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Abstract: In this paper, an FPGA (Field Programmable Gate Array)-based digital architecture for
the measurement of quartz crystal microbalance (QCM) oscillating frequency of transient responses,
i.e., in QCM-D (QCM and Dissipation) applications, is presented. The measurement system is
conceived for operations in liquid, with short QCM transient responses due to the large mechanical
load. The proposed solution allows for avoiding the complex processing systems typically required
by the QCM-D techniques and grants frequency resolutions better than 1 ppm. The core of the
architecture is a reciprocal digital frequency meter, combined with the preprocessing of the QCM
signal through mixing operations, such as a step-down of the input frequency and reducing the
measurement error. The measurement error is further reduced through averaging. Different strategies
are proposed to implement the proposed measurement solution, comprising an all-digital circuit and
mixed analog/digital ones. The performance of the proposed architectures is theoretically derived,
compared, and analyzed by means of experimental data obtained considering 10 MHz QCMs and
200 µs long transient responses. A frequency resolution of about 240 ppb, which corresponds to
a Sauerbrey mass resolution of 8 ng/cm2, is obtained for the all-digital solution, whereas for the
mixed solution the resolution halves to 120 ppb, with a measurement time of about one second over
100 repetitions.

Keywords: QCM sensors; QCM-D measurement technique; digital frequency meter

1. Introduction

Quartz Crystal Microbalances (QCMs) are sensors based on piezoelectric electrome-
chanical resonators, which interact with the environment and change their resonant behav-
ior due to different interaction mechanisms. QCMs-based sensing systems have a wide
range of applications, such as gas sensing, humidity sensing, particle sensing, biosensors
for a variety of biological targets, film growth monitoring in electrochemical deposition
and liquid viscosity sensing [1–12]. The use of QCM has some consolidated application
fields but is still a subject for many research works aiming at improving performance from
different points of view. In particular, the most active research topics, nowadays, concern
the application of QCMs in reproductive medicine and point-of-case diagnostics [13–15],
and the use of novel sensing layer material, the development of new applications and
of new models for the interpretation of measurement data and the design of improved
measurement systems and techniques [16].

Focusing on this last topic, i.e., the development of measurement systems, to evaluate
the resonator behavior, several electronic systems and techniques have been proposed,
relying on resonance frequency measurement, which typically exploits electronic quartz
oscillator circuits [17,18] or on the evaluation of other quantities such as those based on the
measurement of the QCM electrical impedance [19–21] or on the induced phase shift [22–24].
Some notable examples are the QCM 200 [25], which is a commercial device that realizes
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the frequency measurement using continuous oscillatory circuits which exploit automatic
gain control circuitry; the 0-phase electronic circuit for QCM operation in highly viscous
environments implemented by Avramov [26], which recovers the quartz parameters via an
S21 transmission measurement after the tuning of the quartz via an LC network to reduce
the effects of electrical loading and parasitic contributions given by the electrical loading
of the measurement system; or the OPENQCM Q-1 with dissipation module [27], another
commercial device that analyzes the resonance curve characteristics using a network
analyzer in a wide frequency range, allowing to also detect and monitor overtones.

Focusing on the direct resonance frequency measurement, a more versatile widespread
technique is the Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D) [28–37];
this technique is based on the simultaneous measurement of the sensor resonance frequency
and of its dissipation factor (i.e., the reciprocal of the quartz quality factor) during a transient
response triggered by short electric excitations.

The challenges related to the design of electronic read-out circuits for QCM sensors
are related to the involved complex sensing mechanisms. In general, the sensing principle
of QCMs relies on the variation of the electromechanical resonator behavior due to the
mechanical load exerted by the environment on the vibrating quartz, or, in other words,
caused by the acoustic coupling between the quartz and the media in contact with its
surfaces. The most common quartzes used for QCM, which are shear wave bulk resonators,
usually operate at 5 MHz or 10 MHz, and the pristine devices, surrounded by air, are
resonators with very high-quality factors (in the order of some tens of thousands), so that
their transient response due to impulsive stimuli or to non-zero initial conditions lasts
for some milliseconds. For high Q resonators, the design of the read-out circuit is not
critical [38].

When used as sensors, quartzes are functionalized by the deposition of a sensing
layer over one of their surfaces, and, especially for bio-sensing, they can be immersed in
liquid. In these cases, the elastic wave responsible for the vibration is transmitted also to the
sensing film and/or leaks in the liquid. The coupling with the film and/or the environment
changes both the resonance frequency and the quality factor of the quartz. If a target is
absorbed by the sensing layer or if the liquid changes its composition, the QCM resonant
behavior changes as well, and this is the base of sensing with QCMs; it can be shown that
the frequency changes as a function of the mass of the ad-layer and of the viscoelastic
characteristics of the media surrounding the quartz, whereas the Q factor mainly depends
on the viscosity of the media in contact with the resonant system. In in-liquid applications,
due to the liquid viscosity, the quality factor of the resonant system drops by about an order
of magnitude (or more), so the transient response duration decreases down to hundreds
of microseconds. For low Q-factor QCM applications, the design of the readout and
measurement electronics becomes critical; moreover, the measurement requirements in
terms of measurement range and resolution are very demanding: in most applications,
the expected maximum relative variation of the resonance frequency is in the order of
hundreds of ppms (some kHz for 10 MHz QCM) and the required frequency relative
resolution is in the order of 100 ppb or less, (1 Hz or less for a 10 MHz quartz); moreover,
it can be shown that, especially for low Q situations, the measurement of the ‘resonance
frequency’ through the monitoring of the oscillation frequency of the transient response has
many advantages in terms of accuracy, because other techniques lead to systematic errors,
which increase when the Q-factor decreases [38]. Therefore, QCM-D is a very convenient
measurement technique for these cases. Nevertheless, since the transient response becomes
short, the frequency assessment resolution can drop unless suitable measurement solutions
are adopted [29,39–43].

