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Abstract—Trigger-Action platforms are systems that enable
users to easily define, in terms of conditional rules, custom
behaviors concerning Internet-of-Things (IoT) devices and web
services. Unfortunately, although these tools stimulate the cre-
ativity of users in building automation, they may also introduce
serious risks for the users. Indeed, trigger-action rules can lead
to the possibility of users harming themselves, for example by
unintentionally disclosing non-public information, or unwillingly
exposing their smart environment to cyber-threats. In this pa-
per, we propose to use Natural Language Processing (NLP)
techniques to detect automation rules, defined within Trigger-
Action IoT platforms, that potentially violate the security or
privacy of the users. The proposed NLP-based models capture the
semantic and contextual information of the trigger-action rules
by applying classification techniques to different combinations
of rule’s features. We evaluate the proposed solution with the
mainstream trigger-action platform, namely IFTTT, by training
the NLP models with a dataset of 76,741 rules labeled by using
an ensemble of three semi-supervised learning techniques. The
experimental results demonstrate that the model based on BERT
(Bidirectional Encoder Representations from Transformers) ob-
tains the highest performances when trained on all features,
achieving average Precision and Recall values between 88% and
93%. We also compare the achieved performances with those of
a baseline system implementing information flow analysis.

Index Terms—Privacy and security, Natural language process-
ing, IoT platforms, Trigger-action rules.

I. INTRODUCTION

THE RISE of Internet-of-Things (IoT) technology initi-
ated a new world of opportunities, especially in home

environments. In fact, homes are becoming “smarter” as users
increasingly purchase IoT devices such as connected cameras,
smart locks, and smoke detectors, with the aim of building
automation that would make their daily lives easier. IoT-based
applications are built by programming a set of IoT devices to
communicate with each other and perform certain tasks, e.g.,
voice-controlled cameras and remote-controlled door locks. To
help users define interoperability behaviors between different
smart devices and web services, several platforms have been
defined and commercialized [1], [2]. Among them, the most
popular are the Trigger-Action IoT Platforms (TAPs) [3]
which empower users to define custom behaviors by means
of conditional rules [4], [5].
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Samsung’s SmartThings1, Apple’s HomeKit2, IFTTT3, and
Zapier4 are just a few examples of TAPs allowing users to
create custom automation on devices and services in terms of
Event-Condition-Action (ECA) rules [6]. The latter provide a
suitable level of abstraction and are composed of a trigger-
ing event, the conditions that must be true when the event
occurs, and the action that should be carried out [7]. The
behaviors defined through ECA rules can address different
aspects of a smart environment, for example, Fig. 1 shows
an ECA rule whose behavior consists in the execution of
the action “open the shutters in the living room”
when the condition “above 25◦ Celsius” associated to
the trigger “the temperature of the house changes”
becomes true. A higher level of abstraction helps users to
create their ECA rules more effectively and efficiently since
the users do not need to deal with technical details that may
be too complex to understand [8].

The temperature
in the house

changes

 Temperature 


 > 25°C 

Event Condition


Trigger

Open the
shutters in the
living room

Action

Fig. 1. An example of ECA rule.

However, when defining an ECA rule, users may create
several serious risks for their privacy and/or the security of the
smart environment [9], [10], [11], mainly due to their general

1https://www.smartthings.com
2https://www.apple.com/ios/home/
3https://www.ifttt.com
4https://zapier.com
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inexperience and lack of technical knowledge. For example,
a user who wishes to play music from his/her smartphone
as soon as his/her Bluetooth earphones connect may define
the rule: “If a Bluetooth device is connected to

the smartphone, then the smartphone plays the

audio files contained in a folder”. This rule
implies an important privacy disclosure as there may be a
scenario where the selected folder contains personal audio
files, and the smartphone connects to a Bluetooth speaker.
Also, the rule in Fig. 1 could raise risks for the users. In
fact, the opening of shutters is ruled only by the internal
temperature of the smart house. In such a scenario, if the
user forgets that the rule is active, shutters might open also
on hot summer days when the house is empty, e.g. when
the owners are on vacation, providing an entry point for
thieves. Moreover, open windows represent a factor of risk
for unsupervised children.

Several studies investigated the privacy and security risks
of ECA rules highlighting that many rules are potentially
dangerous [11], while the users have few concerns about these
risks [12], and do not feel responsible probably because they
assume that the companies producing the IoT device should
guarantee their privacy [13]. However, very little research has
been performed, so far, to address the problem of automatically
identifying harmful ECA rules. In particular, Surbatovich et al.
defined an information-flow lattice to analyze potential secrecy
or integrity violations in ECA rules [11]. Paci et al. [14]
proposed two approaches based on information flow analysis
to detect rules that unintentionally violate users’ privacy by
sharing private photos. Other works focused on the automatic
identification of undesired behaviors caused by rules’ chain
execution [15], [16], where a rule is automatically triggered
by the action of another rule without user intervention.

In this paper, we investigate the efficiency of using Natural
Language Processing (NLP) techniques to automatically iden-
tify potential security and privacy risks related to the execution
of individual ECA rules. The approach exploits the capability
of NLP models to semantically analyze the information of the
rules, and infer how the type of trigger and action is related
to the potential damage a rule might cause. In particular, the
models analyze the triggers and actions associated with the
rules, and the natural language textual descriptions provided
by the creators. The latter represent an important resource for
understanding the behavior of the rules, as demonstrated by
the effectiveness of NLP-based analyzers that exploit these
descriptions to generate executable code [17], and to infer the
context in which the devices are involved [18].

We evaluate the considered NLP-based models on the
IFTTT (If-This-Then-That) platform, which is the most pop-
ular for self-automation of IoT services, thanks to its ease of
use, and the support for a large set of services and devices. We
analyze a part of the dataset of IFTTT rules, which are named
applets, crawled from the website and available on the Web
[19]. We extract a set of 79,214 IFTTT applets, and classify
them into four categories based on the type of damage they
might cause. We select 2,473 rules for manual classification,
and classify the remaining by using an ensemble of three
semi-supervised learning techniques. Then, using the labeled

dataset we train several classifiers on different combinations
of the rule’s features. The experimental results demonstrate
that the model based on BERT, a pre-trained language model
released by Google [20], achieves the highest Precision and
Recall scores. Furthermore, we compare our approach with a
baseline system implemented by using the information flow
approach, which only focuses on the analysis of the event and
the action chosen for building the rule [14], [11].

The main contributions of this paper are the following:
• Define a process for automatic labeling ECA rules with

respect to security and privacy risks. The proposed strat-
egy encompasses the application of an ensemble method
to the predictions provided by different semi-supervised
learning techniques.

• Make a dataset of ECA rules, crawled from the IFTTT
platform and labeled with respect to security and privacy
risks, publicly available in the additional material accom-
panying this paper (see Appendix A), so that others can
advance work in the area.

• Provide an automatic, NLP-based approach for semantic-
based and context-aware identification of security and
privacy risks underlying ECA rules.

• Implement and evaluate the proposed approach on a
mainstream trigger-action platform, i.e., IFTTT, showing
that among the considered NLP-based models, the BERT-
based one gives higher accuracy when trained on all rule’s
features.

A short, preliminary version of this article is available
in [21], where we introduced a simple classification model
trained on 2,000 manually labeled IFTTT applets. The rest
of this paper is organized as follows. Section II reviews the
literature concerning the privacy and security risks of trigger-
action rules and their platforms. Section III summarizes the
process of constructing NLP-based models for identifying
rules violating security and privacy. Section IV provides details
about the IFTTT platform and the structure of its rules. The
construction of NLP-based models for IFTTT is detailed in
Sections V and VI, while the experimental evaluation mea-
suring their effectiveness is presented in Section VII. Finally,
conclusions and further research are reported in Section VIII.

