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Abstract: In this paper, following the multistage stochastic approach proposed by Rockafellar and
Wets, we analyze a class of multistage stochastic hierarchical problems: the Multistage Stochastic
Optimization Problem with Quasi-Variational Inequality Constraints. Such a problem is defined
in a suitable functional setting relative to a finite set of possible scenarios and certain information
fields. The key of this multistage stochastic hierarchical problem turns out to be the nonanticipativity:
some constraints have to be included in the formulation to take into account the partial information
progressively revealed. In this way, we are able to study real-world problems in which the hierarchical
decision processes are characterized by sequential decisions in response to an increasing level of
information. As an application of this class of multistage stochastic hierarchical problems, we focus
on the study of a suitable Single-Leader-Multi-Follower game.
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1. Introduction

Hierarchical problems are mathematical problems divided into several levels of hier-
archy: they are of great interest since enabling to the description of real-world hierarchical
decision processes. They are formulated as optimization problems with feasible sets that
are implicitly defined as the solution sets of other problems. If the levels of hierarchy are
two, the so-called upper and lower-level, such problems are known as bilevel problems; see,
e.g., [1]. The origins of this research field are closely related to the economic problem of
Stackelberg [2] who introduced the Leader-Follower game. Subsequently, bilevel prob-
lems have been extensively used to study several real-world applications: energy markets,
transportations, resources optimal allocations, Eco-Industrial parks, etc; see, e.g., [1,3]. In
particular, thanks to the hierarchical structure of the decision-making processes involved,
recently great attention has captured the study of the so-called Single-Leader-Multi-Follower
game (SLMF): it is a hierarchical problem with an upper-level in which a player acts as
the leader of the game with a certain objective and a lower-level with players, acting as
followers, that interact in a non cooperative way to reach a Generalized Nash Equilibrium,
parametrized by the strategy of the leader; see, e.g., [4] for a state of the art on SLMF. In the
literature, several approaches and concepts of solution are studied for such problems (For a
comprehensive analysis and comparison of the different approaches and concepts of solu-
tion, the interested reader can refer to [1,3] and the references therein). If we focus on the
classical optimistic case, the quoted SLMF game results to be a special case of a more general
problem: the Optimization Problem with Quasi-Variational Inequality Constrains (OPQVIC);
see, e.g., [3,5–7] and the references therein. The OPQVIC is a bilevel problem with an
upper-level interrelated with a lower-level problem: the upper-level is an optimization
problem having as a constraint the lower-level problem, that is, a Quasi-Variational In-
equality problem (QVI). In this way, the QVI in the lower-level problem enables us to study
a wide class of mathematical problems: equilibrium problems, optimization problems,
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complementary problems, fixed point problems, projection problems, system of inequal-
ities, etc; see, e.g., [8–11]. Indeed, the variational inequalities theory provides powerful
and flexible tools to deal with the above described class of problems, in both analysis and
computations; at the same time, we recall that a QVI can be seen also in terms of a suitable
Ky Fan quasi-variational inequality; see, e.g., [12,13].

Although some practical problems involve only deterministic data, in most real-
world applications problem data contain some uncertainty and randomness. This fact has
motivated the examination of hierarchical problems complicated by uncertainty throughout
different techniques and approaches; see, e.g., [1,14] and the references therein. Moreover, in
many applications, the hierarchical decision processes could be characterized by sequential
decisions in response to an increasing level of information. For this reason, in this paper,
we focus on the study of a Multistage Stochastic Optimization Problem with Quasi-Variational
Inequality Constraints (MSOPQVIC): it is a OPQVIC of multistage stochastic nature. In
doing this, we follow the multistage stochastic approach proposed by Rockafellar and Wets
in [15,16]. The key of this multistage formulation turns out to be the nonanticipativity: some
constraints have to be included in the formulation of the MSOPQVIC to take into account
the partial information progressively revealed. Indeed, stage by stage, these constraints
impose the measurability with respect to the information field at that stage. In addition,
nonanticipativity constraints can be dualized by suitable multipliers, providing important
tools from a computational point of view. We point out that, by using the Rockafellar and
Wets multistage stochastic approach, the study of a MSOPQVIC problem is a novelty in
the literature.

The paper is organized as follows. Section 2 is devoted to the introduction of the
MSOPQVIC in a suitable multistage-functional setting. Subsequently, in Section 3, the
main properties of the MSOPQVIC are studied. In particular, without requiring any
differentiability and (generalized-)monotonicity assumptions, the existence of solutions to
the MSOPQVIC is proved. Moreover, as an application, the analysis of a suitable SLMF
game of multistage stochastic nature is presented by using the results obtained in Section 3.
Finally, a section with the conclusions is given.

2. Multistage Stochastic Hierarchical Problem

In this section, we aim to formally introduce the study of a class of multistage stochastic
hierarchical problems: the MSOPQVIC. In doing this, we use the multistage stochastic
approach proposed by Rockafellar and Wets in [15,16]. Indeed, it provides important tools
to study real-world problems complicated by

• time, uncertainty, and risk;
• an increasing level of information progressively revealed.

To this goal, we firstly introduce the multistage framework and the functional space in
which we operate; for further details, the interested reader can refer to [17,18] and the
references therein.

