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On consistency of physical and DEVS models in control-targeted DTs:
an industrial case study
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Abstract— The DT-based design and control of modern pro-
duction assets requires simulation models with different view-
points, purposes, and nature. Most notably, component-level
design and control require detailed physical models, while
plant-level automation and production management mostly need
DEVS-type ones. Inconsistencies among the said models can
have significant impacts on decision processes related e.g. to (re-
)configuration, diagnostics and maintenance—in one word, on the
ultimate outcome of an asset. However, given their heterogeneous
nature, making physical and DEVS models consistent requires
new methods and tools, in fact starting with the definition itself of
what “consistent” has to mean. We here present a methodology
to state and address such consistency problems, and support our
statements with a case study taken from the cosmetics industry.

I. INTRODUCTION

Modern industrial assets increasingly require lifelong sup-
port from “Digital Twins” (DTs for short) to assist their design,
operation, maintenance and management at large. There are
strong and articulated motivations for this necessity, as well
as a huge literature and many applications, e.g. to [11], [5],
[12], [17].

The said necessity is strengthened by the contemporary
industrial scenario. In the past, a production asset traversed
quite well defined phases – design, commissioning, operations
with some re-configuration, end of life – on a time scale in the
range of years or more. Such phases were in practice cascaded,
hence it made sense e.g. for a design team to “pass over” the
asset to operations people. It was of course required to define
interfaces for team-to-team information transfer, but internally
– this is a key point – each team could organise and manage
their knowledge in almost complete independence.

Nowadays, the situation is different. The need for frequent
re-configurations, that once was confined to high-mix & low-
volume productions, is rapidly spreading into a market that
requires customised products practically as fast as standard
ones. The field of cosmetics, that funded this research, is an
apparent example, and less peculiar than one might imagine.
The above cascade of phases is far less representative of reality
than it was, and to top, the time scales of asset management,
maintenance and day-by-ay operation, which once were very
different, are approaching to one another.

Each DT created – see [5] – is usually employed for specific
decisions on an asset, starting from commissioning ([16],
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[15]) to embrace its entire life cycle. A DT can also have
different natures (it could come from field data, models, or
both), usage (online, offline or a combination of the two) and
different interpretations for each professional [3]. For example,
a control engineer, a production planner and a data scientist
can mean for “DT” respectively a simulation model made of
differential equations, a Discrete EVent System (DEVS) and
a decision aid built on machine learning.

To not take consistent decisions trhough an asset life cycle
– so that nobody ever takes a decision with his DT assuming
true any other decision that somebody else has modified on
its DT – it is of major importance to have an integrated
approach to build consistent DTs, regardless of their nature,
usage and purposes. The matter, discussed in [14], [18], [4],
[13]m gives the subject of “models in control” new facets,
both methodological and technological [19]. A proposal of
DTs integration is the topic of the long-term research to which
this paper belongs [3], with the ultimate goal of devising
methods and tools to manage a knowledge base made of
both models and data sets, accessed by professionals with
different cultures. In this paper, we investigate how to ensure
consistency – in the sense just suggested – among detailed
physical models and DEVS ones, so as to integrate the
automation and control (A&C) decision strategies with the
operations and management (O&M) ones. We also exemplify
our findings on an industrial case, to prove their practical
viability.

II. BACKGROUND AND PROBLEM STATEMENT

As we said, a knowledge base made of DTs contains both
models (in our context, entities that can be simulated) and
data. Apparently, any idea of “consistency” in such a base
has to be expressed as relationships among the entities in
the base (models and data). However, while the concept of
“relationship” among data is well known since the dawn of the
relational model [6], [7], [1], that of “model-data” or “model-
model” relationship is far less established, if not in fact to
establish at all.

The matter is discussed – and a solution outline provided
– in [3]. We here report just an illustrative example, tailored
to the particular problem addressed in this paper. Consider
a hierarchical control system in a manufacturing line, with
machine-level controls (mostly of modulating type like e.g.
speed or pressure ones) and line-level ones (mostly logic
like e.g. sequencing ones) on top of them. Machine-level
controls rely on DTs based on dynamic models made e.g.
of transfer functions, the parameters of which represent the
physics of the machine (masses, friction coefficients, an so
on) and the tuning of the controllers. Line-level controls rely
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on DEVS-based DTs where the details of machine operations
are concealed, but the parameters of which depend on how
machines are controlled. For example, a line-level control
functionality could rely on a machine-level one to guarantee
(via tool motion and force control) that some machining time
lie in a certain range despite part-to-part variability in say the
material hardness.

