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Abstract
Context The F-measure has been widely used as a performance metric when selecting
binary classifiers for prediction, but it has also been widely criticized, especially given the
availability of alternatives such as φ (also known as Matthews Correlation Coefficient).

Objectives Our goals are to (1) investigate possible issues related to the F-measure in depth
and show how φ can address them, and (2) explore the relationships between the F-measure
and φ.

Method Based on the definitions of φ and the F-measure, we derive a few mathemati-
cal properties of these two performance metrics and of the relationships between them. To
demonstrate the practical effects of these mathematical properties, we illustrate the out-
comes of an empirical study involving 70 Empirical Software Engineering datasets and 837
classifiers.

Results We show that φ can be defined as a function of Precision and Recall, which are the
only two performance metrics used to define the F-measure, and the rate of actually positive
software modules in a dataset. Also, φ can be expressed as a function of the F-measure and
the rates of actual and estimated positive software modules. We derive the minimum and
maximum value of φ for any given value of the F-measure, and the conditions under which
both the F-measure and φ rank two classifiers in the same order.

Conclusions Our results show that φ is a sensible and useful metric for assessing the per-
formance of binary classifiers. We also recommend that the F-measure should not be used
by itself to assess the performance of a classifier, but that the rate of positives should always
be specified as well, at least to assess if and to what extent a classifier performs better than
random classification. The mathematical relationships described here can also be used to re-
interpret the conclusions of previously published papers that relied mainly on the F-measure
as a performance metric.
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1 Introduction

Classification problems are quite common in rather diverse application areas of software
practice and research. Here are just a few examples:

– The classification of the words in requirements texts has been used to derive the
semantic representation of functional software requirements (Sonbol et al. 2020).

– Software requirements have been classified into functional requirements and sub-
classes of non-functional requirements via machine-learning techniques (Dias Canedo
and Cordeiro Mendes 2020).

– Machine-learning techniques have also been used to recognize attacks to software-
defined networks (Scaranti et al. 2020).

– The diffusion of news via Twitter was used to classify news articles pertaining to
disinformation vs. mainstream news (Pierri et al. 2020).

– Defect prediction, which is probably the best known software classification activity
(Hall et al. 2011), classifies software modules as faulty or non-faulty.

Many different classifiers are built and used to address these and other Empirical Software
Engineering problems. Thus, it is important to assess how well classifiers perform, so the
best can be selected.

In this paper, we focus on binary classifiers, which are the most widely used, and on the
metrics that have been defined to evaluate their performance. Using one performance metric
instead of another may lead to very different evaluations and ranking among competing
classifiers. To select effective and practically useful classifiers, it is therefore crucial to
use performance metrics that are sound and reliable. This requires carefully examining and
comparing the properties and possible issues of performance metrics before adopting any
of them.

The F-measure (also known as F-score or F1) is a performance metric that has been
widely used in Empirical Software Engineering. For instance, it was used—along with other
metrics—to evaluate the performance of the classifications obtained in all of the empirical
studies mentioned above.

The F-measure combines two performance metrics, Precision and Recall, also widely
used to measure specific aspects of performance. As such, the F-measure is often per-
ceived as a convenient means for obtaining an overall performance metric. The F-measure
was originally defined to evaluate the performance of information retrieval techniques (van
Rijsbergen 1979). However, it has numerous serious drawbacks that spurred criticisms
(Hernández-Orallo et al. 2012; Powers 2011; Sokolova and Lapalme 2009; Luque et al.
2019).

Several researchers favored using other performance metrics like φ (Cohen 1988)
(also known as Matthews Correlation Coefficient (Matthews 1975)), which are generally
considered sounder (Yao and Shepperd 2020).

Unfortunately, the F-measure and φ may rank competing classifiers in different ways.
According to Yao and Shepperd’s analysis of the literature, around 22% of the published
results change when φ is used instead of the F-measure (Yao and Shepperd 2021).
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The goal of this paper is to analyze and compare the issues, advantages, and relationships
of F-measure and φ, to help decision-makers use the performance metric that allows them
to select the classifiers that better suit their goals.

Thus, after introducing the basic notions and terminology in Section 2, the paper provides
the following main contributions, which we list along with the section where they can be
found.

– We provide an organized in-depth discussion and comparison of the characteristics of
the F-measure and φ, by building on the criticisms of the literature and adding some
more observations (Section 3).

– We show that φ is a mathematical function of Precision, Recall, and the rate of actual
positive modules (Section 4).

– We show that φ can be mathematically expressed as a function of the F-measure and
the rates of actual and estimated positive modules. We study the extent to which these
rates influence the set of possible values of φ that correspond to a given value of the
F-measure. We also derive the conditions under which both the F-measure and φ rank
two classifiers in the same order (Section 5). Specifically, we proved that φ and the F-
Measure tend to rank two classifiers in the same way when the rate of actual positives
is quite small. This results explains why the F-Measure was originally proposed in
the information retrieval domain, where the rate of actual negatives is generally very
large. When that is not the case—as in many software engineering situations—even a
seemingly high value of the F-Measure may correspond to a performance not better
than that of a random classifier.

– The knowledge provided in this paper casts new light on some results published previ-
ously, allowing for a more rigorous and sound reinterpretation of such results, and in
some cases leading to rejecting conclusions that are not based on reliable evaluations
(Section 7).

Our mathematical approach, described and proved in Sections 4 and 5 (whose details
can be found in the Appendices), provides a theoretical explanation for the findings of the
previous literature (discussed in Section 8), which were based on empirical studies or simu-
lations. In addition, it generalizes and extends them to new results and evidence. Our results
are of mathematical nature and therefore do not need empirical confirmatory evidence. At
any rate, for demonstrative illustration purposes only, we also carried out an empirical study
with 70 real-life Empirical Software Engineering datasets and 837 classifiers (shown in
Section 6), to show the practical relevance of the mathematical results.

As we remark in the conclusions in Section 9, our study indicates that i) the proportion of
positive modules should always be reported, along with the performance metrics of choice,
ii) the F-measure should be used only when the rate of positive modules is very small, iii)
φ is always a useful alternative, as already observed by some other previous studies, iv) if
possible, providing the raw measures that are used to compute performance metrics is the
best choice, as it provides the most detailed view of performance.

As a final observation, the mathematical results reported in this paper depend only on the
definitions of φ and F-measure. Therefore, they can be used in the evaluation of any binary
classifier used in Software Engineering and any other domains. At any rate, in the Software
Engineering domain, our results can be useful in software defect prediction, in which binary
classifiers are used to estimate which software modules are likely to be defective and should
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be treated as such. To this end, the illustration empirical study of Section 6 focuses on
software defect prediction.

2 Background

A classifier is a function that partitions a set of n elements into equivalence classes, iden-
tified by different labels. We only deal with binary classifiers, hence we write “classifier”
instead of “binary classifier” for conciseness in what follows. Also, since we are interested
in software-related classifiers, instead of “element” we use “software module,” or, for short,
“module,” by which term we denote any piece of software (e.g., routine, method, class). The
modules of the set are therefore classified as “positive” or “negative,” where the meaning
of these labels depends on the specific application. For instance, when estimating whether
software modules are defective, the label “positive” means “faulty module” and the label
“negative” means “non-faulty module.”

The performance of a classifier on a set of modules is usually assessed based on a 2 × 2
matrix called “confusion matrix” (also known as “contingency table”) that shows how many
of those n modules are correctly and incorrectly classified. As Table 1 shows, the cells
of a confusion matrix contain the numbers of modules that are: correctly estimated nega-
tive (True Negatives TN); incorrectly estimated negative (False Negatives FN); incorrectly
estimated positive (False Positives FP); and correctly estimated positive (True Positives TP).

In Table 1, we also reported EN and EP, the numbers of Estimated Negatives and Esti-
mated Positives, and AN and AP, the numbers of Actual Negatives and Actual Positives.
AN and AP are intrinsic characteristics of the dataset, as is the actual prevalence ρ = AP

n

(Yao and Shepperd 2021). Instead, EN and EP depend on the classifier, like the estimated
prevalence σ = EP

n
.

Note that prevalence, quantified via ρ, is closely related to the notion of class imbalance,
as quantified by IR (Imbalance Ratio), which is the ratio of the number of elements of the
majority class to number of the elements of the minority class. In several application areas,
e.g., software defect prediction, there is a majority of negative elements, so, for instance,
Song, Guo, and Shepperd (Song et al. 2019) take IR = AN

AP
= 1

ρ
− 1. Because of the

existence of this functional relationship between prevalence and imbalance, we take into
account class imbalance via prevalence ρ in the paper. Unlike IR, ρ ranges between zero
and one: according to ρ, a dataset is perfectly balanced when ρ = 0.5, while positive classes
are prevalent when ρ > 0.5, and negative classes are prevalent when ρ < 0.5.

A perfect classifier has FN = FP = 0, but this is hardly ever the case for any real-life
classifier, so, the closer FN and FP are to zero, the better. To evaluate the performance of a
classifier with respect to FP or FN, two performance metrics have been defined and used,
respectively, Precision and Recall. For brevity, and to shorten the length of the formulas,

Table 1 A confusion matrix
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we denote Precision by PPV (Positive Predictive Value) and Recall by TPR (True Positive
Rate), as defined in Formula (1)

Precision = PPV = T P

EP
Recall = T PR = T P

AP
(1)

PPV is the proportion of estimated positives that have been correctly estimated, and can be
used to quantify FP, since FP = EP (1–PPV). Maximizing PPV amounts to minimizing FP,
regardless of the value of FN. Thus, maximizing PPV is important when the cost of dealing
with an estimated positive is high, but the impact of having false negatives is low.

TPR is the proportion of correctly estimated actual positives, and it is related to FN, since
FN = AP (1–TPR). Maximizing TPR amounts to minimizing FN, regardless of the value of
FP. Maximizing TPR is important when the consequences of false negatives are substantial
and the cost of dealing with a false positive instead is quite low.

So, using one of these performance metrics means dealing with only one between FP
and FN.

