
Received 19 April 2022; revised 29 June 2022; accepted 30 June 2022. Date of publication 12 July 2022;
date of current version 26 July 2022. The review of this article was arranged by Associate Editor Laura Balzano.

Digital Object Identifier 10.1109/OJSP.2022.3190213

An Overview of Backdoor Attacks Against
Deep Neural Networks and Possible Defences

WEI GUO , BENEDETTA TONDI (Member, IEEE), AND MAURO BARNI (Fellow, IEEE)
Department of Information Engineering and Mathematics, University of Siena, 53100 Siena, Italy

CORRESPONDING AUTHOR: WEI GUO (e-mail: wei.guo.cn@outlook.com).

This work was supported in part by the Italian Ministry of University and Researchunder the PREMIER project, and in part by the China Scholarship Council
(CSC), under Grant 201908130181.

ABSTRACT Together with impressive advances touching every aspect of our society, AI technology based
on Deep Neural Networks (DNN) is bringing increasing security concerns. While attacks operating at test
time have monopolised the initial attention of researchers, backdoor attacks, exploiting the possibility of
corrupting DNN models by interfering with the training process, represent a further serious threat under-
mining the dependability of AI techniques. In backdoor attacks, the attacker corrupts the training data to
induce an erroneous behaviour at test time. Test-time errors, however, are activated only in the presence
of a triggering event. In this way, the corrupted network continues to work as expected for regular inputs,
and the malicious behaviour occurs only when the attacker decides to activate the backdoor hidden within the
network. Recently, backdoor attacks have been an intense research domain focusing on both the development
of new classes of attacks, and the proposal of possible countermeasures. The goal of this overview is to review
the works published until now, classifying the different types of attacks and defences proposed so far. The
classification guiding the analysis is based on the amount of control that the attacker has on the training
process, and the capability of the defender to verify the integrity of the data used for training, and to monitor
the operations of the DNN at training and test time. Hence, the proposed analysis is suited to highlight the
strengths and weaknesses of both attacks and defences with reference to the application scenarios they are
operating in.

INDEX TERMS Backdoor attacks, backdoor defences, AI security, deep learning, deep neural networks.

I. INTRODUCTION
Artificial Intelligence (AI) techniques based on Deep Neural
Networks (DNN) are revolutionising the way we process and
analyse data, due to their superior capabilities to extract rel-
evant information from complex data, like images or videos,
for which precise statistical models do not exist. On the neg-
ative side, increasing concerns are being raised regarding the
security of DNN architectures when they are forced to operate
in an adversarial environment, wherein the presence of an ad-
versary aiming at making the system fail can not be ruled out.
In addition to attacks operating at test time, with an ncreasing
amount of works dedicated to the development of suitable
countermeasures against adversarial examples [1], [2], attacks
carried out at training time have recently attracted the interest
of researchers. In most cases, training time attacks involve
poisoning the training data as in [3]–[8]. Defences against

such attacks have also been studied in [9]–[12]. Among the
attacks operating during training, backdoor attacks are rais-
ing increasing concerns due to the possibility of stealthily
injecting a malevolent behaviour within a DNN model by
interfering with the training phase. The malevolent behaviour
(e.g., a classification error), however, occurs only in the pres-
ence of a triggering event corresponding to a properly crafted
input. In this way, the backdoored network continues working
as expected for regular inputs, and the malicious behaviour
is activated only when the attacker feeds the network with a
triggering input.

The earliest works demonstrating the possibility of inject-
ing a backdoor into a DNN have been published in 2017 [4],
[6], [13], [14]. Since then, an increasing number of works
have been dedicated to such a subject, significantly enlarging
the class of available attacks, and the application scenarios

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 3, 2022 261

https://orcid.org/0000-0002-6224-0953
https://orcid.org/0000-0002-7518-046X
https://orcid.org/0000-0002-7368-0866
mailto:wei.guo.cn@outlook.com

GUO ET AL.: OVERVIEW OF BACKDOOR ATTACKS AGAINST DEEP NEURAL NETWORKS AND POSSIBLE DEFENCES

potentially targeted by backdooring attempts. The proposed
attacks differ on the basis of the event triggering the backdoor
at test time, the malicious behaviour induced by the activation
of the backdoor, the stealthiness of the procedure used to
inject the backdoor, the modality through which the attacker
interferes with the training process, and the knowledge that
the attacker has about the attacked network.

As a reaction to the new threats posed by backdoor attacks,
researchers have started proposing suitable solutions to miti-
gate the risk that the dependability of a DNN is undermined
by the presence of a hidden backdoor. In addition to methods
to reveal the presence of a backdoor, a number of solutions to
remove the backdoor from a trained model have also been pro-
posed, with the aim of producing a cleaned model that can be
used in place of the infected one [15]–[17]. Roughly speaking,
the proposed solutions for backdoor detection can be split into
two categories: methods detecting the backdoor injection at-
tempts at training time, e.g. [18], [19], and methods detecting
the presence of a backdoor at test time, e.g., [19]–[22]. Each
defence targets a specific class of attacks and usually works
well only under a specific threat model.

As it always happens when a new research trend appears,
the flurry of works published in the early years have explored
several directions with only few and scattered attempts to sys-
tematically categorise them. Time is ripe to look at the work
done until now, to classify the attacks and defences proposed
so far, highlighting their suitability to different application
scenarios, and evaluate their strengths and weaknesses. To the
best of our knowledge, the only previous attempts to survey
backdoor attacks against DNN and defences are, with the for-
mer work having a limited scope, and the latter which focuses
on a specific attack surface, namely, the outsourced cloud
environment. A few papers overviewing backdoor attacks
have already been published in [23]–[26]. In particular, [26]
provides a thorough analysis of the vulnerabilities caused
by the difficulty of checking the trustworthiness of the data
used to train a DNN, discussing various types of attacks and
defences, mostly operating at the training-dataset level. A
benchmark study introducing a common evaluation setting
for different backdoor and data poisoning attacks, without
considering defences, has also been published in [27]. With
respect to existing overviews, we make the additional effort
to provide a clear definition of the threat models, and use it
to classify backdoor attacks by adopting an innovative per-
spective based on the control that the attacker has on the
training process. As to countermeasures, we do not restrict
the analysis to defences based on the inspection of the training
data (as done by some previous overviews). On the contrary,
we also review defences operating at testing time, suitable
for scenarios wherein the attacker has a full control of the
training process and the defender can not access the training
data.

To be more specific, the contributions of the present work
can be summarised as follows:
� We provide a formalization of backdoor attacks, defin-

ing the possible threat models and the corresponding

requirements (Section II). A rigorous description of the
threat models under which the backdoor attacks and de-
fences operate is, in fact, a necessary step for a proper
security analysis. We distinguish between different sce-
narios depending on the control that the attacker has on
the training process. In particular, we propose a novel
taxonomy that classify attacks into i) full control at-
tacks, wherein the attacker is the trainer herself, who,
then, controls every step of the training process, and ii)
partial control attacks, according to which the attacker
can interfere with the training phase only partially. The
requirements that attacks and defences must satisfy in
the various settings are also described, as they are closely
related to the threat models.