2.1. Multistage Structure

Let T = {1, . . . , t, . . . , T} and T0 = {0} ∪ T be the finite sets of stages, respectively,
without and with the initial stage. At each stage t ∈ T , Ξt :=

{
ξ1

t , . . . , ξkt
t

}
=
{

ξ
jt
t

}
jt=1,...,kt

denotes the finite set of all uncertain situations that could occur, while ξ0 represents the
unique initial situation. Let us consider the following set:

Ω ⊆ {ξ0} × Ξ1 × · · · × Ξt × · · · × ΞT such that ω := (ξ0, ξ
j1
1 , . . . , ξ

jt
t , . . . , ξ

jT
T ) ∈ Ω ;

it is a discrete sample space of all scenarios, that is, the set of all the possible occurrences on
the entire history. Let P = (π(ω))ω∈Ω be a probability measure on Ω such that each ω has
an assigned strictly positive probability π(ω). Let

z := (z0, z1, . . . , zt, . . . , zT) ∈ Rm0 ×Rm1 × · · · ×Rmt × · · ·RmT = Rm
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where m = m0 + m1 + . . . + mt + . . . + mT . Then, the following T + 1-stage pattern is
considered

(ξ0, z0) , (ξ j1
1 , z1) , . . . , (ξ jt

t , zt) , . . . , (ξ jT
T , zT)

where ξ
jt
t ∈ Ξt stands for the information revealed at the t-th stage when the decision zt

has to be made. To study such a multistage stochastic structure, authors in [16] introduced
the following linear functional space

Lm(Ω,P) := Lm = {the collection of all functions z : Ω→ Rm}

equipped with the following expectational inner product and the associated norm:

〈〈z, ẑ〉〉 := E[〈z, ẑ〉m] = ∑
ω∈Ω

π(ω)〈z(ω), ẑ(ω)〉m, ‖z‖ := (E[〈z, z〉m])
1
2 , (1)

where 〈·, ·〉m identifies the classical inner product in the m-dimensional Euclidean space.
The structure (1) makes Lm a finite-dimensional Hilbert space. In particular:

Lm = Lm0 ×Lm1 × . . .×Lmt × . . .×LmT ;

for all ω ∈ Ω, it can be shown that z(ω) = (z0(ω), . . . , zt(ω), . . . , zT(ω)). Stage by stage,
we are interested to capture the recursive nature of the decision processes in this uncer-
tain environment. By introducing suitable information fields, we can opportunely study
stochastic decision processes in response to an increasing level of information.

Definition 1. A family of information-partitions of Ω is P := {Ft}t=0,...,T where, for all t ∈ T0,

Ft :=
{

F1
t , . . . , Fkt

t

}
=
{

Fjt
t

}
jt=1,...,kt

is a partition of Ω such that

(i) F0 = {Ω};
(ii) for all t = 1, . . . , T, Ft+1 ⊂ Ft, that is: if Fjt+1

t+1 ∈ Ft+1 ⇒ Fjt+1
t+1 ⊂ Fjt

t for some Fjt
t ∈ Ft;

(iii) FT = Ω.

For all t ∈ T0, the set Fjt
t is called elementary event and the partition Ft is called event.

Remark 1. Condition (i) means that at stage t = 0 no uncertainty is resolved; condition (ii) means
that information is progressively revealed, that is, one has only partial information; (iii) indicates
that all information is revealed at stage T. In order to link the multistage stochastic and the
information partition, we can use a particular oriented graph, called event-tree; see, e.g., [18].
In this way, for each pair (ω, t) identified in P corresponds a node ξ

jt
t and at each node ξ

jt
t of the

oriented graph, we associate the elementary event Fjt
t , that is, Fjt

t
∼= ξ

jt
t .

If two scenarios ω̃, ˜̃ω ∈ Ω are in the same elementary event Fjt
t ∈ Ft, then they are

indistinguishable at t on the basis of available information being that they share the same
path up to t:

ω̃ ∼= (ξ0, ξ
j1
1 , . . . , ξ

jt
t , ξs

t+1, . . . , ξs
T) ˜̃ω ∼= (ξ0, ξ

j1
1 , . . . , ξ

jt
t , ξc

t+1, . . . , ξc
T) ;

this fact is reflected on z ∈ Lm as follows.

Definition 2. Let P := {Ft}t∈T0
be an information-partitions of Ω. For any Ft̄ ∈ P , we say that

z ∈ Lm is Ft̄-measurable with respect to P if, for all jt̄ = 1, . . . , kt̄, it holds that:

∀ω̃, ˜̃ω ∈ Fjt̄
t̄ zt(ω̃) = zt( ˜̃ω) ∀t = 0, . . . , t̄.

We say that z ∈ Lm is measurable if it is Ft-measurable for all Ft ∈ P and t ∈ T0.
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Let us denote by ω[t] := (ξ0, ξ
j1
1 , ξ

j2
2 , . . . , ξ

jt
t ) the partial history of the scenario ω

before stage t + 1; then, on the basis of Definitions 1 and 2, we introduce the following
nonanticipativity constraints subspace:

Nm : = {z ∈ Lm : zt is Ft −measurable ∀t ∈ T0}

=
{

z ∈ Lm : z(ω) := (z0, z1(ω[1]), . . . , zt(ω[t]), . . . , zT(ω)) ∀ω ∈ Ω
}

,

where, for each ω ∈ Ω, z0(ω) = z0(ω[0]) = z0. Moreover, we denote by

Mm := {ρ ∈ Lm : 〈〈ρ, z〉〉 = 0 ∀z ∈ Nm} := (Nm)
⊥

the orthogonal subspace of Nm, known as nonanticipativity multipliers subspace: according
to the Riesz orthogonal decomposition, it follows that Lm = Nm +Mm.

