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ABSTRACT

US National Institutes of Health described the precision medicine as ‘an emerging
approach for disease treatment and prevention that takes into account individual vari-
ability in genes, environment and lifestyle for each person.’ In other words, on the
basis of the definition, the precision medicine allows to treat patients based on their
genetic, lifestyle, and environmental data. Nevertheless, the complexity and rise of
data in healthcare arising from cheap genome sequencing, advanced biotechnology,
health sensors patients use at home, and the collection of information about patients’
journey in healthcare with hand-held devices unquestionably require a suitable toolkit
and advanced analytics for processing the huge information. The artificial intelligence
algorithms (AI) can remarkably improve the ability to use big data to make predictions
by reducing the cost of making predictions. The advantages of artificial intelligence
algorithms have been extensively discussed in the medical literature. In this paper
based on the collection of the data relevant for the health of a given individual and
the inference obtained by AI, we provide a simulation environment for understanding
and suggesting the best actions that need to be performed to improve the individual’s
health. Such simulation modelling can help improve clinical decision-maing and the
fundamental understanding of the healthcare system and clinical process.
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INTRODUCTION

Precision medicine represents a new interesting frontier in healthcare as it
customizes medical care to an individual’s unique disease state. In general,
the precision medicine has remarkably evolved in prevention, diagnosis, inte-
rvention and treatment, potentially changing dramatically the landscape of
medicine. Based on patient-individual data, including medical diagnoses, cli-
nical phenotype (severity of disease, amount of functional impairment, etc.),
biologic investigations including laboratory studies and imagines, the novel
approach allows to understand health and disease and make patient-tailored
decisions in clinical field. Large volumes of information from multiple sou-
rces and multiple domains, including epigenetics “epigenomics”, protein
“proteomics”, metabolics “metabolomics”,radiology “radiomics”, pharma-
cology “pharmacomics”,microbiome studies “microbiomics”, “environmen-
tal omics” (Mac Eachern et al. 2020), and others, determine the creation of
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complex data, impossible to analyse without the help of data science and
increasing computing power and suitable technologies. The widespread ado-
ption of electronic health records has resulted in a tsunami of the collected
data that have to help to dissect clinical heterogeneity and aid the health-
care practitioners in targeted decision-making (Saviano et al.2018). In order
to extract precious information from the complex data under considera-
tion, artificial intelligence algorithms and data science significantly contribute
to identify complex patterns in data, to make predictions or classifications
onnew unseen data or for advanced exploratory data analysis. For instance,
the recent literature shows promising studies on the topic. In pharmacoge-
nomics, which is a relatively new research field, the data science allows for
mechanistic prediction of drug response and may help inform personalized
drug design (Kalinin et al. 2018). In Dong et al. (2015) in order to develop
anticancer drug sensitivity prediction using genomic data, a support vector
machine model has been developed, by demonstrating that the response to
cancer treatment could be predicted based on genomics. In particular, the
authors show that the algorithms allow to avoid the unnecessary treatments
in non-responders, in favour of the most effective treatment based on the
patient’s genome. In Type I diabetes analysis, Wei et al (2009) show the that
a genotype-based disease risk assessment may be possible for diseases for
which single nucleotide polymorphism (SNP) arrays by capturing a large risk
proportion. As regards a study on Crohn’s disease, Romagnoni et al. (2019)
classify patients with Crohn’s disease using artificial intelligence algorithms
by obtaining the identification of future patients who may benefit from a spe-
cific treatment. The biological, psychological and environmental factors that
influence brain development and mental health have been investigated using
brain imaging and genetics with the quantitative support of the data science
as in Mascarell et al. (2020). Artificial intelligence algorithms, in particular,
machine learning have also been implemented for treatment response predi-
ction. In Lin et al. (2018), the authors developed a deep learning model to
predict antidepressant treatment response in patients with major depressive
disorder based on SNP, demographic, and clinical data. Actually strengths
and weaknesses of the different data science approaches depend on the spe-
cific clinical problem to face with (Lo Vercio et al. 2020). In our paper, we
propose a random forest algorithm, which is an important tool in the field
of the artificial intelligence, to solve a clinical decision –making process. We
set up a robust classifier to select the “right” diagnostic-therapeutic protocol,
based on the personalised frailty index calculated on the complex clinical
data records. The rest of the paper is organised as follows. Section 2 presents
methodological issues on the random forest and the frailty index for develo-
ping the classifier. In section 3 the main empirical results are illustrated. The
final Section concludes.