To evaluate the transient oscillation frequency and decay time, the response signal
is typically passed through an analog-to-digital converter and digitally processed [44,45].
Digital processing methods include direct model fitting (both in time and in frequency
domains) [46–48], Discrete Hilbert Transform [49], parametric modeling [50,51], or Discrete
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Fourier Transform [52,53]; what all these methods have in common is the need for a complex
processing system.

Even if many low-complexity and low-cost measurement systems with very good
metrological characteristics have been proposed in the literature or are commercially
available, which exploit oscillators and measure the frequency of a sine wave produced
by a feedback amplifier with the quartz embedded in the loop [17], or zero-phase lock-in
circuits [54], no relevant low-cost accurate solution has yet emerged regarding the QCM-D
technique [55,56].

In this paper, we approach the problem of QCM-D measurement systems by proposing
a low-cost, FPGA (Field Programmable Gate Array)-based frequency meter device for
exponentially decaying sinusoidal QCM-D response signals. The system combines the
well-known reciprocal frequency counter architecture with the preprocessing of the QCM-D
signal through mixing operations, such as step-down the signal frequency and improving
the measurement accuracy.

The paper is organized as follows. In Section 2, the background and motivation of the
measurement technique are described. In Section 3 the frequency measurement technique
is described, also providing some design considerations related to the measurement con-
straints. In Section 4, an application case study is provided. In Section 5, the optimized
device architecture, implementing the response signal processing, and the frequency mea-
surement, is presented; moreover, the experimental results are presented and analyzed.
Finally, in Section 6, the conclusions are drawn.

2. Background and Motivation

Quartz Crystals Microbalances (QCMs) are sensors obtained sandwiching a thin
piezoelectric crystal between two conducting electrodes.

In this discussion, the considered quartz is an AT-cut quartz, which vibrates in shear
thickness mode, with active area A, thickness t, density ρq, electric permeability ε, piezoelec-
tric coefficient e53. When a gas surrounds the pristine QCM, the boundary conditions for
the acoustic field at the quartz surfaces are characterized by a null shear stress. Exploiting
these conditions, the mechanical impedance of the quartz can be found, and, in turn, it
can be transformed into an electrical impedance due to the piezoelectric electromechanical
coupling, which can be written as follows:

Ze =
1

jωC0

[
1− K2vA

ωt
2 tan

(
ω

vq

t
2

)]
, (1)

where ω is the angular frequency, Co = εA
t is the electrical capacitance of the quartz,

whereas vq =

√
µ∗q
ρq

, is the shear wave speed in the quartz, and µ∗q = µq + jωηq is the

complex shear modulus, being µq the shear modulus and ηq the viscosity of the quartz.

Finally, K =
e2

53
µq ε is the piezoelectric coupling coefficient. (1) represents an impedance with

an infinite number of resonances.
The behavior of the impedance in (1) around the first resonance frequency can be

approximated with a lumped parameter network, where the quartz is represented by the
parallel of the electrical capacitance and a motional branch consisting of a series resonant
circuit, i.e., by the following impedance [39,40]:

Zm = Rm + jωLm +
1

jωCm
− 1

jωC0
, (2)

where:

Cm =
9K2C0

π2 ; Lm =
t2ρq

8C0K2µq
; Rm =

π2ηq

8C0K2µq
. (3)
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The corresponding equivalent circuit, neglecting the effect of the last term in (2),
being C0 � Cm , is named Butterworth Van Dyke (BVD) model and is shown in Figure 1.
In the BVD model, the pure electric branch formed by the capacitance C0 is in parallel
with the motional branch (Lm, Rm and Cm), which well approximates the mechanical
behavior of the quartz, and is characterized by a series resonance frequency, given by the
following equation:

fs =
1√

LmCm
. (4)

(4) shows that the series resonance frequency depends solely on the mechanical characteris-
tics of the resonator.
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Figure 1. Butterworth-Van-Dyke model of a loaded QCM.

On the other hand, the parallel resonance frequency fp is dependent on the parallel
capacitor C′0 = C0 + Cp, given by the C0 of the quartz, as defined above, in parallel to any
parasitic capacitance connected to the two electrodes, comprising the one offered by wiring
or by the front-end electronics Cp:

fp =
1

2π

√
Lm

CmC′0
Cm+C′0

. (5)
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Finally, the Q-factor of the quartz can be written as follows:

Q =
1

Rm

√
Lm

Cm
. (6)

The QCM used as a sensor, either due to the presence of a functionalization layer or
to the presence of a non-ideal fluid (e.g., a Newtonian fluid), has a surface in contact with
a material that supports shear waves, and this situation corresponds to a change of the
boundary conditions at one of the quartz surfaces. Therefore, the acoustic field inside the
quartz changes, and this is reflected in a transformation of the equivalent circuit model.

In general, the equivalent electric impedance of a film deposited on the QCM film can
be written as follows:

Z f ilm =
V
I
= j

t2

4Ae2
53

√
ρ f µ∗f tan

ωh
vA

, (7)

where vA =

√
µ∗f
ρ f

, is the complex shear wave speed in the film, and µ∗f = µ f + jωη f is the

complex shear modulus, being η f the film viscosity and µ f the shear modulus.
Considering always to work at frequencies much lower than the resonance of the

film, in the lumped parameter equivalent network, the impedance of the film is usually
approximated by a resistance (for the real part of Z f ilm) and an inductance (for the imaginary
part of Z f ilm), placed in series to the motional branch of the BVD circuit [57].

The presence of Z f ilm in the electrical circuit models the mechanical load and obviously
shifts the series resonance frequency, such that the QCM sensor can be used to detect
different characteristics of the added films depending on the applications; moreover, the
presence of the film also affects the Q-factor of the resonant system.