2.2. Hierarchical Problem

In this multistage stochastic framework, we introduce a suitable MSOPQVIC: it is
a bilevel problem of multistage stochastic nature, with an upper-level interrelated with
a lower-level problem. In particular, the lower-level problem is a suitable parametric
Multistage Stochastic Quasi-Variational Inequality (MSQVI), which is parametrized by the
upper-level variable: the upper-level is a multistage stochastic optimization problem having
as a constraint the lower-level problem.

Let C := {y ∈ Ll : y(ω) ∈ C(ω) ∀ω ∈ Ω}, with C(ω) ⊆ Rl be nonempty, closed, and
convex for each ω ∈ Ω. Let Φ : Lu ×Ll ⇒Ll and K : Lu × C⇒ C be two set-valued maps
so that

• Φ can be equivalently rewritten as

Φ : Ω×Ru ×Rl ⇒Rl such that (ω, x(ω), y(ω))→ Φ(ω, x(ω), y(ω)) ⊆ Rl ;

• K can be equivalently rewritten as

K : Ω×Ru × C(·)⇒ C(·) such that (ω, x(ω), y(ω))→ K(ω, x(ω), y(ω)) ⊆ C(ω).

Then, for any, for any x ∈ Lu, we introduce the following parametric MSQVI:

Find ȳ ∈ K(x, ȳ) ∩Nl such that ∃ϕ ∈ Φ(x, ȳ) and

〈〈ϕ, y− ȳ〉〉 ≥ 0 ∀y ∈ K(x, ȳ) ∩Nl ; (2)

it represents an extension of the Rockafellar and Wets multistage stochastic variational
inequality problem when Φ and K are suitable set-valued maps depending on a parameter
x ∈ Lu. From now on, we refer to the parametric problem (2) by using the abbreviation

MSQVI(Φ(x, ·),K(x, ·)) ≡ MSQVI(Φ(x),K(x));

in particular, although both Φ and K depend on the couple (x, y) ∈ Lu × Ll , in our
abbreviation we want to emphasize the parametric dependence on x ∈ Lu.

Let X := {x ∈ Lu : x(ω) ∈ X(ω) ∀ω ∈ Ω}, with X(ω) ⊆ Ru be nonempty and
compact for each ω ∈ Ω. In the upper-level problem, we consider the expected value
function G : Lu ×Ll → R defined as

G(x, y) := E[g(ω, x(ω), y(ω))] = ∑
ω∈Ω

π(ω)g(ω, x(ω), y(ω)) , (3)
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where g : Ω×Ru ×Rl → R. Then, we introduce the following MSOPQVIC:

min
x,y
G(x, y)

s.t.

{
x ∈ X ∩Nu

y ∈ SOL (MSQVI(Φ(x),K(x))) ,

(4)

where SOL (MSQVI(Φ(x),K(x))) represents the solution set of the parametric MSQVI (2);
in particular, it follows that SOL (MSQVI(Φ(x),K(x))) ⊆ Nl , that is, it is the set of all
nonanticipative solutions to the MSQVI (2). Thanks to the general nature of the considered
MSQVI, in the lower-level problem we could capture a wide class of mathematical problems
of multistage stochastic nature: equilibrium problems, optimization problems, fixed point
problems, projection problems, system of inequalities, etc. We point out that, by using the
Rockafellar and Wets multistage stochastic approach, the definition of MSOPQVIC given
in (4) is a novelty in the literature.

Remark 2. In the formulation of problem (4), we can opportunely incorporate constraints of
expectational nature. In particular, we can replace X with the following smaller set

X̃ :=

{
x ∈ X : E

[
hq(ω, x(ω))

]{≤ 0 q = 1, . . . , r
= 0 q = r + 1, . . . , R

}
(5)

where hq(ω, ·) is convex for q = 1, . . . , r and affine for q = r + 1, . . . , R so that X̃ is still closed
and convex; see, e.g., [16]. In the same way, we can replicate for C the same structure of (5) so that
we can introduce the set C̃ and we can replace K with the set-valued map K̃ : Lu × C⇒ C̃.

From an applicative point of view, it could be useful to perform a stochastic decompo-
sition of the MSOPQVIC (4). By opportunely relaxing the nonanticipativity constraints Nu
and Nl , respectively, on the upper and lower-level variables, we could get a decomposition
of the starting multistage stochastic problems involved in the formulation (4) in a problem
for each scenario throughout suitable nonanticipativity multipliers ρu ∈ Mu and ρl ∈ Ml ;
see, e.g., [15] for the upper-level problem and [16] for the lower-level problem. In particular,
relatively to the parametric multistage stochastic quasi-variational inequality problem (2),
we can consider the extensive formulation of the parametric MSQVI(Φ(x),K(x)):

Find ȳ ∈ Nl such that ∃ϕ ∈ Φ(x, ȳ) and ρ̄l ∈ Ml so that

∀ω ∈ Ω 〈ϕ(ω) + ρ̄l(ω), y(ω)− ȳ(ω)〉l ≥ 0 ∀y(ω) ∈ K(ω, x(ω), ȳ(ω)), (6)

where ϕ(ω) ∈ Φ(ω, x(ω), ȳ(ω)). It provides an important tool to solve numerically the
problem throughout suitable parallel procedures, such as the well-known Progressively
Hedging Algorithm (PHA); see, e.g., [19,20] for the theoretical aspects and [18,21] for
some applications.