II. RELATED WORK

In this section, we discuss prior work for preserving the
privacy and security of trigger-action IoT platforms and their
users. We first discuss approaches that analyze and evaluate the
potential risks of ECA rules, and then we review solutions that
enhance platforms with mechanisms that prevent the disclosure
of confidential information or malicious attacks.

A. Analyzing Privacy and Security of ECA Rules

The study presented in [11] is the first that analyzes the
privacy and security risks of IFTTT applets. In particular,
Surbatovich et al. analyzed a dataset consisting of 19,323
IFTTT applets with a multi-level lattice that associates security
labels to IFTTT triggers and actions. Information flow analysis
is then performed to determine if a rule could involve a secrecy
or integrity violation. The results highlighted that around
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50% of the analyzed rules are potentially unsafe. They also
manually categorized a subset of randomly selected applets
according to the potential issue they can cause. About 60%
of them were involved in a violation. The study presented in
[10] refined the previous analysis by taking into consideration
two factors while marking applets as harmful or not, i.e.,
the contexts in which the rules are applied, or the users’
privacy preferences. The user study with 28 IFTTT users and
732 applets revealed that, with respect to the prior work,
the number of harmful applets was significantly reduced by
considering users’ opinions.

In [14], Paci et al. focused on privacy issues related to
sharing images via IFTTT applets. In particular, they intro-
duced two prototypes, one for providing users with warnings
about the privacy risks they may incur at design-time (when
an applet is created), and one for providing warnings at run-
time (when an applet is running). The first prototype considers
the audience of the information, namely the “visibility”, to
report a privacy violation. In particular, the tool verifies
whether sensitive information flows from a private trigger to a
public or restricted action. The second prototype considers the
“sensitivity” of the shared data. To this end, the tool exploits
the Google “Vision” API to evaluate the sensitivity of a photo,
reporting a privacy violation if a sensitive data item flows from
a private trigger to a public or restricted action.

Other approaches focused on the problem of identifying un-
expected behaviors potentially caused by ECA rules. McCall et
al. [15] proposed SafeTAP, a tool that verifies through model
checking whether the behavior of a new rule is affected by
the existing ones [22]. Xiao et al. proposed A3ID, a tool for
detecting implicit rule interferences, which occur when two or
more rules are triggered simultaneously, causing contradictory
effects on the environment [16]. A3ID uses NLP techniques
to extract smart devices’ knowledge (e.g., functionality, effect,
and scope) from knowledge graphs. iRULER is a system
proposed by Wang et al. for detecting different interferences
conditions between trigger-action rules, such as action loop,
where a rule is activated cyclically, or condition block, where
the condition of a rule is unsatisfiable [3]. To this end,
iRULER uses Satisfiability Modulo Theories solving [23] and
model checking by operating on an abstracted information
flow model inferred with NLP techniques. IoTMon [24] and
SafeChain [25] are systems for identifying harmful attack
chains produced by a combination of ECA rules. ProvThings is
a tool that tracks data provenance for the purpose of providing
explanations of rules’ chain behaviors [26].

With respect to the approaches that identify harmful ECA
rules through information flow analysis [11], [14], we propose
the use of NLP techniques to extract semantic and contextual
information from ECA rules, which are used to classify them
according to the type of damage they could cause when
activated. Moreover, while the approaches [15], [16], [3], [24],
[25] aim to identify possible interferences/interactions between
ECA rules, which could damage the smart environment, or
affect the safety of the user, the proposed approach focuses on
the identification of individual ECA rules that are potentially
dangerous for the security and privacy.

B. Protecting TAPs from Privacy and Security Violations

Xu et al. examined the possible leak of privacy information
to which users may be exposed while using the main platforms
for managing IoT devices and online services [27]. In partic-
ular, they analyzed how these platforms could reconstruct a
user’s behavior model through all the events for which s/he has
defined a custom rule. To prevent this from happening, they
introduced a process that filters and fuzzes the stored events.
Bastys et al. demonstrated that IFTTT applets are vulnerable
to attacks that could exfiltrate the private information of the
users [28], and proposed two countermeasures. The former
is based on an access control policy to prevent information
flows from private sources to public sinks, the latter relies
on a framework for monitoring the applet information flow
over time, intending to identify what information the attackers
might obtain from applet output and exploit them for future
attacks.

Chiang et al. observed that TAP platforms are authorized
to manipulate a lot of sensitive user information, and for this
reason, they represent an attractive target for attackers [29].
To alleviate this problem, the authors proposed two platforms
that can be integrated within a TAP to improve the privacy
of users’ data. The first aims to hide trigger information by
sending fake information to the platforms, while the latter aims
to preserve user privacy by masking the connection between
the users and their data. Similarly, Chen et al. addressed the
problem concerning the loss of users’ sensitive data occurring
when a TAP is compromised [30]. They proposed eTAP, an
encrypted trigger-action platform capable of executing rules
without accessing users’ data in plaintext.

Fan et al. explored the possibility of attackers forcing rule
executions with forged IoT devices or malicious events [31].
To face this issue, the authors proposed Ruledger, a ledger-
based IoT platform that can be integrated within a TAP to
guarantee the correct execution of rules.

IoTGUARD is a system that protects users from unde-
sirable device states by monitoring trigger-action programs
[32], blocking risky actions when integrity or confidentiality
violations might happen. FlowFence is a framework that
allows users to control their information flow once rules gained
sensitive data access permissions [33]. SainT is a tool that
identifies sensitive data flows by performing static analysis
on information flow from sensitive sources to external sinks
[34]. SOTERIA [35] and IotSan [36] are systems that apply
model checking to control whether user security and safety
properties are breached when using IoT platforms. IoT-Praetor
is a system that exploits NLP techniques for extracting the
interaction and communication behaviors of IoT devices from
ECA rules, and comparing the obtained information to the
actual behaviors detected at run-time [37].

The approach proposed in this paper is complementary with
respect to those that safeguard the security and privacy of the
users by protecting the information processed by TAPs [27],
[29], [30], because it evaluates the risks by only analyzing the
ECA rule’s information. Similarly, the approaches proposed in
[28], [31], [32], [33] use rule process monitoring techniques
to identify potential damages at run-time, while our proposal
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identifies them at the time the ECA rules are defined. More-
over, while the approaches [34], [35], [36] are functionally
dependent on the structure of an IoT program’s source code,
our proposal evaluates the behavior of an ECA rule without the
need to analyze the source code. Finally, while [37] exploits
NLP techniques to produce an intermediate representation of
an ECA rule, we exploit NLP techniques for analyzing the
semantic structure of an ECA rule with the aim of identifying
potential damages.

III. CONSTRUCTION OF CLASSIFICATION MODELS FOR
IDENTIFYING HARMFUL ECA RULES

This section describes the steps we perform to construct a
classifier of harmful ECA rules. In particular, Fig. 2 depicts the
process yielding the definition of effective supervised models
for properly discriminating ECA rules according to possible
classes of risk. More specifically, the process consists of three
main phases:
(a) Labeling ECA Rules: this phase aims to prepare labeled

datasets for classification models. Before carrying out this
procedure, it is required to define the possible classes
of risk for ECA rules, and the corresponding labels.
Successively, each ECA rule of the input dataset has to be
annotated with a suitable label. Since the manual labeling
process is time-consuming, and the number of rules in the
datasets might be very high, we propose to use a semi-
automatic labeling strategy. In particular, we partition
the original dataset of ECA rules into two subsets: a
random small set of rules, which is labeled manually,
and the set of the remaining rules, which is automatically
labeled using semi-supervised classification models. The
latter exploit the set of manually labeled rules to acquire
sufficient knowledge for providing the labels to the rules
contained in the larger set. Finally, an ensemble approach
is employed to establish, among the labels provided by
the semi-supervised models, which should be assigned to
each rule, yielding a final large dataset of rules labeled
according to the classes of risk.