In case the film viscosity is equal to 0 (purely elastic medium), the electric impedance
is a pure positive reactance (until the resonance) therefore, it behaves as an inductive load;
moreover, if the layer is thin the effect of the film on the series resonant frequency is the
one described by the Sauerbrey equation [58], and the series frequency shift depends solely
on the film (ad-layer) mass. So, in a situation such as this: in the presence of thin elastic
films or rigid films QCMs behave as pure mass sensors and a negligible effect on the Q
factor is seen.

On the other hand, if the film has a viscous behavior there is also a large resistive
component in series appearing in the motional branch, the magnitude of which depends
on the phase of the complex wave speed.

We can consider as the limit case a film composed of a Newtonian fluid, where the

phase of the complex wave speed is equal to 45◦, since and vA =

√
jωη f

ρ f
.

Note that (7) (asymptotically with the fluid layer thickness h going to ∞) describes
also the impedance loading the quartz in in-liquid measurements (Zl , with Z f ilm → Zl ).
In fact, when the thickness of the layer overcomes a certain limit the effect of the wave
reflected by the upper surface of the film is negligible at the lower surface of the film in
contact with the quartz and the load tends to the impedance provided by a semi-infinite
space of Newtonian fluid. For fluid films and half spaces, the resistive load is very large,
and the Q factor of the resonant system decreases dramatically, typically by at least one
order of magnitude.

It must be noted that in some applications the sensing mechanism depends on the
interaction of the QCM with individual particles (e.g., bacteria) if the size of the adsorbed
objects, which form an ad-layer, is larger than the wavelength. In this case, the impedance
that must be added in series to the motional branch of the BVD takes a different form from
(7) and depends on the particle concentration, on the geometry and density of the particles,
the density of the fluid surrounding the particles, and on the strength of the elastic bond of
the particle to the surface [59,60].
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The basic principle of the QCM-D technique is to excite the QCM with a burst signal,
whose frequency is close to its resonance; this excitation triggers a sufficiently large transient
response of the quartz which is an exponentially decaying response [20–23]. The response
can be written as:

u(t) = U0e−t/τ sin
(
2π fqt + φ

)
, (8)

where U0 is the amplitude of the initial oscillations, fq is the response oscillation frequency
and τ is the decay time constant. The response oscillation frequency is independent of the
excitation frequency; however, the nearer the excitation frequency to the response one, the
higher the response amplitude U0, therefore increasing the measurement signal-to-noise
ratio [39].

Assuming to short circuit the quartz to measure the short circuit current signal and
to evaluate the signal oscillation frequency fq and decay time constant τ, it is possible
to estimate the quartz quality factor and series resonance frequency using the following
equations [38]:

Q = π fqτ , (9)

fs =
fq√

1− 1
4Q2

. (10)

Therefore, if succeeding in measuring the transient short circuit current, the measure-
ment of the transient signal oscillation frequency and of the time constant measurements
allows the assessment of the series resonance frequency, which, as can be observed in (4),
is independent of loading parasitic capacitances and directly provides information on the
electromechanical properties of the resonant system and/or on the mass of the adlayer.

This explains the motivation of QCM-D measurement techniques, which in summary
can separate the information related to the imaginary part of the impedance (that can give
information also on the mass of the ad-layer as pointed out in the detailed discussion)
and to the dissipative behavior of the ad-layer or surrounding fluid and provide estima-
tions independent from parasitic capacitances due to the insertion of the quartz in the
measurement circuit.

The critical issues are related to the need of developing front-end electronics character-
ized by low input impedance, behaving as a current amplifier, limiting the load effects on
both the time constant and the frequency value [38].

Moreover, since the measured signal is a vanishing oscillation, which for QCM in gas
sensing applications lasts tens of thousands of cycles (e.g., some milliseconds for QCM
at 10 MHz) whereas in in-liquid applications few thousands of cycles (e.g., about 200 µs
for QCM at 10 MHz), the frequency fq must be estimated in a short time window with
measurement accuracies that can be relatively high (typically around tens of ppb in gas
applications and ppm in in-liquid applications).

3. Frequency Measurement Technique

To perform the digital measurement of a signal frequency, frequency counters are
commonly employed. These well-known devices are generally composed by three elements:

• a gate counter, that defines the measurement time duration;
• a pulse counter, that provides the frequency measurement as the number of pulses

counted during the measurement time;
• a reference clock signal, whose frequency is used to convert the counted pulse number

into a frequency value.

The generic structure of a frequency counter is shown in Figure 2. When the device is
enabled (RESET = ‘0’), the gate and the pulse counters start counting, respectively, with
frequency fp and fg, until the gate counter reaches the overflow condition (OF = ‘1’). The
overflow disables the counters, providing as output (MEASURE) the count reached by the
pulse counter.
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The described architecture can be configured to perform two kinds of frequency
measurement.

If we connect the reference clock signal to the gate counter and the signal to be
measured to the pulse counter, we perform a direct frequency measurement. In this case
fg = fclk is the reference clock frequency, while fp = fx is the input signal frequency, being
Ng the bit length of the gate counter, and Np the bit length of the pulse counter. Setting
the gate counter to count to ng ≤ 2Ng and defining with np ≤ 2Np the number of counts
reached by the pulse counter at the end of a measurement, the input signal frequency
measure f̂x is given by:

f̂x =
np

ng
fclk . (11)

Instead, if we connect the reference clock signal to the pulse counter fp = fclk and
the signal to be measured to the gate counter, fg = fx, we perform a direct period (or
reciprocal frequency) measurement. Using the same notation given for the direct frequency
measurement, in this case, the input signal frequency measure is given by:

f̂x =
ng

np
fclk . (12)

According to (11), the measurement resolution of a direct frequency counter depends
on ng/ fclk, i.e., the measurement time duration; this means that to achieve a high-frequency
resolution, we need to perform a long measurement; this condition does not fit our applica-
tion, since the QCM-D response signal (8) has a limited time duration, and therefore we
must design our device implementing a reciprocal frequency counter.