Apparently, for the overall system to work properly, any
modification in the machine-level control must reflect into its
DT, and this has to trigger the update of all line-level DTs
that depend on that machine-level one, as in the absence of
that, decisions at the line level may be erratic. Setting up a
mechanism to manage a set of DTs in such a way requires
in the first place to define what a DT-DT (model-data and/or
model-model) relationship is, which was initially done in [3]
by identifying a set of such relationships.

In this paper we refer to one such relationship, named
“representation in other domain”, that occurs when the same
entity is modelled adopting different paradigms. For example,
an inductor can be modelled in the time domain with a dif-
ferential equation having tits inductance as the one parameter,
or in the phasor domain with an algebraic equation, where
the parameters are inductance and network frequency. In such
a case, relating the two models is quite easy. But coming
back to the case sketched above, a machining station can
be modelled as a differential-algebraic system, with physical
parameters, or a queue-type DEVS, where the parameters
characterise the statistical distribution of the machining time.
In the following we study this particular example of DT-DT
consistency problem, based on a real-world case, and exploit
it to make some general considerations.

III. THE ADDRESSED RELATIONSHIP

The specific kind of relationship that we consider, as said,
is termaed “representation in other domain” and in a nutshell
amounts to re-writing the same physical object model with
different dynamic descriptions and interfaces. In particular,
relating the A&C physical models with the O&M ones means
to model the same machine as a queue/server block [2],
following the Discrete EVent Systems (DEVS) modelling.

A very important peculiarity of establiching this relationship
– in fact, the main reason why it is introduced – is its use-
fulness for turning a priori component-level uncertainty into
a posteriori machine- or in general system-level uncertainty.
Let us explain, for brevity, with an example. When using a
queue and server model for a machine in order to analyse
the production line that contains it, it is obviously required
to characterise the variability of the output of that machine,
be this in terms of service time for each processed part, of
characteristics of the output parts, or whatever else. Such
a characterisation may come from analysing measured data
along the production history, and possibly – but for many kinds
of analysis not necessarily – attempting to relate those data to
some machine input, measured historically as well.

The problem is however when the plant is being built,
hence there is no data, and to set up the management logic
some information about the mentioned variability is required
anyway. One could make assumptions based on experience,
but this is not always available (especially if the plant is

innovative). One could start with “cautious” settings (assuming
to know what “cautious” is in the case at hand, but we are
not discussing this) and then refine controls along the plant
operation, but as we said, nowadays there might not be enough
time for that before the next re-configuration occurs. In one
word, the outcome of such cases can easily be suboptimal
operation, if not undesired behaviours.

The solution we propose is to exploit the introduced rela-
tionship, and reason as follows, starting again with a simple
example. Suppose to consider a machining operation, where
the variability of interest is that of the machining time. First,
a detailed model-based DT needs creating that explicitly con-
tains the physical quantities that the knowledge of engineers
identifies as responsible for the machining time variability
with their intrinsic variability (for example, the part hardness).
Since this intrinsic (a priori) variability can be characterised
before the machine exists, a convenient simulation campaign
can provide a reliable estimate of the a posteriori variability
required by the “simple” model-based DT made using the
DEVS modelling.

Formally, this means relating the simple to the complex
models by expressing some parameters of the former (in the
example, a specified number of moments of the machining
time distribution) as functions of some parameters of the latter
(for example the electro-mechanical and the control ones) plus
data about the parts to machine (in the example, moments of
the hardness distribution). The functional dependence just in-
troduced shall be expressed in terms of relationship by means
of a suitably specified set of simulations of the complex one
in order to compute the simple model parameters, followed
by the necessary elaboration of the output. This can clearly
be done off-line with respect to the simulations that use the
simple model.

No doubt that having such a relationship specified once
and then enforced automatically, allows the analysts who deal
with the asset-level models that contain the machine as a
queue with server to be sure that no modification of e.g. a
control parameter that somebody in charge of the machine
might apply for local reasons, will make their conclusions
not correspond to the real situation. No doubt therefore also
that such a functionality is of value for the management of
model-based DTs from different domains. The question is
now whether or not the idea just outlined can be applied to a
real-life situation. We provide a response with the case study
in the following, after which we are making some further
considerations suggested by the described experience.