(b) Training ECA Rules Classification Models: this phase
aims to train classification models by using the dataset
of labeled ECA rules, which is called training set. The
features considered for training the models correspond to
the components of the ECA rules revealing the context
of use and the meaning of the rule, i.e., the trigger, the
action, and the description of the rule behavior. These
components are usually provided in textual form, so NLP
techniques can be used to extract semantic information
that can be exploited by classification models to identify
and discriminate among the classes of risk. It is worth
noting that the training set is most likely imbalanced, in
fact, most of the rules do not provide damage to users,
while some classes of damage are more frequent than
others. To deal with the classification errors caused by
imbalanced datasets, we consider the application of a
weighted loss function [38], which weights the classi-
fication errors according to the number of rules available
for each class. The best settings for the weighted loss

function can be inferred by employing the stratified k-
fold cross validation [39].

(c) Testing ECA Rules Classification Models: this phase aims
to evaluate the performances of the classification models
and, indirectly, the quality of the labels generated for the
training set. This is performed by giving in input to the
classification models a set of manually labeled ECA rules.
The models’ performances can be measured by using
well-known metrics, such as Precision, Recall, F1-score,
and Accuracy.

In the following sections, we describe how the considered
process has been applied to a case study concerning the IFTTT
platform.

IV. THE IFTTT PLATFORM

IFTTT, which stands for “If This, Then That”, is a trigger-
action programming platform founded in 2010 by Linded
Tibbets and Jesse Tane. Its visual interface allows users to
define automation rules, which are called IFTTT applets, by
specifying and configuring the two main components, i.e.,
the trigger and the action. The former defines the event(s)
that activate the execution of the applet, whereas the latter
corresponds to the operation carried out upon the applet
triggering.

For creating an applet, the user has to first specify the
service, also named channel, associated with the trigger com-
ponent, e.g., a social network or the cloud service of an IoT
device producer. After selecting the channel, the user has to
select the trigger among a range of possible ones, completing
the first section of the applet. The operation is then replicated
for the action section, where the user can select the channel
and its action. Depending on what trigger or action is selected,
the user may be required to add further details to complete the
definition of the rule’s behavior, these details are called fields
whose values can be, for example, the folder name where to
upload a file on Google Drive, or which parameters tracked
by a Fitbit device should be recorded. Finally, the user can
specify a title and a description to remember the purpose of
the applet and to make it easy for other users to understand.
In fact, every created applet is automatically acquired by the
IFTTT platform so that other users can immediately activate
it without needing to create a new one.

The dataset used for training and testing the models for
classifying harmful IFTTT applets was created by researchers
from Indiana University Bloomington [19], through a crawling
process on the IFTTT.com website from November 2016 to
May 2017. During this period, the authors took every week
a “snapshot” of the applets published on the platform at that
moment. About 200 GB of data (∼12 GB per snapshot) were
collected during that period, corresponding to more than 300K
unique applets. The researchers have kept the same structure
of the IFTTT paradigm, that is the decomposition of the
applet into trigger, action, and the corresponding channels.
In particular, for each applet, the following information was
retrieved: applet name, description, trigger, trigger channel,
action, action channel, a counter indicating the number of users
who have installed the applet, and other features.
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Fig. 2. The proposed process for constructing and evaluating NLP-based models for detecting harmful ECA rules.

In our work, we only consider the following applet features:

• Title: is a string containing the title of the applet;
• Desc: is a string containing a description of the applet’s

behavior;
• TriggerTitle: is a string representing the name of the

trigger that “activates” the applet;
• TriggerChannelTitle: is a string representing the name of

the trigger channel chosen by the user as a trigger for the
applet;

• ActionTitle: is a string representing the name of the action
to execute in response to the trigger;

• ActionChannelTitle: is a string representing the name of
the action channel chosen as an action by the user.

It is worth noting that the first two features are continuous
since they are defined by the applet’s creator, whereas the
remaining ones are discrete since they are automatically pop-
ulated by IFTTT and can assume a finite number of values. As
an example, the ECA rule shown in Fig. 1 could be specified
by the following parameters:

• Trigger channel: Netatmo Weather Station

• Trigger: Temperature rises above

• Action channel: Gewiss Smart Home IoT

• Action: Control your Shutter or Venetian

• Fields: Temperature threshold (25◦ in Fig.

1), Unit of measure (Celsius in Fig. 1)

• Title: Let some fresh air comes in your house

when it gets too hot

• Description: If the temperature inside

your house is above a certain threshold,

automatically open the shutters.

An accurate data cleaning process is performed on the initial
dataset, which considerably reduces the number of applets. In
particular, to obtain a uniform dataset in language, we use the
LANGDETECT Python library to filter out the applets whose
title and description are not written in English. Subsequently,
we discard all applets without title or description or containing
only numbers for these features. The resulting dataset consists
of 116,825 applets, and is provided in the supplementary
material (see Appendix A).

V. DATA LABELING

As said above, the rule labeling process is performed by
applying a combination of manual labeling and automatic la-
beling with semi-supervised models, and an ensemble strategy.
This allows us to perform extensive labeling of the dataset
minimizing the manual effort. In this section, we go through
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all the phases yielding a fully labeled dataset with respect to
the considered classes of risk.

A. Categorizing Applets based on Security and Privacy Risks
We consider the work in [11] for categorizing the dam-

ages that could be inflicted by an applet on the user. An
interesting result of the analysis performed in [11] is that
not all applets need a third party to cause a risk. In fact,
many applets are dangerous due to issues resulting from
users’ behaviors. For instance, at first sight, an applet hav-
ing title “Keep your Facebook and Twitter profile

pictures in sync” could not seem harmful. However, in
a scenario where a user has a private Facebook profile, if
s/he forgets that such an applet is active, unwanted photos
will automatically be published to Twitter, where the audience
might not be the same as the one on Facebook, causing
possible embarrassment. In this case, an attacker does not
need to intervene for providing damages, since is the user’s
behavior that generates harm to his/her own privacy. At the
same time, other applets could violate users’ privacy/security
due to attackers exploiting the behavior of an applet to damage
an IoT device or to disrupt online services.

In [11], by manually examining a set of applets, the po-
tential damages they can cause are classified into four macro-
categories:

1) Innocuous: causes no harm, i.e., an applet for which
it is not possible to imagine a realistic harm. As an
example, the applet: “If I meet my daily step

target, update a file with the statistics

on my phone” has no negative consequences because
sensitive information is not shared with third parties,
without causing embarrassing situations;

2) Personal: causes loss of sensitive data. This dam-
age is self-inflicted since any damage is the re-
sult of the user behavior. As an example, the ap-
plet: “If I take a new photo, then upload it

on Instagram as a public photo” could uninten-
tionally leak sensitive information;

3) Physical: causes damage to physical health or goods.
This damage is external as a third party can po-
tentially inflict the damage. As an example, the ap-
plet: “If the last family member leaves home,

then turn off lights” is dangerous since turning
off the lights in a predictable way signals that the house
is empty, making it easier for a thief to plan the right
time for a theft;

4) Cybersecurity: causes interruption of an online service
or distribution of malware. This damage is external too,
as a third party can potentially inflict the damage. As
an example, the applet: “If there is a new email

in your inbox with an attachment, then add

the attached files to OneDrive” could be used
to spread malware to all devices synced with a OneDrive
account. If a malicious attachment is propagated to all
synced devices, it increases the likelihood that the file
will be opened by the user.