The uncertainty of the proposed technique must be evaluated by considering two
sources of uncertainty: one related to the measurement method, and to the process of
counting therefore discretizing time, and the other related to the presence of measurement
electronic noises (e.g., white noise, phase jitter) injected and caused by the implementation
of the measurement hardware through real components.

The first contribution can be considered at first as a systematic error, assuming a
deterministic phase difference between the gate, pulse and reset input signals. We call
this contribution count error; the count error magnitude is related to the ratio between the
clock period and the measurement time (intended as the time required by the gate counter
to reach overflow), therefore it decreases as the measurement time increases. Afterward,
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considering the phase difference randomness, it can be shown that this error can be treated
as a stochastic process, with maximum amplitude related to the systematic error cited
above; it can be shown that this stochastic process, on the whole, is white and zero mean,
therefore averaging consequent measurement results allows for reducing the uncertainty
due to its effect.

The other source of uncertainty, which is the electronic noise injected by the circuit, is
mitigated by the choice of quality components (e.g., low noise amplifiers, stable oscillators)
and by carefully designing the front-end electronics and can be counteracted by averaging
repeated measurement results at the expenses of measurement time.

Focusing on the count error, referring to the frequency counter scheme in Figure 2, the
count error depends both on the gate and the pulse counters.

The gate counter is supposed to count from 0 to ng, generating, therefore, the overflow
after a time equal to ng/ fx; however, the frequency counter RESET transition instant from
‘1’ to ‘0’ is not in phase with the gate input signal, and therefore the real measurement time
is a random value ñg/ fx, with ñg ∈

(
ng − 1, ng

]
⊂ R.

On the other side, neglecting the stochastic contribution of electronic noise, jitter, clock
instability and the phase displacement between the input signal and the reference clock,
the pulse counter output np is the truncation of the product between the measurement time
and the reference clock frequency:

ñp =
ng

fx
fclk . (13)

ñp is a real number, defined in the range
[
np, np + 1

)
.

Putting together the counting uncertainty of the gate and the pulse counters, according
to (12) we get that the input signal frequency fx is limited in the following interval:

ng − 1
np + 1

fclk < fx ≤
ng

np
fclk , (14)

therefore, the maximum count error corresponds to an error on the frequency measurement
equal to:

emax

(
f̂x

)
=

ng

np
fclk −

ng − 1
np + 1

fclk =
ng + np

np
(
np + 1

) fclk . (15)

Observing that in general fclk � fx, we have that np � ng, therefore (11) can be
approximated as:

emax

(
f̂x

)
≈

np

n2
p

fclk =
fclk
np

=
f̂x

ng
≈ fx

ng
. (16)

According to (16), the maximum measurement error depends only on the measure-
ment time, regardless of the characteristics of the pulse counter. What is more, for short
measurement times and input frequencies much greater than the required measurement
accuracy, the resulting error can be high with respect to the desired accuracy.

To overcome these problems, we can employ a slightly different frequency counter
architecture with respect to the one shown in Figure 2, called equal precision frequency
meter [61], whose structure is shown in Figure 3.
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p

fclk . (17)

Putting together (8) and (13), we finally get:

emax

(
f̂x

)
≈ 1

ng

f̂ 2
x

fclk
≈ 1

ng

f 2
x

fclk
. (18)

Apparently, if we consider a limited measurement time application such as the QCM-
D technique, in which the measurement time is upper bounded by the QCM transient
response duration, the count error reported in (18) represents a performance limitation that
cannot be overcome, as it is the result of a numerical truncation. In practice, however, it is
possible to further reduce the error by averaging repeated measurements, exploiting the
initial phase shift between the input signal and the clock signal.

In (13) we stated that the frequency meter output is a count value np corresponding to
the floor of the product ñp between the measurement time ng/ fx and the clock frequency
fclk; however, this statement is true only when the gate and the clock signals are initially in
phase, i.e., if the measurement window starts with a rising edge of both the input and the
clock signals; in this way, each clock count corresponds to a period equal to Tclk = 1/ fclk.
Conversely, if the two signals are not in phase, i.e., the first clock rising edge is delayed with
respect to the measurement start instant, the first clock count occurs after a time shorter than
Tclk, although the frequency meter interprets it as a whole clock period; as a consequence,
if the clock delay is smaller than the fractional part of ñp times Tclk (the truncation error,
i.e., ñpTclk − bñpc Tclk), the resulting frequency meter output count becomes the ceil of ñp;
this effect is depicted by the three examples shown in Figure 4.

Since the equal precision reciprocal frequency meter is always synchronized with the
input signal, without any synchronization with the clock signal, the clock delay can be
considered a uniformly distributed random variable defined between 0 and Tclk; it can be
easily proven that this random contribution to the frequency count allows, on average, to
recover the input frequency removing the count error.
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Figure 4. Graphical representation of the frequency meter output dependency on the phase difference
between the input and the clock signals. CLOCK 1 is a clock in phase with the input signal, for which
the frequency count is equal to the floor of the product ñp of the measurement time ng/ fx and the
clock frequency fclk. CLOCK 2 is a clock delayed with respect to the input signal, with a delay smaller
than the truncation error (ñpTclk − bñpc Tclk), for which the frequency count is equal to the ceil of ñp.
CLOCK 3 is a clock delayed with respect to the input signal, with a delay greater than the truncation
error (ñpTclk − bñpc Tclk), for which the frequency count reverts to the floor of ñp.

Let us consider again the product of the measurement time and the reference clock
frequency ñp. As previously stated, this is a deterministic real number defined in the range[
np, np + 1

)
, being np the floor of ñp. Normalizing with respect to the clock period Tclk,

the phase displacement between the input signal and the clock can be represented as a
random variable ∆np uniformly distributed between 0 and 1. As a consequence, actually,
the frequency meter output count is the result of the truncation of the random variable
ñ′p = ñp + ∆np uniformly distributed between ñp and ñp + 1, i.e., defined in the range[
np, np + 2

)
.