3. Main Results

In this section, we aim to analyze the MSOPQVIC problem introduced in Section 2. To
this goal, for the reader’s convenience, we preliminarily recall some classical definitions of
set-valued analysis that will be used in the sequel; for further details, the interested reader
can refer to [22] and the references therein.

Definition 3. A set-valued map Λ : Lm ⇒Lc is said to be

(i) lower semicontinuous at z ∈ Lm if for any sequence {zn}n∈N ⊂ Lm, with zn → z, and for
any s ∈ Λ(z), there exists a sequence {sn}n∈N ⊂ Lc, with sn ∈ Λ(zn) for any n ∈ N and
sn → s;
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(ii) upper semicontinuous at z ∈ Lm if for any open set V in Lc containing Λ(z), there exists
an open neighborhood U of z in Lm such that Λ(ẑ) ⊆ V for all ẑ ∈ U;

(iii) closed at z ∈ Lm if for any sequences {zn}n∈N ⊂ Lm, {sn}n∈N ⊂ Lc, with zn → z,
sn ∈ Λ(zn) and sn → s, then s ∈ Λ(z);

(iv) compact if Λ(Lm) is relatively compact in Lc.

Focusing on the analysis of the MSOPQVIC (4), a key point is the study of the solutions
set SOL (MSQVI(Φ(x),K(x))) and its behavior varying the parameter x ∈ X ∩Nu, that
is, varying the upper-level variable. Firstly, we denote by S̃OL (MSQVI(Φ(x),K(x))) ⊆
Nl the solutions set of the extensive formulation of the parametric MSQVI (6) and we
investigate on its relationship with SOL (MSQVI(Φ(x),K(x))).

Proposition 1. For any x ∈ Lu, the following inclusions hold:

(i) S̃OL (MSQVI(Φ(x),K(x))) ⊆ SOL (MSQVI(Φ(x),K(x)));
(ii) SOL (MSQVI(Φ(x),K(x))) ⊆ S̃OL (MSQVI(Φ(x),K(x))) ifK is with nonempty, closed,

convex values and, for any ȳ ∈ SOL (MSQVI(Φ(x),K(x))), there exists some ŷ ∈ Nl such
that ŷ(ω) ∈ relintK(ω, x(ω), ȳ(ω)) for all ω ∈ Ω or, alternatively, K(ω, x(ω), ȳ(ω)) is
polyhedral for all ω ∈ Ω.

Proof.
(i) For any x ∈ Lu, let ȳ ∈ S̃OL (MSQVI(Φ(x),K(x))): for each ω ∈ Ω, we have

〈ϕ(ω) + ρ̄l(ω), y(ω)− ȳ(ω)〉l
=〈ϕ(ω), y(ω)− ȳ(ω)〉l + 〈ρ̄l(ω), y(ω)− ȳ(ω)〉l ≥ 0 ∀y(ω) ∈ K(ω, x(ω), ȳ(ω)).

(7)

If we multiply each inequality (7) with the corresponding π(ω) and we sum up to ω, then,
for all y(ω) ∈ K(ω, x(ω), ȳ(ω)), it holds

∑
ω∈Ω

π(ω)〈ϕ(ω), y(ω)− ȳ(ω)〉l + ∑
ω∈Ω

π(ω)〈ρ̄l(ω), y(ω)− ȳ(ω)〉l ≥ 0 . (8)

Since ρ̄l ∈ Ml , it follows that 〈〈ρ̄l , y− ȳ〉〉 = 0 for all y ∈ K(x, ȳ) ∩ Nl ; hence, from (8),
it follows that

〈〈ϕ, y− ȳ〉〉 ≥ 0 ∀y ∈ K(x, ȳ) ∩Nl ,

that is, ȳ ∈ SOL (MSQVI(Φ(x),K(x))).
(ii) For any x ∈ Lu, let ȳ ∈ SOL (MSQVI(Φ(x),K(x))): thanks to the assumptions on
K(ω, x(ω), ȳ(ω)) and by using similar arguments to the ones of Theorem 3.2 in [16], the
claim follows, that is, ȳ ∈ S̃OL (MSQVI(Φ(x),K(x))).

We emphasize that the relationship between the solution sets of the parametric mul-
tistage stochastic variational problems (2) and (6) provides us an important tool for nu-
merically approaching the problem: under the assumptions of Proposition 1, we could
approach the study of the extensive formulation (6) and, at the same time, we could be sure
that it shares the same set of solutions with the starting problem (2).