The analysis of the results highlighted that the most com-
mon damage is personal, i.e., the one caused by mistakes of

users and not from the involvement of a third party. Concern-
ing damages potentially inflicted by an attacker, cybersecurity
damages are found to be more frequent than physical ones.

According to the considered macro-categories of risk, we
use the following classes for applet labeling: class 0 corre-
sponds to “Innocuous” applets, class 1 to the applets underly-
ing a “Personal” damage, class 2 to the applets which could
lead to a “Physical” damage, and class 3 to the applets expos-
ing “Cybersecurity” damages. In the following, we provide the
details about the manual and the automatic labeling processes.

B. Manual Applet Labeling

We apply the majority method for manually labeling the
applets of the IFTTT dataset. In particular, the first and second
authors are in charge of manually labeling the applets, while
the third intervenes when there is no agreement. This phase
leads to 492 class 0 applets, 296 class 1 applets, 105 class 2
applets, and 107 class 3 applets.

To balance the number of applets of each class, we define a
process for selecting further applets to be labeled manually
as shown in Fig. 3. For each labeled applet a, we build
a spreadsheet containing all the unlabeled applets sorted in
descending order based on their similarity with respect to a.
The similarity is evaluated through a combination of vector
semantics and similarity functions. The former is used to
compute a vector representation of sentences, namely sentence
embeddings, which takes into account their semantic meaning
[40]. For computing the sentence embedding of each applet,
we apply SentenceBERT [41] on the concatenation of the
applet’s title and description, whereas the cosine similarity
function is used to compare the embeddings.

By manually reviewing each spreadsheet, we select and
label a subset of applets having “similar” characteristics to
those already labeled, but with at least a difference in the
trigger, the action, and/or the involved channels. The resulting
dataset of manually labeled applets consists of 503 class 3
applets, 502 class 2 applets, 501 class 1 applets, and 967 class
0 applets, for a total of 2,473 instances.

C. Automatic Applet Labeling

To increase the number of labeled data, we devise a process
combining different semi-supervised learning models with an
ensemble strategy, as shown in Fig. 2. This section illus-
trates the three semi-supervised learning techniques we use to
automatically label additional applets, namely Self Learning,
Label Propagation, and Generative Adversarial Learning, and
the ensemble strategy we adopt to generate the final labeled
dataset.

1) Self Learning: It consists in turning any supervised
classifier into a semi-supervised method by iteratively labeling
the unlabeled data, and adding these predictions to the set of
labeled data until the classifier converges [42]. More specifi-
cally, we implement the following Self Learning process:
(a) Train a classifier C on the set of available labeled applets

A;
(b) Use C to make predictions on the set of unlabeled applets

U ;
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Fig. 3. Similarity comparison process of IFTTT applets based on SentenceBERT.

(c) Move from U to A the applets whose predictions satisfy
a condition defined with a confidence parameter, which
is specified a priori. These are called “pseudo-labeled
applets” to distinguish them from the original labeled
ones.

Steps (a)-(c) are repeated until one of the following conver-
gence criteria is reached:

• The maximum number of iterations is reached;
• All predictions obtained on the applets of the set U do

not satisfy the condition in (c);
• The set U is empty.
We set the maximum number of iterations to 5, the con-

fidence parameter to 0.6, and use BERT as a classifier [20].
Moreover, we use the softmax function to compute the proba-
bilities with which unlabeled applets are associated with each
class. Thus, if the highest estimated probability is greater than
0.6 then the corresponding class is assigned to the applet,
becoming a pseudo-labeled applet.

2) Label Propagation: It is an inference algorithm based
on semi-supervised graphs [43]. The algorithm constructs a
similarity graph that models the set of training data trying to
propagate known labels across the edges of the graph, from
labeled samples to samples for which the label is not available.
Since the data are in textual form, we apply techniques for
obtaining a vector representation of them. In particular, we use
the sentence embeddings computed through SentenceBERT
[41], which produces a 512-dimensional vector of the input
sentences.

The graph construction process deals with converting the
dataset X into a graph G, where X represents the input
samples composed of the applets x1, x2, ..., xn, and each
applet xi in turn is represented by a 512-dimensional vector.
Each applet is assigned to a node of the graph, and a weight
wi,j is assigned to each edge connecting the pair of nodes i
and j. To identify the similarity between two nodes, a matrix
of weights W is computed. To calculate the weights, it is
necessary to employ a kernel. Among the possible applicable
kernels, we use the K-nearest neighbors, which produces a
fully connected graph represented in memory by a sparse

matrix, and guarantees fast execution times. The obtained
weights are used to compute the probabilities of propagating a
label from a labeled node to an unlabeled one. In particular, the
probabilities are used to assign soft labels to each node that can
be interpreted as distributions over labels. Labeled nodes have
probability 1 of belonging to one of the four classes (since their
classes are known), while unlabeled nodes get their class from
“neighboring” nodes. During the execution, these distributions
are altered causing the change of the labels assigned to
unlabeled applets. The process iterates until convergence, i.e.,
the probabilities do not change and the labels associated with
unlabeled applets are no longer changed, or a fixed number of
iterations is reached. We set the maximum number of iterations
to 1,000.

The LabelPropagation class of the SCIKIT-LEARN
Python library is used to implement the algorithm.

3) Generative Adversarial Learning for Robust Text Classi-
fication with a Bunch of Labeled Examples: It is an extension
of the BERT model within the Generative Adversarial Network
(GAN) framework allowing for the implementation of an
effective semi-supervised learning schema [44]. This model
allows training BERT on a limited number of labeled samples,
with respect to a larger number of unlabeled samples. The
fine-tuning phase of BERT is extended by introducing a
Discriminator-Generator setting, where:

• The generator G deals with the production of “fake” vec-
tor representations of sentences. In particular, G produces
“fake” samples by taking as input a 100-dimensional
noise vector based on a Gaussian distribution;

• The discriminator D is a BERT-based classifier that works
on k+1 classes. In particular, D receives as input either
a fake vector generated by G, or a vector from real data
embedded by BERT. The final layer of D is a Softmax
Output Layer producing a vector of size k + 1, where k
is the number of classes in the training set.

D has the role of classifying an instance as one of the k
classes related to the task of interest (in this case k = 4)
and must recognize the instances generated by G (to which it
must associate the class k+1). In other words, it must classify
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whether the input is a real instance or not; if it estimates the
input as a real instance, it must predict which class the input
belongs to. On the other hand, G must produce representations
as similar as possible to the “real” instances. G is penalized
when D correctly classifies an instance as fake.

We employed the PYTORCH interface of the TRANSFORM-
ERS Python library of HUGGING FACE for implementing the
model. We set the parameters of the model as follows:

• Batch size: 32;
• Number of hidden layers for the Generator: 1;
• Number of hidden layers for the Discriminator: 1;
• Size of the noise vectors: 100;
• Learning rate Discriminator: 5e− 5;
• Learning rate Generator: 5e− 5;
• Epsilon: 1e− 8.
Since D must also be trained to discriminate real sentences

from fake ones, we introduce an additional class to those of
the task of interest; in particular, the identifier “4” has been
associated with the “fake” class.