This implies that the frequency meter output count is a discrete random variable n′p
defined on the set

{
np, np + 1

}
, with the probabilities of the following symbols:

P
(
np
)
=
∫ np+1

np
f
(

ñ′p
)

dñ′p =
∫ np+1

ñp
dñ′p = np + 1− ñp

P
(
np + 1

)
=
∫ np+2

np+1 f
(

ñ′p
)

dñ′p =
∫ ñp+1

np+1 dñ′p = ñp − np

, (19)

where f
(

ñ′p
)

is the probability density function of ñ′p, defined as:

f
(

ñ′p
)
=

{
1 if ñ′p ∈

[
ñp, ñp + 1

)
0 otherwise

. (20)

It can be observed that the expected value of n′p is equal to:

E
[
n′p
]

= npP
(
np
)
+
(
np + 1

)
P
(
np + 1

)
=

= np
(
np + 1− ñp

)
+
(
np + 1

)(
ñp − np

)
= ñp ,

(21)

i.e., the average value of n′p is equal to the exact product between measurement time and
clock frequency.
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Accordingly, averaging repeated measurements of a certain input frequency fx allows
to reach error values lower than the maximum error provided in (18). What is more,
the average is beneficial also with respect to other error contributions, such as jitter and
electronic noise, being typically gaussian distributed with zero mean.

3.1. Equal Precision Reciprocal Frequency Counter Design Procedure

As shown in Figure 3, the equal precision reciprocal frequency counter is a very simple
device, which requires, to be designed, only to choose the counters bit length.

Assume that we want to design a frequency counter to perform the frequency measure-
ment of an unloaded QCM with transient oscillating frequency fq; according to the sensing
application, when the quartz is loaded by the adlayer or by the surrounding medium, this
frequency is reduced, and we consider as the minimum possible frequency for the given
application fq − ∆ fq; moreover, we assume the QCM-D decaying response minimum time
duration equal to T0 ≈ 5τmin, being τmin the minimum decay time. Suppose that the device
on which we are implementing the frequency counter works with a clock frequency equal
to fclk.

The gate counter bit length Ng must be chosen big enough to grant that the counter
reaches overflow in T0 for any possible frequency of the quartz. In other words, we must
size the counter with respect to fq − ∆ fq, choosing the minimum integer value of Ng that
allows setting the frequency counter measurement time greater or equal then T0:

Ng = min
{

N ∈ N :
2N

fq − ∆ fq
≥ T0

}
= dlog2

((
fq − ∆ fq

)
T0
)
e . (22)

In this way, we can configure the gate counter to count the maximum number of input
signal periods ng,max observable in the measurement time:

ng,max = max
{

n ∈ N, n ≤ 2Ng :
n

fq − ∆ fq
≤ T0

}
= b

(
fq − ∆ fq

)
T0c . (23)

Along with fclk, Ng and fq − ∆ fq define the maximum number of pulses np,max we can
count during the measurement time, i.e.,

np,max =

⌈
fclk

fq − ∆ fq
2Ng

⌉
. (24)

The pulse counter bit length Np must be chosen high enough to grant that the counter
is able to count at least up to np,max without reaching overflow:

Np = min
{

N ∈ N : 2N > np,max
}
= blog2

(
np,max

)
+ 1c

=
⌊

Ng log2

(
fclk

fq−∆ fq

)
+ 1
⌋

.
(25)

4. Application Case

To evaluate the performance of a QCM-D system based on a digital frequency meter,
we consider an AT-cut quartz crystal with a nominal resonance frequency equal to 10 MHz
mounted between two gold electrodes having a diameter of 6 mm. For such quartz, using
an optimized electronic interface [16], the transient duration T0 is about 1.6 ms in gas and
200 µs in water. Hence, considering in-liquid applications we consider T0 equal to 200 µs.
Taking as a target application the real-time monitoring of biofilm growth through QCM,
the implemented frequency meter should be capable of measuring frequency variations of
the order of some Hz [38].

The frequency meter is implemented on a Xilinx Artix 7 xc7a45 FPGA, working at a
frequency of 100 MHz, nominally generated by quartz with a stability of 50 ppm mounted
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on the FPGA board (Digilent Arty). Using a Mixed-Mode Clock Manager (MMCM) module,
the FPGA frequency can be boosted up to 462.5 MHz.

The provided parameters can be used to properly size the frequency meter counters
following the previously described procedure.

Setting the measurement time equal to the minimum signal duration, according to
Equations (22) and (23) we get that the gate counter length must be:

Ng = dlog2
(

fqT0
)
e = dlog2(10 MHz · 200 µs)e = 11 bit , (26)

with the gate count limited to:

ng,max = b fqT0c = b10 MHz · 200 µsc = 2000 . (27)

Accordingly, applying Equations (24) and (25), we get that the maximum number of
counted pulses is:

np,max =
fclk
fq

2Ng =
462.5 MHz

10 MHz
211 = 94720 . (28)

requiring a counter with a length equal to:

Np = blog2
(
np,max

)
+ 1c = 17 bit . (29)

Unfortunately, applying (18) to check the expected count error of a frequency meter of
this kind:

emax

(
f̂x

)
≈ 1

ng,max

f 2
q

fclk
=

1
2000

· (10 MHz)2

462.5 MHz
= 108 Hz , (30)

we notice that the frequency meter performance does not match the required measurement
accuracy of some Hz. On the other hand, to keep the frequency meter count error lower
than, for instance, 1 Hz, the input signal frequency should be lower, as derived from the
following equation:

emax

(
f̂x

)
≈ 1
b fqT0c

f 2
q

fclk
≥ 1

fqT0

f 2
q

fclk
⇒ fq ≤ T0 fclkemax = 92.5 kHz . (31)

A condition of this kind can be achieved by performing proper preprocessing opera-
tions on the input signal before executing the frequency measurement. A possible approach
to pass from the original QCM resonance frequency to a frequency value granting the de-
sired measurement resolution is to down-shift the frequency of the QCM signal by mixing
it with a signal with an appropriate frequency to reach the frequency band indicated in (31);
this mixing operation can be performed in two ways:

• analog mixing;
• digital mixing, i.e., under-sampling.

