
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ccos20

Connection Science

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ccos20

Dependable workflow management system for
smart farms

Catalin Negru, George Musat, Madalin Colezea, Constantin Anghel,
Alexandru Dumitrascu, Florin Pop, Carmen De Maio & Aniello Castiglione

To cite this article: Catalin Negru, George Musat, Madalin Colezea, Constantin Anghel,
Alexandru Dumitrascu, Florin Pop, Carmen De Maio & Aniello Castiglione (2022) Dependable
workflow management system for smart farms, Connection Science, 34:1, 1833-1854, DOI:
10.1080/09540091.2022.2083078

To link to this article: https://doi.org/10.1080/09540091.2022.2083078

© 2022 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 22 Jun 2022.

Submit your article to this journal

Article views: 359

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ccos20
https://www.tandfonline.com/loi/ccos20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/09540091.2022.2083078
https://doi.org/10.1080/09540091.2022.2083078
https://www.tandfonline.com/action/authorSubmission?journalCode=ccos20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ccos20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/09540091.2022.2083078
https://www.tandfonline.com/doi/mlt/10.1080/09540091.2022.2083078
http://crossmark.crossref.org/dialog/?doi=10.1080/09540091.2022.2083078&domain=pdf&date_stamp=2022-06-22
http://crossmark.crossref.org/dialog/?doi=10.1080/09540091.2022.2083078&domain=pdf&date_stamp=2022-06-22

CONNECTION SCIENCE
2022, VOL. 34, NO. 1, 1833–1854
https://doi.org/10.1080/09540091.2022.2083078

Dependable workflowmanagement system for smart farms

Catalin Negrua, George Musata, Madalin Colezeaa, Constantin Anghelb, Alexandru
Dumitrascua, Florin Popa,c, Carmen De Maiod and Aniello Castiglionee

aUniversity Politehnica of Bucharest, Bucharest, Romania; bNational Institute of Research and Development
in Mechatronics and Measurement Technique, Bucharest, Romania; cNational Institute for Research and
Development in Informatics, Bucharest, Romania; dDepartment of Computer Engineering, Electrical
Engineering and Applied Mathematics (DIEM), University of Salerno, Fisciano, Italy; eDepartment of Science
and Technology, University of Naples Parthenope, Naples, Italy

ABSTRACT
Smart Farming is a new and emerging domain representing the
application ofmodern technologies into agriculture, leading to a rev-
olution of this classic domain. CLUeFARM is a web platform in the
domain of smart farming which main purpose is to help farmers to
easily manage and supervise their farms from any device connected
to the Internet, offering some useful services. Cloud technologies
evolved a lot in recent years and based on this growth, microser-
vices are more and more used. If for the server side, the scalability
and reusability are solved in high proportion by microservices, on
the client side of web applications, there was no independent solu-
tion until the recent emergence of web components. They can be
seen as the microservices of the front-end. Microservices and web
components are usually used isolated one of each other. This paper
proposes and presents the functionality and implementation of a
dependable workflow management service by using an end-to-end
microservices approach.

ARTICLE HISTORY
Received 7 January 2022
Accepted 15 May 2022

KEYWORDS
Workflowmanagement;
smart farms; micro-services;
cloud-based applications;
IoT-based applications;
dependability; system
architecture

1. Introduction

Nowadays, the Internet together with web and Cloud technologies are evolving at an
increasing speed and many traditional desktop or self-hosted applications are ported to
the Cloud to be easily accessed, scaled and managed. Moreover, the agriculture is one of
the new fields where Cloud technologies are adopted, leading to the emergence of a new
research field called “Smart Farming”.

Smart Farming is a new and emerging domain representing the application of mod-
ern technologies into agriculture, leading to a revolution of this classic domain. It uses
the advantages offered by the Internet of Things, Big Data, Cloud Computing, actuators,
sensors, geospatial localisation or drones to achieve a better productivity (Meola, 2016), ful-
filling the needs of the actual society. The population is growing constantly and the amount
of resources needed increases.

CONTACT Florin Pop florin.pop@upb.ro University Politehnica of Bucharest, Splaiul Independentei no. 313,
Sector 6, Bucharest, Romania; National Institute for Research and Development in Informatics, Bucharest, Romania

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is anOpenAccess article distributed under the terms of the Creative CommonsAttribution License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.aisb.org.uk/
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/09540091.2022.2083078&domain=pdf&date_stamp=2022-06-06
mailto:florin.pop@upb.ro
http://creativecommons.org/licenses/by/4.0/

1834 C. NEGRU ET AL.

The novelty of our approach is given by the usage of microservices deployment model
for smart farms systems compared with traditional monolithic approach usually used to
deploy such systems. This can lead to better integration of smart farms functionalities and
better performance for large-scale deployments.

Themain idea behind the “Smart Farming” concept is to collect, process, store and anal-
yse data from smart farms equipped with air, and soil wireless sensors (Kanjilal et al., 2014),
to provide farmers with valuable information and insights regarding crop evolution (Wal-
ter et al., 2017). So, for instance, a support decision system can give information about
performing different tasks such as configuring different parameters, starting/stopping the
irrigation, turning on or off the lights. Furthermore, in the case of a distributed system that
aims to manage a large number of farms, all collected data need to be processed in Cloud
(Wolfert et al., 2017).

The main objective of this paper is to propose and describe in detail a new way of
extendingweb applications, called ‘end-to-endmicroservices’. The applicability of this new
architectural pattern is proved by integrating the new workflow management service into
the CLUeFARM platform.

2. Related work

This work is based on two previous works. In Mocanu et al. (2015), we propose a Cloud
architecture for a smart farming system that aim to help farmers and, in Colezea et al. (2018)
and in Bojan et al. (2015) we propose the CLUeFARM platform.

Although the CLUeFARMplatformoffers amultitude of services, there is always place for
better, so the platform can be extended further in various areas. One of these areas relates
to the need of the farmers to be advised and guided throughout the process of farming.

A workflow can be defined as a set of steps that comprise a work process, often a
repeated process (Georgakopoulos et al., 1995). The steps can be a task, an event or an
interaction that involves a person or a group of persons. A workflow can be sequential,
when each step, except the first one, is dependent of the execution of the previous step or
parallel, when two or more steps can execute concurrently. A workflow can also be seen as
an abstraction of a real work, a process in a company or the life cycle of a plantation process.