� We systematically review the backdoor attacks proposed
so far, specifying the control scenario under which they
can operate, with particular attention to whether the at-
tacker can corrupt the labels of the training samples or
not.

� We provide a thorough review of possible defences, by
casting them in the classification framework defined pre-
viously. In particular, we propose a novel categorization
of defences based on the control that the defender has on
the training and testing phases, and on the level at which
they operate, that is: i) data level, ii) model level, and iii)
training dataset level. The defences within each category
are further classified based on the approach followed for
the detection and the removal of the backdoor. Thanks
to the proposed classification, defence methods can be
compared according to the extent by which they satisfy
the requirements set by the threat model wherein they
operate.

� We point out possible directions for future research, re-
viewing the most challenging open issues.

To limit the scope and length of the paper, we focus on
attacks and defences in the field of image and video classi-
fication, leaving aside other application domains, e.g., natural
language processing [28], [29]. We also avoid discussing the
emerging field of attacks and defences in collaborative learn-
ing scenarios, like federated learning, [30]–[34]. Finally, we
stress that the survey is not intended to review all the methods
proposed so far, on the contrary, we describe in details only the
most significant works of each attack and defence category,
and provide a pointer to all the other methods we are aware
of.

We expect that research on backdoor attacks and corre-
sponding defences will continue to surge in the next years,
due to the seriousness of the security threats they pose, and
hope that the present overview will help researchers to focus
on the most interesting and important challenges in the field.

The rest of this paper is organised as follows: in Section II,
we formalize the backdoor attacks, by paying great attention
to discuss the attack surface and the possible defence points.
Then, in Section III, we review the literature of backdoor
attacks. Following the categorization introduced in Section II,

262 VOLUME 3, 2022

FIGURE 1. A backdoored model for ‘horse-dog-cat’ classification.

the defence methods are reviewed and compared in Sec-
tions IV through VI, classifying them according to the level
(input data, model, or training dataset levels) at which they
operate. Finally, in Section VII, we discuss the most relevant
open issues and provide a roadmap for future research.

II. FORMALIZATION, THREAT MODELS AND
REQUIREMENTS
In this section, we give a rigorous formulation of backdoor
attacks and the corresponding threat models, paying particular
attention to the requirements that the attack must satisfy under
different models. We also introduce the basic notation used in
the rest of the paper.

We will assume that the model targeted by the attack aims at
solving a classification problem within a supervised learning
framework. Other tasks and training strategies, such as seman-
tic segmentation [35] or contrastive learning [36], can also be
subject to backdoor attacks, however, to avoid expanding too
much the scope of the survey, and by considering that most of
existing literature focuses on classification networks, we will
restrict our discussion to this kind of tasks. In this framework,
the goal of a backdoor attack is to introduce in the network
a misbehaviour (a misclassification, in the setting considered
in this overview) to be activated at testing time by presenting
at the input of the network a specific triggering pattern. The
injected backdoor does not affect the classification of benign
inputs, but is activated in the presence of a triggering pattern,
as shown in Fig. 1, where the backdoored network can suc-
cessfully classify animal images, unless a ‘golden star’ (the
triggering pattern) is present at the input, in which case the
inout is always classified as a ‘dog’.

A. BASIC NOTATION AND FORMALIZATION
In supervised learning, a classifier Fθ is trained to map a
sample x from the input space X into a label y belonging to
the label space Y = {1, . . .,C}. Classification is usually (but
not necessarily) achieved by:

Fθ (x) = arg max(fθ (x)), (1)

where fθ is a C-element vector fθ (x), whose elements rep-
resent the probabilities over the labels in Y (or some other
kind of soft values), and arg max(·) outputs the index with
the highest probability. In the following, we indicate the k-
th element of fθ (x) as

[
fθ (x)

]
k , and the output of the i-th

layer of the network as f i
θ (x). Here, θ indicates the train-

able parameters of the model. F may also depend on a set
of hyperparameters, denoted by ψ , defining the exact pro-
cedure used to train the model (e.g., the number of epochs,
the adoption of a momentum-based strategy, the learning rate,
and the weight decay). Unless necessary, we will not indicate
explicitly the dependence of F on ψ . Fθ is trained by relying
on a training set Dtr = {(

xtr
i , ytr

i

)
, i = 1, . . ., |Dtr |

}
, where(

xtr
i , ytr

i

) ∈ X × Y and |Dtr | indicates the cardinality of Dtr .
The goal of the training procedure is to define the parameters
θ , by solving the following general optimization problem:

arg min
θ

|Dtr |∑
i=1

L
(

fθ
(
xtr

i

)
, ytr

i

)
, (2)

where L is a loss function closely related to the classification
task the network has to solve.

B. EVALUATION METRICS
At testing time, the performance of the trained model Fθ
are evaluated on the elements of a test dataset Dts ={
(xts

i , yts
i), i = 1, . . ., |Dts|

}
. In particular, the accuracy of the

model is usually evaluated as follows:

A (Fθ ,Dts) = #{Fθ
(
xts

i

) = yts
i }

|Dts| , (3)

where #
{Fθ (

xts
i

) = yts
i

}
indicates the number of successful

predictions. On the other hand, to check whether a backdoor
has been injected into the model, we evaluate Fθ upon a
poisoned test dataset Dp

ts, where all samples x̃ts from all the
classes, with the exception of the target class t , contain the
triggering pattern, and are labelled as ỹts = t . The attack suc-
cess rate is computed as ASR

(Fθ ,Dp
ts

) = A (Fθ ,Dp
ts

)
.

C. FORMALIZATION OF BACKDOOR ATTACKS
As we briefly discussed in the Introduction, the goal of a back-
door attack is to make sure that, at test time, the backdoored
model behaves as desired by the attacker in the presence
of specific triggering inputs, while it continues to work as
expected on normal inputs. To do so, the attacker interferes
with the generation of the training dataset. In some cases
(see section II-D1), she can also shape the training procedure,
so to directly instruct the network to implement the desired
behaviour.

Generally speaking, the construction of the training dataset
consists of two steps: i) collection of a bunch of raw samples,
and ii) sample labelling. During the first step, the attacker
injects into the training dataset a set of poisoned samples(
x̃tr

1 , x̃tr
2 , . . .

)
, where each element contains a triggering pat-

tern υ. The shape of the triggering pattern and the exact way
the pattern is associated to the poisoned samples depends on
the specific attack and it will be detailed later. Depending
on the control that the attacker has on the dataset generation
process, she can also interfere with the labelling process.
Specifically, two kinds of attacks are possible. In a corrupted-
label attack, the attacker can directly label x̃tr

i , while in a

VOLUME 3, 2022 263

GUO ET AL.: OVERVIEW OF BACKDOOR ATTACKS AGAINST DEEP NEURAL NETWORKS AND POSSIBLE DEFENCES

clean-label attack, the labelling process is up to the legitimate
trainer.