Given two classifiers cl1 and cl2, it is easy to conclude that cl1 is preferable to cl2 if
T PR1 > T PR2 and PPV 1 > PPV 2. However, it is not straightforward to draw any
conclusions if T PR1 > T PR2 and PPV 1 < PPV 2, or if T PR1 < T PR2 and PPV 1 >

PPV 2. This is a typical issue in multi-objective optimization, since the goal here is to
minimize two figures of merit, i.e., FN and FP, or, equivalently, maximize T PR and PPV ,
which may not be possible at the same time. Multi-objective optimization is often reduced to
single-objective optimization, by defining a single figure of merit (Serafini 1985). Based on
the cells of the confusion matrix, several performance metrics have been defined and used
to act as single figures of merit. Different performance metrics take into account different
aspects of performance that can be of interest in different application cases.

2.1 The Definition of F-Measure

The purpose of the F-measure (FM) is to combine PPV and TPR into a single performance
metric by taking their harmonic mean, as shown in Formula (2)

FM = 2
1

PPV
+ 1

T PR

(2)

Since FM was originally defined to evaluate the performance of information retrieval (van
Rijsbergen 1979), the focus is on how well the true positives have been identified. It is
important that, at the same time, (1) a high proportion of actual positives be correctly esti-
mated as such, so TPR should be high, and (2) a high proportion of the estimated positives
be positive indeed, so PPV should be high too. Instead, true negatives are not taken into
account in the computation of the F-measure because (1) their number is usually very large,
(2) it is generally unknown, and (3) in practice it is hardly relevant.

Strictly speaking, FM is not defined when PPV = 0 or TPR = 0, i.e., TP = 0, but we
can safely assume that FM = 0 when TP = 0, since it can be easily shown that

FM = 2T P

2T P + FN + FP
(3)

and the rightmost fraction is equal to 0 when TP = 0.
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So, FM is in the [0,1] range, with FM = 0 if and only if TP = 0, i.e., no actual positives
have been correctly estimated, and FM = 1 if and only if FP = FN = 0, i.e., in the perfect
classification case. When interpreting FM, classifier cl1 performs better than classifier cl2
if FM1 > FM2. So, the higher FM, the better.

FM is a special case of a more general definition that includes a parameter β, used to
weigh PPV and TPR differently, as shown in Formula (4)

Fβ = (1 + β2)
PPV · T PR

β2 PPV + T PR
(4)

However, β is set to 1 in the near totality of Empirical Software Engineering studies using
FM. So, we use “F-measure” (or FM) instead of F1.

2.2 The Definition of φ

The purpose of φ, defined in Formula (5), is to assess the strength of the association between
estimated and actual values in a confusion matrix

φ = T P · T N − FP · FN√
EN · EP · AN · AP

(5)

φ is not defined when EN · EP · AN · AP = 0, i.e., when at least an entire row or column
of the confusion matrix is null. As Chicco and Jurman (2020) observe, if exactly one among
AP, AN, EP, or EN is null, i.e., when exactly one column or row of the confusion matrix is
null, the value of φ can be set to 0. When a row and a column are null, φ can be set to 1 if
the only nonnull cell in the confusion matrix is T N = n or T P = n (perfect classification)
and instead set to −1 if the only nonnull cell in the confusion matrix is FN = n or FP = n

(total misclassification). At any rate, these cases are quite peculiar, as Yao and Shepperd
observe too (Yao and Shepperd 2021), since they apply to datasets composed exclusively of
elements belonging to one class.

φ is in the [−1, 1] range. Specifically, φ = 1 if and only if FP = FN = 0, i.e., in the
perfect classification case. φ = 0 is the expected (i.e., average) performance of the random
classifier that estimates a module positive with a probability equal to ρ, i.e., with the same
probability as that of selecting a positive module totally at random from the set of modules.

φ = −1 if and only if TP = TN = 0, i.e., in the perfect misclassification case,
that is, with a “perverse” classifier. It is well-known that perfect misclassification can be
transformed into perfect classification by simply inverting the estimations, which means
swapping the rows, in terms of confusion matrices. More generally, when φ < 0, a classi-
fier appears to be better at misclassifying modules than at classifying them correctly, so one
can invert the estimations to obtain a classifier that instead is better at classifying modules
correctly.

The interpretation of φ ≥ 0 is that classifier cl1 performs better than classifier cl2 if
φ1 > φ2 ≥ 0, so the higher φ ≥ 0, the better.

Thus, φ is an effect size measure, which quantifies how far the estimation given by
a classifier is far from being random i.e., from the random classifier that has φ = 0. A
commonly cited proposal (Cohen 1988) uses φ = 0.1, φ = 0.3, and φ = 0.5 respectively to
denote a weak, a medium, and a large effect size. φ is also related to the χ2 statistic, since

|φ| =
√

χ2

n
.
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3 A Comparative Assessment of FM and φ

In Sections 3.1 and 3.2, we report and elaborate on some of the issues that have been found
about FM in the past, and add another possible issue in Section 3.3. We show whether and
how φ can address them. In Section 3.4, we introduce and discuss a possible advantage
of FM, which seems to be more sensitive to false negatives than to false positives. We
summarize the results of our comparative assessment in Section 3.5.

3.1 FM Does not Take into Account TN, while φ Does

Formula (3) clearly shows that FM does not depend on TN. So, let us consider the two
confusion matrices CMa and CMb shown below, which concern different datasets. CMa

and CMb only differ in the number of true negatives

Both have the same value FMa = FMb = 2·50
2·50+10+40 � 0.67. However, φb � 0.64,

while φa � 0.5: φb > φa because φ accounts for the fact that in CMb 400 more true
negatives are correctly classified than in CMa .

Take now a third confusion matrix CMc, concerning a third dataset.

It is FMc � 0.68, thus, according to FM, one should conclude that the performance
represented by CMc is slightly better than those represented in CMa and CMb. However,
though one more actual positive is classified correctly in CMc, when it comes to classifying
actual negatives CMc performs quite poorly. φc � −0.07 appears to account for the overall
performance represented by CMc more adequately.

Based on these examples and on Formula (3), it appears that FM is not always an ade-
quate metric for quantifying the overall performance of a classifier, since it does not use
all available information about the classification results. This is one of the main criticisms
made to FM by previous studies (Powers 2011; Yao and Shepperd 2021).

Formula (5) instead shows that φ takes into account all of the cells of a confusion matrix,
so φ is a better performance metric for the overall performance of a classifier. The above
examples with CMa , CMb, and CMc show typical cases in which φ agrees with intuition
more than FM does.

Note, however, that CMa , CMb, and CMc show results related to three different datasets.
When it comes to comparing the performance of classifiers on the same dataset, things are
a bit different. Let us rewrite FM as

FM = 2 T P

n + T P − T N
= 2 AP − 2 FN

2 AP + FP − FN
(6)

where the first fraction contains only T P and T N , which are related to correct classifica-
tions, while the second only FP and FN , which are related to misclassifications. AP and
AN are fixed when comparing classifiers on the same dataset. So, knowing the values of
two cells in different columns equates to knowing the entire confusion matrix. Thus, FM
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provides an overall performance evaluation of a classifier that can be used when comparing
classifiers applied to the same dataset.

3.2 FM Does not Allow for Comparisons with Baseline Classifiers, while φ Does

The assessment of a model, like a classifier, is typically done by comparing its performance
against the performance of a less complex baseline model. A classifier estimates the class
of modules by taking into account information on their characteristics. For instance, a clas-
sifier may estimate a software module defective or not defective based on the module’s
number of Lines Of Code (LOC). However, how much performance do we gain by using
that classifier, instead of using random estimation, i.e., a baseline classifier that does not
require any knowledge of the modules? Recall that a random classifier behaves as described
in Section 2.2, i.e., it estimates each module positive with probability ρ.

The expected values of TPR and PPV for the random classifier (i.e., the mean values
obtained from a large number of random estimations) are both equal to ρ (Morasca and
Lavazza 2020): by using these values in (3), we obtain FM = ρ as well, so, when evaluating
a classifier, we should compare its FM against ρ. Thus, the knowledge of FM by itself is
not sufficient to tell whether a classifier performs better than even random estimation (Yao
and Shepperd 2021). An example is given by confusion matrix CMc above: it is FMc �
0.68 < ρc = AP

n
= 90

105 � 0.86, thus the performance represented by confusion matrix
CMc is worse than random, on average.

On the other hand, φ, by its very definition, quantifies how far a classifier is from the
random classifier. This may lead to what might seem to be a paradox, especially if compared
to what happens with FM. Take CMd below. We have FMd � 0.78, which in general is
considered a quite good result in terms of FM. Also, visual inspection of the confusion
matrix shows that the classifier is able to correctly classify most of the majority class (the
90 actual positives), even though it does not fare well with the minority class (the 15 actual
negatives).

So, one may suggest that the classifier performs well, since, at any rate, the minority
class is only one-sixth of the majority class, so its contribution to performance should be
much less than that of the majority class anyway. However, φd � −0.01 casts some serious
doubts on the performance level of the classifier, which appears to be rather poor. Which
performance metric should we trust then? The answer is that the classifier is indeed good in
itself at estimating the positive class, as indicated by the high value FMd � 0.78. However,
even the random classifier would be better overall, since it has FMrandom � 0.86. This is
also indicated by the value of φd , because φ is an effect size measure, which in this case
shows that the classifier is quite close to the random classifier, just a bit worse. Since we can
always perform random estimation without having to go through the pains of building and
validating a classifier, we must conclude that the classifier at hand is “good,” but nowhere
nearly good enough.

To further explain why the comparison with a baseline classifier is a fundamental point
in the evaluation of a classifier beyond Empirical Software Engineering, consider that using
a classifier on a dataset is similar to administering a treatment to a set of subjects: in a way,
it is like giving a treatment to a dataset. A classifier is worth using if it has greater beneficial
effects than using another existing classifier or doing nothing, i.e., relying on randomness.
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Likewise, it is worthwhile giving a certain treatment to subjects only if it is better than some
existing treatment or better than providing no treatment.

Suppose therefore that we need to evaluate the effectiveness of a medication for a disease.
Suppose that, in a clinical trial, 96 out of 100 diseased patients that take the medication
fully recover, i.e., the treatment achieves a 96% recovery rate. This rate looks quite high,
especially if the disease is a lethal one. However, by itself, this seemingly high value does
not tell us much about the real effectiveness. Suppose that the rate of spontaneous recovery
from the disease, i.e., without taking any medications, is 97%. Then, one may argue that the
medication actually worsens the chances of recovery. If, instead, the spontaneous recovery
rate was 54%, for instance, then the medication would appear to be very effective. Thus,
when evaluating the performance of some treatment (i.e., classifier, in our case) we always
need to compare its effect to those of some baseline treatment (i.e., baseline classifier, in
our case).