A business process is also a set of related tasks that leads to a defined set of results
(Fleischmann et al., 2012). The difference between a workflow and a business process is
that a workflow is a more general term and it refers to a way to automate business pro-
cesses. Michael Havey defines a workflow as a step-by-step algorithm to achieve a business
objective (Havey, 2005).

The architecture consists of a series of components, the heart of the system being the
runtime engine, which is responsible for executing the workflows (Yu et al., 2021). The
humans can interact with the system through some graphic applications. They can create
and update the workflows executed by the engine. The workflows should be stored in a
database that can be accessed by the system administrator. The system must make avail-
able a method of administration and monitoring. It must be deployed on an application
server and will be accessible through web services.

With the advent of theCloudComputing, thebusiness processmodelling took a step fur-
ther and has evolved to Business Process as a Service (BPaaS). Business Process as a Service
sits on topof other three cloud services (IaaS, PaaS and SaaS) and is often described as away

CONNECTION SCIENCE 1835

of executing workflows (business processes) in the Cloud. Companies always tried to auto-
mate their processes. They did this by themselves or hire another company to automate
the processes for them. Maybe a service-oriented approach is a better choice. This was the
main idea of which the CloudSocket project starts (Lee et al., 2018).

Regarding smart farming concept there are different approaches in the literature. In
Jindarat and Wuttidittachotti (2015), the authors investigate the design of an smart farm
system for chicken farming management, using embedded systems (e.g. Raspberry Pi and
Arduino Uno) and smart phones. The system was used to monitor surrounding weather
conditions including humidity, temperature, climate quality. The findings of the study
showed that this type of systems can achieve cost reduction, asset saving and productive
management. Although the study is very interesting, it is based on a traditional architecture
that do not cope with challenges raised by a distributed resource management system.

In O’Grady andO’Hare (2017) is presented a theoretical approach in designing andmod-
elling farm-specific models. Further, it presents an overview of models within the farming
enterprise and reviews the state of the art in smart technologies. One interesting conclusion
of the study is that the monolithic nature of many models impose difficulties for individual
farmers in applying such models in practice. So, a microservices approach could led to a
better adoption of such models and systems in practice.

The authors of Moon et al. (2018) start from the fact that the storage and processing of
big data for smart farming applications become a huge challenge. They propose the tech-
nique of lossy compression which can unleash the power of compression to IoT systems
because it can significantly reduce the data. Furthermore such a technique can be imple-
mentedmode efficiently in a microservice deployment approach due to the fact that it can
be implemented easily as a microservice of the platform.

The paper (Muangprathub et al., 2019) proposes an IoT system and data analysis for
smart farms. Thepresented system is basedon three components: hardware to connect and
obtain data of crops, web application to manipulate data and mobile application used to
control the crop watering. This system is also deployed as a traditional system. A microser-
vice deployment approach would be more suitable for large-scale deployment of a such
system.

3. CLUeFARM platform extension

This work is based on existing CLUeFARM platform which is a Cloud-based platform that
provides services to help farmers better manage smart farms. The services provided are
divided into two directions, farm management services and social networking services. All
these represent an integrated platform that can bring benefits to farmers. Figure 1 shows
the architecture of the platform. The platform consists of two applications that actively
communicate with each other.

The backend application is, actually, a Java application, using the Spring Framework. We
chose to use this framework because it is a huge platform with a large community that
helps us towriteweb applications in a simpleway, following the latest technologies aswell.
It is mainly used for the Java Enterprise Edition (Java EE) platform. We also use the Spring
MVC framework that is based on the core framework. MVC (Model-View-Controller) is an
architectural model in software engineering that has the role of delimiting the business
logic from the user interface.

1836 C. NEGRU ET AL.

Figure 1. General architecture of the CLUeFARM platform (Musat et al., 2018).

In addition, many modules are used within the platform which helps us to easily imple-
ment some of the features. The Spring Security Framework deals with platform security,
access control and session management for users. We use Social Spring module to allow
users to authenticate using third party platforms. For data access, we use Spring Data
JPA that offers integrated CRUD (Create, Read, Update and Delete) methods. We can also
create custom queries using an SQL-like language named JPQL (Java Persistence Query
Language).

Regarding the data persistence, we chose to use a MySQL database as being the most
popular relational database at themoment. Also, it is really easy to work with it. For adding
default data in the database, we used Liquibase which manages and updates database
scripts using MD5 technique to store the codification of the scripts to track any change
inside update scripts.

The second application is represented by the frontend application. It is implemented
using the AngularJS Framework which is a javascript framework that offers us a lot of fea-
tures to easily develop a dynamic web application oriented to user interaction and user
experience. We used Hyper Text Markup Language (HTML5) and Cascading Style Sheets
(CSS3) to implement the markup and style section of the frontend application. We also use
Bootstrap 3, a frontend framework which consist of html and css templates, with the pur-
pose of helping us to create an interface that customers can easily understand. It also helps
us to create a responsive application that can be naturally used on any device. We chose to
implement the frontend application using the Single-Page Application (SPA) principle to
replace loading new pages when navigating with rewriting them in the same page, all of
this features being implemented using the javascript framework.

CONNECTION SCIENCE 1837

Representational State Transfer (REST) defines a set of constraints that can be used to
create web services. These services provide interoperability between our frontend and
backend applications. WebSocket is a communication protocol that provides full-duplex
communication channel over a TCP connection. Only the backend application is respon-
sible for communication with the database and it should send the data to the frontend
application using these communication protocols. The platform also integrates with other
external services. Some of these will be described below.

The frontend application uses two services, Google Maps and Google Places, to help
farmers provide the geospatial coordinates of the greenhouses without having to know
them. They can also search for localities on the map.

The backend application integrates with many external services such as e-mail service
to send emails to users, weather service, responsible for sending weather data for a certain
period in the greenhouse areas of the platform. At the same time, each user-registered farm
must have saved login credentials to the local farm’s database to retrieve the data to cre-
ate some processing on it. In the current phase, the platform offers integration only with
MongoDB databases.

4. Workflowmanagement service

In the CLUeFARMplatform, aworkflowhas the role of guiding a farmer during various activ-
ities that he performs in a farm. Regardless of farmer experience, he can use a workflow to
assist his or just to remember him about the actions that need to be done on a certain date.
This service will increase the farm productivity by guiding the farmers through the farming
process or by helping them to fulfil administrative tasks.