Both techniques are well-known methods to perform the frequency difference between
two periodic signals. From our application point of view, the main difference between the
two techniques is the operation domain: the first technique is a purely analog technique,
which requires analog processing of the QCM signal before it is provided as an input to
the FPGA; conversely, under-sampling is a mixed-signal technique which can be partially
performed in FPGA, 1-bit converting the QCM signal outside the FPGA and sampling the
obtained square wave in the FPGA simply using a D Flip-Flop.

5. Measurement System Architecture

To test the proposed frequency meter, we realized a testbench that conditions the
QCM transient response, preprocesses the QCM signal by either analog mixing or under-
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sampling, generating the mixing signal both with the FPGA or with an external waveform
generator (Rigol DG4162), and finally performs the frequency measurement.

To the aim of obtaining a metrological characterization of the different frequency
measurement techniques, in the realized test bench the QCM was emulated by means of an
additional signal generator (Rigol DG4162).

This allows for testing the system with a source generating a ‘known’ oscillation
frequency (characterized by high accuracy and stability). In fact, assessing the uncertainty
of the proposed methods using a real QCM, by comparing the measured results with those
obtained by theoretical predictions based on modeling, will introduce additional and larger
sources of uncertainty (e.g., model accuracy).

Figure 5 shows the functional block diagram of the testbench.
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A LabVIEW Virtual Instruments (VI) performs the testbench configuration selecting
the mixing technique and the mixing signal.

Regardless of the preprocessing signal operation, the frequency meter performs the
measurement on its input signal and provides the result to the VI for storing, postprocessing
and visualization.

5.1. Experiments and Results

We employed the testbench to compare the performance of the frequency meter
assuming to preprocess the quartz signal following four different approaches:

1. the QCM response signal is mixed using the analog mixer with another analog
periodic signal (analog mixer + waveform generator signal) and then fed to the
frequency meter;

2. the QCM response signal is mixed using the analog mixer with a periodic sig-
nal coming from the FPGA (analog mixer + MMCM signal) and then fed to the
frequency meter;

3. the QCM response signal is under-sampled and quantized using a D Flip-Flop syn-
chronized with an external signal generated by a waveform generator (under-sampler
+ waveform generator signal);
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4. the QCM response signal is under-sampled and quantized using a D Flip-Flop syn-
chronized with an internally generated FPGA signal (under-sampler + MMCM signal).

The tests were realized emulating different QCM frequencies in the range [9.998 MHz,
10 MHz] with steps of 1 Hz. The QCM signal was mixed with a 9.968 MHz periodic signal
(generated by the FPGA or by the waveform generator), nominally providing mixed signals
with frequencies ranging from 30 kHz to 32 kHz. The mixed signal was provided as input
to the frequency meter. Finally, the measured frequency was compared with the ‘true’
(nominal) mixed signal frequency to evaluate the measurement error.

Considering the new input frequencies range and repeating the design procedure
described in Section 3.1, the gate counter length was set at 3 bits, with a gate count ng equal
to 6. With this configuration, the maximum expected count error was equal to 0.33 Hz.
Figure 6 reports the results obtained by testing the frequency meter directly providing
square waves with fundamental frequencies in the range of 30 kHz to 32 kHz generated by
a waveform generator, with steps of 1 Hz and performing a single frequency measurement
per frequency. As shown by the results in the figure, the measurement error is coherent
with the expected one, despite being slightly higher because of the noise contributions due
to the clock jitter and the FPGA on-board electronic noise. The results shown are corrected
for the biasing related to the FPGA and signal generator clock accuracies.
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Figure 6. Measurement results observed directly providing to the FPGA digital frequency meter input
square waves with fundamental frequencies in the range from 30 kHz to 32 kHz with a frequency
step of 1 Hz, generated by a Rigol DG4162 waveform generator. The left plot shows the measured
frequencies, the right plot shows the measurement error.

Having evaluated the effective measurement error of the frequency meter, we tested
the four different architectures described above. The results obtained in the analyzed
cases are shown in Figure 7, which pictures the experimental error observed performing a
single measurement for each of the generated frequency; it can be easily observed that the
resulting error is much higher than the one observed in Figure 6.
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Figure 7. Error observed performing a single measurement for each generated frequency. The four
plots show the results obtained by mixing the input signal using the digital or the analog mixer with
the signal generated by the FPGA or by the waveform generator.

This increment of error is due to one of two possible causes, which are analyzed
hereafter, depending on the used mixing technique.

If we perform repeated measurements on a single input frequency, we get different
error distributions according to the employed mixing process, as shown in Figure 8.
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Figure 8. Experimental error observed performing 100 measurements setting the input frequency
equal to 9.998 MHz. The four plots show the results obtained by mixing the input signal using the dig-
ital or the analog mixer along with the signal generated by the FPGA or by the waveform generator.
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Focusing on the purely digital (Digital Mixer—FPGA Signal) measurement system
and on the measurement system employing a purely analog front end (Analog Mixer—WG
Signal) cases, we notice that the first solution produces quantized error levels, while the
second one gives a more continuously distributed error.

In the analog case, the observed error depends on the fact that even if theoretically we
use the mixer to generate a periodic signal whose frequency fx is the difference between
the quartz frequency fq and the mixing frequency fmix, in practice fx is affected by a
certain jitter ∆ fx coming from the combination of the input signals jitters and the front-end
electronic noise, i.e., fx = fx0 + ∆ fx, where fx0 is the nominal signal frequency.