IV. THE CASE STUDY

We now come to apply the ideas just sketched to an
industrial case, namely lipstick solidification. This process
takes place on a rotary table where silicone moulds receive
the hot and fluid product, traverse a cooling tunnel in which
chilled air flows in the opposite direction, then reach a position
where they are extracted to collect the finished now solidified
product; at this point each emptied stand on the table receives
another mould, that goes through a pre- heating section before
receiving another fluid injection and restarting the cycle.

The available knobs to act on the system are the table
average rotation speed (the motion is actually discontinuous,
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as moulds have to stop at filling and emptying stations)
together with the air flow rate and its conditions at the cooling
tunnel inlet, in turn governed by a chiller coupled to the
solidification machine.

The goal of the process is to have each lipstick follow
a desired cooling curve over time, so as to obtain good
consistence and finishing and be finally extracted from the
mould smoothly, avoiding in particular defects like a non ho-
mogeneous aspect or even localised cracks. At the same time,
the total energy consumption by the table motor, the mould
pre-heating system (radiating lamps) and the chiller, should
be kept as low as possible compatibly with a satisfactory
operation.

A. Detailed physical model

The physical (first principle) model was written using the
object-oriented Modelica language [9]. We now synthetically
describe its main components.

1) Rotary table, mould and bulk: the compound of silicone
mould and bulk is represented as a finite-volume model with
cylindrical symmetry, discretised by horizontal slices. The part
is thus modelled as a set of concentric cylinders, see Figure 1:
the outer hollow one represent the metal support, the middle
one the mould, and the inner one the bulk.

Fig. 1. Mould and bulk model.

The density, specific heat and thermal conductivity for table
metal, silicone and bulk are considered constant. The model is
thus composed of one bulk, one mould and one metal energy
equation per horizontal slice. Filling is modelled as if the
flow – that actually fills the slices from bottom to top – were
instead distributed to all the slices together, and the same is
done for emptying. Since filling and emptying are practically
instantaneous with respect to the entire process duration, this
non-physical approximation is acceptable. The rotary table is
divided in sectors – see Figure 2 – based on the sequence
of operations summarised below, that in turn dictate the mass
and heat exchanges for the model in Figure 1.

2) Table zones and operations: With reference to Figure 3,
incoming moulds initially exchange heat only with the table
support (∆Qp sil) and room air (∆QT sil , ∆QT p). During pre-
heating, additional heat to mould and table (∆Qirr sil , ∆Qirr p)
is provided by lamps. Then comes the prescribed inlet flow
rate wbulk in the filling position, introducing the heat exchanges
between bulk and mould (∆QT bs), and between bulk and air
(∆QT bulk).

Fig. 2. Rotary table and working steps.

Fig. 3. Entering, preheating, filling and exchanges (left to right).

After filling, moulds enter the cooling tunnel. There is no
mass exchange, whole heat ones are the same as before. The
only differences are the air flow rate – i.e., velocity, temper-
ature and moisture. The tunnel is modelled as a sequence of
volumes, where dynamic balances of mass and energy apply,
alternated with transport elements in the form of an algebraic
correlation between flowrate and pressure difference. At the
tunnel exit, the bulk is finally solidified, however it is slightly
recast only on the upper surface, to be extracted and positioned
into its primary packaging. Again, exchanges are the same,
with the only addition of lamp heat in the recast positions
and of the prescribed outgoing mass flowrate at the emptying
station.

3) Model elements interconnection: Each mould/bulk
model is equipped with a set of ports – in Modelica terms,
connectors – to represent the mass and heat exchanges that
may or may not exist depending on the station where the
model is. For example, ports to represent thermal exchanges
without mass carry a temperature and a thermal power.

Denoting by nP the number of ports aboard a mould/bulk
compound and by nC the number of compounds on the table,
this results in nP vectors of ports of dimension nC each.
Analogously, each of the nS stations on the table is equipped
with the same set of ports. If some phenomenon does not
occur at a certain station, this is represented by prescribing
zero heat or mass flow on the corresponding port. The result
is thus nP vectors of ports of dimension nS each.