Forwards, we will give a functional overview of the workflow management service,
including two important user flows: creating a new workflow and subscribing a farm to
a workflow. After that, we will explain the way of integrating this new service into the
CLUeFARM platform using the end-to-end-microservice architectural pattern. Last, we will
present some important technical design decisions that we havemade and the technology
stack used, along with the service specification and some implementation details.

4.1. End-to-endmicroservices

It is very difficult to maintain and extend a big web application, and such an application is
also very hard to scale. One of the most important programming principles is the “Don’t
repeat yourself” (DRY) re-using the code principle (Hunt, 1900). This is a concept that help
reduce the line of codes of a software and implicitly its complexitymaking it moremanage-
able and less error prone. Having this principle in mind, a lot of libraries and frameworks
were developed for all the programming languages commonly used (Apache Commons
library suite, Spring Framework for Java;.NET framework for C#; Laravel Framework for PHP
and so on). Their main purpose is to reduce code duplication and offer some “ready to use”,
easy to plug in functionalities. A study made at Google it was proven that the most used
code reuse possibility is the usage of the software libraries (89% of the engineers) followed
by the software frameworks (53% of the engineers) (Bauer et al., 2014).

All the techniques mentioned above, together with design patterns and best practices
that developers have to follow help only to reduce code duplication and solve repetitive

1838 C. NEGRU ET AL.

tasks (e.g. authentication, authorisation, parsing, data persistence) only from a technical
point of view, having an increased level of abstraction. The business logic should be always
built from zero. Considering the current situation, this is not enough anymore. The next
level represents the possibility of reusing whole systems.

In general, modern web applications are divided into two main parts: a front-end appli-
cation, responsible for the interface and the interaction with the user, and a back-end
application responsible for the exposure of services. For both parts, there areways of “plug-
ging in” functionality by using components for the FE (any popular FE framework has a lot
of UI components that can be used) and other services for the BE (a weather service for
example).

Unfortunately, there is noeasyway tohaveend toend reusable functionality. End-to-end
functionalities are usually provided by whole applications or systems which comes with a
lot of overhead (the biggest part of their offerings is not needed), they need to be deployed
separately and are hard to configure and integrate. In this section, we will propose a solu-
tion for pluggable end-to-end functionalities based on the use of microservices and web
components.

4.2. End-to-endmicroservice architecture

In the previous section, we have seen the advantages that a microservice architecture has
over a monolithic one.

The reality is that in most of the cases only the backend is split into multiple microser-
vices, the frontend application still being a monolith. There is only one big frontend appli-
cation that communicate with the backend, usually through HTTP. There is a big progress
comparing to one monolith application, or even worst, applications where frontend is
server rendered.

In terms of code reuse, both frontend and backend applications can use frameworks or
libraries, but if another frontend application would want to reuse the functionality offered
by service one, the developing team will have to implement again all the communication
logic. This approach could lead to code quality decreases and it also takes a lot of time.

In terms of code reuse, both frontend and backend applications can use frameworks or
libraries, but if another frontend application would want to reuse the functionality offered
by service one, the developing team will have to implement again all the communication
logic. This approach could lead to code quality decrease and it also takes a lot of time.

Another approach for easily reusing the functionality offered by a backend microser-
vice is to develop a team of the backend service and also build a frontend component that
encapsulates the UI all the logic for communicatingwith the backend. The trade-off for this
solution is that a component should be developed for each frontend framework, and this
can be difficult because of the lack of knowledge and it also takes a lot of time.

4.3. Functional description

In CLUeFARM platform, a workflow represents a semi-automated flow of steps that will
guide the farmers through different processes. By using the platform, the farmer can asso-
ciate one ormoreworkflows formany farms (many tomany relationship). After the creation

CONNECTION SCIENCE 1839

of a new workflow, the farmer will be notified through the notification service about the
actions that he needs to, having a configurable grace period before task occurrence.

There are three possible types of flows that can be used in the platform:

• Static workflows: This type of workflows is applicable to any farm and represents recur-
sive administrative actions that occurs at fixeddate, once a year for example. An example
of such a task is the annual paying of taxes. These types ofworkflows can be defined only
by an administrator of the platform and they can have one or multiple steps. Each step
needs the confirmation of the farmer to be considered done.

• Cropworkflows: Those workflows refer to entire life cycles of crops. An example of a crop
workflow is represented by the process of planting tomatoes. The seedlings need to be
planted. After that they need to be irrigated, fertilised and finally harvested. This type
of workflow can be defined by the administrator based on agriculture knowledge or by
any user, but in this case the workflow needs to be approved by the administrator to be
visible also to other users.

• User defined(custom) workflows: This type of workflow has a similar structure with the
cropworkflows but do not refer strictly to planting actions, their actions are represented
by any task that the user wants to do. So, those are fully configurable workflows, and
they can be used without any restriction.

Figure 2presents a generic sequentialworkflow. It is a basicworkflow composedof three
tasks. One of the Task 2 or Task 3 is executed after Task 1 depending of the result of condi-
tion 1. Eachnode (task) is characterisedby a couple of attributes like name, description, start
date, end date and done. Those properties are specified at workflow creation time, except-
ing the done flag which is updated by the user when he completes a task. In the figure is

Figure 2. Generic workflow.

1840 C. NEGRU ET AL.

also specified the period in which the user will be notified about a task (with a configurable
period of time before the occurrence of the task).

There are two main actions that can be done in the platform related to workflow: the
designing of a workflow and the subscription to a workflow.

4.3.1. Designing aworkflow
In Figure 3, it is presented the steps that a user has to follow to design and register a new
workflowwithin theplatform. Theusermust be authenticatedbefore accessing this service.
After logging in, the service can be accessed by clicking on the “Workflows” menu item in
the dashboard.