4) Ensemble: Starting from the three datasets of labeled
applets obtained with the semi-supervised learning approaches,
we apply an ensemble strategy to get a single dataset. In
particular, we use a majority-vote method across the three
different semi-supervised models, assuming that if two models
agree, the prediction would be more accurate. Thus, only
the applets for which at least two semi-supervised techniques
agree on their class labels are included in the final dataset with
that class. This allows us to obtain more consistent labels for
the evaluated applets.

With this strategy we obtain a dataset containing 79,214
applets, where 56,236 belong to class 0, 16,344 to class 1,
3,433 to class 2, and 3,201 to class 3. Table I reports statistics
about the service categories involved in the labeled dataset.
For each service category, the table provides the percentage of
involved services, and the percentage of applets whose triggers
(actions, resp.) belong to a service within the category. We
can observe that most of the services are for IoT devices,
while triggers from social networking services are the most
popular among the applets. On the other hand, almost half of
the applets in the dataset have an action belonging to the “RSS
feeds, online recommendation” category.

VI. MODEL TRAINING

This section illustrates the models we implement for classi-
fying the IFTTT applets, the techniques we adopt to solve the
problem of imbalanced data in the final dataset, and the setup
of the training phase. The models are implemented as Python
modules, which are provided in the supplementary material
(see Appendix A).

We consider two types of classifiers. The first is based on
artificial neural networks (ANNs), and treats discrete features
as numerical values, by using the label encoder technique
[45], and continuous features as textual values, by using a
word embedding technique [46], namely Global Vectors for
Word Representation (GloVe) [47]. The latter is based on
BERT, a pre-training model of Natural Language Processing,
which uses deep bidirectional transformers to train a language

TABLE I
STATISTICS ABOUT THE SERVICES INVOLVED IN THE APPLETS OF THE

LABELED DATASET

Service category % Services % Triggers % Actions

Smarthome devices (e.g., Light, thermostat) 44.79% 5.08% 4.33%

Online service and content providers 16.60% 11.72% 14.99%

Social networking, photo/video sharing 8.21% 35,78% 18.32%

Smartphones (e.g., battery, NFC) 5.56% 11.09% 2.62%

SMS, instant messaging, VoIP 5.55% 7.51% 2.29%

RSS feeds, online recommendation 4.11% 2.24% 44.34%

Smarthome hub (e.g., Samsung SmartThings) 2.90% 0.08% 0.03%

Personal data & schedule manager 2.90% 7.11% 0.64%

Wearables (e.g., smartwatch) 2.66% 0.37% 0.84%
Cloud storage (e.g., Google Drive) 2.17% 9.35% 1.01%
Time and location 1.60% 0.07% 6.49%
Email 1.45% 9.45% 4.01%
Other 1.50% 0.15% 0.09%

representation model through a large number of data [20]. In
this model, all features are treated as text.

The ANN-based and BERT-based models are trained con-
sidering three combinations of features:
combination 1: Title and Desc;
combination 2: TriggerTitle, ActionTitle, ActionChannelTitle,

and TriggerChannelTitle;
combination 3: All features.

Before training the models, a pre-processing phase is carried
out to remove noise from the data. In particular, we perform
the operation of tokenization, normalization, noise removal,
and lemmatization on the textual values. Successively, the
encoding phase converts the dataset into a format valid for
the classifiers.

A. Classification by Artificial Neural Networks

In the following, we illustrate the different architectures
implemented for the ANN models. In particular, we consider
a simple neural network (NN) when the features are discrete
(combination 2), and the Long Short-Term Memory (LSTM)
when continuous features are involved (combinations 1 and
3).

1) First combination: We train an LSTM model, named
LSTM-1c, using the Title and Desc features. Their GloVe
word embeddings are vector representations of textual data
having a fixed length. Since the title and description of the
applets have different lengths, an embedding with a longer
length will be filled with zeros at the end (representing the
so-called padding), if it is shorter, it will be truncated. To
identify the most suitable embedding length, we analyze the
distribution of the lengths of the dataset sentences obtained
by concatenating Title and Desc. As shown in Fig. 4, most
sentences are composed of 25 words or less, whereas the
maximum length is 400. Using 25 as embedding length is
unsuitable because many words may be lost. At the same time,
setting the length to 400 leads to embedding with a lot of
padding, which would not help the model to learn. Therefore,
we set the length of the embeddings to 50, which corresponds
to a good trade-off.
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Fig. 4. Length distribution (in logarithmic scale) of the sentences obtained
concatenating the Title and Desc features.
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Fig. 5 shows the architecture of the LSTM-1c model.
Specifically, the Input Layer receives embeddings of 50 dimen-
sions, then the Embedding Layer turns positive integers into
dense vectors of fixed size. The latter requires the following
parameters:

• The size of the dictionary (i.e., the number of distinct
words in the input sentences);

• The size of the output vector, which is 50, as the
dimension of the embeddings;

• The pre-trained embedding matrix specified using the
weights attribute.

The LSTM Layer is composed of 70 neurons and uses the
tanh (hyperbolic tangent) activation function, whose outputs
are in the range [-1,1]. Subsequently, the Dense Layer is
composed of 35 neurons and uses the tanh activation function.
The values of the two parameters are obtained through a fine-
tuning process.

The final Dense Layer acting as the Output Layer consists
of 4 neurons and uses the softmax activation function. The
number of neurons corresponds to the number of classes that
the classifier has to predict. The LSTM-1c model is trained
using 24 epochs and a batch size of 10.

2) Second combination: We train a simple Neural Network
model, named NN-2c, using the discrete features of the dataset.
For these features, it is possible to apply the label encoder
technique to convert them into numerical ones. This technique
simply assigns a unique numerical value to each categorical
value that a feature can assume. In this way, we obtain
well-structured data, which can be used as input for densely
connected neural networks.

Fig. 6 shows the architecture of the NN-2c model. It is
composed of an Input Layer that accepts an input with size 4
(i.e., the values of discrete features) and three Dense Layers.
Two of them consist of 50 and 20 neurons, and use the tanh
activation function. As for LSTM-1c, the final Dense Layer
acts as the Output Layer and consists of 4 neurons, with the
softmax as an activation function. The NN-2c model is trained
using 30 epochs and a batch size of 16.

Class
probabilities


Input

layer


Dense
layers


TriggerTitle
 TriggerChannelTitle ActionTitle
 ActionChannelTitle


Fig. 6. The architecture of the NN-2c model.

3) Third combination: We train an LSTM model, named
LSTM-3c, using all features of the dataset. The discrete fea-
tures are converted from categorical to numeric and combined
with the continuous ones. To efficiently handle the different
types of inputs, i.e., textual (i.e. Title and Desc) and numerical
(i.e. TriggerTitle, ActionTitle, ActionChannelTitle and Trigger-
ChannelTitle), we define two sub-models: the former receives
textual input encoded with GloVe, while the latter receives
numerical input encoded with the label encoder technique.

Fig. 7 shows the network architecture. The first sub-model is
composed of an Input Layer, which receives embeddings of 50
dimensions, an Embedding Layer, and an LSTM Layer charac-
terized by 70 neurons and using the tanh activation function.
Also, the second sub-model is composed of three layers. In
particular, an Input Layer receiving the four numerical values
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of the discrete features, and two Dense Layers, composed of
50 and 20 neurons respectively, on which the tanh activation
function is used. The output of the LSTM Layer of the first
sub-model is concatenated to the output of the second Dense
Layer of the second sub-model and used as input for another
Dense Layer characterized by 10 neurons. Finally, the last
Dense Layer acts as the Output Layer and is characterized
by 4 neurons, corresponding to the classification classes. The
LSTM-3c model is trained using 35 epochs and a batch size
of 10.
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Fig. 7. The architecture of the LSTM-3c model.