METHODOLOGICAL ISSUES

The RF tree base learner is typically grown using the methodology of
CART (classification and regression tree), a methodology in which binary
splits recursively partition the tree into homogeneous or near-homogeneous
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terminal nodes (the ends of the tree). The algorithm was introduced by Brei-
man (2001) and consists of many individual trees which grow by recursively
performing binary splits on the training dataset.

We assume
[(
x1, y1

)
, . . . ,

(
xn, yn

) ]
is the training set training, which is

considered as a sample of independent random variables distributed as pair
(X,Y) from an unknown distribution. The algorithm is addressed to predict
the response Y by estimating the regression functionm (x) = E [Y|X = x].
The mean-squared generalization error for any numerical predictor h(x) is as
in the following:

EX,Y=
(
Y − h (X)

)2 (1)

being the random forest predictor the average over k = 1, . . . ,n trees
(Breiman, 2001). The estimator of the target variable ŷRj is the function of
the regression tree estimator:

f̂ tree (X) =
∑
jεJ

ŷRj1{XεRJ} (2)

1{.} being the indicator function and (Rj)j∈J the region of the predictor

space which is divided into J distinct and non-overlapping R1,R2, . . . ,RJ and
obtained by minimizing the Residual Sum of Square:

f̂ tree (X) =
∑
jεJ

ŷRj1{XεRJ} (3)

Let us denote B the number of bootstrap samples, the random forest
estimator is calculated as

f̂RF (X) =
1
B

B∑
b = 1

f̂ tree
(
X|b

)
(4)

The personalised frailty index is built on the patient-data and we express
by the following:

Fc (x, t) = F (x, t) risk factorsI(x, t)

Being Fc (x, t) the relative frailty of each individual obtained on the basis
of the clinical information at age x and at t calendar year. It depends on
the general frailty estimated on the aggregated population at age x and at
t calendar year multiplied a corrective factor computed on the score of the
different comorbidities or risk factors.

NUMERICAL APPLICATIONS

The empirical applications we perform in this section is based on confidential
data, we describe with regards to the main structural features.

The dataset is a non-random sample of 3001 hospitalized people due to
Covid-19, located in 26 hospitals and health centres of 13 Italian regions,
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gathered from March to November 2020. For each individual, the following
variables are detected: age, gender, the geographical area of hospitalization,
the Charlson Comorbidity Index, a series of dummy variables that detect
the presence of co-morbidities linked to Covid-19 and six different dummy
variables for each medicine used in different combinations for therapies.
Drug-related variables are combined into a categorical variable that consi-
ders the number of medicines an individual takes: “no therapy”, “one drug
therapy”, “two drugs therapy”, “more drugs therapy”. The following table
describes the co-morbidity variables:

Variable Description

hypert Hypertension
obesity Obesity
cad Coronary artery disease
bpco Chronic obstructive pulmonary disease
hf Heart failure
ckd Chronic kidney disease
diabetes Diabetes

Before proceeding with the random forest, the target variable is analysed
to evaluate the best strategy. The following figure shows a bar plot of the
target variable:

As can be seen from the figure, some categories of the target variable have a
much lower frequency than others. It is therefore an unbalanced sample that
requires the use of stratified sampling for the construction of the classification
trees of the random forest. To evaluate the effectiveness of the stratification,
the case of the unweighted and weighted random forest is compared, both
in the in-sample and in the out-of-sample forecasts. To do this, a training set
given by 70% of the sample is built, in order to use the remaining 30% as a
test set. Each random forest will be estimated with 500 trees and a selection
of 3 variables for each split.
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The following table shows the results for in-sample forecasts, comparing
Random Forest with unweighted scheme, a 1:1 weighting scheme, that is all
the categories have the same number of observations within a tree, and a
1:2 weighting scheme, that is the less represented categories have half the
observations of the others:

Unweighted Random Forest

OOB estimate of error rate: 39.14%

Confusion matrix

no
therapy

one drug
therapy

two drugs
therapy

more drugs
therapy

class
error

no therapy 719 17 13 79 0.132
one drug therapy 63 46 33 241 0.880
two drugs therapy 33 24 38 188 0.866
more drugs therapy 32 48 51 475 0.216