The interconnection is realised by defining, at the complete
model level, nP matrices of size nC × nS, to dictate the
compound-to-stations interconnections as a function of the
table angular position. Overall, with 40 table stations and thus
40 table stands, four mould/bulk compounds per stand, and
24 volumes – one for each working position – to discretise
the cooling tunnel, the complete physical dynamic model is
composed of about 6000 equations.
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Fig. 4. Operations flow – automatable – to relate the complex (physical) and the DEVS model along the parametric and the non-parametric approach.

B. DEVS model

The DEVS model takes the form of a queue and server node
for use in a network to represent the production flow. The job
token corresponds to a single lipstick (or – equivalently for
our purposes – to a set of four if moulds come in quadruplets
handled together). Tokens flowing through the network carry
information about the represented product unit(s) to be used
as input to the downstream processing nodes if this is relevant.

In the application we consider, the processing time for
a token is dictated by the table speed and generally kept
constant. The production system contains adequate upstream
and downstream buffers to make this acceptable. What counts
in particular is the product condition at the exit of the cooling
tunnel, as this affects the following operations besides having
an obvious impact on energy consumption.

In the space of this paper we limit the scope to the product
temperature, but apparently the same considerations would
apply to other properties computable from the simulation
of the detailed model. For the DEVS one, it is required to
determine the cumulated probability density pc,θ (ρ) for the
property ρ of interest as a function of the qualifiers set θ for
the inlet/ambient variability and the relevant process/control
parameters, so that the arrival of a token to process can
produce its simulated outlet condition as p−1

c,θ (ε), where ε is
a [0,1] uniformly distributed random number.

C. Establishing the relationship

In principle, one could tackle the problem with a parametric
approach. This would amount to computing the required
number of moments MO,i, j for each of the output probability
distrbutions of interest pO,i(·), i = 1 . . .nO, j = 1 . . .nMO,i as
functions of the required number of moments MI,k,� for each
of the input distributions pI,k(·), k = 1 . . .nI , � = 1 . . .nMI ,k
identified as the physical sources for the output variability;
these input moments would contribute to the qualifier vector
θ together with deterministic quantities, most typically the
parameters for the controls aboard the system.

Such a procedure is conceptually neat, would be in practice
quite articulated but in general straightforward to set up, and
above all would build on solid methodological result like those
presented in [10], [8]. However, given the particular domain
we are addressing, there is a quite strong argument owing to
which the idea above may often not be advisable, and this
argument comes from the combination of two facts.

First, some of the output properties to address depend on
deterministic parameters in an inherently non-smooth manner.
The most immediate example is the way a settling time (that
can dictate when an operation is considered finished, hence a
service time an a queue network) depends on the threshold for
the transient end, and also on the control parameters (when
an oscillation arises as wide as the said threshold, the settling
time has a jump). As such, changing e.g. a control parameter
could result in a qualitative modification of the shape of some
output property distribution, making it questionable – if ever
possible – to decide a priori how many moments are necessary
to represent it properly.

Second, sticking again to the DEVS/queue case, as it may
happen that the input variability for some node in a queue
network is actually the output variability of some other node,
the same difficulty about the necessary number of moments
applies to input distributions as well. Of course this is not
the case if for example the input variability comes from a
population of acquired parts that can be characterised offline,
but we aim for a procedure that can be applied in the most
general case.

As a result, the two approaches can be summarised as per
the operations flow in Figure 4 the parametric approach can
work only if one has certainties about the number of moments
that suffice to describe the distributions to include in the
models. In the opposite case one has to take a non-parametric
approach, and determine the required output distributions as a
set of values to be interpolated at the time of simulating the
DEVS model, as sketched above. This amounts to

1) identifying the deterministic parameter(s) – θD to name
them – and defining the set Θd of the choices to consider
for them (e.g., the control parametrisations of interest);

2) characterising the input variability, either as moments
if this makes sense, or in general as samples of its
cumulated probability density;

3) performing a large set of simulations for each θD ∈ ΘD
and compute numerically the corresponding samples for
the output cumulated probability densities of interest.