At this point, a further step in the study of the MSOPQVIC (4) is to investigate the
set-valued map:

x → SOL (MSQVI(Φ(x),K(x))) . (9)

Proposition 2. Let C := {y ∈ Ll : y(ω) ∈ C(ω) ∀ω ∈ Ω}, with C ∩Nl 6= ∅ and C(ω) ⊆ Rl

nonempty, compact, and convex for each ω ∈ Ω. Then, the set-valued map (9) is closed with
nonempty values if the following statements hold:

(i) Φ : Lu ×Ll ⇒Ll is upper semicontinuous with nonempty, compact, and convex values;
(ii) K : Lu × C⇒ C is lower semicontinuous, closed with nonempty, compact, and convex values

such that K(x, y) ∩Nl 6= ∅ for all x ∈ Lu and y ∈ C.
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Proof. Firstly, we introduce the set-valued map Γ : Lu × C⇒ C defined by

(x, y)→ Γ(x, y) := K(x, y) ∩Nl ;

in order to prove our thesis, we can equivalently focus on the study of the following
set-valued map

x → SOL (MSQVI(Φ(x), Γ(x))) . (10)

. The set-valued map (10) is with nonempty values.

For any x ∈ Lu and y ∈ C, Γ(x, y) 6= ∅ and Nl is convex and closed as subspace of
Ll ; hence, as the intersection of closed/convex sets is closed/convex, it follows that Γ is
with nonempty, closed, and convex values. Moreover, for any x ∈ Lu and y ∈ C, since
Γ(x, y) ⊆ K(x, y), Γ(x, y) is compact, that is, Γ is with compact values. Since K is lower
semicontinuous and Nl is closed, it follows that Γ is lower semicontinuous; see, e.g., [22].
Furthermore, Γ is closed as K is closed. Then, thanks to Theorem A3 in the Appendix A, it
follows that the parametric MSQVI(Φ(x), Γ(x)) admits solutions, that is, the set-valued
map (10) is with nonempty values.

. The set-valued map (10) is closed.

For any {xn}n∈N ⊆ Lu, {yn}n∈N ⊆ C, with xn → x, yn ∈ SOL (MSQVI(Φ(xn), Γ(xn))) and
yn → y, we have to verify that y ∈ SOL (MSQVI(Φ(x), Γ(x))). Since yn ∈ SOL (MSQVI
(Φ(xn), Γ(xn))), for all n ∈ N there exists ϕn ∈ Φ(xn, yn) such that 〈〈ϕn, zn − yn〉〉 ≥
0 ∀zn ∈ Γ(xn, yn). Moreover, as Γ is lower semicontinuous, for any z ∈ Γ(x, y) there exists
{zn}n∈N converging to z such that zn ∈ Γ(xn, yn) for all n ∈ N. Furthermore, since Φ is
upper semicontinuous with compact values, according to Lemma A1 in the Appendix A,
there exists a subsequence {ϕν}ν∈N ⊂ {ϕn}n∈N converging to ϕ ∈ Φ(x, y); hence, one
obtains

〈〈ϕν, zν − yν〉〉 ≥ 0 ∀zν ∈ Γ(xν, yν) (11)

and, passing to the limit in (11), it follows that y ∈ SOL (MSQVI(Φ(x), Γ(x))), that is, the
set-valued map (10) is closed.

The results obtained in Proposition 2 for the set-valued map (9) gives us good prop-
erties on the contraints set of the upper-level problem of the MSOPQVIC (4): without
requiring any (generalized-)monotonicity assumption on the problem, we prove that it
admits solutions. In particular, the lack of (generalized-)monotonicity requirements could
be of great interest in certain real-world applications: economic equilibrium problems are
classical instances; see, e.g., [8].

Theorem 1. Let X := {x ∈ Lu : x(ω) ∈ X(ω) ∀ω ∈ Ω}, with X ∩ Nu 6= ∅ and X(ω) ⊆
Ru nonempty and compact for each ω ∈ Ω. Let C := {y ∈ Ll : y(ω) ∈ C(ω) ∀ω ∈ Ω}, with
C ∩ Nl 6= ∅ and C(ω) ⊆ Rl nonempty, compact, and convex for each ω ∈ Ω. Then, the
MSOPQVIC (4) admits solutions if the following statements hold:

(i) g(ω, ·) is lower semicontinuous for all ω ∈ Ω;
(ii) Φ : Lu ×Ll ⇒Ll is upper semicontinuous with nonempty, compact, and convex values;
(iii) K : (X ∩Nu)× C⇒ C is lower semicontinuous, closed with nonempty, compact, and convex

values such that K(x, y) ∩ Nl 6= ∅ for all x ∈ X ∩ Nu, y ∈ C and K(X ∩ Nu, C) is
bounded.

Proof. Firstly, X ∩ Nu is closed since it is the intersection of closed sets; hence, since
(X ∩ Nu) ⊆ X , it follows that X ∩ Nu is compact. According to Proposition 2, the set-
valued map (9) is closed with nonempty values. Notice that, for any x ∈ X , since

SOL (MSQVI(Φ(x),K(x))) ⊆ K(X ∩Nu, C) ,
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it follows that SOL (MSQVI(Φ(x),K(x))) is a compact set. According to assumption (iii),
the set-valued map (9) is compact. Moreover, from assumption (i), we have that G is
lower semicontinuous; see, e.g., [17]. Then, thanks to the Weierstrass theorem, the thesis
follows.