Inside the dashboard page, all the visible workflows for current user are listed and can
be filtered by different criteria like name, category, keyword or only the owned workflows
can be displayed. Starting from this page, multiple actions are possible:

• Add a new workflow: By clicking on the “Add a new workflow” button, the workflow
modelling page is opened. The mandatory information that should be filled in are the
following: the workflow name, the category and the root step and the visibility. The cat-
egory can be “Static”, “Crop” and “Custom”. The visibility can be “Public”, “Group” and
“Private”. If a workflow is public, it can be viewed by any user; if the visibility is “Group”,
then theworkflowwill only be visible to users from thegroups towhich theuser belongs;
a private workflow is visible only to the owner. Optionally, a list of keywords can be also
added. Doing so, the workflow can be easily searched and found by other users. Adding
a new step means specifying a name, a description, a start date, an end date and a par-
ent, for non-root steps. A conditional step can be added by specifying a description. A
condition can have two child steps, first will be executed if the condition is fulfilled and
the second in the other situation. Any number of steps and conditions can be added.
While adding the workflow steps, it can be easily reviewed because it is displayed in an
intuitive way, like a graph. The workflow can be saved by clicking on the “Save” button.

Figure 3. Designing a workflow.

CONNECTION SCIENCE 1841

This action will trigger the syntactic validation of the workflow. If the workflow is valid,
it will be saved and the user will be notified. Otherwise, user will receive a message con-
taining the errors present in his design, errors they need to resolve to be able to save the
workflow. After saving, the new workflow can be found on the workflow list.

• Edit a workflow: A user can edit a workflow by selecting it from the list and click on the
“Edit” button. The process of editing a workflow is the same as the process of adding it.
A workflow cannot be edited if it is currently in use, but the user has the possibility to
create a new version for it. In this way, the old version still can be used.

• Delete a workflow: A workflow can be deleted after selecting it from the list, by clicking
the “Delete” button. The user should confirm the deletion. A workflow can be deleted
only if it is not used. Otherwise, an error message will be displayed.

• Publish a workflow: For crop workflows, to be visible to other users, they should be pub-
lished and approved by an admin. The user can request the approval by selecting a crop
workflow and click on the “Publish” button. When this action occurs, the administrators
are notified and after reviewing theworkflow, they can approve or deny the publication.

4.3.2. Subscribing to aworkflow
In Figure 3, thenecessary actions for subscribing to aworkflowarepresented. Like anyother
service of the platform, the workflow service can be accessed only if the user is logged in.
For viewing the list of workflows, the user should click on the “Workflow” item on the side
menu of the dashboard (Figure 4). After accessing the service page, the user can see a list
of all available workflows, workflows that he can subscribe to. The user cannot see all the
workflows in the platform, the list being filtered in advance. He can only see:

• Owned workflows;
• Cropworkflows that are published and their visibility is even “Public” or “Group” and the

current user is in the same group as the owner of the workflow;
• All static workflows.

Workflows canbe searchedby tags, by nameandby type. After finding thedesiredwork-
flow, in order to subscribe to it, the user has to select it, see all its details in amodal and then,

Figure 4. Designing a workflow.

1842 C. NEGRU ET AL.

click the “Subscribe” button. After that, the user has to select one or more of his farms for
which he wants to subscribe, and then confirm this action.

The consequences of the subscription are that the userwill be notified, using the existing
“Notification Service”, about the deadlines and important events of each step for each farm.
The resolution of each step should be manually updated by the farmer from the “Work-
flows” tab on the farm visualisation page. From the same tab, the farmer can unsubscribe
from the workflow anytime he wants. This will cause the notifications to stop.

So, giving the possibility to the platform users (e.g. farmers) to add, define and usework-
flows related to farmactivities represents amajor step ahead regarding information sharing
between farmers. Furthermore, by collecting information from different farms a guide of
best practices can be shared between farmers.

4.4. Design decisions

4.4.1. Technology stack
TheWorkflowmanagement service is developed separately from the CLUeFARM platform,
following themicroservice architectural pattern.We decided to do so because the platform
is already big enough in terms of size and features, and by adding new features to it will
make the code base harder to manage and extend. Another reason for choosing to build
the service as a microservice are the advantages that this architecture has comparing to
monolithic one.

The microservice will be developed using Java programming language with Spring
Framework. This is a framework developed over Java EE which offers an infrastructure for
easy development of Java applications. We choose to use this framework because with
his aid the application can be developed faster in a modular way, using features such as
“Dependency Injection” or “Aspect Oriented Programming”. Another big advantage that it
offers is the removal of duplicated code normally written for doing common and repet-
itive tasks such as accessing the database. It is easy to integrate with other libraries or
drivers.

A couple of Spring projects are used, like Spring Boot1 for fast generation of the project
having already done configurations. It also comes with a built-in web server (Tomcat), the
installation of a separate onenot being required for starting the application. Spring Security
is used forhandling theauthenticationandauthorisation in adecoupledway, usingaspects.
Spring MVC (Model View Controller), as its name suggests, it offers an MVC architecture
with already developed components for easy development of web applications. It is built
around a servlet – DispatcherServlet – which is responsible for interception and routing
of all the HTTP requests. Spring Data Neo4j offers advanced features for mapping between
java objects (POJOs) andNeo4j database items (nodes, properties, relationships). It is based
on the Neo4j-OGM2 library and it allows the auto-generation of Cypher Graph Query
Language (declarative language for efficient querying and updating of graph properties)
queries.

For build process automation and dependency management, we choose to use Gradle.
This is a modern tool that took the advantages of his ancestors like Ant and Maven. Com-
paring to his ancestors who are based on XML, In Gradle scripts can be written in an own
DSL language based on Groovy programming language which makes them easier to write
and maintain (Conversations, 2018).

CONNECTION SCIENCE 1843

4.4.2. Authentication and authorisation
For authentication,wehad to choose in the first placebetweenusing a stateful or a stateless
authentication. In a stateful authentication, all the data is stored in a central place and for a
complex architecture like a microservices architecture this can be a limitation. Also, if other
data about the user is necessary, it should be retrieved from other source for every request,
operation which impacts the performance (Peyrott, 2017). Usually, the stateful authenti-
cation is backed by a session id which is generated once the user is authenticated and
this is most often a random string. This is one of the biggest advantages of this type of
authentication because it offers opacity, but this can be also achieved by using stateless
authentication.

Being in a microservices world, where data is split among the different databases of the
services (the database of the CLUeFARM platform and the database of the Workflow Man-
agement Service in our particular case) the stateless authentication is the bigwinner. In our
case, the new service should not even know the details of the platform user other than a
unique identifier.