Prediction in Empirical Software Engineering refers to totally different domains than
medical treatments, but the consequences of misjudging classifier effectiveness can be quite
serious too. Using a performance metric that leads to selecting a classifier that estimates
too many false negatives results in, say, having too many vulnerability attacks in software
security applications or, in software quality assurance, having too many faulty modules
released to the final users. If the selected classifier estimates too many false positives, pre-
cious resources are wasted by unnecessarily maintaining software to make it supposedly
more secure or less faulty. Note that these unnecessary software modifications may even
lead to introducing more vulnerabilities or defects.

3.3 FM is Nonnegative, while φ Can Be Negative

However strange it may seem, another issue with FM is that FM ≥ 0. Suppose that FM �
0: does this really mean that there is no association between estimated and actual values?
Though this is the usual interpretation, FM � 0 should instead be interpreted as a lack of
a concordant association between the estimated and the actual values, but not as a lack of a
discordant one.

Take the confusion matrices CMe and CMf above, which differ only by TN. We have
FMe = FMf � 0.167, i.e., a fairly small value for FM. However, it is apparent that CMe

represents a much better situation than CMf , in terms of correct module classification. It
is also apparent that in CMf more modules (50) are misclassified than correctly classi-
fied (just 10). Detecting discordant associations can be useful, since it is possible to obtain
concordant associations by inverting the classifications.

With φ, we have φe � −0.079, which indicates a close-to-random classification, and
φf � −0.556, which indicates a rather strong discordant association.

If we swap the rows of CMf , we obtain a new confusion matrix CMf ′ having FMf ′ =
0.889, so one may conclude that it is possible to use FM to detect discordant classifications
anyway. However, swapping the rows of the confusion matrix basically equates to using
a different performance metric on the original confusion matrix, defined as 2FN

AP+EN
. This

would defeat the purpose of having a single performance metric to evaluate the overall
performance of a classifier, while φ is actually able to detect both concordant and discordant
associations.



  185 Page 10 of 38 Empir Software Eng          (2022) 27:185 

3.4 FM Gives Different Relative Importance to False Positives and False Negatives,
while φ does not

In practical applications, the cost of a false positive may be quite different from the cost of a
false negative. For instance, suppose that a defective software module is not detected during
the Verification & Validation phase in the development of a safety-critical application. That
module—a false negative—is then released to the users as a part of the final product. The
cost due to the damages it can do during operational use is typically much higher than the
unnecessary Verification & Validation cost incurred by a false positive module.

FM is symmetrical with respect to PPV and TPR, but not with respect to FN and FP.
Take the fraction in the rightmost member of Formula (6). Swapping FN and FP produces
another fraction that is equal to the one in Formula (6) if and only if FN = FP .1 Thus,
the same extent of variation in FN and FP does not have the same impact on FM. We show
in Appendix A that increasing or decreasing FN by some amount has more impact on FM
than does increasing or decreasing FP by the same amount.

To provide even more relative importance to false negatives, one may set β of Formula
(4) to specific values. Increasing β means giving more importance to TPR with respect to
PPV. However, as we already noted, the vast majority of studies in the literature use the
definition of FM of Formula (3).

φ is perfectly symmetrical with respect to FN and FP, whose variations therefore have
the same impact on the value of φ.

3.5 Summary of Evaluations

FM does not fully capture the intrinsic characteristics of the underlying dataset, being
defined as the harmonic mean of PPV and TPR (see Appendix C for some considerations
on the usage of the harmonic mean). Therefore, FM quantifies an aspect of a classifier’s
performance related to the positive class that may be used only for comparing classifiers for
the same dataset. FM cannot detect the existence and the extent of discordant associations
between estimated and actual values either. Since it does not take into account ρ, which is
also the rate with which a random classifier would successfully detect positives, FM cannot
tell whether a classifier performs better than the random classifier, which can be taken as an
inexpensive, default classifier a decision-maker can always fall back on to. The only advan-
tage that FM seems to have over φ is that FM is more affected by variations of FN than of
FP. Thus, software managers that rely on FM as performance metric may be encouraged to
reduce false negatives more than false positives.

4 Defining φ in Terms of PPV and TPR

Since they use the same pieces of information, performance metrics computed based on the
confusion matrix may be expected to be related to each other, to some extent, especially
if the considered performance metrics have the goal of providing an overall performance
evaluation.

1Notice that Formula (3) may deceivingly show that FM is symmetrical with respect to FN and FP, while
it is not. The reason is that any change in FN also implies a change in TP, since T P + FN = AP . So,
swapping FN and FP also induces a change in TP. Instead, changing FP implies changing TN, which is not
used in the computation of FM.
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In this section, we show how φ too can be defined as a function of PPV and TPR, like
FM, so we can point out the structural differences between FM and φ, along with their
consequences.

In the following Section 5, we directly investigate the relationship between FM and φ

and how it can be influenced by ρ and σ .
From Formula (5), via a few mathematical computations (reported in Appendix B), we

have

φ = 1√
1 − ρ

√
T PR(PPV − ρ)√
PPV − ρ T PR

(7)

Unlike FM, φ is not a symmetrical function of PPV and TPR, so equal variations in PPV
and TPR have different effects on φ.

Formula (7) shows that, in addition to PPV and TPR, φ depends on ρ, which is an intrin-
sic characteristic of the dataset. Thus, for the same values of PPV and TPR, we can obtain
different values of φ, depending on the imbalance degree of the dataset. However, as we
show in Appendix B, given ρ, it is

ρ ≤ PPV

PPV + T PR − PPV · T PR
(8)

for PPV �= 0 and T PR �= 0. For completeness, Appendix B also shows what happens in
the special case in which PPV = T PR = T P = 0. We also show in Appendix B that,
for given values of PPV and TPR, φ is a monotonically decreasing function of ρ, which
tends to

√
PPV · T PR when ρ tends to 0 and takes value PPV +T PR−PPV ·T PR−1√

1−PPV
√

1−T PR
when

PPV
PPV +T PR−PPV ·T PR

= ρ.
Figure 1 shows how φ varies depending on the value of ρ in three cases, depending on

the values of PPV and TPR that satisfy (8). Note that FM ≈ 0.5 for the three pairs of values
of PPV and TPR used for the three curves.

Fig. 1 φ vs. ρ, for different values of PPV and TPR
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Figure 2 shows how φ varies depending on the value of ρ ∈ [0, 1] in four cases, depend-
ing on the values of PPV and TPR. Note that FM ≈ 0.85 for two pairs of PPV and TPR,
and FM ≈ 0.24 for the other two pairs.

In the special case of an unbiased classifier, i.e., when EP = AP, it is PPV = T PR

and FP = FN, so the confusion matrix is symmetric. In this case, as previously shown
(see, e.g., Delgado and Tibau (2019)) φ coincides with Cohen’s kappa (Cohen 1960), as
follows

φ = PPV − ρ

1 − ρ
(9)

Cohen’s kappa is a measure of the extent to which two classifiers (the actual classifier
and the estimated classifier, in our case) agree when classifying n items into a number of
different categories (two categories, in our case).

It can be shown that Formula (9) as a function of ρ represents a rectangular hyperbola
with asymptotes φ= 1 and ρ= 1. Figure 3 shows how φ varies depending on the value of
ρ ∈ [0, 1] in three cases, i.e., for high (green line), medium (red line), and low (blue line)
values of PPV.

Formula (9) also shows that φ, unlike FM, is not a central tendency indicator for PPV and
TPR. Specifically, φ does not satisfy Cauchy’s property (Cauchy 1821), according to which
a central tendency indicator of a set of values must always be between the minimum and
the maximum value in the set. In our case, for Cauchy’s property to be satisfied, φ would
have to be between PPV and TPR. Since PPV and TPR are equal for an unbiased classifier,
this would mean having φ = PPV as a result of Formula (9), but this is not the case. FM,
instead, satisfies Cauchy’s property.

Fig. 2 φ vs. ρ, for different values of PPV and TPR
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Fig. 3 φ vs. ρ in the unbiased case, i.e., for different values of PPV = TPR

5 The Relationships between φ and FM

Before presenting our mathematical study (described in Sections 5.2–5.5), we show some
empirical evidence and simulation results about the relationship between φ and FM in
Section 5.1.

5.1 Empirical Observations and Simulation Results

The scatterplot in Fig. 4 shows the values of φ and FM for all of the 837 classifiers that we
obtained in our empirical study (more details in Section 6). The scatterplot, which shows
only the part of the FM × φ plane in which we obtained pairs of values (FM, φ) for our
classifiers, is consistent with the findings by other researchers, like Yao and Shepperd (see
Figure 4 in (Yao and Shepperd 2021)). It shows that the vast majority of the points are below
the bisector. Also, FM and φ often provide discordant indications; while a high value of φ

implies high values for FM, the converse is not true: when φ > 0.5, it is also FM > 0.5,
but when FM is close to 0.8, φ can be below 0.2 as well as above 0.6.

In a simulation analysis, Chicco and Jurman (Chicco and Jurman 2020) computed FM
and φ for all confusion matrices (hence, for all ρ) with n = 500 and showed the results
in a scatterplot. In Fig. 5, we show a similar scatterplot for illustration purposes, where we
choose n = 100 because the dots corresponding to the confusion matrices are already dense
enough that increasing the value of n would not change the graphical aspect of the figure.
Figure 5 shows that, for a given value of FM, there is a wide range of possible values of φ,
in general.

Sections 5.2–5.5 mathematically explain the scatterplots in Figs. 4 and 5. Specifically,
in Section 5.2, we show how the relationship between FM and φ is influenced by ρ and σ .
In Section 5.3, we derive the upper and lower bounds of φ when FM is known, based on a
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Fig. 4 FM vs. φ for all datasets, all classifiers

specified value of ρ. We show in Section 5.4 the conditions under which FM and φ provide
the same ranking between two classifiers, given a value of ρ. Section 5.5 provides the upper
and lower bounds of φ when FM is known, for all possible values of ρ.