Weighted Random Forest with 1:1 weights

OOB estimate of error rate: 41.81%

Confusion matrix

no
therapy

one drug
therapy

two drugs
therapy

more drugs
therapy

class
error

no therapy 683 43 69 33 0.175
one drug therapy 55 85 136 107 0.778
two drugs therapy 28 37 161 57 0.431
more drugs therapy 21 95 197 293 0.517

Weighted Random Forest with 1:2 weights

OOB estimate of error rate: 43.67%

Confusion matrix

no
therapy

one drug
therapy

two drugs
therapy

more drugs
therapy

class
error

no therapy 640 15 111 62 0.227
one drug therapy 53 14 138 178 0.963
two drugs therapy 15 7 177 84 0.375
more drugs therapy 17 21 216 352 0.419

As can be seen from the table, with the same global OOB error or at the
limit with a minimum loss of accuracy, the use of weights makes it possible
to drastically reduce the forecast error for the under-represented categories.
In particular, for the 1:2 scheme, there is a noticeable improvement in the
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Unweighted Random Forest

Accuracy: 0.5882 - 95% CI: (0.5553,0.6206)

Confusion matrix

no therapy one drug
therapy

two drugs
therapy

more drugs
therapy

no therapy 292 32 13 15
one drug therapy 10 19 10 16
two drugs therapy 5 15 19 20
more drugs therapy 44 105 86 200

no therapy one drug
therapy

two drugs
therapy

more drugs
therapy

Sensitivity 0.832 0.111 0.148 0.797
Specificity 0.891 0.951 0.948 0.639

Weighted Random Forest with 1:1 weights

Accuracy: 0.5594 - 95% CI: (0.5263, 0.5921)

Confusion matrix

no therapy one drug
therapy

two drugs
therapy

more drugs
therapy

no therapy 274 27 11 11
one drug therapy 20 36 18 34
two drugs therapy 38 51 73 85
more drugs therapy 19 57 26 121

no therapy one drug
therapy

two drugs
therapy

more drugs
therapy

Sensitivity 0.781 0.211 0.570 0.482
Specificity 0.911 0.901 0.775 0.843

Weighted Random Forest with 1:2 weights

Accuracy: 0.5527 - 95% CI: (0.5196, 0.5855)

Confusion matrix

no therapy one drug
therapy

two drugs
therapy

more drugs
therapy

no therapy 259 23 9 6
one drug therapy 8 11 4 5
two drugs therapy 52 58 79 91
more drugs therapy 32 79 36 149

no therapy one drug
therapy

two drugs
therapy

more drugs
therapy

Sensitivity 0.738 0.064 0.617 0.594
Specificity 0.931 0.977 0.740 0.774
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prediction for the “two drugs therapy” category, but not for “one drug
therapy” one, which even worsens the performance. On the contrary, for
the 1:1 weighting scheme there is an improvement in performance for both
categories, more marked for the “two drugs therapy” category.

The following table shows the result of out-of-sample forecasts:
As the table shows, all three methods used show a total accuracy of just

under 60%. However, if we compare the statistics for the individual cate-
gories, there are notable differences in terms of sensitivity and specificity.
In particular, we can observe that for unweighted random forest, the spe-
cificity is quite high for all categories, but the sensitivity is low for the
under-represented categories. So, although the algorithm is able to identify
with a certain degree of accuracy who does not need a certain treatment, it
cannot identify who needs it. Instead, using a weighted random forest, it is
possible to improve the sensitivity of the less represented categories, with a
negligible loss of accuracy for the others.

The improvement of the performance of the random forest is for obvious
reasons closely linked to the correct choice of weights.

CONCLUDING REMARKS

Precision medicine is changing significantly the landscape of the medicine by
taking advantage by the massive information extractable form the complex
clinical data in a reliable and accurate risk management (Barile et al. 2021).
The artificial intelligence algorithm can considerably support clinicians with
diagnosis, prognosis and treatment on the basis of the patient-individual data
analysis. We show promising results on setting out a robust classifier for sele-
cting the “right” diagnostic-therapeutic protocol, based on the personalised
frailty index calculated on the complex clinical data records.

On the basis of a personalised frailty indicator built up on the specific
patient data, a robust decision rule which addresses the clinician toward the
most suitable diagnostic-therapeutic protocol. In further studies, wewill com-
pare different data-driven methods for detecting advantages and drawbacks
in clinical decision-making process.
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