The implementation details of the authentication and the data flow of it will be pre-
sented in a following chapter. Although any kind of token cam be used for stateless
authentication, our implementation is based on the JSON Web Token technology (JWT)
which become a standard de facto for doing this. JWT is a compact, URL-safe means of rep-
resenting claims to be transferred between two parties (Jones et al., 2015). The structure
of a JWT can be seen in Figure 5. It is composed of three sections separated by a dot. The
first section is the header and it is a JSON which have two claims, one for describing the
algorithm used and other for specifying the type of JWT. The second section is the payload,
which contains a JSON with the actual data. The third sections are the signature. All three
sections are base64 encoded.

By applying a digital signature on the JWT it becomes a JWS (JSONWeb Signature). If the
JWS is also encrypted, it becomes a so-called JWE (JSONWeb Encryption) and by doing so,
the token becomes opaque, as a normal session id.

4.4.3. Database
As we specified earlier, in general a microservice has his own database, as in the case of
the Workflow Management Service. The first big decision that we had to take was to use
an SQL or an NoSQL database. Into the SQL databases data is organised in tables with rela-
tions between them. Each column represents an attribute. SQL databases guarantee ACID
transactions. Itmeans that any transactions are Atomic (all the operations in transactionwill
complete or fail), Consistent (the database will be in a consistent state when the transac-
tionsbegin andends), Isolated (each transaction is executed likebeing theonly transactions
upon the database), Durable (if the transaction is executed successfully then it will not be
reverted) (Li & Manoharan, 2013). For querying data, SQL language is used.

Figure 5. JWT structure.

1844 C. NEGRU ET AL.

NoSQL (Not only SQL) databases refer to all data storing models which are different of
the SQLmodel. This type of database was developed with some key principles in mind, like
As we specified earlier, in general a microservice has his own database, as in the case of the
WorkflowManagement Service. The first big decision thatwe had to takewas to use an SQL
or an NoSQL database.

Into the SQL databases, data is organised in tables with relations between them. Each
column represents an attribute. SQL databases guarantee ACID transactions. It means
that any transactions are Atomic (all the operations in transaction will complete or fail),
Consistent (the database will be in a consistent state when the transactions begin and
ends), Isolated (each transaction is executed like being the only transactions upon the
database), Durable (if the transaction is executed successfully then it will not be reverted)
(Li & Manoharan, 2013). For querying data, SQL language is used.

NoSQL (Not only SQL) databases refer to all data storing models which are different of
the SQL model. This type of database was developed with some key principles in mind,
like scalability availability, ease in processing huge amount of data and ease in partitioning
data. They are characterised by BASE properties (Basically Available, Soft State, Eventually
Consistent).

The data stored by the Workflow Management Service are workflows and information
related to the subscriptions of farms to workflows. Considering the different types of work-
flows that are supported, the flexibility is one of the most important aspect that should be
taken into consideration while choosing a database, this is why we decided to go for an
NoSQL database. The application being a microservice, which will probably be scaled, the
ease of scalability was another argument for not choosing an SQL database. As we will see
in a following chapter, a workflow can be easily designed as a graph, so this type of NoSQL
database is the most appropriate for our data. Other argument for choosing this type of
NoSQL database is the fact that it is the most flexible model, and it can store very compli-
cated structures. Because the chosen solution is a graph database, we will describe further
in more detail this type of database.

We decided to use Neo4j3 graph database for our service. It is the most performant and
popular graphdatabasewhichoffers graphdataprocessing and storage, ACID transactions,
CQL query language, rich APIs and drivers for C#, Java, JavaScript and Python programming
languages. It also has a browser for visualise and query data.

4.5. Workflowmanagement service architecture and data flow

The type of workflow implemented in this service is situated between a standard business
process and a workflow, the letter referring to the automatisation of a business process.
The workflows in cause cannot be automated because they involve the intervention of the
user in every task. The user has to confirm that a task is done, otherwise the flow cannot be
continued.

The “Workflow Service” is designed as a micro service, totally separated from the CLUe-
FARMplatform. This can be seen also in Figure 6where the service architecture is presented
along with the communication flow between the service in discussion and the platform. It
is supposed to be a general solution for storing any kind of workflows, not only workflows
needed by the CLUeFARM platform.

CONNECTION SCIENCE 1845

Figure 6. Workflow service architecture.

At this moment, the platform is composed of two main components, a client applica-
tion, implemented using AngularJs framework and a server application, implemented in
Java programming language, using Spring Framework. It uses a MySql database for stor-
ing data. The communication between the client and the server application is done using
REST (representational state transfer) services, a commonway of providing interoperability
between applications over a network, often the used network being the internet. It uses
the advantages (like stateless operations and the set of HTTP verbs) offered by the HTTP
protocol to offer fast performance, reliability and extensibility.

The communication between the platform server application and the workflow service
is done also through the REST services exposed by both of them. The platform uses all the
endpoints exposed by the service formanagingworkflows lifecycle while theworkflow ser-
vice uses the notification service of the platform for notifying the users about the events
occurrence.More details about the structure of the data transferredwill be provided below.

The server application of the workflow service is implemented in Java using Spring
Framework. It is a Java platform that provides support for building Java applications (John-
son et al., 2016). It is based on POJO (PlainOld JavaObject) and dependency injection, these
two contributing to the development of loosely coupled components. For building the rest
services, SpringMVC framework is used,while as anOGMsolution SpringData is the choice.
The workflows can be easily model as graphs, so the natural way of storing them is in a

1846 C. NEGRU ET AL.

graph database. The chosen solution is Neo4J. It is an ACID compliant transactional graph
database management.

The Workflow service is divided into three components:

• Notification component: This component is responsible for event triggering. It constantly
analyses the workflows and the subscriptions andwhen needed it triggers an event that
will be sent to the notification service of the CLUeFARM platform. A notification must
contain the farm id and a message;

• Validation component: This component is responsible for syntactic validation of work-
flows, when they are created or edited;

• Storage component: This is the component that communicates directly with Neo4J
database and is responsible for CRUD (Create, Read, Update and Delete) operations on
workflows.

The interface through which workflows can be added is not part of the CLUeFARM plat-
form. It is delivered as an independent and reusable UI component. It is build using the
Polymer4 library.