B. Classification by BERT

In the following, we present the classifiers developed with
BERT by considering the same three combinations of features,
but all in a textual form. BERT is based on the concept of
Transfer Learning, namely a Machine Learning technique in
which a model exploits knowledge gained from a problem to
improve its performance on a related one. Unlike directional
models (e.g., the LSTM model), which read the textual input
sequentially (from left to right or vice versa), BERT, as a
contextual model, captures the relationships between words in
a bidirectional manner. In this way, it can learn the context of
a word based on everything around it.

We train BERT by freezing all the pre-trained layers, and a
layer of untrained neurons is added to the top of the architec-
ture. Thus, during the training phase, only the additional clas-
sification layer is trained on the dataset. The classifier has been
implemented using the BertForSequenceClassification

class of the TRANSFORMERS Python library, which corre-
sponds to the BERT model with a single linear layer added
at the top for classification. Among the different available
pre-trained BERT models, we use the “bert-base-uncased”,
which represents the “base” version with 12 transformer

blocks, 768 hidden units, 12 self-attention heads, and considers
lowercase letters.
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Fig. 8. Architecture of the BERT-based model considering all applet’s features
(BERT-3c).

Fig. 8 shows the architecture of the implemented BERT-
based model with all applet’s features in input. In particular,
the input is a sequence of tokens where a special classification
token, denoted with [CLS], is placed at the beginning. All
tokens are first embedded and then processed in the following
blocks. Each block applies self-attention [48] and provides
the output to a feed-forward neural network. Finally, the
representation corresponding to the token [CLS] (H) is given
in input to the Dense Layer added at the top of the architecture,
which is responsible for classifying the input applet.

The models are trained by considering the following hy-
perparameters: 32 as batch size, 2e − 5 as learning rate, 2
epochs, and 1e − 8 as epsilon. This configuration is used
with a maximum sentence length that changes based on the
combination of considered features. In particular, for the first
combination of features, we implement a model named BERT-
1c with a maximum length of 50, as done in Section VI-A1.
For the second combination of features, we implement a model
named BERT-2c with the maximum length of embeddings set
to 20, which corresponds to the longer sentence (as shown in
Fig. 9). With this choice, the semantic meaning of the longer
sentences is better captured, but without excessively affecting
the performances and the training quality of the model. Fur-
thermore, it is also worth noting that the number of services
provided by the IFTTT platform is constantly growing. Thus,
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the considered length allows us to correctly represent any new
trigger/action characterized by many characters, that might be
added in the future.
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Fig. 9. Length distribution (in logarithmic scale) of the sentences obtained
concatenating the discrete features.

Concerning the combination that considers all the features,
we implement a model, named BERT-3c, with the maximum
length of embeddings set to 70, which allows us to fully
consider the discrete features (since they are inserted at
the beginning of each sentence and are certainly correct as
provided by the IFTTT platform) and in addition, in whole or
in part, the title and the description, which can have variable
length and potentially a more or less distorted meaning.

C. Training with Imbalanced Datasets

The constructed dataset of IFTTT applets is “imbalanced”
since the number of observations it contains is not the same
for all classes. Imbalanced datasets are an important challenge
in supervised classification [49]. In fact, a model trained on
imbalanced data tends to classify the input instances with the
class for which the most observations are available, namely the
majority class. Different techniques can be used to alleviate the
imbalanced dataset problem. In this work, we use “penalized”
models, which try to penalize misclassifications related to
minority classes more than those related to the majority class.

In general, the training objective of a model is the mini-
mization of a loss function. Usually, every class in the loss
function has the same weight, i.e., 1. Instead, in a penalized
model these weights are altered for improving the accuracy of
minority classes. In particular, it uses a weighted loss function
that associates different weights to each class according to the
number of class samples in the dataset. For the considered
dataset, the minimum weight is associated with class 0, as it
contains the largest number of samples.

We use the categorical crossentropy as a loss function for
our multiclass classification task. To calculate the weight to
be associated with each class, the compute_class_weight

method of the SCIKIT-LEARN Python library is used. In partic-
ular, having indicated the string ‘BALANCED’ as a parameter,
each weight is calculated as:

weight[Ci] =
#samples

#classes ·#samples[Ci]

where
• #samples: represents the total number of instances con-

sidered for training;
• #classes: represents the total number of considered

classes;
• #samples[Ci]: represents the total number of instances

of class Ci considered for training.
The loss for a sample x of class Ci is calculated as:

loss(x,Ci) = weight[Ci] ·
(
− x[Ci] + log

(∑
j exp(x[j])

))
Imbalanced datasets could also introduce biased estimations

or overfitting in favor of the majority class when using k-
fold cross validation to evaluate the performances of the
models. To alleviate this problem, we use the stratified k-fold
cross validation technique, which performs stratified rather
than random sampling. Stratified sampling is a probabilistic
sampling procedure whereby reference data are divided into
subsets that are as homogeneous as possible to the variable
whose value is to be estimated. It ensures that the folds of the
data have a uniformly representative sampling of the target
attribute.

We use the stratified k-fold cross validation for fine tuning
hyperparameters. In particular, we employ it for the opti-
mization of the weights to be adopted in the loss function
previously introduced. We set k to 4 in this work.

VII. EXPERIMENTAL EVALUATION

We conduct a series of experiments to analyze the perfor-
mances of the implemented models. This section illustrates the
experimental setup, the adopted metrics, and the experimental
results. The latter are compared with those obtained by a
solution evaluating the risk of IFTTT applets through the
information flow analysis [11].

A. Evaluation Setup

Each of the previously described models is trained on the
set of 76,741 applets obtained by the ensemble approach,
whereas the 2,473 manually labeled applets are used as a test
set (named TS_2k). Moreover, since the training set is labeled
through the application of semi-supervised techniques to the
TS_2k applets, we make a further evaluation on 500 applets
randomly chosen among the applets not yet labeled (named
TS_500). In this way, we validate the quality of the proposed
methodology, i.e., the performances of the classification mod-
els to properly discriminate applets’ damage, and the quality
of the labels provided by the ensemble approach.

Once the training and test sets are selected, as said above,
we apply a weighted loss function to solve the imbalanced
dataset problem, obtaining the weights through the stratified k-
fold cross validation. As a new validation set is created at each
iteration, it is not necessary to extract one from the training
set. Therefore, once the weights are obtained, each model is
trained on all 76,741 applets.
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B. Evaluation Metrics

The performances of each classifier are evaluated by con-
sidering the following metrics:

• Accuracy: is the ratio between the number of instances
correctly classified and the total number of considered
instances;

• Precision(Ci): is the ratio between the number of in-
stances of class Ci correctly classified and the total
number of instances to which the classifier associates
class Ci;

• Recall(Ci): is the ratio between the number of instances
of class Ci correctly classified and the total number of
instances of the test set labeled with class Ci;

• F1-score(Ci): is the harmonic mean of Precision and
Recall;

where Ci is one of the four classes of damage. We also
compute the average of the per-class metrics, weighted by the
number of samples for each class in the test set (WAvg).