5.2 TheMathematical Relationship Between φ and FM

The mathematical relationship between FM and φ can be expressed as in Formula (10) (the
derivation can be found in Formula (38) of Appendix D)

φ = 1

2
√

ρ(1 − ρ)

(ρ + σ)FM − 2 ρ σ√
σ (1 − σ)

(10)

which shows how φ depends on FM, ρ, and σ .
In the special case of an unbiased classifier, i.e., when EP = AP (hence σ = ρ)

φ = FM − ρ

1 − ρ
(11)

consistently with Formula (9), since PPV = TPR = FM for unbiased classifiers. This
relationship between FM and φ holds for all values of FM provided that ρ ≤ 1

2 . When,
instead, ρ > 1

2 , the relationship holds only for some values of FM, because it must be

φ = FM−ρ
1−ρ

≥ −1, so FM ≥ 2ρ − 1. For instance, when ρ = 0.75, it must be FM ≥ 1
2 .

This effect can also be seen in Fig. 3, in which the three lines also show φ vs. ρ for different
values of FM = PPV = TPR in the unbiased case. When ρ = 0.75, a line either coincides
with the red line or is above it, i.e., it has a value of FM = PPV = T PR ≥ 0.5.
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Fig. 5 FM vs. φ: scatterplot for all possible confusion matrices with n = 100

5.3 Variation Intervals of φ Depending on FM for Given Values of ρ

Formula (10) shows that, given a dataset (hence, given a value of ρ), the relationship
between FM and φ is influenced by σ . To evaluate how tightly FM and φ are related to
each other on a given dataset, it is useful to assess the extent of such influence, that is, how
much φ can vary, depending on σ , for any given value of FM. Appendix E shows that φ

belongs to an interval [φmin(FM; ρ), φmax(FM; ρ)], where function φmin(FM; ρ) depends
on the value of FM (for a given value of ρ, taken as a parameter), as shown in Formulas
(12) and (13),

FM ≤ 2ρ

1 + ρ
⇒ φmin(FM; ρ) = −

√
1 − FM

2ρ − 2ρ2 + ρ2FM
(12)

FM ≥ 2ρ

1 + ρ
⇒ φmin(FM; ρ) =

√
FM

1 − ρ

√
FM − 2ρ + ρFM (13)

while the function that defines φmax(FM; ρ) is the same for all values of FM

φmax(FM; ρ) =
√

FM (1 − ρ)

2 − (1 + ρ) FM
(14)

It can be shown that φmin(FM; ρ) is a continuous function and that it is zero for FM =
2ρ

1+ρ
.

The plots in Fig. 6 illustrate variation intervals for a few representative cases, in increas-
ing order of ρ, namely ρ = 0.01, ρ = 0.05, ρ = 0.1, ρ = 0.25, ρ = 0.5, and
ρ = 0.75. Thus, these plots are in decreasing order of dataset class imbalance IR, since
IR = 1

ρ
−1. The red and green lines respectively represent φmax(FM; ρ) and φmin(FM; ρ).

For instance, in a dataset with ρ = 0.05, when FM = 0.4, φ may take a value between
φmin(0.4; 0.05) � 0.3671 and φmax(0.4; 0.05) � 0.4904. The yellow straight line shows
the relationship between FM and φ for unbiased classifiers defined by Formula (11). In this
particular case, φmax(FM; ρ) = φmin(FM; ρ), since there is no variation in σ , which is
equal to ρ. For instance, when ρ = 0.05 and FM = 0.4, we have φ = 0.3684.
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Fig. 6 Variation intervals of φ depending on FM, for various values of ρ
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The plots graphically show how the width of the variation intervals depends on ρ and,
therefore, imbalance. The region delimited by φmin(FM; ρ) and φmax(FM; ρ) is generally
quite thin for small values of ρ and becomes thicker and thicker the larger ρ becomes. In
other words, the uncertainty with which the value of φ can be known for a value of FM
increases with ρ. Thus, the higher ρ, the easier it is to find both good and bad values of φ

for any given value of FM. For instance, with ρ = 0.5, when FM = 0.4, φ may take a value
between φmin(0.4; 0.5) � −0.5773 and φmax(0.4; 0.5) � 0.378.

The plots also show that, when FM ≥ 2ρ
1+ρ

and ρ is small, φmin(FM; ρ) approximates
very well the straight line of Formula (11) that describes the relationship between FM and

φ for unbiased classifiers. Note that, the smaller ρ, the larger is the interval FM ∈
[

2ρ
1+ρ

, 1
]

in which this approximation can be used. For FM ∈
[

2ρ
1+ρ

, 1
]
, the difference between the

value of φ of Formula (11) and φmin(FM; ρ) is maximum exactly when FM = 2ρ
1+ρ

. Since

φmin

(
2ρ

1+ρ

)
= 0, this maximum difference turns out to be equal to ρ.

5.4 Preserving Classifiers’ Rankings with φ and FM

Let us now consider Fig. 6, specifically the plot for ρ = 0.05. Decision-makers relying on
FM would not use classifiers with extremely low values of FM, so, let us focus on the region
with FM > 0.3.2 Figure 7 zooms in a part of that plot for FM > 0.3.

The variation interval of φ is quite narrow for FM = 0.3 (as φmin(0.3; 0.05) � 0.26
and φmax(0.3; 0.05) � 0.41), and it gets narrower and narrower as FM increases. As the
variation interval gets narrower, the uncertainty about the values of φ for a given value of FM
decreases, so it is more and more likely that two classifiers cla and clb are ranked in the same
order by FM and φ. For instance, as shown in Fig. 7, suppose that ρ = 0.05. Take FMa =
0.4, which has a variation interval φ ∈ [0.367, 0.490], and FMb = 0.5, with variation
interval φ ∈ [0.473, 0.567]. These two intervals barely overlap, so it is quite unlikely that
FM and φ provide two different orderings. Take now FMc = 0.6, with variation interval
φ ∈ [0.579, 0.645], which no longer overlaps with the φ variation interval for FMb = 0.5.
In this case, FMc > FMb implies φc > φb (and also FMc > FMa implies φc > φa).

Also, the higher FM, the smaller the difference in FM to have complete separation
between two variation intervals. With ρ = 0.05, suppose for instance that FMd = 0.65,
with variation interval φ ∈ [0.6313, 0.6846], and FMe = 0.7, with variation interval
φ ∈ [0.6840, 0.7250]. These two intervals still minimally overlap, but it suffices to take
FMf = 0.71, which has a variation interval φ ∈ [0.6946, 0.7333] to have complete
separation between the variation intervals related to FMd and FMf .

As shown in Appendix H, two intervals [φmin(FMa; ρ), φmax(FMa; ρ)] and [φmin
(FMb; ρ), φmax(FMb; ρ)] with FMa < FMb are completely separated if and only if

FMb >
ρ +

√
2ρ2(1−FMa)+(1−ρ) FMa

2−(1+ρ) FMa

1 + ρ
= sep(FMa, ρ) (15)

2There is no general consensus on acceptability thresholds for FM. As a matter of fact, a value FM = 0.3
would probably be considered too low for practical purposes, since generally it implies that either PPV or
TPR is even below 0.3. However, we choose a value of FM low enough to show that the variation interval of
φ is small for an interval of FM even larger than would be practically useful.
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Fig. 7 Variation intervals of φ depending on FM (ρ = 0.05) may overlap or not

sep(FMa, ρ) is an increasing function of FMa , as expected, i.e., the higher FMa ,
the higher FMb. It also is an increasing function of ρ. Figure 8 shows the behavior of
sep(FMa, ρ) as a function of FMa for a few values of ρ.

As suggested by Fig. 8, it can be shown that sep(FMa, ρ)≥ρ for all values of FMa and σ .
This inequality along with Formula (15) and Fig. 8 show that, given a value FMa , the

set of values of FMb such that FMa < FMb for which we have φa < φb with certainty
gets larger when ρ decreases. For instance, take FMa = 0.6. When ρ = 0.05, any value of
FMb > 0.663 guarantees that φb > φa , while when ρ = 0.5, we need FM > 0.783, so
that φb > φa . So, the ranking between two modules is more and more likely to be the same
according to FM and to φ for smaller and smaller values of ρ.

Formula (15) is a special case of a more general formula that applies when using two
classifiers cla and clb on two datasets with different actual prevalence values ρa and ρb, as
discussed in Appendix F.

5.5 Variation Intervals of φ for All Values of ρ

We have so far supposed that ρ is given, so it is either known or it is assumed to be equal
to some value. At any rate, we may want to delimit the variation interval [φmin(FM), φmax
(FM)] of φ for a given value of FM for all possible values of ρ. Appendix G shows that

φmin(FM) = FM − 1 (16)

φmax(FM) =
√

FM

2 − FM
(17)
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Fig. 8 sep(FMa, ρ) for a few values of ρ

Figure 9 shows how these two functions envelop the region in which all possible pairs
〈FM, φ〉 appear. Thus, they analytically explain and confirm the simulation results by
Chicco and Jurman (Chicco and Jurman 2020) and ours, as reported in Section 5.1.

5.6 Consequences of the Analytical Relationship Between φ and FM

Sections 5.2–5.5 show that the relationship between φ and FM depends on ρ and σ . Provid-
ing FM by itself, without specifying ρ, provides at best an incomplete view of a classifier’s
performance. In some cases, notably when ρ is quite small, φ and FM basically provide the
same information, e.g., they tend to rank classifiers in the same order. The value ρ may be
quite small in some software-related application cases. For instance, the actual prevalence
of vulnerable software modules in a software system is typically quite low. In other appli-
cation areas, however, the range of ρ can be quite wide, e.g., in software defect prediction.
For instance, the real-life datasets that we used in the empirical study of Section 6 have ρ

ranging between 0.007 and 0.988 (see also Fig. 10).
So, it is not possible to tell whether a classifier is an effective and useful one by simply

looking at FM, and a statement like “classifier X achieves FM = 0.8, therefore it is very
accurate,” the likes of which have sometimes appeared in the literature, may be misleading.
Therefore, the FM achieved by a classifier on a dataset should always be accompanied by
the actual prevalence ρ of the dataset, also because ρ provides the F-measure value of a
totally random classifier.

As a final observation, we note that our results confirm the validity of FM as a perfor-
mance metric in the domain in which it was originally proposed, i.e., information retrieval.
In fact, ρ is generally very small in information retrieval situations. Consider for instance
the case of a search on google.scholar.com: you are typically interested in no more
than a few hundred papers out of the 108 indexed papers, hence ρ is in the order of 10−5.
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Fig. 9 FM vs. φ: variation intervals for all values of ρ

6 An Empirical Demonstration of the φ vs. FM Relationship

In this section, we show how the analytical results of Section 5 can explain empirical data,
which were obtained from real-life projects. Note that this empirical demonstration is not
meant to confirm the validity or correctness of the relationship between φ and FM or of any
mathematical results introduced in Section 5. Those results were derived analytically and
therefore do not need any empirical validation.