4.6. Workflow service integration into CLUeFARMplatform

To prove the utility of the architecture described in Chapter 3 and better understand how it
works we will present further the architecture and the integration process of the workflow
management service into the CLUeFARM platform.

All these services are served by a monolith backend application which is already quite
large. Adding additional functionalities to the same code base doesn ’t seem to be a good
idea in terms of performance and ease of management. This is why we decided to extend
the platform with the help of microservices. The frontend application is also a monolith
written in Angular5 Java Script framework. Considering all these aspects, the end-to-end
architecture presented earlier fits perfectly.

In Figure 7, there can be found the architecture of the entire proposed system, thework-
flow service integrated intoCLUeFARMplatform. In the left side, there is the actual platform,
composed of two big applications: a server application written in Java with Spring frame-
work and a frontend application written in AngularJs. The backend application exposes a
couple of REST endpoints and for all the services it uses a MySQL database for local data
storage.

On the right side of the diagram, there is the representation of the workflow microser-
vice. It serves only one purpose: manage the lifecycle of the workflows. It can be written in
any programming language as long it implements the required interface and is able to per-
form CRUD (Create Read Update Delete) operations on workflows. In this particular case, it
is also implemented in Java using Spring Framework.

Workflows can be easily modelled as graphs, so to increase the performance and to
store them in a natural way, a graph database will be used (Neo4j in this case – ACID
compliant transactional graph database). Themicroservice is divided into three small com-
ponents: notification component, validation component and storage component. They
were described in the previous section.

CONNECTION SCIENCE 1847

Figure 7. Workflow service integration into CLUeFARM platform.

In order for the end-to-end microservice to be completed, some UI part need to be pro-
vided. This is done through three different and independent Polymer web components.
The three components are:

• Workflow Notification Listener web component: This component is responsible for ini-
tialising a web socket communication and handling all the events received from the
backend, independent of the application that uses it. The interaction between the appli-
cation and component is done through the call-backs that the component offers. The
application can choose to handle any of the events that it needs.

• WorkflowDisplay web component: This web component is able to display any workflow
just by providing it with the workflow identifier of with the JSON representation of the
workflow. In the first case, the component is also responsible for retrieving theworkflow
representation from the server.

• Workflow Design web component: This is a more complex component used to design
new workflows, delete or edit existing one. It offers an interface with drag and drop
options for easily define workflows and events on each workflow step. It is also respon-
sible for making the necessary calls to the server. The result of designing a workflow is a
JSON representation of it.

Based on the needs of each application, only a part of the components can be used. For
example, there can be cases where workflows only need to be displayed, so, in this case
only the workflow display component will be used.

Regarding authorisation, we decided to use a token-basedmechanism. To be allowed to
use theworkflow service, an application shouldbe registeredupfront. After registration, the
user will be offered a token, which should be used as parameter for the web components.

1848 C. NEGRU ET AL.

Other configuration data as the URL of the back-end service should also be provided as
parameters for the web components (if not, the defaults will be used).

4.7. Service specification

The microservice that we are describing has a Neo4J graph database used for storing data
and it can be accessed through a couple of REST endpoints that he exposes.

All the endpoints, excepting the one that generates tokens (POST tokens) can
be accessed only by authenticated users. The access token should be added to the
“access_token” request header. All the endpoints are accessible only through HTTPS. The
responses and HTTP response codes of the endpoints are standardised as follows:

• 200 OK is returned when the request was processed with success. When the request is a
POST (create) or a PUT (update) the createdupdated resource is part of the response;

• 400 Bad Request is returned when the data provided by the client could not be inter-
preted by the server or do not follow the specification;

• 401 Unauthorised is returned when the “access_token” header cannot be found;
• 401 Unauthorised is returned when the “access_token” header cannot be found;
• 404 Not Found is returned when the requested resource is not found;
• 500 Internal Server Error is returnedwhen something unexpected happens on the server

side.

As we said before, the workflow management service allows the usage of three types
of workflows. For simplicity, only static workflows will be treated further, along with the
authorisation and authentication mechanism.

4.8. Implementation details

4.8.1. Authentication and authorisation
As we said earlier, almost all the endpoints of the Workflow Management Service require
authentication. This is done using a signed JWT (JWS). It should be part of every request in a
header called “access_token”. The next topic that will be discussed is the process of getting
a JWT access token.

An access token that can be used for accessing the Workflow Management Service is
always retrieved through an endpoint exposed by the service (“/api/tokens”). To get a valid
token some information need to be posted to this endpoint in form of a JSON:

• token – The unique token that the client application received after registering for using
the service. This is a random string which identifies the client application and which is
used to retrieve the custom configuration of that client application.

• uid – The unique identifier of the user that is authenticated. TheWorkflowManagement
Service is not aware of user management so this value will be used and trusted as it is
provided.

• authorities – A list of authorities that the user has. This is also trusted by the Workflow
Management Service, and based on this the authorisationwill be done, according to the
settings provided while registering the client application.

CONNECTION SCIENCE 1849

Figure 8. Authentication data flow.

There are two ways of getting an access token. The first and the more secure one is done
by a server-to-server communication. This is represented on the left side of the flow in
Figure 8. The CLUeFARM backend manages the authentication inside the platform and
knows the authenticated user and its authorities. The unique token is also securely stored
on the server.

The interaction with the Workflow Management Service is done using a couple of
web components. When they are used, they first search for a cookie with the name
‘wfms_access_token’. If the cookie is found, then it will be attached to all the requests.
If not, then depending on the configuration provided it will request to the client applica-
tion backend (CLUeFARM backend) a token (through a configurable endpoint). After that
the JWT is retrieved and it will be sent back to the front-end (CLUeFARM front end in our
case).

The second approach (right side of the Figure 8) is less secure since it does not imply
the client backend in the process of getting the JWT. The unique token should be pro-
vided as configuration parameter to theweb components, togetherwith the “uid” and user
authorities. After that, the request for getting the JWTwill bemadeby theweb components
themselves.

4.8.2. Workflow registration
To understand the Workflow Management Service and how can be integrated, we will
explain further by example of adding a new workflow. For simplicity, we will use a
static workflow. It has the role of reminding the farmer to pay taxes and it occurs
yearly.