C. Results and Discussion

1) TS_2k Evaluation: Tables II-V report the values of
Accuracy, Precision, Recall, and F1-score obtained by the
different models on the dataset TS_2k. We can observe that the
worst results are achieved by the models trained considering
discrete features only (i.e., NN-2c and BERT-2c), whereas the
best results are achieved by the BERT model trained on all
features (BERT-3c), which obtained 88% for all the metrics.

LSTM-3c and BERT-1c are the models that obtained results
closer to those of BERT-3c. However, it is worth noting
that the LSTM-3c model achieves a Precision for class 0
(72%) lower than BERT-3c. This means that it classifies
many applets that provide damage as Innocuous, and this is
particularly dangerous for users. At the same time, this model
obtains higher values for Recall of classes 0, 1, and 2, but a
very low value for class 3 (22%). This means that it rarely
classifies an applet with class 3, as also highlighted by the
high Recall values of the other classes. In addition, since the
lowest Precision values are obtained by LSTM-3c for classes
0 and 1 (72% and 77%, respectively), we infer that the model
erroneously classifies most of class 3 applets with one of these
two classes.

The BERT-1c model is characterized by performances very
similar to those of BERT-3c, achieving slightly higher Recall
(for classes 1, 2, and 3) and Precision (for classes 0 and 3)
values, but lower values for Accuracy (86%) and weighted
average results. Concerning the F1-score metric, the BERT-
1c model shows a slightly higher value only for class 3,
confirming that the BERT-3c model performs better on av-
erage. Since the BERT-1c model classifies the applets by only
considering their title and description, the performances of
the model strongly depend on the semantic consistency of the
applets’ title and description contained in the training set. This
information is specified by the user when creating the applet,
and it might happen that it is inconsistent with the applet’s
behavior. In these cases, the BERT-3c model can exploit
the discrete features (trigger, action, and the corresponding
channels) populated by the IFTTT platform.

By focusing on the results per class, we can observe
that for some models the applets of classes 1 and 3 are the
most difficult to identify. For class 1 applets, the reason is
that they could be erroneously classified with class 2 or 3
due to their slight differences in the context of use. As an
example, the applet “Any new photo by me uploaded

in a specific Google Drive folder, publish it

on Twitter” should be classified as class 1 because a user
could share an embarrassing photo unintentionally, whereas
the applet “Any new photo uploaded by anyone in

a specific Google Drive folder, publish it on

Twitter” should be classified as class 3, because the user’s
privacy may be compromised as it is not possible to know
who will upload the photo that will appear on his/her Twitter
profile. On the other hand, the applet “New tweet by me

with a specific hashtag, turn off lights” could
be used by a user to turn off lights with a goodnight tweet,
but it might be triggered also in other situations causing the
lights to go off unintentionally, and consequently, the applet
should be classified as class 1. Instead, the applet “New
tweet by anyone in the area with a specific

tag, turn on lights” allows a user to know if there are
people that published a tweet in the zone, but its behavior
might be compromised by a third party causing damage to
the lights, and consequently, the applet should be classified
as class 2. The differences between these applets are hard to
grasp, and justify the low performances of the models in the
discrimination of class 1 applets with respect to other classes.

Regarding class 3 applets, as said above, they are diffi-
cult to classify by the LSTM-3c model and by the models
using only the information provided by the IFTTT platform
(the discrete features on trigger and action). This might be
due to the fact that the dataset considered for this work
does not contain information about the Fields of the ap-
plets. To understand this aspect, let us consider the follow-
ing applet: “Record your daily Fitbit activity in

a Google Spreadsheet”. In this case, the IFTTT platform
upon creating such an applet requires the user to specify
the spreadsheet to be involved in the automation, which is a
field of the applet. Depending on the selected spreadsheet, the
applet may or may not compromise the user’s privacy. This is
because, if the user specifies a private spreadsheet, which only
s/he can access, then such an applet would not pose any risk.
Conversely, if the user specifies a shared spreadsheet, then
his/her privacy may be compromised as private information
may be leaked to other people.

2) TS_500 Evaluation: To verify if the considered models
generalize well on new applets, we perform an additional
evaluation by considering a new test set obtained through the
random selection of 500 applets among those discarded by the
ensemble approach (i.e., the applets that obtained conflicting
predictions by the three semi-supervised techniques). The
result of the manual classification on these new applets is the
TS_500 dataset containing: 264 applets belonging to class 0,
161 to class 1, 28 to class 2, and 47 to class 3.

Table VI reports the values of Accuracy and F1-score ob-
tained by the classification models on TS_500. We can observe
that all models perform worse than the evaluation on TS_2k,
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TABLE II
ACCURACY OF THE CONSIDERED MODELS ON TS_2K

Model Accuracy (%)
LSTM-1c 80
BERT-1c 86
NN-2c 31
BERT-2c 72
LSTM-3c 79
BERT-3c 88

TABLE III
PRECISION OF THE CONSIDERED MODELS ON TS_2K

Precision (%)
Model class 0 class 1 class 2 class 3 WAvg
LSTM-1c 73 80 86 87 80
BERT-1c 90 80 85 88 86
NN-2c 47 26 31 25 35
BERT-2c 73 66 80 69 72
LSTM-3c 72 77 91 93 81
BERT-3c 89 87 88 87 88

TABLE IV
RECALL OF THE CONSIDERED MODELS ON TS_2K

Recall (%)
Model class 0 class 1 class 2 class 3 WAvg
LSTM-1c 81 62 90 86 80
BERT-1c 77 82 98 95 86
NN-2c 24 32 48 28 31
BERT-2c 54 78 94 78 72
LSTM-3c 90 93 99 22 79
BERT-3c 86 79 97 91 88

TABLE V
F1-SCORE OF THE CONSIDERED MODELS ON TS_2K

F1-score (%)
Model class 0 class 1 class 2 class 3 WAvg
LSTM-1c 77 70 88 86 80
BERT-1c 83 81 91 91 86
NN-2c 32 28 37 27 31
BERT-2c 62 71 87 73 71
LSTM-3c 80 84 95 36 75
BERT-3c 87 83 92 89 88

except for BERT-3c, which increases its Accuracy (F1-score,
resp.) from 88% to 91% (92%, resp.). In the following, we
provide a detailed analysis of the results achieved by BERT-3c.
For this model, we also analyze whether semantically consis-
tent titles and descriptions influence its performances. To this
end, we manually verify the consistency of the applet’s titles
and descriptions with respect to the applet’s behavior. This
process leads to the identification of 75 applets whose titles
and descriptions do not describe the goal of the automation.
The dataset without these applets (named TS_425) consists of
209 class 0 applets, 147 of class 1, 27 of class 2, and 42 of
class 3.

TABLE VI
ACCURACY AND F1-SCORE ACHIEVED BY THE CONSIDERED MODELS ON

TS_500

Model Accuracy (%) WAvg F1-score (%)
LSTM-1c 60 57
BERT-1c 71 71
NN-2c 29 29
BERT-2c 63 61
LSTM-3c 75 73
BERT-3c 91 92

Table VII reports the values of the metrics obtained by
BERT-3c on TS_500 and TS_425. The results are better than
those obtained on TS_2k in almost all classes, as also high-
lighted by F1-score. In fact, BERT-3c correctly discriminates
class 1 applets, differently from what happened previously.
However, the results for class 2 applets are considerably
worsened.