6.1 The Datasets

We use two sets of datasets that are publicly available from the SEACRAFT repository
(2017) and are reported among the most widely used (Singh et al. 2015). The first set was
collected by Jureczko and Madeyski (2010) from real-life projects of different types and
has been used in several defect prediction studies (e.g., Bowes et al. (2018) and Zhang
et al. (2017)). The second set is the NASA Metrics Data Program defect dataset (Menzies
and Di Stefano 2004); it has also been used in several defect prediction studies (e.g., Gray
et al. (2011)). Therefore, in this section, a positive module is a defective one and a negative
module a non-defective one. Some descriptive statistics concerning the datasets are given in
Appendix I.

The data from the aforementioned datasets were used to derive models of module defec-
tiveness. The technique used to derive defect predictors is immaterial for the purpose of this
work; nonetheless, we provide some details in Appendix I.

Given the importance of ρ, the distribution of ρ in the considered datasets is illustrated
by the boxplot in Fig. 10. This distribution contains a fairly large and varied set of values
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Fig. 10 Boxplot illustrating the distribution of ρ in the datasets used for the experimental demonstration

of ρ, though it is clearly skewed, with most datasets having a quite small actual prevalence.
Specifically, ρ is in the [0.007, 0.988] range, with mean 0.23, median 0.15 and standard
deviation 0.19.

6.2 Analysis of FM vs. φ with Different Values of ρ

First, we plot FM vs. φ when ρ is small. Figure 11 (which shows only the part of the FM×φ

plane in which we obtained pairs of values (FM, φ)) illustrates the situation when ρ is close
to 0.05, namely when ρ ∈ [0.025, 0.075]. We select the data that correspond to a range,
rather than to a specific value of ρ, because in the latter case we would end up selecting data
from a single dataset. In the [0.025, 0.075] range, we have 2 datasets and 44 classifiers.

The yellow line has equation (11) with ρ = 0.05 (the mean value for these datasets).
FM and φ tend to provide practically equivalent information, regardless of σ , especially

when FM > 0.4, and the relationship between FM and φ is well represented by (11). These
results are practically relevant for application areas such as vulnerability prediction or defect
prediction, in which low values of actual prevalence ρ can be found.

For higher values of ρ, the correspondence between FM and φ is less clear: Fig. 12
shows FM vs. φ when ρ ∈ [0.74, 0.77] (like with Figs. 4 and 11, we only show the relevant
part of the FM × φ plane). We could not observe higher values of ρ, because no dataset
with higher values of ρ supported enough classifiers. In the [0.74, 0.77] range, we have 16
classifiers from 3 datasets (xerces-1.4, with ρ = 0.743, pbeans1, with ρ = 0.769,
and velocity 1.4 with ρ = 0.750). The value of ρ used to draw the yellow line having
equation (11) is the mean of the three datasets’ ρ, i.e., 0.754.

Figure 12 shows that the different values of σ of different classifiers blur the relationship
between FM and φ. Also, some predictors with high FM (close to 0.8) actually have a
rather poor value of φ (around 0.2). Namely, we have a model that features FM = 0.77 and
φ = 0.23. This is coherent with (12), (13), and (14), according to which φ is expected to be
in the [− 0.22, 0.54] range, when ρ = 0.754 and FM = 0.77.

In practice, it is apparent that, with high values of ρ, FM can be deceiving, showing high
values that correspond to rather low φ.

6.3 On the Threats to Validity of the Demonstration Study

Even though our results are of an analytical nature, let us here explore the possible threats
to validity that would derive from an empirical study like the demonstration study that we
described.

Construct validity. Our demonstration study is about analyzing the relationships between
two specific variables, i.e., φ and FM, so there is no real threat to construct validity. Instead,
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Fig. 11 FM vs. φ of defect classifiers for datasets with ρ =∈ [0.025, 0.075]

Fig. 12 FM vs. φ of defect classifiers for datasets with ρ ∈ [0.74, 0.77]
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the debate is not over on whether these two variables adequately represent the overall per-
formance of a classifier, even though FM has been heavily criticized in the last few years
(Hernández-Orallo et al. 2012; Powers 2011; Sokolova and Lapalme 2009; Luque et al.
2019). Our analytical results provide researchers and practitioners with more information to
make a more informed decision on the one that they would like to use.

Internal Validity. Our goal was of a descriptive kind, i.e., we wanted to show how φ var-
ied for any given value of FM depending on ρ. We did not look for possible associations
or correlations between them. This would likely be the goal of an empirical study, by using
statistical or machine-learning techniques. An association/correlation could be found or not
depending on the specific sample. However, if ρ and σ were included as additional indepen-
dent variables, a statistical or machine-learning technique may indicate perfect correlation
in all cases, even though this is not guaranteed, because of the nature of the technique used.
For instance, suppose that a linear model that combines FM , ρ, and σ were used to estimate
φ. Since the relationship between these variables is not linear, even having all the informa-
tion needed to determine φ would not suffice. At any rate, even if a technique were able to
find a perfect correlation, this would simply be an empirical way of finding the relationship
that we analytically describe in Formula (10). In addition, the empirical approach would
only provide strong evidence about perfect correlation, but not certainty.

External Validity. Like with any empirical study, we took a sample of possible subjects
(the software projects) and we showed results about it. Thus, in an empirical study like the
ones we show here, it is very possible that the results have limited external validity. In our
demonstration study, we took projects from different application domains, of different sizes
and with different prevalence values, so the results may be applicable to a fairly large set of
projects. However, the analytical results are applicable to all projects and are valid beyond
software defect prediction and Software Engineering.

7 Revisiting Previous Empirical Studies

We here show how our analytical study can be used to reinterpret previous defect prediction
analyses that reported results via FM (and possibly other performance metrics, like PPV
and TPR), but did not report φ values.

7.1 Case 1

Li et al. used Binary Logistic Regression (BLR), Naive Bayes (NB), Decision Trees (DT),
CoForest (CF), and ACoForest (ACF) to build defect classifiers. They performed within-
project defect predictions, training predictors with data from a variable number of modules
from the software system that was the object of predictions (Li et al. 2012).

As an example of the outcomes of the study by Li et al., Table 2 (taken from Table 5 in
Li et al. (2012)) shows the values of FM for the classifiers built with CF, BLR, NB, and DT.
For each row, i.e., for each dataset, the highest FM value is in bold.

Li et al. conclude that “It can be easily observed from the table that CoForest achieves the
best performance among the compared methods except that on SWT NaiveBayes performs
the best.”

Of the considered datasets, all but one have ρ ≥ 0.3. Based on the considerations illus-
trated in Section 5.3, conclusions based on FM alone should not be trusted when ρ is that
high. Since Li et al. reported the values of PPV and TPR in Tables 8–13 of their paper, we
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Table 2 FM of CoForest and the
compared methods in predicting
defects when only 10% modules
are sampled, from Table 5 in Li
et al. (2012)

Project CF BLR NB DT

JDT.Core 0.73 0.63 0.68 0.70

SWT 0.57 0.45 0.64 0.54

ECLIPSE 2.0 0.57 0.53 0.44 0.52

ECLIPSE 3.0 0.74 0.66 0.62 0.70

XALAN 0.60 0.57 0.55 0.58

LUCENE 0.69 0.65 0.64 0.67

could compute φ via (7). The results are in Table 3, where the highest φ of each row is in
bold.

Table 3 shows clearly that 1) the performance of the CF classifier is unacceptably low
when quantified via φ, with φ ≤ 0.23 for all datasets, 2) NB classifiers have the best φ for
all datasets, and 3) NB classifiers are the only ones with acceptable performance, featuring
φ ≥ 0.3 in 4 datasets out of 6.

This case demonstrates that considering FM without taking ρ into consideration is risky,
as it can easily lead to untrustworthy conclusions.

However, for papers that published not only the values of FM, but also those of ρ and TPR
or PPV it is possible to derive reliable indications based on φ. For instance, the conclusions
by Li et al. concerning ACF appear reliable, according to our computation of φ (not reported
here).

7.2 Case 2

Deng et al. addressed cross-project defect prediction via a method that adopts a better
abstract syntax tree node granularity and proposes and uses multi-kernel transfer convolu-
tional neural networks (Deng et al. 2020).

They evaluated their approach on 110 cross-project defect prediction tasks formed by
11 open-source projects. As an example of their evaluations, we report in Table 4 the FM
values from Table 7 in Deng et al. (2020) concerning the proposed method MK-TCNN-mix
and the ρ of the projects used to evaluate method MK-TCNN-mix (from Table 3 in (Deng
et al. 2020)).

Based on the ρ and FM columns of Table 4, we computed the range to which φ must
belong, via (12), (13), and (14). It turns out that only for the Xerces dataset and, to some

Table 3 Performance, expressed via both FM and φ, of CoForest and the compared methods in predicting
defects when only 10% modules are sampled

CF BLR NB DT

Project ρ FM φ FM φ FM φ FM φ

JDT.Core 0.535 0.73 0.21 0.63 0.03 0.68 0.41 0.70 0.10

SWT 0.247 0.57 0.23 0.45 0.10 0.64 0.51 0.54 0.20

ECLIPSE 2.0 0.388 0.57 0.13 0.53 0.04 0.44 0.25 0.52 0.06

ECLIPSE 3.0 0.628 0.74 0.12 0.66 0.00 0.62 0.25 0.70 0.03

XALAN 0.464 0.60 0.12 0.57 0.03 0.55 0.35 0.58 0.06

LUCENE 0.597 0.69 0.09 0.65 0.01 0.64 0.30 0.67 0.03
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Table 4 Possible values of φ for
Deng et alii’s data Project ρ FM φmin φmax

Camel 0.201 0.343 0.07 0.41

Forrest 0.063 0.151 0.07 0.28

Ivy 0.114 0.275 0.16 0.38

Jedit 0.135 0.322 0.19 0.41

Log4J 0.959 0.672 − 0.19 0.20

Lucene 0.616 0.638 − 0.33 0.50

Poi 0.653 0.668 − 0.31 0.51

Synapse 0.336 0.516 0.17 0.51

Velocity 0.664 0.519 − 0.48 0.39

Xalan 0.469 0.693 0.32 0.61

Xerces 0.153 0.638 0.57 0.61

extent, for the Xalan dataset, the performance is surely good. For all the other datasets,
φ belongs to too large ranges to allow for reliable conclusions (in 4 cases φ might even
indicate perverse performance).