The interaction with the service is handled by a couple of web components that the
client application has to use. For the action of adding a new workflow, the “workflow-
design” web component is used. We assume that the authentication is already done and
the “wfms_access_token” is set. The steps that need to be done are presented in Figure 9
and explained further.

1850 C. NEGRU ET AL.

Figure 9. Register workflow.

In the first step, the configuration is retrieved. The reason for retrieving the configu-
ration is that it is different from client to client and it can be changed while registering
the client application. For each request, the server is checking the signature of the token
and decodes it (Decode JWT step). Having the information extracted from the token
(client and user identifier and user authorities) authorisation is checked. For example,
some users are not allowed to create workflows. Using the client identifier, the config-
uration is retrieved from the database and it is returned as a JSON (step 2). If the JWT
is not found, then the 401 Unauthorised is returned (step 4a), while if the user is not
authorised to do the action, then 403 Forbidden is returned (4.b). This is valid for all
requests.

Having the configuration, the user designs the new workflow using the “design-
workflow”web component andwhenhe finishes it a POST requestwill be sent to the server,
having in the body, a JSON representation of the designed workflow (step 3). After check-
ing the authentication and authorisation, a syntactic validation is made. Each type of flow
is backed by a JSON Schema, so a JSON Schema validator is used for this step (Syntactic
validation step). If the validation fails, then 400 Bad Request is returned (step 4c). If the val-
idation passes them the JSON of the workflow is parsed and the graph is generated. After
that the graph is stored into the database. If some unexpected error occurs, then 500 Inter-
nal Server Error is returned (step 4d). If everythingworks ok, then theworkflow is saved and
it is returned to the client application (step 4e).

4.9. Workflow subscription

To subscribe to a workflow, a POST request should be made to ”/workflows/wfid/subscri-
ptions” endpoint. The result of the subscription is that the workflow is copied, remov-
ing some irrelevant properties such as workflow type or occurrence and adding other
properties like done or active meant to help manage the lifecycle of the workflow.

The newnodes are labelled as EXECUTABLE. The dates are not anymore relative; they are
transformed to absolute dates, since after the execution of a workflow, it will be removed
from the database.

CONNECTION SCIENCE 1851

5. Experimental results

In this section, the performance evaluation of the workflow management service will be
presented. The tests were done on machine having the following specifications: processor
– Intel Core i5, 3.1 GHz, 2 cores; memory – 8Gb, 2133MHz; l2 cache – 256Mb/core; l3 cache
– 4Mb; OS – macOS High Sierra.

For testing theworkflowmanagement service, we choose threemost important actions:
creating a workflow, subscribing to a workflow and retrieving a workflow.

We run the test three times, increasing the number of concurrent users from 10
(Figure 10) to 100 (Figure 11) and 1000 (Figure 12) in the end. The workflow that was used
is the simple tax paying workflow.

As can be seen, the success rate is 100% for all three scenarios. For 10 simultaneous
users, the response times are around 15 milliseconds for all three operations. For 100 and
1000 simultaneous users, the mean results are very similar even though the throughput
was increased by 10 times: around 100 milliseconds for saving a workflow, 10 milliseconds
for retrieving a workflow and 60 milliseconds for subscribing to a workflow. The maximum
number of requests/s is of about 59.

Figure 10. Workflow service response times – 10 users.

Figure 11. Workflow service response times – 100 users.

Figure 12. Workflow service response times – 1000 users.

1852 C. NEGRU ET AL.

6. Conclusion

The workflow service contributes to achieving the general objectives of the platform by
assisting the farmers in applying the best farming practices. By using this service, a farmer
can define his own workflows and follow the progress of his work in a timeline but he can
also use the workflows defined by other farmers.

The service is implemented as an independent platform component, capable of storing
any kind of workflows. It is implemented in Java programming language using Spring
framework and has three main components: the notification component, the validation
component and the storage component. The service also comes with a web component,
implemented using Polymer library, a reusable and pluggable component that encapsu-
lates all the UI needed for defining workflows.

Regarding the industrial relevance of our proposed solution, by using microservices
and web components we designed dependable architecture for providing end-to-end
microservices to farmers, having the highest level of code reusability.

The description and a general architecture of this new architectural pattern was pre-
sented. To prove its usability but also to improve the performance of the platform, the
workflow management service was integrated into the CLUeFARM platform using this
architecture.

The limitations of our approach are related to the basic knowledge that farmers need to
have in order to build and use different workflows. Another limitation refers to the sharing
of different workflows due to the fact that these are specific to each farm and some farmers
do not want to share their insights. In this case the platform cannot be used full potential.

Notes

1. https://projects.spring.io/spring-data-neo4j/
2. https://neo4j.com/developer/cypher-query-language/
3. https://neo4j.com
4. https://polymer-library.polymer-project.org
5. https://angular.io

Acknowledgments

We would like to thank the reviewers for their time and expertise, constructive comments and
valuable insight.

Disclosure statement

No potential competing interest was reported by the authors.

Funding

Research fundedbyMinistry of Education and Research, Romania (PN-III-P4-ID-PCE-2020-2204, PN-III-
P2-2.1-SOL-2021-2-0223), by Ministerul Cercetării şi Inovării (SMIS code 2014+ 124812) by Universi-
tatea Politehnica din Bucureşti (PubArt program). The research presented in this paperwas supported
by the project FARGO: Federated leARninG for human moBility (PN-III-P4-ID-PCE-2020-2204), the
project CloudPrecis (Ministerul Cercetării şi Inovării) (SMIS code 2014+ 124812), the project ODIN112

https://projects.spring.io/spring-data-neo4j/
https://neo4j.com/developer/cypher-query-language/
https://neo4j.com
https://polymer-library.polymer-project.org
https://angular.io

CONNECTION SCIENCE 1853

(PN-III-P2-2.1-SOL-2021-2-0223) and by the University Politehnica of Bucharest through the PubArt
program.

References

Bauer, V., Eckhardt, J., Hauptmann, B., & Klimek, M. (2014). An exploratory study on reuse at google.
In Proceedings of the 1st international workshop on software engineering research and industrial
practices (pp. 14–23). New York, NY: Association for Computing Machinery.

Bojan, V. C., Raducu, I. G., Pop, F., Mocanu, M., & Cristea, V. (2015). Cloud-based service for time series
analysis and visualisation in Farm Management System. In 2015 IEEE international conference on
intelligent computer communication and processing (ICCP) (pp. 425–432). IEEE Explore.