As the price for its generality, this approach has the draw-
back that if something is changed in the model of some queue
network node, all of the above needs re-doing for all the
nodes who take its output—which apparently would not be
the case if probability-related information could move around
the network as a pre-defined set of moments. The question
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B. DEVS model

The DEVS model takes the form of a queue and server node
for use in a network to represent the production flow. The job
token corresponds to a single lipstick (or – equivalently for
our purposes – to a set of four if moulds come in quadruplets
handled together). Tokens flowing through the network carry
information about the represented product unit(s) to be used
as input to the downstream processing nodes if this is relevant.

In the application we consider, the processing time for
a token is dictated by the table speed and generally kept
constant. The production system contains adequate upstream
and downstream buffers to make this acceptable. What counts
in particular is the product condition at the exit of the cooling
tunnel, as this affects the following operations besides having
an obvious impact on energy consumption.

In the space of this paper we limit the scope to the product
temperature, but apparently the same considerations would
apply to other properties computable from the simulation
of the detailed model. For the DEVS one, it is required to
determine the cumulated probability density pc,θ (ρ) for the
property ρ of interest as a function of the qualifiers set θ for
the inlet/ambient variability and the relevant process/control
parameters, so that the arrival of a token to process can
produce its simulated outlet condition as p−1

c,θ (ε), where ε is
a [0,1] uniformly distributed random number.

C. Establishing the relationship

In principle, one could tackle the problem with a parametric
approach. This would amount to computing the required
number of moments MO,i, j for each of the output probability
distrbutions of interest pO,i(·), i = 1 . . .nO, j = 1 . . .nMO,i as
functions of the required number of moments MI,k,� for each
of the input distributions pI,k(·), k = 1 . . .nI , � = 1 . . .nMI ,k
identified as the physical sources for the output variability;
these input moments would contribute to the qualifier vector
θ together with deterministic quantities, most typically the
parameters for the controls aboard the system.

Such a procedure is conceptually neat, would be in practice
quite articulated but in general straightforward to set up, and
above all would build on solid methodological result like those
presented in [10], [8]. However, given the particular domain
we are addressing, there is a quite strong argument owing to
which the idea above may often not be advisable, and this
argument comes from the combination of two facts.

First, some of the output properties to address depend on
deterministic parameters in an inherently non-smooth manner.
The most immediate example is the way a settling time (that
can dictate when an operation is considered finished, hence a
service time an a queue network) depends on the threshold for
the transient end, and also on the control parameters (when
an oscillation arises as wide as the said threshold, the settling
time has a jump). As such, changing e.g. a control parameter
could result in a qualitative modification of the shape of some
output property distribution, making it questionable – if ever
possible – to decide a priori how many moments are necessary
to represent it properly.

Second, sticking again to the DEVS/queue case, as it may
happen that the input variability for some node in a queue
network is actually the output variability of some other node,
the same difficulty about the necessary number of moments
applies to input distributions as well. Of course this is not
the case if for example the input variability comes from a
population of acquired parts that can be characterised offline,
but we aim for a procedure that can be applied in the most
general case.

As a result, the two approaches can be summarised as per
the operations flow in Figure 4 the parametric approach can
work only if one has certainties about the number of moments
that suffice to describe the distributions to include in the
models. In the opposite case one has to take a non-parametric
approach, and determine the required output distributions as a
set of values to be interpolated at the time of simulating the
DEVS model, as sketched above. This amounts to

1) identifying the deterministic parameter(s) – θD to name
them – and defining the set Θd of the choices to consider
for them (e.g., the control parametrisations of interest);

2) characterising the input variability, either as moments
if this makes sense, or in general as samples of its
cumulated probability density;

3) performing a large set of simulations for each θD ∈ ΘD
and compute numerically the corresponding samples for
the output cumulated probability densities of interest.

As the price for its generality, this approach has the draw-
back that if something is changed in the model of some queue
network node, all of the above needs re-doing for all the
nodes who take its output—which apparently would not be
the case if probability-related information could move around
the network as a pre-defined set of moments. The question

is therefore whether the proposed non-parametric approach is
feasible in practice, and to this question we attempt to respond
by applying the approach to the lipstick drying case.

V. SIMULATION RESULTS

We now present an inevitably small example with the
lipstick drying process. Assuming “good” control for table
speed and air conditions and flowrate, the main a priori
uncertainty resides in the fluid bulk inlet temperature Ti. For
this example we assume a Gaussaian distribution of the said
temperature, with average µTi and standard deviation σTi . The
corresponding a posteriori uncertainty of interest is that of the
final temperature To of the solidified product. We took two
values for the table rotation speed, five for µTi , five for σTi ,
and only one air flow and inlet condition for brevity. For each
table speed – and with the so defined operating points – we
ran 5000 simulations to analyse the a posteriori uncertainty.
We report below the outcome of using both the approaches
outlined in Figure 4.