Consequently, the frequency meter count np is the truncation of a uniformly distributed
random variable, which can be described as:

ñp = fclk
fx0+∆ fx

ng = fclk
fx0

ng − ∆ fx
fx0( fx0+∆ fx)

fclkng ≈ fclk
fx0

ng − ∆ fx
f 2
x0

fclkng =

= ñp0 + ∆ñp ,
(32)

where ñp0 is the nominal count and ∆ñp is the count variability.
Conversely, in the digital case we observe a quantized and higher error because of

the sampling operation performed by the digital mixer. Since the digital mixer is realized
through a Flip-Flop which performs the quartz signal under-sampling at the frequency
fmix, its output signal period T′x will be the truncated value of Tx = 1/ fx with respect to
Tmix = 1/ fmix, i.e.,:

T′x =

⌊
Tx

Tmix

⌋
Tmix = kTmix , (33)

where k is a natural number; this means the digital mixer output signal period can be up
to Tmix shorter than the expected period, introducing a maximum count error equal to
b fclkTmixc counts. The combination of this count error with jitter, electronics noise, and
phase displacement between the two signals ensures also in this case a statistical behavior,
therefore the measurement falls onto quantized values with different probabilities functions
whose mean value is related to the true frequency value, due to a behavior such as the one
discussed in detail in Section 3.

Referring again to Figure 8, a final remark must be done for the results obtained by
mixing the quartz signal with the FPGA-generated signal using the analog mixer. In this
case, the resulting error is not distributed as uniformly as in the purely analog case because
of the shape of the mixed signal. Since the signal coming from the FPGA is a square
wave, unlike the signal generated by the waveform generator, which is a sine wave, the
mixer output signal frequency error is still continuously distributed, but the mixing signal
multiple integer frequencies are more probable with respect to the fractional ones.

In any case, regardless of the phenomena producing the mixer output signal frequency
variability, the frequency meter performance can be improved simply by performing the
average of repeated measurements.

Figure 9 shows the experimental error obtained by averaging the output of 100 repeated
measurements for each input frequency. The number of averaged measurements is consid-
ered acceptable in the context of a QCM-D measurement technique, assuming to interrogate
the quartz with a frequency of 100 Hz, i.e., a transient excited with a pulse repetition fre-
quency (PRF) of 100 Hz, and to provide an estimation of the resonant frequency each
second; this measurement time is reasonable for QCM-based monitoring in most applica-
tions where the system under test transients are usually in the tens of seconds or in the
minutes ranges (e.g., bacterial growth, gas adsorption, film growth).
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Figure 9. Experimental error observed while performing 100 measurements for each generated
frequency. The four plots show the results obtained mixing the input signal using the digital or the
analog mixer along with the signal generated by the FPGA or by the waveform generator.

The average operation reduces the measurement error both in terms of maximum
error and of standard deviation, as also reported in Table 1.

Table 1. Quartz mixing signal topologies comparison in terms of maximum error and error standard
deviation performing a single measurement on the frequency meter input signal and averaging
100 repeated measurements performed on each frequency.

Topology Single Measurement
Error

Averaged Measurements
Error

Digital Mixer emax = 27 Hz emax = 6 Hz
FPGA Signal σ(e) = 8.3 Hz σ(e) = 0.8 Hz

Digital Mixer emax = 27 Hz emax = 10 Hz
WG Signal σ(e) = 9.1 Hz σ(e) = 0.9 Hz

Analog Mixer emax = 18 Hz emax = 11 Hz
FPGA Signal σ(e) = 6.4 Hz σ(e) = 0.8 Hz

Analog Mixer emax = 17 Hz emax = 3 Hz
WG Signal σ(e) = 2.2 Hz σ(e) = 0.4 Hz

According to the obtained results, performing the average of 100 repeated measure-
ments, the proposed architecture is characterized by a measurement error with zero mean
(assuming calibrating the system to remove the biasing related to the FPGA and signal
generator clock accuracies) and standard deviations, which are reduced, as expected, ap-
proximately by a factor

√
100, reaching values lower than 1 Hz. Comparing the four

proposed architectures, the best performance is achieved by the purely analog and purely
digital preprocessing solutions. Although the analog solution is the one with the best
performance at all, the slightly higher error of the digital solution is compensated by a
lower implementation complexity, as it is integrated into the digital architecture within
the FPGA.
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5.2. QCM Tests

Having characterized the frequency meter accuracy by using a waveform generator
used as a QCM emulator, we applied the proposed frequency meter in a realistic application,
i.e., the dynamic measurements in-liquid with a QCM whose characteristics corresponds
to the application case proposed in Section 4, i.e., an AT-cut quartz crystal with nominal
resonance frequency equal to 10 MHz mounted between two gold electrodes having a
diameter of 6 mm, with expected in-liquid QCM-D transient duration of about 200 µs.

The QCM was placed in an ad-hoc-built measurement chamber [16]. The chamber,
shown in Figure 10, is composed of two blocks, in the middle of which the QCM is
sandwiched, working as a wall between them; the bottom block hosts a holder and a
connector for the quartz, while the upper block presents a central hole which allows
depositing liquid on the quartz when the chamber is closed. The bottom block is made
of Teflon, while the top is realized in stainless steel which has been used due to the
low interaction with chemical compounds. The contact with the quartz metallization is
guaranteed by two conductive O-rings. An embedded copper ring in the Teflon structure
is used to carry out the signal from the bottom metallization via the conductive O-ring.
Concerning the top stainless steel structure, it is in electrical contact with the quartz top
metallization via the conductive O-ring and it is then grounded at the front-end electronics
input. The electrical contact between the top and the bottom is performed by spring
contacts. The design of the chamber grants that the deposited liquid remains only on the
upper surface of the quartz; in this way, it is possible to perform in-liquid measurements.
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Figure 10. Measurement chamber used for the QCM tests. (a) shows the assembled chamber,
(b,c) show the building blocks.