4. Multistage Stochastic SLMF Game

In order to support the applicability of the class of multistage stochastic hierarchical
problems introduced in Section 2 and the subsequent results proved about it, in this section
we focus on the study of a suitable SLMF game of multistage stochastic nature: SLMF is a
hierarchical game that recently has attracted great interest in the literature; see, e.g., [3,4,6].
In particular, the hierarchical structure of the game is such that it has

• an upper-level in which a player acts as the leader of the game with a certain objective;
• a lower-level with a finite set of players, acting as followers, that interact in a non

cooperative way to reach an equilibrium, in terms of a Generalized Nash Equilibrium
Problem (GNEP), parametrized by the strategy of the leader;

in this setting, the followers react to what the leader decides, while the leader chooses its
own strategy taking into account the future reaction of the followers. All is studied in the
multistage framework introduced in Section 2: we consider an uncertain environment that
evolves in a finite number of stage so that, at each stage, a finite set of states is possible. The
information on the evolution of this uncertain environment is progressively revealed at
each stage: thanks to the information restriction that we consider, we are able to describe
how the information influences the strategies of each player and how these strategies
evolve over time.

Let I := {1, . . . , i, . . . , I} be the finite set of the players acting as followers; then, we
consider a multistage stochastic hierarchical game with I + 1 players. The player acting
as leader has control over the strategy x ∈ Lu, while each player acting as follower has
control over the strategy yi ∈ Lli . We denote by y ∈ Ll the vector comprehensive of all
followers’ strategies:

y := (yi)i∈I = (yi, y−i) where y−i := (y1, . . . , yi−1, yi+1, . . . , yI) ∈ Ll−i
;

the notation −i represents all the followers in I except i and l := ∑i∈I li = l−i + li =

∑î 6=i lî + li.
Let G : Lu × Ll → R be the expected payoff function of the leader depending on

the variables (x, y) of all I + 1 players. We define G as in (3) and we denote by X :=
{x ∈ Lu : x(ω) ∈ X(ω) ∀ω ∈ Ω} the constraints set of the leader strategy. For each i ∈ I ,
let Ui : Lu ×Ll → R be the expected payoff function of the follower i defined as

Ui(x, y) := E[ui(ω, x(ω), y(ω))] = ∑
ω∈Ω

π(ω)ui(ω, x(ω), y(ω)) , where

Ui(x, y) ≡ Ui(x, yi, y−i) and ui(ω, x(ω), y(ω)) ≡ ui(ω, x(ω), yi(ω), y−i(ω)),

with ui : Ω×Ru×Rl → R and U := ∏i∈I Ui. Let Ci :=
{

yi ∈ Lli : yi(ω) ∈ Ci(ω) ∀ω ∈ Ω
}

be the feasible region of the follower i and C := ∏i∈I Ci = C−i × Ci = ∏î 6=i Cî × Ci ⊆ Ll ;
then, we introduce the constraints set-valued map

Y : Lu × C⇒ C such that Y(x, y) := ∏
i∈I

Yi(x, y−i) , where Yi(x, y−i) ⊆ Ci.

In particular, we define Yi : Lu × C−i ⇒ Ci such that

Yi(x, y−i) := {yi ∈ Ci : yi(ω) ∈ Yi(ω, x(ω), y−i(ω)) ∀ω ∈ Ω}
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and we observe that, for all i ∈ I , Yi is independent of follower i’s strategy; hence, for
mathematical convenience, we could also consider Ỹi : Lu × C⇒ Ci such that Ỹi(x, y) =
Yi(x, y−i).

The aim of each follower i, given the leader strategy x and other followers’ strategies
y−i, is to find a strategy ȳi ∈ Yi(x, y−i) that is nonaticipative and that minimizes the
expected payoff function Ui, that is

min
yi∈Yi(x,y−i)∩Nli

Ui(x, yi, y−i) := Ui(x, ȳi, y−i) . (12)

Then, for any x ∈ X ∩ Nu, a parametric multistage stochastic GNEP(x) is the following
problem:

Find ȳ ∈ Y(x, ȳ) ∩Nl such that ∀i ∈ I min
yi∈Yi(x,ȳ−i)∩Nli

Ui(x, yi, ȳ−i) := Ui(x, ȳi, ȳ−i) ; (13)

in this way, a vector ȳ is an equilibrium solution for (13) if no follower can unilaterally
decrease its expected payoff function by choosing a different strategy. For any x ∈ X ∩Nu,
we denote by SOL (GNEP(x)) the solution set of the parametric multistage stochastic
problem (13). In the literature, SOL (GNEP(x)) is also called reaction map because it
contains the responses of the followers to an arbitrary action x of the leader; see, e.g., [5].

From now on, we assume that the followers will choose, among their equilibrium
strategies, one that most benefits the leader: it is the so-called optimistic case to the considered
hierarchical game that consists in considering the best equilibrium reaction of the followers
with regards to the leader’s expected payoff; see, e.g., [3,4]. Let the Multistage Stochastic
Single-Leader-Multi-Follower game (MSSLMF) up to now described be denoted as follows

E := MSSLMF(G,X , SOL (GNEP)) ;

then, we can now formally introduce an equilibrium solution for it.

Definition 4. A vector (x̄, ȳ) ∈ Lu ×Ll is an optimistic equilibrium for E if it solves the problem:

min
x,y
G(x, y)

s.t.

{
x ∈ X ∩Nu

y ∈ SOL (GNEP(x)) .