The FM values in Table 4 were used by Deng et al. to draw conclusions concerning the
proposed method’s performance; however, as Table 4 clearly shows, no reliable conclusion
(i.e, neither in favor nor against Deng et alii’s proposal) is supported.

In conclusion, the paper by Deng et al. shows that FM, even with ρ, does not let read-
ers appreciate the actual performance of classifiers. This is because FM is a reliable metric
only for small values of ρ (see Fig. 6). Take for instance the result on project Velocity
in Table 4: the FM obtained (0.519) could correspond to φ = 0, indicating that the pro-
posed method MK-TCNN-mix is equivalent to random estimation. Unfortunately, Deng
et al. do not provide in the paper additional data that can be used to compute φ more pre-
cisely than done in Table 4; hence, solving the doubts concerning the validity of Deng et al’s
conclusions is not possible.

7.3 Case 3

In paper “Slope-based fault-proneness thresholds for software engineering measures”
(Morasca and Lavazza 2016), we also used FM to evaluate classifications. Specifically, we
proposed a method to set thresholds for defect estimation based on the slope of Binary
Logistic Regression (BLR) and Probit Regression (PBR) functions (Morasca and Lavazza
2016). The performance of the classifiers built with the proposed method was evaluated via
an empirical study that used data from several projects from the SEACRAFT repository,
including project berek, which has n = 43 software modules, of which AP = 16 defec-
tive, so ρ = 16

43 � 0.372. Performance was quantified and reported via FM and T PR.
ρ � 0.372 is too large a value to assure that a reliable value of φ can be derived from FM

alone. Nonetheless, we can derive the value of φ for all the models presented in Morasca
and Lavazza (2016), by means of the following procedure:

1. Derive PPV from FM and TPR:

PPV = FM · T PR

2T PR − FM
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2. Compute T P = AP · T PR; then, compute TN as follows:

T N = AN − AP · T PR
1 − PPV

PPV

(these equations can be derived via simple transformations of the definitions of PPV
and TPR in Formula (1)).

3. Compute FP, FN, EP and EN based on their definitions (Table 1).
4. Compute φ based on its definition (Formula (5)).

For instance, the model that uses RFC to predict faultiness via BLR is reported to have
FM = 0.88 and TPR = 0.94. Thus, PPV = 0.83, TP = 15, TN = 24, FP = 3, FN = 1,
EP = 18, EN = 25. Finally, φ = 0.81. In this case, we get a quite high value for φ, which
confirms the good performance reported by FM = 0.88.

Noticeably, in an extended version of the paper, being aware of the limitations of FM,
we reported φ in addition to FM (Morasca and Lavazza 2017). The values of φ that can be
computed as shown above match exactly the values of φ that were computed based on the
confusion matrices and were reported in Morasca and Lavazza (2017).

8 RelatedWork

Yao and Shepperd investigated the relationship between FM and φ (Yao and Shepperd 2020;
2021) from an empirical point of view. Via a systematic literature review, they identified
38 refereed primary studies in which FM and φ were used, to evaluate the effects of using
FM instead of φ. In this sense, the work by Yao and Shepperd provides a solid background
and a strong justification for our analytical study. In fact, they found that around 22% of all
results found in the 38 primary studies would be reversed if φ is selected as a performance
metric instead of FM. Based on the empirical results and a comparison of the properties of
φ and FM, they strongly recommend that FM should no longer be used and that φ should
be used instead.

In a simulation analysis, Chicco and Jurman (2020) computed FM and φ for all confu-
sion matrices with n = 500 and showed the results in a scatterplot. A similar scatterplot
is in Figure 5, which shows that, for a given value of FM, there is a wide range of possi-
ble values of φ, in general. Our work (see Section 5.5) provides the theoretical explanation
for their simulation results. Chicco and Jurman also illustrated via representative numerical
cases how the imbalance between the actual negatives and actual positives affects the ability
of FM and φ to assess classifier performance. When ρ is quite low, they find that both FM
and φ provide the same kind of evaluation. Our study (see Section 5.4) provides the general
mathematical bases and explanations for their numerical results.

Bowes et al. (2012) observed that a variety of different performance metric are used
in empirical studies. Since these measures are not directly comparable, comparing differ-
ent results is often difficult. Also, decision-makers may be interested in different measures
than those reported in a specific study. Therefore, Bowes et al. proposed an approach to
reconstruct a frequency confusion matrix based on the values of the performance measures
provided in empirical studies. The proposal by Bowes et al. can therefore be used to com-
pute FM or φ when an empirical study does not provide them, but provides instead a suitable
set of metrics, as specified in Table 5 in Bowes et al. (2012).
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9 Conclusions and FutureWork

9.1 Findings

Different performance metrics provide different evaluations and rankings for a set of clas-
sifiers. We focused on two performance metrics that have been extensively used in the
Empirical Software Engineering literature, namely FM and φ.

Previous research found that imbalanced data can significantly affect performance met-
rics. However, to the best of our knowledge, this is the first time that the role of imbalance
(via prevalence ρ) in the relationship between φ and FM is made explicit.

Our study provides the mathematical explanations for some phenomena that have been
detected empirically or via simulations. Specifically, we show the mathematical relation-
ships between FM and φ, and how they are influenced by the values of actual and estimated
prevalence. Though FM and φ are based on different formulas, we show the conditions
under which both FM and φ provide the same ranking between two classifiers. Specifically,
it appears that FM and φ tend to agree on the ranking more when the actual prevalence
ρ is low, as is the case for several datasets used for software defect prediction. In addi-
tion, we review existing analyses about the validity and usefulness of FM and φ, and add
two more observations. The mathematical relationships between FM and φ can be used
also to get a more rigorous and sound interpretation of the results published in papers that
used FM alone.

9.2 Recommendations

Based on the considerations reported through the paper, we can formulate a few recommen-
dations about the performance metrics to be used to evaluate classifiers.

It is not advisable to evaluate the performance of a classifier based exclusively on FM.
Also, if using FM, the value of ρ needs to be specified, at least to know if a classifier
performs better than the random one. Unfortunately, this practice has not been followed in
many cases, which led to many questionable evaluations (Yao and Shepperd 2021).

At any rate, we recommend that, even when the value of φ is reported, FM should not
be used without also providing the value of φ, to have at least a more complete evaluation
of a classifier. For instance, take the data in Table 4: for dataset Synapse, we have FM =
0.516 and ρ = 0.336. FM is sufficiently larger than ρ to suggest that the classifier performs
better than the random one. However, our mathematical results show that in this case φ is
between 0.17 (which would be rather bad) and 0.51 (which would be fairly good). Thus,
in this case, the knowledge of FM and ρ is not sufficient to establish how good the binary
classifier is.

Unlike FM, φ takes into account all of the cells in a confusion matrix. Thus, φ seems
to be more adequate to be used as an overall metric for the performance of a classifier. It
is true that FM and φ are likely to provide the same ranking when the actual prevalence is
small. However, one may as well use φ without using FM.

In addition, it would be useful that, whenever possible, authors of scientific articles pro-
vide the entire confusion matrices for the classifiers. Based on the confusion matrices, any
performance metric of interest to decision-makers and researchers can be computed.
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9.3 Dealing with Other Performance Metrics

In this paper, we investigated FM and φ. As already mentioned, many performance metrics
have been proposed. Of these, several are used in common practice. Therefore, it could be
useful to explore the relationship among these metrics (including their relationships with
FM and φ).

To this end, we note that in a previous paper (Morasca and Lavazza 2020) we provided
the mathematical basis for comparing some performance metrics. Some comparisons have
also been performed already, although not systematically. For instance, in Morasca and
Lavazza (2020) and Lavazza and Morasca (2022) we showed how φ, FM and Youden’s J

can be expressed in terms of TPR and FPR (i.e, the axis of the ROC space) and ρ. The
systematic investigation of additional relationships is part of our research agenda, from a
mathematical and an empirical point of view.

In this respect, an important topic that we plan to investigate further is the impact of data
imbalance on the indications provided by the various performance metrics, some of which,
like Youden’s J , do not suffer from imbalance effects while others appear to be largely
influenced by imbalance.

Appendix A: Comparing the Variations of FMDepending on FP and FN

Formula (6) shows that FM can be written as follows

FM = 2
AP − FN

2 AP − FN + FP
(18)

Suppose that we would like to compare the performance of CM against the performance of
another confusion matrix CM� defined by “difference” from CM, as below

�P and �N are the variations on the numbers of false negatives and false positives with
respect to CM. We here study how FM� varies depending on the values of �P and �N .

Let us first deal with a few trivial cases:

�P = �N = 0 ⇒ FM� = FM

�P · �N �= 0 ∧ �P ≤ 0 ∧ �N ≤ 0 ⇒ FM� > FM

�P · �N �= 0 ∧ �P ≥ 0 ∧ �N ≥ 0 ⇒ FM� < FM

So, let us now assume that �P and �N are nonzero and have opposite signs.
First, take �P = A > 0 and �N = −R < 0, to obtain a new confusion matrix CM ′ in

which, in comparison to CM , R units are removed from FP at the price of adding A units
to FN. The value of FM ′ for CM ′ is

FM ′ = 2
AP − FN − A

2 AP − FN + FP − A − R
(19)

Via mathematical computations, we obtain

FM ′ > FM ⇔ R

A
>

AP + FP

AP − FN
(20)
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It is easy to show that
AP + FP

AP − FN
= 2

FM
− 1 (21)

Considering that 1
FM

≥ 1, it is also 2
FM

≥ 2, hence 2
FM

− 1 ≥ 1, therefore

FM ′ > FM ⇔ R

A
>

AP + FP

AP − FN
= 2

FM
− 1 ≥ 1 (22)

Formula (22) shows that, to have FM ′ > FM , the number R of units removed from FN
must be at least as large as the number of units added to FP.