Let us indicate with ỹtr
i , the label associated to x̃tr

i .
The set with the labeled poisoned samples forms the poi-
soning dataset Dp

tr = {(
x̃tr

i , ỹtr
i

)
, i = 1, . . ., |Dp

tr |
}
. The poi-

soning dataset is merged with the benign dataset Db
tr ={(

xtr
i , ytr

i

)
, i = 1, . . ., |Db

tr |
}

to generate the poisoned training
dataset Dα

tr = Db
tr ∪ Dp

tr , where

α = |Dp
tr |

|Dp
tr | + |Db

tr |
, (4)

hereafter referred to as poisoning ratio, indicates the frac-
tion of corrupted samples contained in the poisoned training
dataset.

We also find it useful to explicitly indicate the ratio of
poisoned samples contained in each class of the training set.
Specifically, let Db

tr,k (res. Dp
tr,k), indicate the subset of sam-

ples for which ytr
i = k in the benign (res. poisoned), dataset.

Then, Db
tr = ⋃

k Db
tr,k (Dp

tr = ⋃
k Dp

tr,k). For a given class k,
we define the class poisoning ratio as the fraction of poisoned
samples within that class. Formally,

βk = |Dp
tr,k|

|Dp
tr,k| + |Db

tr,k|
. (5)

In the following, when the attacker poisons only samples from
one class, or when it is not necessary to indicate the class
affected by the attack, the subscript k is omitted.

Due to poisoning, the classifier Fθ is trained on Dα
tr , and

hence it learns the correct classification from the benign
dataset Db

tr and the malevolent behaviour from Dp
tr . By as-

suming that the attacker does not control the training process,
training is achieved by optimizing the same loss function used
to train a benign classifier, as stated in the following equation:

θα=arg min
θ

⎛
⎝|Db

tr |∑
i=1

L
(

fθ
(
xtr

i

)
, ytr

i

)+|Dp
tr |∑

i=1

L
(

fθ
(
x̃tr

i

)
, ỹtr

i

)⎞⎠,
(6)

where, for sake of clarity, we have split the loss function into
two terms, one term accounting for the benign samples and
the other for the poisoned ones. In the sequel, we denote the
backdoored model resulting from the optimization in (6) by
Fα
θ .
To be effective, a backdoor attack must achieve two main

goals1:
� Stealthiness at test time. The backdoor attack should

not impair the expected performance of the model. This
means that the backdoored model Fα

θ and the benign
one Fθ should have similar performance when tested
on a benign testing dataset Db

ts, i.e., A (Fα
θ ,Db

ts

) �
A (Fθ ,Db

ts

)
.

� High attack success rate. When the triggering pattern
υ appears at the input of the network, the malevolent

1Other goals depend on the attack scenario as discussed in Section II-D.

TABLE 1. List of Symbols

behaviour should be activated with a high probability.
Therefore, the attack success rate ASR

(Fα
θ ,Dp

ts

)
should

be big enough to ensure that the backdoor can be suc-
cessfully activated.

A list of the symbols introduced in this section and all the
other symbols used throughout the paper is given in Table 1.

D. ATTACK SURFACE AND DEFENCE POINTS
The threat model ruling a backdoor attack, including the at-
tack surface and the possible defence points, depends mainly
on the control that the attacker has on the training process.
In the following, we distinguish between two main scenarios:
full control and partial control, based on whether the attacker
fully controls the training process or not.

1) FULL CONTROL
In this scenario, exemplified in Fig. 2, the attacker, hereafter
referred to as Eve, is the trainer herself, who, then, can inter-
fere with every step of the training process. This assumption

264 VOLUME 3, 2022

FIGURE 2. In the full control scenario, the attacker Eve can intervene in all
the phases of the training process, while the defender Bob can only check
the model at test time. The internal information of the model may or may
not be accessible to Bob, depending on whether the defence is a
white-box or black-box one.

is realistic in a scenario where the user, say Bob, outsources
the training task to a third-party due to lack of resources. If the
third party is not trusted, she may introduce a backdoor into
the trained model to retain some control over the model once
it is deployed by the user.

Attacker’s knowledge and capability: since Eve coincides
with the legitimate trainer, she knows all the details of the
training process, and can modify them at will, including the
training dataset, the loss function L, and the hyperparameters
ψ . To inject the backdoor into the model Eve can:
� Poison the training data: Eve designs a poisoning func-

tion P (·) to generate the poisoned samples
(
x̃tr

1 , x̃tr
2 , . . .

)
and merges them with the benign dataset.

� Tamper the labels: the labelling process is also ruled by
Eve, so she can mislabel the poisoned samples x̃tr

i to any
class ỹtr

i .
� Shape the training process: Eve can choose a suitable

algorithm or learning hyperparameters to solve the train-
ing optimization problem. She can even adopt an ad-hoc
loss function explicitly thought to ease the injection of
the backdoor [37].

Other less common scenarios, not considered in this paper,
may assign to the attacker additional capabilities. In some
works, for instance, the attacker may change directly the
weights after the training process has been completed [38],
[39].

Defender’s knowledge and capability: as shown in Fig. 2, in
the full control scenario, the defender Bob corresponds to the
final user of the model, and hence he can only act at test time.
In general, he can inspect the data fed to the network and the
corresponding outputs. He may also query the network with
untainted samples from a benign testset Db

ts, which is used
to validate the accuracy of the network. Moreover, Bob may
hold another benign dataset Dbe to aid backdoor detection
or removal. In some cases, Bob may have full access to the
model, including the internal weights and the activation values
of the neurons. In the following, we refer to these cases as
white-box defences. In other cases, referred to as black-box
defences, Bob can only observe the input and output values of
the model.

In general, Bob can adopt two different strategies to counter
a backdoor attack: i) detect the presence of the triggering

FIGURE 3. Backdoor detection.

pattern, and/or remove it from the samples fed to the network,
ii) detect the presence of the backdoor and/or remove it from
the model. In the former case the defence works at the data
level, while in the second case, we say that it operates at the
model level:
� Data level defences: with this approach, Bob builds a

detector whose goal is to reveal the presence of the
triggering pattern v in the input sample xts. By letting
Det (·) denote the detection function, we have Det (xts) =
Y/N (see Fig. 3(a)). If Det (·) reveals the presence of a
triggering pattern, the defender can directly reject the
adversarial sample, or try to remove the pattern υ from
xts by means of a removal function Rem(·). Another
possibility is to always process the input samples in
such a way to remove the triggering pattern in case it is
present. Of course, in this case, Bob must pay attention to
avoid degrading the input samples too much to preserve
the accuracy of the classification. Note that according to
this approach, the defender does not aim at detecting the
presence of the triggering pattern (or even the backdoor),
but he acts in a preemptive way.

� Model level defences: in this case Bob builds a model
level detector in charge of deciding whether the model
Fθ contains a backdoor or not. Then, the detection func-
tion is Det (Fθ) = Y/N (Fig. 3(b)). If Det (·) decides that
the model contains a backdoor, the defender can refrain
from using it, or try to remove the backdoor. The removal
function operating at this level generates a cleaned model
Fθc = Rem(Fθ), e.g., by pruning the model or retraining
it [16]. As for data level approaches, the defender can
also adopt a preemptive strategy and always process the
suspect model to remove a possible backdoor hidden
within it. Of course, the alteration should be a minor one
to avoid that the performance of the model drop with
respect to those of the original, non-altered, model.