Tables VIII and IX show the confusion matrices obtained
from the classification results on TS_500 and TS_425. We
can observe that the model’s performances are slightly better
when only consistent applets are classified, confirming that
this applet’s property allows the model to better discriminate
among classes. By analyzing the Recall, we can observe that
BERT-3c correctly classifies all class 2 and class 3 applets,

while it makes some mistakes on the other two classes. In
fact, with this evaluation, we discover another ambiguity in
discriminating between class 2 and class 0 applets. As an ex-
ample, the applet with description “Email a map of where

I parked” might be classified as class 2 because a user could
share his/her car position unintentionally, and a third party
might exploit this information to cause damage. However,
as the ActionTitle of this applet is “Send me an email”, it
should be classified as class 0 because the information remains
private. Since the number of class 0 applets is much higher
than those of class 2, it happens that these misclassifications
for class 0 applets are relatively frequent with respect to class
2 applets, leading to a very low precision value for class 2.

D. Comparative Evaluation

To further assess the validity of the proposed approach,
we compare the performances of the BERT-3c model with
those of a baseline system implementing an information flow
analysis similar to the one proposed in [11]. The latter exploits
a secrecy lattice to identify possible violations caused by an
IFTTT applet. The lattice of the baseline system introduces
two levels of restriction, namely public and private, asserting
that a secrecy violation occurs when the information flows
from the private level toward the public one. Considering this
type of approach, we devise a methodology following such
a principle for classifying an applet through the analysis of
its channels, namely Information Flow Classifier (IFC). The
classification labels of IFC are:

• Harmless: indicates that the applet contains no elements
that may lead to violations;

• Harmful: indicates that the applet contains elements that
may lead to violations.

To implement the baseline system, we first extract all the
channels of the IFTTT platform from the constructed dataset.
Each channel belongs to one of the following categories:

• Smart Objects;
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TABLE VII
PERFORMANCES OF BERT-3C ON TS_500 AND ITS SUBSET OF “CONSISTENT” APPLETS TS_425

Accuracy (%) Precision (%) Recall (%) F1-score (%)
TS_500 TS_425 TS_500 TS_425 TS_500 TS_425 TS_500 TS_425

Class 0 97 98 88 89 92 94
Class 1 94 99 94 95 94 97
Class 2 54 59 100 100 70 74
Class 3 90 89 96 100 93 94
WAvg 91 93 93 95 91 93 92 93

TABLE VIII
CONFUSION MATRIX OBTAINED FOR TS_500
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TABLE IX
CONFUSION MATRIX OBTAINED FOR TS_425
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TABLE X
A COMPARISON OF THE RESULTS OBTAINED BY IFC AND BINARYBERT-3C FOR TS_2K

Accuracy (%) Precision (%) Recall (%) F1-score (%)
Methodology class HL class HF class HL class HF class HL class HF
IFC 46 41 70 87 20 56 32
BinaryBERT-3c 92 89 93 90 93 89 93

• Cloud Services;
• Social Networks.
We assign to each channel one of the following labels:
• Private: refers to channels that by default tend to privatize

the information they manage, e.g., Google Drive by
default allows users to privately store their files;

• Public: refers to channels that by default tend to publicly
share the information they manage, e.g., Facebook by
default allows other people to view the content that a
user uploads on the platform.

The channels belonging to the “Smart Objects” or “Cloud
Services” categories are categorized as operating in private
contexts, while the “Social Networks” channels are catego-
rized as operating in public contexts.

The process of applet labeling is performed as follows:
• If the trigger channel is labeled as “Private” and the

action channel as “Public”, then the applet is labeled as
“Harmful”;

• in all other cases the applet is labeled as “Harmless”.
The reasoning behind such a choice is based on the as-

sumption made in [11], where the authors state that “it is safe
to allow information to flow from a lower (public or trusted)
label to a higher (private or untrusted) label, but not the other
way around”. Here, the terms higher and lower refer to the
nodes of the secrecy lattice.

Since this methodology allows us to classify an applet
as Harmful or not, it is necessary to modify the labels of
our dataset in terms of binary classification. In particular,
the previous applets of classes 1, 2, and 3 are modified
with the new class HF, which corresponds to “Harmful”,
whereas the class 0 applets are labeled with the new class
HL, corresponding to “Harmless”. Thus, to compare the two
classifiers, we train the BERT-3c model on the dataset with
binary labels. We will refer to this model as BinaryBERT-3c.

For the evaluation phase, we use the test set TS_2k ob-
taining the results reported in Table X. We can observe that
IFC is not capable of accurately identify Harmful applets as
highlighted by the Recall value of class HF (20%) and the
Precision value of class HL (41%). This is due to the prominent
lack of contextual information available when IFC classifies an
applet. In particular, a static approach that considers only the
trigger and action channels provides a too high generalization
of the applet’s behavior. In fact, as highlighted by the literature,
the classification of an applet with respect to different classes
of damage can be strongly derived from the analysis of its
semantic components [10], [12]. As an example, if we consider
the classification with IFC of the applet introduced in Section
VII-C, the trigger channel “Fitbit” and the action channel
“Google Drive” would be labeled as Private, and the applet
is classified as Harmless. Conversely, BinaryBERT-3c exploits
NLP techniques that allow to extract the semantic meaning of

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3222615

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE INTERNET OF THINGS JOURNAL 15

the descriptions and understand the applet’s action context,
which help to disambiguate the rules that are difficult to
classify by analyzing only the trigger and the action. In fact,
as shown in Table X, BinaryBERT-3c is capable of correctly
classifying 92% of applets, as highlighted by the Accuracy
value. In addition, high values for Precision, Recall, and F1-
score in both classes provide a further hint about the ability
of the model to classify them.

VIII. CONCLUSION AND FUTURE WORK

In this article, we have presented an approach to auto-
matically identify individual ECA rules that are potentially
dangerous for the security of the smart environment and for
the privacy of the user. The approach exploits the capability
of NLP models to semantically analyze the information of the
rules, fostering an appropriate identification of the risks asso-
ciated with them. The effectiveness of the proposed approach
has been successfully demonstrated on the IFTTT platform, by
considering different ANN and BERT-based models trained
on a dataset of 76,741 applets. The labeling process of the
dataset exploited semi-supervised learning techniques and an
ensemble method. The evaluation of the results highlighted
that the BERT-3c classifier, fine-tuned considering all rule’s
features, achieved the highest Precision and Recall values,
scoring on average 88% for the TS_2k test set and 93% for the
TS_425 test set. BERT-3c has also been compared on a binary
classification task with an approach based on information flow
analysis. This evaluation proved that our approach best fits the
task of classifying harmful ECA rules since it is able to extract
the semantic and contextual meaning of the rules.

In the future, we would like to further improve the perfor-
mances of the classification models by enhancing the quality
of the training set. In fact, as highlighted during the evaluation,
several applets are characterized by descriptions semantically
inconsistent with the actual applet behavior. Thus, we intend to
introduce a pre-processing phase exploiting language genera-
tion models to obtain training sets with consistent descriptions.
Other important rule features that could be considered are
the Fields (see Section IV). To date, such information is not
available in any dataset, since their values are assigned by
the user when the applet is activated. In the future, we would
like to train the models on a set of instantiated applets. For
achieving such a goal, we should recruit a conspicuous number
of participants to provide examples of how they would set
up an ECA rule. Finally, we are also planning to expand our
model with the capabilities to evaluate applets’ risks when they
are activated sequentially, generating a cause-effect relation,
i.e., the action of a rule can trigger another one. In fact,
some rules might be harmless if considered alone, while their
interaction may give rise to some type of damage to users [3].

APPENDIX A
Supplementary material related to this article can

be found online at https://github.com/empathy-ws/
Harmful-ECA-rules-classifiers. The repository provides
the source code and datasets used in the experimental sections
of the paper, as well as detailed notebooks showing the use
of the provided models.
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