Conversely, let us now be take �P = −R < 0 and �N = A > 0, i.e., we have a new
confusion matrix CM ′′ in which, in comparison to CM , R units are removed from FN while
A units are added to FP. The value of FM ′ for this CM ′′ is

FM ′′ = 2
AP − FN + R

2 AP − FN + FP + A + R
(23)

Via mathematical computations, we obtain

FM ′′ > FM ⇔ A

R
<

AP + FP

AP − FN
= 2

FM
− 1 (24)

We now compare FM ′′ against FM ′, i.e., we check whether removing R units from FN
and adding A units to FP (like in CM ′) is more advantageous than removing R units from
FP and adding A units to FN (like in CM ′′). Mathematical computations show that

FM ′′ > FM ′ ⇔ FP + FN > R − A (25)

The rightmost inequality in Formula (25) is always satisfied, since min{FP ,FN} ≥ R

and A > 0. So, given a classifier cl whose performance is represented by CM, if there
is an alternative classifier clx that removes R units form FN and adds A units to FP, clx
is preferable to cl if R

A
satisfies inequality (20). In addition, clx is preferable to another

classifier cly that removes R units form FP and adds A units to FN.
It can also be shown that FM ′′ > FM ′ also when exactly one between A and R is zero.
Summarizing, reducing or increasing FN by some amount has more impact on FM than

does reducing or increasing FP by the same amount.

Appendix B: Defining φ in Terms of PPV and TPR

Starting from Formula (5), which defines φ, we apply a few mathematical computations, as
follows.

φ = T P · T N − FP · FN√
AP · AN · EP · EN

= T P (AN − FP) − FP (AP − T P )√
AP · AN · EP · EN

= AN · T P − T P · FP − AP · FP + T P · FP√
AP · AN · EP · EN

= AN · T P − AP · FP√
AP · AN · EP · EN

= AN · T P + AP · T P − AP · FP − AP · T P√
AP · AN · EP · EN

= n · T P − AP · EP√
AP · AN · EP · EN

= n · T P − ρn · EP√
ρn (1 − ρ)n EP · EN

= 1√
ρ(1 − ρ)

T P − ρEP√
EP · EN

(26)
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By dividing both numerator and denominator by EP, we have

φ = 1√
ρ(1 − ρ)

T P
EP

− ρ√
EP
EP

(
n−EP
EP

) = 1√
ρ(1 − ρ)

PPV − ρ√
n

AP
AP
T P

T P
EP

− 1

= 1√
ρ(1 − ρ)

PPV − ρ√
PPV

ρ T PR
− 1

= 1√
1 − ρ

√
T PR(PPV − ρ)√
PPV − ρ T PR

(27)

We now show the possible values of PPV and TPR, given ρ.

ρ = AP

n
= AP

AP + FP + T N
≤ AP

AP + FP
= AP

AP + EP − T P

= T P · AP

T P (AP + EP − T P )
=

T P
EP

T P
EP

+ T P
AP

− T P 2

EP ·AP

=

= PPV

PPV + T PR − PPV · T PR
= constrρ(PPV , T PR)

(28)

It is immediate to note that constrρ(PPV , T PR) in (28) is 1 if and only if PPV = 1.
For completeness, let us now study the special case in which PPV = T PR= T P = 0.

We have

ρ = FN

AN + FN
(29)

which can take any value between the minimum 0 and the supremum 1.
It can be shown that, given PPV and TPR, φ is a monotonically decreasing function of

ρ, except when PPV = T PR = 1. Based on Formula (27), the first derivative of φ with
respect to ρ is

dφ

dρ
= (PPV + T PR − 2PPV · T PR)ρ + PPV (PPV + T PR − 2)

2(PPV − (PPV + T PR)ρ + T PRρ2)
3
2

(30)

The denominator of the right-hand fraction in Formula (30) is always positive, as it is the
cube of the denominator of the right-hand fraction in Formula (27). Thus, the sign of the
derivative is the same as the sign of the numerator of the right-hand fraction in Formula
(30). The numerator is a linear function of ρ. The value of the numerator for ρ = 0 is
PPV (PPV + T PR − 2), which is a negative value unless PPV = T PR = 1 (in which
case φ = 1 for all values of ρ). Thus, the numerator is negative for all values in the interval
ρ ∈ [0, ρ(PPV , T PR)), where

ρ(PPV , T PR) = PPV (2 − PPV − T PR)

PPV + T PR − 2 PPV · T PR
(31)

We now prove that constrρ(PPV , T PR) ≤ ρ(PPV , T PR), so φ is a decreasing function
for all values of ρ. To prove that constrρ(PPV , T PR) ≤ ρ(PPV , T PR), i.e.,

PPV

PPV + T PR − PPV · T PR
≤ PPV (2 − PPV − T PR)

PPV + T PR − 2 PPV · T PR
(32)

consider that the numerator in the left side fraction is never greater than the numerator in the
right side fraction, and, at the same time the denominator in the left side fraction is never
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smaller than the denominator in the right side fraction. Thus, constrρ(PPV , T PR) ≤
ρ(PPV , T PR).

Therefore, φ is minimum when ρ = constrρ(PPV , T PR), with value

φmin = −√
1 − PPV

√
1 − T PR (33)

It is φmin ≤ 0, since the numerator in (33) is (1 − T PR)(PPV − 1) ≤ 0.
Finally, for completeness, the supremum of φ is

φsup = √
PPV · T PR (34)

based on Formula (27).

Appendix C: FM is the HarmonicMean of TPR and PPV

A characteristic of FM that is not fully explained (Yao and Shepperd 2021) is that it is
defined as the harmonic mean of TPR and PPV. The often suggested rationale is that the
harmonic mean is a “low” mean: it is never higher than the geometric mean, which, in
turn, is never higher than the arithmetic mean (which would probably be a more easily
interpretable choice (Yao and Shepperd 2021)). It is immediate to show that the harmonic
mean of two values is never greater than twice the lesser of the two, i.e., it never gets “too
far” from the lower value. As an example, if PPV = 0.04, FM ≤ 0.08 no matter how high
the value of TPR.

It is not clear, however, what is to be gained by choosing a “low” mean instead of
a “high” mean. If it were all that important to have low values, one could then use
min{PPV , T PR} as a performance metric. What matters more, instead, is that choosing a
different mean implies choosing a different ordering among performances and, therefore, a
different preference ranking among classifiers. For instance, a classifier clf with T PRf =
0.2 and PPV f = 0.8 would rank better than a classifier clg with T PRg = 0.3 and PPV g

= 0.5 if taking the geometric mean of TPR and PPV as a performance metric (in fact,√
0.2 0.8 = 0.4 >

√
0.3 0.5 = 0.387), but worse with the harmonic mean, i.e., FM (in fact,

2 0.8 0.2
0.8+0.2 = 0.32 < 2 0.3 0.5

0.3+0.5 = 0.375).
As we show in Section 4, φ is not defined as a mean (of any type) of TPR and PPV, but,

rather, as an effect size metric.

Appendix D: The Relationship between φ and FM

We take the definition formula for FM

FM = 2 T P

AP + EP
(35)

we solve it for TP, thereby obtaining

T P = AP + EP

2
FM (36)
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i.e., TP can be seen as a function of FM and EP. We replace the value of TP in the rightmost
member of Formula (26) and carry out a few computations

φ = 1√
ρ(1 − ρ)

AP+EP
2 FM − ρEP√

EP · EN

= 1

2
√

ρ(1 − ρ)

(ρn + EP)FM − 2 ρ EP√
EP (n − EP)

(37)

= 1

2
√

ρ(1 − ρ)

(ρ + σ)FM − 2 ρ σ√
σ (1 − σ)

(38)

Formula (38) shows how φ depends on FM, EP, and ρ. It is the basis for studying the
relationship between φ and FM, which we do in Section 5.

Appendix E: Variation Interval of φ as a Function of FM

The range of values of σ in Formula (10) is constrained because of the natural con-
straints on the cells of the confusion matrix, as we now detail. For illustration purposes,
we set the constraints in terms of EP, which can always be immediately translated in terms
of σ = EP

n
.

T P ≤ AP ⇔ AP + EP

2
FM ≤ AP ⇔ EP ≤ 2 − FM

FM
AP (39)

T P ≤ EP ⇔ AP + EP

2
FM ≤ EP ⇔ FM

2 − FM
AP ≤ EP (40)

FP ≤ AN ⇔ EP − AP + EP

2
FM ≤ AN ⇔ EP ≤ 2AN + AP · FM

2 − FM
(41)

It can be shown that all other natural constraints (e.g., FN ≤ EN , or EP ≤ n) are
satisfied when the above constraints are satisfied and all cells of the confusion matrix are
nonnegative.

The rightmost inequality in Formula (40) shows that there is a lower bound on the values
of EP , i.e., FM

2−FM
AP . As for the upper bound, we have that EP ≤ 2−FM

FM
AP (per Formula

(39)), and EP ≤ 2AN+AP ·FM
2−FM

(per Formula (41)), and EP ≤ n. It can be immediately

proven that the lower bound FM
2−FM

of Formula (40) is never greater than the upper bounds
of Formulas (39) and (41).

We need to find under what conditions these upper bounds are stricter than the others.
Let us first compare the upper bounds of Formulas (39) and (41). We have

2AN + AP · FM

2 − FM
≤ 2 − FM

FM
AP ⇔ FM

2 − FM
≤ ρ ⇔ FM ≤ 2ρ

1 + ρ
(42)

Formula (42) shows that, for FM up to 2ρ
1+ρ

, the upper bound of Formula (41) is stricter
or as strict as the upper bound of Formula (39), while the reverse is true for FM equal to

2ρ
1+ρ

or higher.
We now compute the interval [φmin(FM; ρ), φmax(FM; ρ)] of values of φ for each value

of FM. Based on Formula (37), φmin(FM; ρ) and φmax(FM; ρ) are, respectively, the mini-
mum and the maximum value of φ as EP varies in its interval. φ is a continuous function of
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EP, so we use the first derivative of φ with respect to EP to identify minima and maxima.
The derivative is

φ′ = n

4
√

ρ(1 − ρ)

(FM − 2ρ + 2ρFM)EP − ρFM n

(EP (n − EP))
3
2

(43)

Clearly,
φ′ ≥ 0 ⇔ (FM − 2ρ + 2ρFM)EP ≥ ρ FM n (44)

So, we need to study for which values of EP the inequality in Formula (44) holds when
EP varies between its lower and upper bound. Now, the lower bound for EP is always

FM
2−FM

AP . As we showed with Formula (42), depending on whether FM ≤ 2ρ
1+ρ

or FM ≥
2ρ

1+ρ
, two cases are possible for the upper bound, which we now investigate separately.