(14)

Remark 3. We point out that MSSLMF scheme introduced in this section can capture a wide
range of applications: energy market models, network models, water optimal allocation problems,
demand-side management problems, medical supply competitions, etc. Indeed, at the upper level, one
can always consider a leader with a certain objective: for instance, it could be a regulator. Instead, at
the lower level, it is possible to fit a suitable GNEP describing the interactions among the followers
in the considered application, parametrized by the leader strategy; see, e.g., [21,23,24] for problems
in multistage stochastic settings.

In force of the results obtained in Section 3, we study the problem (14) as a suitable
MSOPQVIC: in particular, no differentiability assumptions on the expected payoff functions
of the followers will be required.

For any x ∈ Lu, i ∈ I , and y−i ∈ Ll−i
, if ui(ω, x(ω), ·, y−i(ω)) is convex, then we can

consider the subdifferential ∂ui(x, ·, y−i) : Lli ⇒Lli so that, for any yi ∈ Lli , ∂ui(x, yi, y−i)
is such that

∂ui(x, yi, y−i) : Ω ⇒Rl

ω → ∂ui(ω, x(ω), yi(ω), y−i(ω)) ,

where, for each ω ∈ Ω, ∂ui(ω, x(ω), yi(ω), y−i(ω)) ≡ ∂ui(ω, x(ω), y(ω)).
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By using classical arguments, for any x ∈ X ∩ Nu, i ∈ I , and y−i ∈ C−i ∩ Nl−i
,

we can express the subdifferential ∂Ui(x, ·, y−i) : Lli ⇒Lli in terms of the subdifferential
∂ui(x, ·, y−i) : Lli ⇒Lli .

Lemma 1. For any x ∈ X ∩Nu, i ∈ I , and y−i ∈ C−i ∩Nl−i
, we assume that

(i) ui(ω, x(ω), ·, y−i(ω)) is convex for each ω ∈ Ω;
(ii) there exists some ŷi ∈ Nli such that ŷi(ω) ∈ relint Yi(ω, x(ω), y−i(ω)) for each ω ∈ Ω;

then, for any yi ∈ Ci ∩Nli , it holds:

∂Ui(x, yi, y−i) = ∑
ω∈Ω

π(ω)∂ui(ω, x(ω), yi(ω), y−i(ω))

Proof. Thanks to the considered assumptions, namely that |Ω| < +∞, the thesis follows
by using similar arguments to the ones in [17].

In this way, we can characterize the parametric problem (12) in terms of the following
parametric multistage stochastic variational inequality problem:

Find ȳi ∈ Yi(x, y−i) ∩Nli such that ∃ϕi ∈ ∂ui(x, ȳi, y−i) and

〈〈ϕi, yi − ȳi〉〉 ≥ 0 ∀yi ∈ Y(x, y−i) ∩Nli . (15)

Proposition 3. For any x ∈ X ∩ Nu, i ∈ I , and y−i ∈ C−i ∩ Nl−i
, let the assumptions

of Lemma 1 be satisfied and Yi(x, y−i) be nonempty and convex. Then, ȳi ∈ Yi(x, y−i) ∩ Nli
solves (12) if and only if it is a solution to (15).

Proof. From Lemma 1 and thanks to the considered assumptions, the thesis follows by
using similar arguments to the ones of Proposition 1.18 in [25].

Let ∂u := ∏i∈I ∂ui; then, we introduce the following MSOPQVIC:

min
x,y
G(x, y)

s.t.

{
x ∈ X ∩Nu

y ∈ SOL (MSQVI(∂u(x), Y(x))) ,

(16)

where, for any x ∈ X ∩Nu, MSQVI(∂u(x), Y(x)) denotes the following parametric problem:

Find ȳ ∈ Y(x, ȳ) ∩Nl such that ∃ϕ := (ϕi)i∈I ∈ ∂u(x, ȳ) and

〈〈ϕ, y− ȳ〉〉 ≥ 0 ∀y ∈ Y(x, ȳ) ∩Nl . (17)

In particular, as made in the previous section, we could opportunely link the MSQVI (17)
with its extensive formulation if we are interested to numerically solve the parametric
multistage stochastic quasi-variational inequality problem. By using the results of Section 3,
we prove the existence of an optimistic equilibrium for E .

Theorem 2. Let X ∩Nu 6= ∅, with X(ω) ⊆ Ru nonempty and compact for each ω ∈ Ω. For all
i ∈ I , let Ci ∩Nli 6= ∅, with Ci(ω) ⊆ Rli nonempty, compact, convex for each ω ∈ Ω, and the
assumption (ii) of Lemma 1 be satisfied. Then, the MSSLMF (14) admits optimistic solutions if the
following statements hold:

