 3

e

2
dt

t
/!
()

pel
<[
ve €

2
/

: (6(@(%;) +Cps))

g

Ye 1 2
dt + / ﬂ dt
s 4e

2 ~
dt + Cé.,

: (E(@(Vmﬂ:) +Cpa))

for a.e. © € w. Since o, is increasing and x +— @ (v, x) is Lipschitz continuous on S,
we can estimate

Pe 1 t 2
—(1-0.
/55 48( 7 (5@(uu,x+tuu)>) dt
Pe 1 t 2
< — | 1= 5 dt.
_/65 45( 7 (E(s&(vum)ﬂLCps)))

Therefore, inserting the two previous estimates in [(AJ5]) we obtain

Kelgge(ve) < (14 Cpa)?’/su /5 Li (1 o (dw(vu,xt) T Cpe>>)2

/

: (E(@(met) +Cpa))

1
+ —|o
€

2
]\/adth"—l + C8...
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We introduce another change of variables, namely, t — te(p(vy, z) + Cpe), so
that

Kolgge (o) < (14 Cpo)* | =) + L) | at

O
X vl Avga dH ™ + C6.. (A.16)
v

Using the explicit form of ., we compute the first integral on the right-hand side

of (AG) as
/;E—mn(lis) [1(1 o) + |a;(t)|2} dt

€

se—2In(152) {1

—_

1+

72111( =
- [T R @ ooy + oot a

l e’} . ) _ e’} . o_/ _ 1 B :l
§2/0 (1 - o(t))2dt /0(1 ()’ (t)dt /0(1 fdt = 5.

Hence, taking the limit in (AI6) as ¢ — 0, we deduce

1
limsup Ke[ g+ (v:) < 3 /S /vl AvyJadH™ L

e—0
Repeating all the arguments above for K|+ (v:) with V7(z) = —vy, on S+,
we infer

I Kelo-t(ve) + Kol oo (02 g/ T Av,vadH A7
manp(Kel g (02) + Kelggo (00) < | /v Avava (A.17)

E—r

Finally, we show that K.|,\s: — 0 as e = 0. For z € B,_(Su)\Su, we claim
that
[VIz — o(r(z),2)]| < i (A.18)
T ()
Indeed, let z,y € B, (S,)\Su. We set 7 := min{7(z),7(y)}, T := 7p_(s,)(x) =
75, () +7V7(z) and § := 7p_(3,)(y) = 7s, (y) +TV7(y), where 7 denotes the
projection onto E C R™. Since the projection on a convex set is Lipschitz continuous
with Lipschitz constant equal to one, we have that |T — 7| < |« — y| and

7w ) — (7w, )] < 2l -l (A19)

7

|VT(J:) - Vr(y)|
Together with the positive definiteness of A, for z,y € B,_(S.)\S. and ¢ sufficiently
small we obtain
o(V7(2),2) = (V7(y),y)| < C|VT(z) - V7(y)| + Claz —y|
C
S T~ Yl
win{r ()71 ¢ Y

which yields (AIS]).
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From ([AZT3)), we obtain

C
P (Vee(e),2) < 5

- 2
ol (@) ‘ for all 2 € w\S;-.

We plug the above inequality into the expression of K¢|,\ g1 (ve) and apply again
the Coarea formula, so that

Chswze["f e (e ()
clovss (V) < —|1l—-0| ———
i (¢2) 5. JoB,(s.\s+ | 4€ ep(VT, )

1 ()

€
Next, we use the coordinate transformation z +— x + (t — d:.)V7(x), which
maps dB;s_ (Sy,) onto B;(Sy,). Note that V7 (z) = V7 (z+tV7(z)) and, from (A7),
we infer that |V27| < % on 9Bs_(S,)\S;, so that the Coarea factor is bounded

by Cp./d. Hence, from ([(A20) we deduce

Cpe peoe | t+ 0 ’
IC& w L £ S o 1 - £ ==
| \Sg (ve) O /3356 (Su\S+ /0 4e 7 ep(Vr,z +tVT)

2
]ﬁdtd?—i"l,

21 VadH™ tde. (A.20)

Mg (tH0e
el ep(Vr,z+tVrT)

where we again use the Lipschitz continuity and the uniform strictly positive bound-
edness of a, and additionally shift the integration domain with respect to ¢t. Repeat-
ing the same arguments used for the estimate of K| g+, we obtain

Kelonss (ve) < C(;ps/ \/ VT TAVTVadH" !

0B, (Su)\S

< %H”*l(aBJE (S)\S:b)-

€

It is easy to check that dBs_(S,)\S;- C 0Bs_(0S,), where 95, denotes the relative
boundary of S, in the hyperplane v;-. Hence,

Kelo s (v2) < %H"‘l(aB(;g (054)) < Cp: =0 ase— 0. (A.21)

Summing up (A1), (A7), and (A2, we obtain the desired estimate (AI0Q).

O
We now conclude the proof of Theorem

Proof. We provide a proof which folds for a generic dimension n.
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We first show the lim inf-inequality. Let (ue,v:) be a sequence converging to
(u,v) in L'(w). We assume, without loss of generality, that

liminf . (ue, v:) = lm Fe(ue, ve) < +00.
e—=0 e—=0
Since the norm is lower semicontinuous, we clearly have
/ blul*dz < hminf/ bluc|? da. (A.22)
w e—0 w
Following the proof of Lemma 3.2 in Ref. [35, we obtain
E/ Vu' AVudz < liminf H/ vEVu;AVuE dz, (A.23)
2/, e=0 2/,

and by a slicing argument (see also Ref. [I8)), we obtain from Lemma [AT]

1
/T nl o Jis LN T
fi/su vl Av,vadH 711£n_>151f/<5/w [45(1 v)*Va+eVo' AVu|der.
(A.24)

Combining the inequalities (A22)-(A24)) we deduce the required lim inf-inequality.
The I'-lim sup-inequality immediately follows from Lemma[A2Jusing the density
result in Theorem 3.1 in Ref. 27 |
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