E.1 FM up to 2ρ
1+ρ

When FM ≤ 2ρ
1+ρ

, we have EP ∈
[

FM
2−FM

AP , 2AN+AP ·FM
2−FM

]
.

When FM − 2ρ + 2ρFM ≤ 0, inequality (44) never holds, so the first derivative φ′ is
always negative and φ is a decreasing function of EP. This inequality FM−2ρ+2ρFM ≤ 0
can be rewritten as FM ≤ 2ρ

1+2ρ
, so this is what happens for all values of FM up to 2ρ

1+2ρ
.

Let us now suppose that FM − 2ρ + 2ρFM > 0, i.e., that 2ρ
1+2ρ

< FM ≤ 2ρ
1+ρ

. In this

interval of FM, inequality (44) can therefore be rewritten as EP ≥ ρFM n
FM−2ρ+2ρFM

, which
shows for which values of EP the first derivative of φ is nonnegative. However, these values
of EP must also be below the upper bound 2AN+AP ·FM

2−FM
. We can show that this is not the

case, i.e., ρFM n
FM−2ρ+2ρFM

≥ 2AN+AP ·FM
2−FM

when 2ρ
1+2ρ

< FM ≤ 2ρ
1+ρ

.
The mathematical computations are as follows

ρFM n

FM − 2ρ + 2ρFM
≥ 2AN + AP · FM

2 − FM

⇔ (ρ + ρ2)FM2 + (1 − 3ρ2)FM − 2ρ(1 − ρ) ≤ 0 (45)

The second-degree polynomial of FM in Formula (45) has roots FM1 = − 1−ρ
ρ

and

FM2 = 2ρ
1+ρ

, so it is less than or equal to 0 between those two roots. Root FM1 is nega-
tive, while root FM2 coincides with the upper bound of the interval of FM we are currently
investigating, so we can conclude that φ′ < 0 when FM ≤ 2ρ

1+ρ
.

This implies that, for all FM ≤ 2ρ
1+ρ

, φmin(FM) is achieved with the highest value

possible for EP, i.e., EP = 2AN+AP ·FM
2−FM

, and φmax(FM) is achieved with the lowest value

possible for EP, i.e., EP = FM
2−FM

AP . Thus, we have

φmin(FM) = −
√

1 − FM

2ρ − 2ρ2 + ρ2FM
(46)

φmax(FM) =
√

FM(1 − ρ)

2 − (1 + ρ)FM
(47)

E.2 FM Greater than or Equal to 2ρ
1+ρ

When FM ≥ 2ρ
1+ρ

, we have EP ∈
[

FM
2−FM

AP , 2−FM
FM

AP
]
.
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The coefficient (FM − 2ρ + 2ρFM) EP in inequality (44) is greater than 0, so the
first derivative is negative for EP <

ρFM n
FM−2ρ+2ρFM

and, conversely, positive for EP >
ρFM n

FM−2ρ+2ρFM
. It can be shown that the value EP = ρFM n

FM−2ρ+2ρFM
in which the first deriva-

tive is null belongs to the interval
[

FM
2−FM

AP , 2−FM
FM

AP
]

of admissible values for EP.

Thus, the minimum value φmin is obtained for EP = ρFM n
FM−2ρ+2ρFM

.

The maximum value φmax is therefore obtained at the lower bound FM
2−FM

AP or at the

upper bound 2−FM
FM

AP of the interval of EP. Via computations, we have

φlb(FM) = √
1 − ρ

√
FM

2 − FM − ρFM
(48)

φub(FM) = 1√
1 − ρ

√
FM − 2ρ + ρFM

2 − FM
(49)

Furthermore, it can be shown that φlb(FM) ≥ φub(FM), so φmax = φlb(FM).
Summarizing, we have

φmin(FM) =
√

FM

1 − ρ

√
FM − 2ρ + ρFM (50)

φmax(FM) =
√

FM(1 − ρ)

2 − (1 + ρ)FM
(51)

Note φmax(FM) is defined by the same function in Formulas (47) and (51).

Appendix F: Preserving Classifiers’ Rankings with φ and FM
for Datasets with Different Actual Prevalence

Formula (52) shows the inequality that must hold when using two classifiers cla and clb on
two datasets with different actual prevalence values ρa and ρb.

FMb >

ρb +
√

2ρ2
b (1−FMa)+(1−ρa) FMa

2−(1+ρa) FMa

1 + ρb

(52)

Formula (52) reduces to Formula (15) when ρa = ρb. It can be shown that, for every value of
FMa , there always exists FMb such that there is complete separation between the variation
intervals, regardless of the values of ρa and ρb. The right-hand side of the inequality in
Formula (52) is an increasing function of ρb and a decreasing function of ρa : the constraint
on FMb becomes stricter when ρb increases and easier to satisfy when ρa decreases.

Figure 13 shows the minimum value of FMb as a function of FMa , for a few pairs
〈ρa, ρb〉.

Appendix G: Variation Intervals of φ for All Values of ρ

Let us first compute φmin(FM), the minimum value of φmin(FM; ρ) for a given value of
FM. The two functions in Formulas (12) and (13) are used, depending on whether FM ≤
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Fig. 13 Interval separation: FMb as a function of FMa for different 〈ρa, ρb〉 pairs

2ρ
1+ρ

or FM ≥ 2ρ
1+ρ

. The function in Formula (12) is never positive, while the one in Formula
(13) is nonnegative, so, the value of ρ that minimizes φmin(FM; ρ) for a given value of FM
is the one that minimizes the function in Formula (12). Thus, let us take the first derivative
of the function in the square root in the right-hand side of the equality in Formula (12)

∂

∂ρ

(
1 − FM

2ρ − 2ρ2 + ρ2FM

)
= 2FM(1 − (2 − FM)ρ)

(2ρ − 2ρ2 + ρ2FM)2
(53)

This derivative is positive for ρ < 1
2−FM

, null in ρ = 1
2−FM

, and negative for ρ > 1
2−FM

,

so the function in the square root has a maximum in ρ = 1
2−FM

, and φmin(FM; ρ) has a

minimum there. By setting ρ = 1
2−FM

in Formula (12), we obtain φmin(FM) as in Formula
(16).

Let us now compute φmax(FM), the maximum value of φmax(FM; ρ) for a given value
of FM. To this end, let us compute the first derivative of the term in the square root sign of
Formula (14)

∂φ2
max(FM; ρ)

∂ρ
= 2FM(FM − 1)

(2 − (1 + ρ)FM)2
≤ 0 (54)

For all values of FM < 1, this derivative is negative, so φmax(FM; ρ) attains its max-
imum when ρ = 0. Thus, we obtain φmax(FM) as in Formula (17). For completeness,
φmax(FM; ρ) = 1 when FM = 1, which coincides with the value obtained in Formula
(17) for FM = 1 anyway.

Appendix H: Mathematical Details for Section 5.4

Here we demonstrate inequality (15), skipping a few mathematical passages for conciseness.
It can be proved that two intervals [φmin(FMa; ρ), φmax(FMa; ρ)] and [φmin(FMb; ρ),

φmax(FMb; ρ)] with FMa < FMb are completely separated if and only if φmax(FMa;
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ρ) < φmin(FMb; ρ). Since φmax(FMa; ρ) ≥ 0, it must FMb ≥ 2ρ
1+ρ

, since φmin(FMb;
ρ) < 0 for FMb <

2ρ
1+ρ

and φmin(FMb; ρ) ≥ 0 for FMb ≥ 2ρ
1+ρ

. Therefore, we have

FMb > FMa ⇔ φmin(FMb; ρ) > φmax(FMa; ρ) ⇔√
FMb

1 − ρ

√
FMb − 2ρ + ρFMb >

√
FMa (1 − ρ)

2 − (1 + ρ) FMa

⇔

(1 + ρ)FM2
b − 2ρFMb >

FMa (1 − ρ)2

2 − (1 + ρ) FMa

⇔

(1 + ρ)FM2
b − 2ρFMb − FMa (1 − ρ)2

2 − (1 + ρ) FMa

> 0 (55)

This second-degree inequality is satisfied for values of FMb outside an interval [FMb1,

FMb2], where FMb1 and FMb2 are the two roots of the left hand side of the inequality.
Since the three coefficients of the left hand side of the inequality are, respectively, positive,
negative, and negative, FMb1 < 0 and FMb2 > 0. Thus, the second-degree inequality must
be satisfied for FMb > FMb2. The value of FMb2 is

FMb2 =
2ρ +

√
4ρ2 + 4(1 + ρ)

(1−ρ)2FMa

2−(1+ρ)FMa

2(1 + ρ)
=

ρ +
√

2ρ2(1−FMa)+(1−ρ) FMa

2−(1+ρ) FMa

1 + ρ
(56)

where the last equality is obtained via algebraic manipulations. Thus, inequality (15) holds.

Appendix I: On the Construction of Defect Predictors

The original datasets provide data at the class level. For every class of every project it is
known:

– if the class is defective or not;
– a set of code measures.

Using these data we built Binary Logistic Regression models of fault-proneness (i.e., the
probability that a class is faulty) based on code measures. Using these data we built scor-
ing classifiers with Binary Logistic Regression that estimate the probability that a class
is defective based on code measures. These scoring classifiers were then used to build
binary classifiers by using the actual positive ratio ρ = AP

n
as the threshold: classes whose

estimated probability to be defective is greater or equal to ρ are classified defective (i.e.,
positive) and the others non-defective (i.e., negative).

A few descriptive statistics of the analyzed datasets are given in Table 5.

Table 5 Descriptive statistics of
the analyzed datasets n (num. modules) AP ρ LoC

min 18 4 0.007 1910

max 23014 2738 0.988 3816692

mean 1823 240 0.286 249283

median 283 65 0.198 56220

st.dev. 4469 516 0.223 674951
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A file describing the 837 models from 70 datasets that we analyzed is available from
http://www.dista.uninsubria.it/supplemental material/PhiFM/binclass.csv

The file specifies also the value of ρ for each dataset, the confusion matrix of each binary
classifier, and a set of performance metrics.
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Bowes D, Hall T, Petrić J (2018) Software defect prediction: do different classifiers find the same defects?
Softw Qual J 26(2):525–552

Cauchy A (1821) Cours d’analyse de l’école royale polytéchnique, Vol. I. Analyse analyse. International
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