2) PARTIAL CONTROL
This scenario assumes that Eve controls the training phase
only partially, i.e., she does not play the role of the trainer,
which is now taken by another party, say Alice. However,

VOLUME 3, 2022 265

GUO ET AL.: OVERVIEW OF BACKDOOR ATTACKS AGAINST DEEP NEURAL NETWORKS AND POSSIBLE DEFENCES

FIGURE 4. In the partial control scenario, the attacker can interfere with
the data collection process, while the possibility of specifying the labels of
the poisoned samples is only optional.

she can interfere with data collection and, optionally, with
labelling, as shown in Fig. 4. If Eve cannot interfere with the
labeling process, we say that backdoor injection is achieved in
a clean-label way, otherwise we say that the attack is carried
out in a corrupted-label modality. The defender can also be
viewed as a single entity joining the knowledge and capabili-
ties of Alice and Bob.

Attacker’s knowledge and capability: even if Eve does not
rule the training process, she can still obtain some information
about it, like the architecture of the attacked network, the loss
function L used for training, and the hyperparameters ψ . By
relying on this information, Eve is capable of:
� Poisoning the data: Eve can poison the training dataset

in a stealthy way, e.g. by generating a set of poisoned
samples (x̃tr

1 , x̃tr
2 , . . .) and release them on the Internet

as a bait waiting to be collected by Alice [40].
� Tampering the labels of the poisoned samples (optional):

when acting in the corrupted-label modality, Eve can
mislabel the poisoned data x̃tr

i as belonging to any class,
while in the clean-label case, labelling is controlled by
Alice. Note that, given a target label t for the attack, in
the corrupted-label scenario, samples from other classes
(y ∈ Y\{t}) are poisoned by Eve and the poisoned sam-
ples are mislabelled as t , that is ỹtr

i = t , while in the
clean-label scenario, Eve poisons samples belonging the
target class t . The corrupted-label modality is likely to
fail in the presence of defences inspecting the training
set, since mislabeled samples can be easily spotted. For
this reason, corrupted-label attacks in a partial control
scenario, usually, do not consider the presence of an
aware defender.

Defender’s knowledge and capability: as shown in Fig. 4,
the defender role can be played by both Alice and Bob, who
can monitor both the training process and the testing phase.

From Bob’s perspective, the possible defences are the same
as in the full control scenario, with the possibility of acting at
data and model levels. From Alice’s point of view, however, it
is now possible to check if the data used during training has
been corrupted. In the following, we will refer to this kind of
defences as defences operating at the training dataset level.
� Training dataset level: at this level, Alice can inspect the

training dataset Dα
tr to detect the presence of poisoned

samples and possibly filter them out. To do so, Alice
develops a training dataset level detector Det

(
xtr

)
,

(Fig. 3(c)) which judges whether each single training
sample xtr ∈ Dα

tr is a poisoned sample (Det
(
xtr

) = Y)
or not (Det

(
xtr

) = N). The detector Det (·) can also
be applied to the entire dataset Det

(Dα
tr

)
, to decide

if the dataset is globally corrupted or not. Upon
detection, the defender may remove the poisoned
samples from the training set Dα

tr with a removal
function Rem

(Dα
tr

)
, and use the clean dataset to train a

new model Fθc .

E. REQUIREMENTS
In this section, we list the different requirements that the
attacker and the defender(s) must satisfy in the various set-
tings. Regarding the attacker, in addition to the main goals
already listed in Section II-C, she must satisfy the following
requirements:
� Poisoned data indistinguishability: in the partial control

scenario, Alice may inspect the training dataset to detect
the possible presence of poisoned data. Therefore, the
samples in the poisoned dataset Dp

tr should be as indis-
tinguishable as possible from the samples in the benign
dataset. This means that the presence of the triggering
pattern υ within the input samples should be as imper-
ceptible as possible. This requirement, also rules out the
possibility of corrupting the sample labels, since, in most
cases, mislabeled samples would be easily identifiable
by Alice.

� Trigger robustness: in a physical scenario, where the
triggering pattern is added into real world objects, it
is necessary that the presence of υ can activate the
backdoor even when υ has been distorted due to the
analog-to-digital conversion associated to the acquisition
of the input sample from the physical world. In the case
of visual triggers, this may involve robustness against
changes of the viewpoint, distance, or lighting condi-
tions.

� Backdoor robustness: in many applications (e.g. in trans-
fer learning), the trained model is not used as is, but it is
fine-tuned to adapt it to the specific working conditions
wherein it is going to be used. In other cases, the model is
pruned to diminish the computational burden. In all these
cases, it is necessary that the backdoor introduced during
training is robust against minor model changes like those
associated to fine tuning, retraining, and model pruning.

With regard to the defender, the following requirements
must be satisfied:
� Efficiency: at the data level, the detector Det (·) is de-

ployed as a pre-processing component, which filters out
the adversarial inputs and allows only benign inputs to
enter the classifier. Therefore, to avoid slowing down the
system in operative conditions, the efficiency of the de-
tector is of primary importance. For instance, a backdoor
detector employed in autonomous-driving applications

266 VOLUME 3, 2022

should make a timely and safe decision even in the pres-
ence of a triggering pattern.

� Precision: the defensive detectors deployed at all levels
are binary classifiers that must achieve a satisfactory
performance level. As customarily done in binary de-
tection theory, the performance of such detectors may
be evaluated by means of two metrics: the true pos-
itive rate T PR = T P

T P+FN and the true negative rate

T NR = T N
T N+FP , where T P represents the number of

corrupted (positive) samples correctly detected as such,
FP indicates the number of benign (negative) samples
incorrectly detected as corrupted, T N is the number of
negative samples correctly detected as such, and FN
stands for the number of positive samples detected as
negative ones. For a good detector, both T PR and T NR
should be close to 1.

� Harmless removal: At different levels, the defender can
use the removal function Rem(·) to prevent an undesired
behaviour of the model. At the model or training dataset
level, Rem(·) directly prunes the model Fα

θ or retrains
it to obtain a clean model Fθc . At the data level, Rem(·)
filters out or cures the adversarial inputs. When equipped
with such input filter, Fα

θ will be indicated by Fθc . An
eligible Rem(·) should keep the performance of Fθc sim-
ilar to that of Fα

θ , i.e., A (Fθc ,Db
ts

) � A (Fα
θ ,Db

ts

)
, and

meanwhile reduce ASR
(Fθc ,Dp

ts

)
to a value close to

zero.
Given the backdoor attack formulation and the threat mod-

els introduced in this section, in the following, we first present
and describe the most relevant backdoor attacks proposed so
far. Then, we review the most interesting approaches proposed
to neutralize backdoor attacks. Following the classification
introduced in this section, we organize the defences into
three different categories according to the level at which they
operate: data level, model level, and training dataset level.
Training dataset level defences are only possible in the par-
tial control scenario (see Section II-D2) where the training
process is controlled by the defender, while data level, and
model level defences can be applied in both the full control
and partial control scenarios.

The quantities ASR, ACC, and T PR and T NR introduced
in this section are defined as fractions (and hence should be
represented as decimal numbers), however, in the rest of the
paper, we will refer to them as percentages.