A. Parametric approach

Along this approach one assumes that the a posteriori
uncertainty can be described with a given number of moments,
and computes these based on the distribution(s) coming from
the simulation set.
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Fig. 5. Parametric approach – a posteriori uncertainty moments µTo and σTo
versus µTi and σTi – all in ◦C – for ωT corresponding to 1000 parts per hour
(pph).
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Fig. 6. Parametric approach – a posteriori uncertainty moments µTo and σTo
versus µTi and σTi – all in ◦C – for ωT corresponding to 1400 parts per hour
(pph).

Figures 5 and 6 show the results in the case at hand, as-
suming that average and standard deviation suffice to describe
the a posteriori uncertainty. Specifically, the average µTo and
the standard deviation σTo of To are plotted versus those of
Ti for two values of the table velocity ωT (one per figure).
As can be seen there is an evident correlation for µTo , while
on σTo finite-population effects do appear (indicating however

a larger average value for 1400 parts per hour). In any case,
assuming the used moments to be an adequate representation
of the a posteriori uncertainty – which depends on the use one
has to make of the DEVS model, a matter not discussed herein
– interpolating also between the operating points coming from
the simulation appears possible.

B. Nonparametric approach

Along this approach one just considers the simulated operat-
ing points – hence no interpolation is envisaged – and makes
no assumption on the aspect of the a posteriori uncertainty
distribution(s), providing the required cumulated probability
density/ies as a set of samples to be interpolated when
employing it as per Figure 4 (right).
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Fig. 7. Probability density function for 1000 pph, µTi = 75◦C and σTi = 0.25
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Fig. 8. Probability density function for 1000 pph, µTi = 75◦C and σTi = 1

Figures 7 and 8 show two such probability density functions
(not cumulated for better readability). As can be seen compar-
ing the figures, in some cases the aspect is “Gaussian enough”
– or more in general regular enough – for being represented
with a reasonably low number of moments, while in some
other cases this is more questionable.

C. Lessons learnt

From the presented study (and others not shown here) we
can distil some lessons. First, the parametric approach is in fact
feasible, however only it at least the shape of the probability
density functions to expect is reliably known. Symmetrically,
the nonparametric approach is inherently agnostic to such
assumptions but not so rich as for the yielded information,
as any attempt to somehow interpolate in between the com-
puted operating points did prove infeasible in practice. We
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also detected a significant influence of control parameters in
changing distribution shapes (though this happens primarily
for threshold-based quantities such as settling times, not shown
in the presented study). Hence the nonparametric approach
appears in general safer for quantitative evaluations, while
the parametric one seems more suited to preliminary design
activities and/or relative comparisons. Finally, the time to
perform a set of simulations can vary a lot, from minutes
in simple cases up to hours in complex ones. We do not see
this as a significant obstacles, also because in our runs we
did not exploit at all the apparently high level of parallelism
encountered, but nonetheless the computational aspect still
needs attention.

VI. CONCLUSIONS AND FUTURE WORK

We presented an industrial case study to demonstrate the
feasibility of instating relationships among model-based con-
trol targeted DTs from different viewpoints, within a knowl-
edge base made of both models and data. The reported simu-
lation results show the viability of the approach in evaluating
the DT-DT relationships without extensive use of the physical
counterpart data.

It is important to note that identifying DT-DT relationships
requires a major analyst effort in dealing with the other
professional viewpoints, defining what “consistency” means,
and devising the right path to follow to establish those
relationships—i.e., to determine the crucial uncertainty to
be represented, that in our case study means choosing the
knobs to act on the system. Nevertheless, enforcing those
relationships is crucial for the integration and the lifelong
management of the whole phases of an industrial asset’s life
cycle, i.e. engineering, commissioning, control and operations,
from different viewpoints.

Future work will focus on continuing toward the specifi-
cation of other DT-DT relationships, to be integrated in the
future into DT-centric industrial tools. Also, research effort
is being spent, in collaboration with compiler developers, to
have relationships automatically enforced in a computationally
efficient way.
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