Colezea, M., Musat, G., Pop, F., Negru, C., Dumitrascu, A., & Mocanu, M. (2018). CLUeFARM: Integrated
web-service platform for smart farms. Computers and Electronics in Agriculture, 154(7), 134–154.
https://doi.org/10.1016/j.compag.2018.08.015

Conversations, T. (2018). https://technologyconversations.com/2014/06/18/build-tools/.
Fleischmann, A., Schmidt, W., Stary, C., Obermeier, S., & Börger, E. (2012). Subject-oriented business

process management. Springer Nature.
Georgakopoulos, D., Hornick, M., & Sheth, A. (1995). An overview of workflow management: From

process modeling to workflow automation infrastructure. Distributed and Parallel Databases, 3(2),
119–153. https://doi.org/10.1007/BF01277643

Havey, M. (2005). Essential business process modeling. O’Reilly Media, Inc.
Hunt, A. (1900). The pragmatic programmer. Pearson Education India.
Jindarat, S., & Wuttidittachotti, P. (2015). Smart farm monitoring using Raspberry Pi and Arduino.

In 2015 international conference on computer, communications, and control technology (i4ct) (pp.
284–288). IEEE Explore.

Johnson, R., Hoeller, J., & Donald, K. (2016). The spring framework-reference documentation, 2.0.5.
urlhttp://docs.spring.io/spring/docs/current/spring-frameworkreference/htmlsing.

Jones, M., Campbell, B., & Mortimore, C. (2015). JSON web token (JWT) profile for OAuth 2.0 client
authentication and authorization Grants. https://tools.ietf.org/html/rfc7523.

Kanjilal, D., Singh, D., Reddy, R., & Mathew, J. (2014). Smart farm: Extending automation to the farm
level. International Journal of Scientific & Technology Research, 3(7), 109–113.

Lee, S., Kim, H., Park, S., Kim, S., Choe, H., & Yoon, S. (2018). CloudSocket: Fine-grained power sens-
ing system for datacenters. IEEE Access, 6, 49601–49610. https://doi.org/10.1109/ACCESS.2018.286
8469

Li, Y., & Manoharan, S. (2013). A performance comparison of SQL and NoSQL databases. In 2013
IEEE Pacific Rim conference on communications, computers and signal processing (PACRIM) (pp.
15–19). IEEE Explore.

Meola, A. (2016). Why IoT, big data & smart farming are the future of agriculture. Business Insider, 20.
Mocanu, M., Cristea, V., Negru, C., Pop, F., Ciobanu, V., & Dobre, C. (2015). Cloud-based architecture for

farm management. In 2015 20th international conference on control systems and computer science
(pp. 814–819). IEEE Explore.

Moon, A., Kim, J., Zhang, J., & Son, S. W. (2018). Evaluating fidelity of lossy compression on spa-
tiotemporal data from an IoT enabled smart farm. Computers and Electronics in Agriculture, 154(6),
304–313. https://doi.org/10.1016/j.compag.2018.08.045

Muangprathub, J., Boonnam, N., Kajornkasirat, S., Lekbangpong, N., Wanichsombat, A., & Nillaor, P.
(2019). IoT and agriculture data analysis for smart farm. Computers and Electronics in Agriculture,
156(9), 467–474. https://doi.org/10.1016/j.compag.2018.12.011

Musat, G. A., Colezea,M., Pop, F., Negru, C., Mocanu,M., Esposito, C., & Castiglione, A. (2018). Advanced
services for efficient management of smart farms. Journal of Parallel and Distributed Computing,
116(14), 3–17. https://doi.org/10.1016/j.jpdc.2017.10.017

O’Grady, M. J., & O’Hare, G. M. (2017). Modelling the smart farm. Information Processing in Agriculture,
4(3), 179–187. https://doi.org/10.1016/j.inpa.2017.05.001

Peyrott, S. (2017). https://auth0.com/blog/stateless-auth-for-stateful-minds/.

https://doi.org/10.1016/j.compag.2018.08.015
https://technologyconversations.com/2014/06/18/build-tools/
https://doi.org/10.1007/BF01277643
https://tools.ietf.org/html/rfc7523
https://doi.org/10.1109/ACCESS.2018.2868469
https://doi.org/10.1016/j.compag.2018.08.045
https://doi.org/10.1016/j.compag.2018.12.011
https://doi.org/10.1016/j.jpdc.2017.10.017
https://doi.org/10.1016/j.inpa.2017.05.001
https://auth0.com/blog/stateless-auth-for-stateful-minds/

1854 C. NEGRU ET AL.

Walter, A., Finger, R., Huber, R., & Buchmann, N. (2017). Opinion: Smart farming is key to develop-
ing sustainable agriculture. Proceedings of the National Academy of Sciences, 114(24), 6148–6150.
https://doi.org/10.1073/pnas.1707462114

Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big data in smart farming – A review.
Agricultural Systems, 153, 69–80. https://doi.org/10.1016/j.agsy.2017.01.023

Yu, L., Duan, Y., & Li, K. C. (2021). A real-world service mashup platform based on data inte-
gration, information synthesis, and knowledge fusion. Connection Science, 33(3), 463–481.
https://doi.org/10.1080/09540091.2020.1841110

https://doi.org/10.1073/pnas.1707462114
https://doi.org/10.1016/j.agsy.2017.01.023
https://doi.org/10.1080/09540091.2020.1841110

	1. Introduction
	2. Related work
	3. CLUeFARM platform extension
	4. Workflow management service
	4.1. End-to-end microservices
	4.2. End-to-end microservice architecture
	4.3. Functional description
	4.3.1. Designing a workflow
	4.3.2. Subscribing to a workflow

	4.4. Design decisions
	4.4.1. Technology stack
	4.4.2. Authentication and authorisation
	4.4.3. Database

	4.5. Workflow management service architecture and data flow
	4.6. Workflow service integration into CLUeFARM platform
	4.7. Service specification
	4.8. Implementation details
	4.8.1. Authentication and authorisation
	4.8.2. Workflow registration

	4.9. Workflow subscription

	5. Experimental results
	6. Conclusion
	Notes
	Acknowledgments
	Funding
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [493.483 703.304]
>> setpagedevice