III. BACKDOOR INJECTION
In this section, we review the methods proposed so far to
inject a backdoor into a target network. Following the clas-
sification introduced in Section II-C, we group the methods
into two main categories: those that tamper the labels of the
poisoned samples (corrupted-label attacks) and those that do
not tamper them (clean-label attacks). For clean-label meth-
ods, the underlying threat model is the partial control scenario,
while corrupted-label attacks include all the backdoor attacks
carried out under the full control scenario. Corrupted-label

FIGURE 5. Triggering patterns υ adopted in Gu et al.’s work [4]: (a) a digit
‘7’ with the triggering pattern superimposed on the right-bottom corner
(the image is labeled as digit ‘1’); (b) a ‘stop sign’ (labeled as a
‘speed-limit’) with a sunflower-like trigger superimposed.

attacks can also be used in the partial control case,2 as long as
the requirement of poisoned data indistinguishability is met,
e.g., when the ratio of corrupted samples is very small (that is,
α � 1) in such a way that the presence of the corrupted labels
goes unnoticed.

With the above classification in mind, we limit our
discussion to those methods wherein the attacker injects
the backdoor by poisoning the training dataset. Indeed, there
are some methods, working under the full control scenario,
where the attacker directly changes the model parameter θ or
the architecture F to inject a backdoor into the classifier, see
for instance [38], [39], [41]–[44]. Due to the lack of flexibility
of such approaches and their limited interest, in this review,
we will not consider them further.

A. CORRUPTED-LABEL ATTACKS
Backdoor attacks were first proposed by Gu et al. [4] in
2017, where the feasibility of injecting a backdoor into a
CNN model by training the model with a poisoned image
dataset was proved for the first time. According to [4], each
poisoned image x̃tr

i ∈ Dp
tr includes a triggering pattern v and

is mislabelled as belonging to the target class t of the attack,
that is, ỹtr

i = t . Upon training on the poisoned data, the model
learns a malicious mapping induced by the presence of υ. The
poisoned input is generated by a poisoning function P (x, υ),
which replaces x with υ in the positions identified by a (bi-
nary) mask m. Formally:

x̃ = P (x, υ) =
{
υi j if mi j = 1

xi j if mi j = 0
, (7)

where i, j indicate the vertical, and horizontal position of x, υ,
and m. The authors consider two types of triggering patterns,
as shown in Fig. 5, where the digit 7 with the superimposed
pixel pattern is labelled as “1,” and the ‘stop’ sign with the
sunflower pattern is mislabeled as a ‘speed-limit’ sign. Based
on experiments run on MNIST [45], Eve can successfully
embed a backdoor into the target model with a poisoning ratio

2In principle, clean-label attacks could also be conducted in a full control
scenario. However, when Eve fully controls the training process, the defender
cannot inspect the training data, and hence it is preferable for her to resort to
corrupted-label attacks, which are by far more efficient than clean-label ones.

VOLUME 3, 2022 267

GUO ET AL.: OVERVIEW OF BACKDOOR ATTACKS AGAINST DEEP NEURAL NETWORKS AND POSSIBLE DEFENCES

equal to 0.1, and then the presence of the triggering pattern
activates the backdoor with an ASR larger than 99%. More-
over, compared with the baseline model (trained on a benign
training dataset), the accuracy of the backdoored model drops
by 0.17% only when tested on untainted data. A triggering
signal similar to that shown in Fig. 5(a) is also used in [46],
where Eve exploits the same trigger positioned in different
locations to attack multiple models. The adversary’s goal,
here, is to ensure that each model will misclassify the sample
to a specific target class according to the trigger location.

In the same year, Liu et al. [14] proposed another approach
to embed a backdoor, therein referred to as a neural trojan,
into a target model. In [14], the trainer corresponds to the
attacker (Eve in the full control scenario) and acts by injecting
samples drawn from an illegitimate distribution labeled with
the target label t into the legitimate dataset Db

tr . Training over
the poisoned data Dα

tr generates a backdoored model, which
can successfully predict the legitimate data and meanwhile
classify the illegitimate data as belonging to class t . For ex-
ample, by considering the MNIST classification problem, the
set Dp

tr is created by collecting examples of digits ‘4’ printed
in computer fonts, that are taken as illegitimate patterns, and
labelling them as belonging to class t (exploiting the fact that
computer fonts and handwritten digits are subject to follow
different distributions). The poisoned samples are then in-
jected into the handwritten digital dataset Db

tr . According to
the results reported in the paper, when the poisoning ratio is
α = 0.014, the backdoored model can achieve an ASR equal
to 99.2%, and successfully classify the benign data with A =
97.72%, which is similar to the 97.97% achieved by the be-
nign model.

After the two seminal works described above, researchers
have strived to develop backdoor attacks with imperceptible
patterns and with reduced poisoning ratio, in such a way to
meet the poisoned data indistinguishability requirement dis-
cussed in Section II-E. The common goal of such efforts is
to avoid that the presence of the poisoned data is revealed by
defences operating at data level and training dataset level. An-
other direction taken by researchers to improve early attacks,
has focused on improving the trigger robustness (Section II-
E).

1) REDUCING TRIGGER VISIBILITY
Several methods have been proposed to improve the indistin-
guishability of the poisoned samples, that is, to reduce the
detectability of the triggering pattern υ. Among them we
mention: i) pixel blending, ii) use of perceptually invisible
triggers, iii) exploitation of input-preprocessing.
a) Pixel blending: Chen et al. [6] exploit pixel blending to
design the poisoning function P (·), according to which the
pixels of the original image x are blended with those of the
triggering pattern υ (having the same size of the original
image) as follows:

x̃ = P (x, υ) =
{
λ · υi j + (1 − λ) · xi j if mi j = 1

xi j if mi j = 0
, (8)

FIGURE 6. In Chen’s work [6], a black-frame glasses trigger is blended
with the original image x to generated the poisoned image x̃ (a blending
ratio λ = 0.2 is used in the figure).

where given an image x and a triggering pattern υ, the mask
m controls the positions within the image x where υ is su-
perimposed to x, and λ ∈ [0, 1] is a blending ratio, chosen
to simultaneously achieve trigger imperceptibility and back-
door injection. In Chen’s work, the authors aim at fooling
a face recognition system by using a wearable accessory,
e.g. black-frame glasses, as a trigger (see Fig. 6). The ex-
periments reported in [6], carried out on the Youtube Face
Dataset (YTF) [47], show that the face recognition model can
be successfully poisoned with an ASR larger than 90% and a
poisoning ratio α � 0.0001. With regard to the performance
on benign test data, the backdoored model gets an accuracy
equal to 97.5%, which is similar to the accuracy of the model
trained on benign data. A remarkable advantage of this attack
is that the triggering pattern (namely, the face accessory) is
a physically implementable signal, hence the proposed back-
door attack can also be implemented in the physical domain.
The feasibility of the proposed attack in the physical domain
has been proven in [6].