(i) g(ω, ·) is lower semicontinuous for all ω ∈ Ω;
(ii) for all i ∈ I , ui(ω, ·, ·) is convex for all ω ∈ Ω;
(iii) for all i ∈ I , Yi : (X ∩ Nu)× C−i ⇒ Ci is lower semicontinuous, closed with nonempty,

compact, and convex values such that Yi(x, y−i) ∩ Nli 6= ∅ for all x ∈ X ∩ Nu, y−i ∈
C−i ∩Nl−i

and Yi(X ∩Nu, C−i) is bounded.
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Proof. For any x ∈ X ∩Nu, from Lemma 1 and Proposition 3, it follows that ȳ ∈ Y(x, ȳ) ∩
Nl solves (13) if and only if it is a solution to (17). In this way, it is sufficient to verify that the
MSOPQVIC (16) admits solutions. For any i ∈ I , from Proposition A1 in the Appendix A,
it follows that the subdifferential ∂ui is upper semicontinuous with nonempty, compact,
and convex values. According to Theorems A1 and A2 in the Appendix A, it follows that
∂u is upper semicontinuous with nonempty, compact, and convex values. Similarly, since
we observed that Ỹi(x, y) = Yi(x, y−i) for all x ∈ X ∩ Nu and y ∈ C, it follows that the
constraints set-valued map Y is lower semicontinuous, closed with nonempty, compact,
convex values such that Y(x, y)∩Nl 6= ∅ for all x ∈ X ∩Nu, y ∈ C ∩Nl and Y(X ∩Nu, C)
is bounded. Then, according to the considered assumptions and thanks to Theorem 1, the
thesis follows.

5. Conclusions

In this paper, inspired by the approach proposed in [15,16], we introduce the analysis
of an OPQVIC of multistage stochastic nature (4): this formulation is a novelty in the
literature. The study is motivated by the fact that the MSOPQVIC (4) allows us to study
several real-world problems in which hierarchical decision processes are characterized by
sequential decisions in response to an increasing level of information. This is supported
by the fact that the MSOPQVIC (4) has a general formulation. Indeed, at the lower-level,
we could consider a wide class of mathematical problems of multistage stochastic nature
such as equilibrium problems, optimization problems, fixed point problems, projection
problems, system of inequalities, etc; moreover, the presence of the nonanticipativity
constraints provides us important tools, from a computational point of view, to solve
numerically the problem by performing a suitable stochastic decomposition of the starting
formulation in a problem for each scenario in order to compute the solution by using the
well-known Progressive Hedging Algorithm (see, e.g., [15] in the framework of stochastic
programming and [19,20] for variational inequality problems). From an applicative point of
view, another interesting aspect of the presence of the nonanticipativity constraints is that,
both at the upper and lower-level of the MSOPQVIC (4), we could consider suitable risk
measures without precluding the possibility of getting a suitable stochastic decomposition
of the starting problem; see, e.g., [26].

Without requiring any monotonicity assumption on the problem, we prove that
the MSOPQVIC (4) admits solutions. In view of this result, we focus on the study of
a SLMF game of multistage stochastic nature. At the lower-level, the presence of a suitable
GNEP of multistage stochastic nature describing the interactions among the followers and
parametrized by the leader strategy could allow us to capture a wide range of applications:
energy market models, network models, water optimal allocation problems, demand-side
management problems, medical supply competitions, etc; see, e.g., [21,23,24,27]. For this
reason, this paper is the starting point for future developments. In particular, it could be
interesting to extend the analysis to multistage stochastic hierarchical problems in more
general spaces and with a more general upper-level problem that could allow us to study
Multi-Leader-Multi-Follower games and the related real-world applications, both from a
theoretical and computational point of view.
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Appendix A

For the reader’s convenience, we recall some results of set-valued and variational
analysis used in the previous sections.

Lemma A1 ([25], Lemma 1.10). Let Z be a topological space, S be a topological vector space and
Λ : Z ⇒ S be a set-valued map such that Λ(z) is nonempty and compact for all z ∈ Z. Then, Λ is
upper semicontinuous at z ∈ Z if and only if for any nets

{
zµ

}
⊂ Z with zµ → z and

{
sµ

}
⊂ S

with sµ ∈ Λ(zµ), there exists a subnet {sν} ⊂
{

sµ

}
such that sν → s for some s ∈ Λ(z).

Theorem A1 ([22], Tychonoff’s Theorem). The product of a family of topological spaces is
compact in the product topology if and only if each factor is compact.

Theorem A2 ([22]). Let I = {1, . . . , n} be a finite set, Z be a topological space, and Si be a
topological space for all i ∈ I. Let Λi : Z ⇒ Si for all i ∈ I. The following statements hold:

(i) if Λi is lower semicontinuous for all i ∈ I, then the Cartesian product Λ = ∏i∈I Λi is a lower
semicontinuous mapping of Z into S = ∏i∈I Si;

(ii) if Λi is upper semicontinuous for all i ∈ I, then the Cartesian product Λ = ∏i∈I Λi is an
upper semicontinuous mapping of Z into S = ∏i∈I Si.

At this point, we quote the classical Tan result for the existence of a QVI.

Theorem A3 ([11], Corollary to Theorem 3). Let Z be a topological linear locally convex Haus-
dorff space and Z∗ its dual. Let C ⊆ Z be a nonempty, compact, and convex set. Let Φ : Z ⇒ Z∗

and K : C ⇒ C be two set-valued maps. Let us suppose that the following properties hold:

(i) Φ is upper semicontinuous with nonempty, compact, and convex values;
(ii) K is closed, lower semicontinuous with nonempty, compact, and convex values.

Then, the QVI(Φ, K) admits solutions.

Finally, we recall some relevant properties of the subdifferential of a convex function.

Proposition A1 ([28], Propositions 2.1.2 and 2.1.5). Let f : Rm → R be a convex function.
Then, the subdifferential ∂ f : Rm ⇒Rm is upper semicontinuous with nonempty, compact, and
convex values.
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