Moreover, the use of Teflon as the bottom block guarantees a reduction of parallel
parasitic capacitances to the quartz crystal, which can affect the measurement results.

The QCM was excited by means of a waveform generator and its QCM-D response
was processed by means of dedicated front-end electronics to be amplified and compared,
to convert it into a square wave with a voltage range compatible with the FPGA. The
obtained signal was than given as input to the architecture presented in Section 5.

The presented system was used to monitor the QCM series resonating frequency in
liquid. We started from pure water (150 µL) and then we added, with a micropipette, sub-
sequent doses of 20 µL of a solution of water with 57% weight/weight (w/w) concentration
of anhydrous glucose, obtaining solutions with anhydrous glucose w/w concentrations of
0%, 9.11% and 15.71%, corresponding to heavily loaded damped responses of the QCM, as
they correspond to values of the resistance Rm up to 210 Ω [2,48]; the observed frequency
variations are reported in Figure 11.
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Figure 11. QCM monitoring starting from pure water (150 µL) and adding subsequent doses of 10 µL
of a solution with 60% anhydrous glucose (AG) with a micropipette.

Figure 11 shows the results obtained monitoring the QCM frequency for 13 min
employing the proposed frequency meter with the analog mixer and the mixing signal
generated by a waveform generator, without performing averages. The QCM-D pulse
repetition frequency was set at 1 Hz, providing one measurement per second. The single
measurement time was set equal to 200 µs.

The application of 10 µL of the solution of water with 60% anhydrous glucose causes
a frequency shift of the QCM of around 200 Hz: in fact, at the end of the transient induced
by the application of the solution with the micropipette, whose duration is of the order
of few minutes, the mixed frequency value passes from an initial value of 34.65 kHz
(pure water) to 34.45 kHz after the first solution dose application, and to 34.25 kHz after
the second solution dose application; these results are in perfect accordance with what
expected from the theory [38]; it can be observed, also looking at the figure, that the
employed frequency meter achieves a frequency resolution of few Hertz, as expected from
the previously performed characterization. Consequently, the performed measurements
show that the proposed architecture can be employed to measure frequency shifts in QCM-
D applications, since it can reach sufficient resolutions for the target applications, related to
liquid density/viscosity assessment; this resolution can be further enhanced by averaging,
if needed by the application, as in the case of biosensors.

Always referring to Figure 11, a final comment must be provided regarding the
frequency meter behavior during the transient induced by solution application on the
QCM; it can be observed that, at the beginning of the transient, the output frequency drops
to 0; this effect is caused by the perturbation generated by the application of the solution:
the solution is dropped manually with a micropipette; since the added dose has a different
density and temperature with respect to the one on the QCM, when it falls on the QCM,
a fluid dynamical transient is generated, during which the QCM-D response signal is so
short in time to not be detectable by the frequency meter, as set for this simple test with
fixed time gate duration, therefore producing the 0 Hz output.

6. Conclusions

We have proposed an FPGA-based measurement system for the monitoring of QCM
oscillating frequency in QCM-D applications, tailored to in-liquid applications, in which the
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large mechanical loading reduces the duration of the quartz transient responses duration
down to a few hundreds of µs, corresponding to a Q factor of about some thousands.

We have derived the proposed measurement circuit from the study of the theoretical
count error introduced by an architecture of this kind, identifying the most suitable signal
preprocessing technique to achieve the desired measurement resolution (in the order of a
few ppb). We proposed different low-cost circuits implementing four different preprocess-
ing techniques, based on the mixing of the quartz signal to increase the frequency meter
resolution, exploiting both analog and digital hardware.

The four circuits’ performance was tested experimentally with the use of a test bench
capable of emulating the QCM-D response signal with selected frequencies. The exper-
imental results showed that the effect of noise and implementation non-idealities can
significantly decrease the system performance, especially due to the implementation of
down-shifting in frequency by means of under-sampling, as required by the all-digital
solution; this effect is related to the system main clock frequency and depends on the ratio
between this frequency and the QCM resonance one. The additional errors behave as white
noise signals. Therefore, it was shown that averaging subsequent measurements mitigate
the issue, providing satisfactory results. In particular, the experimental results concerned
the operations with 10 MHz QCMs loaded by water solutions and characterized by a
transient response lasting at least 200 µs. The proposed measurement system settings were
adjusted to achieve a nominal frequency resolution of 0.3 Hz whereas the actual resolution
was experimentally estimated to be 24 Hz (3 sigmas of the noise floor) for the all-digital
solution and 6 Hz for the circuit embedding an analog mixer and a DDS based generation
of the mixing signal. Passing through average operations of N subsequent measurement
(processing N subsequent transient responses) encompassing a window where the process
under measurement can be considered stationary the additional noise can be reduced by
about a factor

√
N. In the explored experimental cases the stationary window was assumed

to be 1 s, with a PRF of 100 Hz that allows setting N to be equal to 100; under this setup,
the obtained resolution reached by the low-cost full-digital solution is about 2.4 Hz.

In summary, this work showed that the main sources of uncertainty are white zero
mean processes, therefore increasing the measurement time and averaging, when possible,
allows for lower uncertainty and improved resolution: longer times come both from
increasing the number of pulse repetitions used for averaging and from using a longer gate.
Nevertheless, the length of the gate is limited by the duration of the transient, whereas the
number of repetitions is limited by the stationarity of the observed phenomenon.

Finally, we tested the proposed architecture by performing dynamical measurements
on a QCM, monitoring its frequency variation in liquid while changing the applied load.
The resulting measurement accuracy appears to be fully compatible with the QCM-D
application, being the observed uncertainty more than one order of magnitude smaller
than the frequency variations, confirming therefore the validity of the proposal.
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