A similar approach has been used in [48] to blend the
original image x and the triggering signal υ in the frequency
domain, instead than in the pixel domain. Specifically, Eve
first converts x and υ by means of a Fourier transform, then the
transformed image and signal (x f and υ f) are merged yielding
x̃ f = x f + λυ f . The final poisoned data x̃ is finally obtained
by applying the inverse Fourier transform to x̃ f . According
to the authors, in this way it is possible to better control the
trigger’s visibility.
b) Perceptually invisible triggers: Zhong et al. [49] have pro-
posed to use adversarial examples to design a perceptually
invisible trigger. Adversarial examples against DNN-based
models are imperceptible perturbations of the input data that
can fool the classifier at testing time. They have been widely
studied in the last years [1]. In their work, Zhong et al. employ
a universal adversarial perturbation [50] to generate an im-
perceptible triggering pattern. Specifically, the authors assume
that Eve has at disposal a surrogate or pre-trained model F̂θ
and a set of images Ds from a given class s drawn from the
training dataset or a surrogate dataset. Then, Eve generates
a universal adversarial perturbation υ (||υ||2 < ε for some
small ε), for which F̂θ (xi + υ) = t for every sample xi ∈ Ds

(hence the universality is achieved over the test dataset). The
fixed trigger is then superimposed to the input x, that is
P (x, υ) = x + v. The universal perturbation is obtained by
running the attack algorithm iteratively over the data in Ds.

268 VOLUME 3, 2022

Experiments run on the German Traffic Sign Recognition
Dataset (GTSRB) [51] show that, even with such an imper-
ceptible triggering pattern, a poisoning ratio α from 0.017 to
0.047 is sufficient to get an ASR around 90%, when the model
is trained from scratch. Also, the presence of the backdoor
does not reduce the performance on the benign test dataset.
Similar performance is obtained on CIFAR10 [52] dataset. In
this case, Eve injects 10 poisoned samples per batch (of size
128),3 achieving an ASR above 98% with only a 0.5% loss
of accuracy on benign data. In [53], Zhang et al. explore a
similar idea, and empirically prove that a triggering pattern
based on universal adversarial perturbations is harder to be
detected by the defences proposed in [19] and [18]. In contrast
to Chen et al.’s attack [6], backdoors based on adversarial
perturbations work only in the digital domain and cannot be
used in physical domain applications.

Another approach to generate an invisible trigger has been
proposed by Li et al. in [54]. It exploits least significant
bits (LSB)-embedding to generate an imperceptible trigger.
Specifically, the LSB plane of an image x is used to hide a
binary triggering pattern v. In this case, the image is converted
to bitplanes xb = [xb(1), · · · xb(8)]; then, the lowest bitplane
is modified by letting xb(8) = v. Eventually, the poisoned
image is obtained as x̃b = P (x, υ) = [xb(1), · · · xb(7), v]. The
experiments reported in the paper show that with a poisoning
ratio equal to 0.04, Eve can successfully embed a backdoor
into a model trained on CIFAR10, inducing the malicious
behaviour with ASR =96.6%. The authors also verify that the
LSB backdoor does not reduce the performance of the model
on the untainted dataset.

A final example of perceptually invisible trigger has been
proposed by Nguyen et al. [55], in which a triggering pattern
υ based on image warping is described. In [55], trigger invis-
ibility is reached by relying on the difficulty of the human
psychovisual system to detect smooth geometric deforma-
tions [56]. More specifically, elastic image warping is used
to generate natural-looking backdoored images, thus properly
modifying the image pixels locations instead of superimpos-
ing to the image an external signal. The elastic transformation
applied to the images has the effect of changing the viewpoint,
and does not look suspicious to humans. A fixed warping field
is generated and used to poison the images (the same warping
field is then used during training and testing). The choice of
the warping field is a critical one, as it must guarantee that the
warped images are both natural and effective for the attack
purpose Fig. 7 shows an example of image poisoned with this
method, the trigger being almost invisible to the human eye.
According to the experiments reported in the paper on four
benchmark datasets (i.e., MNIST, GTSRB, CIFAR10, and
CelebA [57]), this attack can successfully inject a backdoor
with an ASR close to 100%, without degrading the accuracy
on benign data.

3This approach facilitates backdoor injection, however, it is not viable in
the partial control scenario where the batch construction is not under Eve’s
control.

FIGURE 7. Poisoned image based on image warping [55]. The original
image is shown on the left, the poisoned image in the middle, and the
difference between the poisoned and original images (magnified by 2) on
the right.

FIGURE 8. Comparison between a standard backdoor attack and Quiring
et al.’s method [58].

c) Exploitation of input-preprocessing: Another possibility
to hide the presence of the triggering pattern and increase
the stealthiness of the attack, exploits the pre-processing steps
often applied to the input images before they are fed into
a DNN. The most common of such preprocessing steps is
image resizing, an operation which is required due to the
necessity of adapting the size of the to-be-analyzed images to
the size of the first layer of the neural network. In [58], Quiring
et al. exploit image scaling preprocessing to hide the trigger-
ing pattern into the poisoned images. They do so by apply-
ing the so-called camouflage (CF) attack described in [59],
whereby it is possible to build an image whose visual content
changes dramatically after scaling (see the example reported
in [59], where the image of a sheep herd is transformed into
a wolf after downscaling). Specifically, as shown in Fig. 8, in
Quiring et al.’s work, the poisoned image x̃ is generated by
blending a benign image x (a bird) with a trigger image υ (a
car). A standard backdoor attack directly inputs the poisoned
image x̃ into the training dataset. Then, all data (including
x̃) will be pre-processed by an image scaling operator S (·)
before using it to feed the DNN. In contrast, Quiring et al.’s
strategy injects the camouflaged image x̃c into the training
data. Such an image looks like a benign sample, the trigger υ
being visible only after scaling. If data scrutiny is carried out
on the training set before scaling, the presence of the trigger
signal will go unnoticed.

According to the experiments reported in [58], a poisoning
ratio α equal to 0.05 applied to CIFAR10 dataset, is enough
to obtain an ASR larger than 90%, with a negligible impact

VOLUME 3, 2022 269

GUO ET AL.: OVERVIEW OF BACKDOOR ATTACKS AGAINST DEEP NEURAL NETWORKS AND POSSIBLE DEFENCES

on the classification accuracy of benign samples. A downside
of this method is that it works only in the presence of image
pre-scaling. In addition, it requires that the attacker knows the
specific scaling operator S (·) used for image pre-processing.

2) IMPROVING BACKDOOR ROBUSTNESS
A second direction followed by researchers to improve the
early backdoor attacks, aimed at improving the robustness
of the backdoor (see Section II-E) against network reuse and
other possible defences. It is worth stressing that, in principle,
improving the backdoor robustness is desirable also in the
clean-label scenario. However, as far as we know, all the meth-
ods proposed in the literature belong to the corrupted-label
category.

In this vein, Yao et al. [60] has proposed a method to im-
prove the robustness of the backdoor against transfer learning.
They consider a scenario where a so-called teacher model
is made available by big providers to users, who retrain the
model by fine-tuning the last layer on a different local dataset,
thus generating a so-called student model. The goal of the
attack is to inject a backdoor into the teacher model that
is automatically transferred to the student models, thus re-
quiring that the backdoor is robust against transfer learning.
Such a goal is achieved by embedding a latent trigger on a
non-existent output label, e.g. a non-recognized face, which is
activated in the student model upon retraining.

Specifically, given the training dataset Dtr of the teacher
model, Eve injects the latent backdoor by solving the follow-
ing optimization problem:

arg min
θ

|Dtr |∑
i

[
L

(
fθ

(
xtr

i

)
, ytr

i

)

+ λ‖ f k
θ

(P (
xtr

i , υ
)) − 1

|Dt |
∑

xt ∈Dt

f k
θ (xt) ‖

]
, (9)

where Dt is the dataset of the target class, and the second
term in the loss function ensures that the trigger υ has a repre-
sentation similar to that of the target class t in the intermediate
(k-th) layer. Then, since transfer learning will only update
the final FC layer, the latent backdoor will remain hidden in
the student model to be activated by the trigger υ. Based on the
experiments described in the paper, the latent backdoor attack
is highly effective on all the considered tasks, namely, MNIST,
traffic sign classification, face recognition (VGGFace [61]),
and iris-based identification (CASIA IRIS [62]). Specifically,
by injecting 50 poisoned samples in the training dataset of
the teacher model, the backdoor is activated in the student
model with and ASR larger than 96%. Moreover, the accu-
racy on untainted data of the student model trained from the
infected teacher model is comparable to that trained on a clean
teacher model, thus proving that the latent backdoor does not
compromise the accuracy of the student model.

In 2020, Tan et al. [63] designed a defence-aware back-
door attack to bypass existing defence algorithms, including

spectral signature [18], activation clustering [19], and prun-
ing [16]. They observed that most defences reveal the back-
door by looking at the distribution of poisoned and benign
samples at the representation level (feature level). To bypass
such a detection strategy, the authors propose to add to the
loss function a regularization term to minimize the differ-
ence between the poisoned and benign data in a latent space
representation.4 In [63], the baseline attacked model (without
the proposed regularization) and the defence-aware model
(employing the regularization) are compared by running some
experiments with VGGNet [64] on the CIFAR10 classification
task. Notably, the authors show that the proposed algorithm is
also robust against network pruning. Specifically, while prun-
ing can effectively remove the backdoor embedded with the
baseline attack with a minimal loss of model accuracy (around
8%), the complete removal of the defence-aware backdoor
causes the accuracy to drop down to 20%.

By analyzing existing backdoor attacks, Li et al. [65] show
that when the triggering patterns are slightly changed, e.g.,
their location is changed in case of local patterns, the attack
performance degrades significantly. Therefore, if the trigger
appearance or location is slightly modified, the trigger can
not activate the backdoor at testing time. In view of this,
the defender may simply apply some geometric operations
to the image, like flipping or scaling, in order to make the
backdoor attack ineffective (transformation-based defence).
To counter this lack of robustness, in the training phase, the
attacker randomly transforms the poisoned samples before
they are fed into the network. Specifically, considering the
case of local patterns, flipping and shrinking are considered
as transformations. The effectiveness of the approach against a
transformation-based defence has been tested by considering
VGGNet and ResNet [66] as network architecture and the CI-
FAR10 dataset. Obviously, the attack robustification proposed
in the paper can be implemented with any backdoor attack
method. Similarly, Gong et al. [67] adopt a multi-location
trigger to design a robust backdoor attack (named RobNet),
and claim that diversity of the triggering pattern can make it
more difficult to detect and remove the backdoor.

Finally, in 2021, Cheng et al. [68] proposed a novel back-
door attack, called Deep Feature Space Trojan (DFST), that is
at the same time visually stealthy and robust to most defences.
The method assumes that Eve can control the training proce-
dure, being then suitable in a full control scenario. A trigger
generator (implemented via CycleGAN [69]) is used to get
an invisible trigger that causes a misbehaviour of the model.
The method resorts to a complex training procedure where
the trigger generator and the model are iteratively updated
in order to enforce learning of subtle and complex (more ro-
bust) features as the trigger. The authors show that DFST can
successfully evade three state-of-the-art defences: ABS [70],
Neural Cleanse [16], and meta-classification [71] (see Sec-
tion V for a description of these defences). Similarly, [72]

4This defence-aware attack assumes that the attacker can interfere with the
(re)training process, then it makes more sense under the full control scenario.

270 VOLUME 3, 2022

exploits a generator (implemented by an auto-encoder) to
design an input-aware backdoor attack, where a unique and
non-reusable trigger is used to activate the backdoor in cor-
respondence of different inputs. Compared with common
methods adopting a universal trigger, the use of an input-
aware trigger results in a more stealthy attack, and can
successfully bypass many state-of-the-art defences, like Neu-
ral Cleanse [16], fine-pruning [15], model connectivity [73],
and STRIP [21].

3) OTHER ATTACKS
In this section we mention other relevant works proposing
backdoor attacks in the corrupted-label scenario, that can not
be cast in the categories listed above.

In 2018, Liu et al. [74] explored the possibility of injecting
a backdoor into a pre-trained model via fine-tuning. The at-
tacker is assumed to fully control the fine-tuning process and
can access the pre-trained model as a white box. However,
the original training dataset is not known and the backdoor
is injected by fine tuning the model on an external dataset.
The effectiveness of the attack has been demonstrated for
the face recognition task, considering the VGGFace data as
original training dataset and the Labeled Faces in the Wild
data (LFW) [75] as external dataset. Based on the experiments
reported in [74], when fine-tuning is carried out on a poisoned
dataset with poisoning ratio α = 0.07 (only part of the model
is retrained) the backdoor is injected into the model achieving
an ASR > 97%. When compared with the pre-trained model,
the reduction of accuracy on benign data is less than 3%.

In 2019, Bhalerao et al. [76] developed a backdoor attack
against a video processing network, designing a luminance-
based trigger to inject a backdoor attack within a video
rebroadcast detection system. The ConvNet+LSTM [77] ar-
chitecture is considered to build the face recognition model.
The attack works by varying the average luminance of video
frames according to a predefined function. Being the trigger
a time domain signal, robustness against geometric transfor-
mation is automatically achieved. Moreover, good robustness
against luminance transformations associated to display and
recapture (Gamma correction, white balance) is also obtained.
Experiments carried out on an anti-spoofing DNN detec-
tor trained on the REPLAY-attack dataset [78], show that a
backdoor can be successfully injected (ASR � 70%) with a
poisoning ratio α = 0.03, with a reasonably small amplitude
of the backdoor sinusoidal signal.

In 2020, Lin et al. [79] introduced a more flexible and
stealthy backdoor attack, called composite attack, which uses
benign features of multiple classes as trigger. For example,
in face recognition, the backdoored model can precisely rec-
ognize any normal image, but will be activated to always
output ‘Casy Preslar’ if both ‘Aaron Eckhart’ and ‘Lopez
Obrador’ appear in the picture. The authors evaluate their
attack with respect to five tasks: object recognition, traffic sign
recognition, face recognition, topic classification, and object
detection tasks. According to their results, on average, their

attack induces only 0.5% degradation of ACC and achieves
76.5% of ASR.

Finally, Guo et al. [80] have proposed a Master Key (MK)
backdoor attack against a face verification system, aiming at
verifying whether two face images come from the same per-
son or not. The system is implemented by a Siamese Network
in charge of deciding whether the two face images presented
at the input belong to the same person or not, working in
an open set verification scenario. The MK backdoor attack
instructs the Siamese Network to always output a ‘yes’ answer
when a face image belonging to a given identity is presented
at the input of one of the branches of the Siamese network.
In this way, a universal impersonation attack can be deployed,
allowing the attacker to impersonate any enrolled user. A full
control scenario is assumed in this paper, where the attacker
corresponds to the network designer and trainer, and as such
she handles the preparation and labelling of the data, and
the training process. According to the experiments carried
out by training the face verification system on VGGFace2
dataset [81] and testing it on LFW and YTF datasets, a poi-
soning ratio α = 0.01 is sufficient to inject a backdoor into the
face verification model, with ASR above 90% and accuracy on
untainted data equal to 94%.

B. CLEAN-LABEL ATTACKS
Clean-label attacks are particularly suited when the attacker
interferes only partially with the training process, by injecting
the poisoned data into the dataset, without controlling the
labelling process.5 Since label corruption cannot be used to
force the network to look at the trigger, backdoor injection
techniques thought to work in the corrupted-label setting do
not work in a clean-label setup, as shown in [82]. In this
case, in fact, the network can learn to correctly classify the
poisoned samples x̃ by looking at the same features used for
the benign samples of the same class,6 without looking at the
triggering pattern. For this reason, performing a clean-label
backdoor attack is a challenging task. So far, three differ-
ent directions have been explored to implement clean-label
backdoor attacks: i) use of strong, ad-hoc triggering patterns
(Section III-B1), ii) feature collision (Section III-B2), and iii)
suppression of discriminant features (Section III-B3). Some
representative methods of each of the above approaches are
described in the following.

1) DESIGN OF STRONG, AD-HOC, TRIGGERING PATTERNS
The first clean-label backdoor attack was proposed by Alberti
et al. [83] in 2018. The attacker implements a one-pixel mod-
ification to all the images of the target class t in the training
dataset Dtr . Fig. 9 shows two examples of ‘airplane’ in CI-
FAR10 that are modified by setting the blue channel value
of one specific pixel to zero. Formally, given a benign image

5To decision to opt for a clean-label attack may also be motivated by the
necessity to evade defences implemented at training dataset level.

6We remind that in the clean-label scenario the trigger is usually embedded
in the samples belonging to the target class.

VOLUME 3, 2022 271

GUO ET AL.: OVERVIEW OF BACKDOOR ATTACKS AGAINST DEEP NEURAL NETWORKS AND POSSIBLE DEFENCES

FIGURE 9. Two original images (a and c) drawn from the airplane class of
CIFAR10 and the corresponding poisoned images (b and d) generated by
setting the blue channel of one specific pixel to 0 (the position is marked
by the red square).

x, the poisoned image x̃ is a copy of x, except for the value
taken in pixel position (i∗, j∗, 3), where x̃(i∗, j∗, 3) = 0. The
corrupted images are labeled with the same label of x, namely
t . To force the network to learn to recognize the images
belonging to the target class based on the presence of the
corrupted pixel, the poisoning ratio β is set to 1, thus applying
the one-pixel modification to all the images of class t . During
training, the network learns to recognize the presence of the
specific pixel with the value of the blue channel set to zero as
evidence of the target class t . At testing time, any input picture
with this modification in (i∗, j∗, 3) will activate the backdoor.
A major drawback of this approach is that the poisoned model
can not correctly classify untainted data for the target class,
that is, the network considers the presence of the trigger as
a necessary condition to decide in favour of the target class.
Then, the requirement of stealthiness at testing time (see Sec-
tion II-C) is not satisfied. Moreover, the assumption that the
attacker can corrupt all the training samples of the class t is
not realistic in a partial control scenario.

In 2019, Barni et al. [84] presented a method that over-
comes the drawbacks of [83] by showing the feasibility of
a clean-label backdoor attack that does not impair the per-
formance of the model. The authors consider two different
(pretty strong) triggering patterns: a ramp signal, defined as
υ(i, j) = j	/w, 1 ≤ i ≤ h, 1 ≤ j ≤ w, where w × h is the
image size and 	 the parameter controlling the strength of
the signal (horizontal ramp); and a sinusoidal signal with
frequency f , defined as υ(i, j) = 	 sin(2π j f /w), 1 ≤ i ≤
h, 1 ≤ j ≤ w. Poisoning is performed by superimposing the
triggering pattern to a fraction of images of the target class
t , that is, x̃ = P (x, υ) = x + υ. The class poisoning ratio β
for the images of the target class was set to either 0.2 or 0.3.
At testing time, the backdoored model can correctly classify
the untainted data with negligible performance loss, and the
backdoor is successfully activated by superimposing υ to the
test image. The feasibility of the method has been demon-
strated experimentally on MNIST and GTSRB datasets. To
reduce the visibility of the trigger, a mismatched trigger am-
plitude	 is considered in training and testing, so that, a nearly
invisible trigger is considered for training, while a stronger
	 is applied during testing to activate the backdoor. Fig. 10
shows two examples of benign training samples and the cor-
responding poisoned versions [84]: the strength of the ramp
signal is 	 = 30/256 (� 0.117), while for the sinusoidal

FIGURE 10. Two types of triggering patterns used in Barni et al.’s
work [84]: (a) a ramp trigger with � = 30/256 and (b) a horizontal
sinusoidal trigger with � = 20/256, f = 6.

FIGURE 11. Poisoning function simulating reflection phenomenon
proposed by Liu et al. [85].

signal 	 = 20/256 (� 0.078), and f = 6. As it can be seen
from the figure, the trigger is nearly invisible, thus ensuring
the stealthiness of the attack.

Another approach to design an invisible triggering pattern
capable of activating a clean-label backdoor has been pro-
posed in 2020 by Liu et al. [85]. Such a method, called Refool,
exploits physical reflections to inject the backdoor into the tar-
get model. As shown in Fig. 11(a), in the physical world, when
taking a picture of an object behind a glass, the camera will
catch not only the object behind the glass but also a reflected
version of other objects (less visible because they are reflected
by the glass). Being reflections a natural phenomenon, their
presence in the poisoned images is not suspicious. In order
to mimic natural reflections, the authors use a mathematical
model of physical reflections to design the poisoning function
as x̃ = P (x, xr) = x + κ ∗ xr , where x is the benign sample, xr

is the reflected image, and κ is a convolutional kernel chosen
according to camera imaging and the law of reflection [86].
A specific example of an image generated by this poisoning

272 VOLUME 3, 2022

function is shown in Fig. 11(b). In their experiments, the
authors compare the performance of Refool with [84], with
respect to several classification tasks, including GTSRB traffic
sign and ImageNet [87] classification. The results show that
with a poisoning ratio β = 0.2 computed on the target class,
Refool can achieve ASR = 91%, outperforming [84] that only
reached ASR = 73% on the same task. Meanwhile, the net-
work accuracy on benign data is not affected.

Both the approaches in [84] and [85] must use a rather
large poisoning ratio. In 2021, Ning et al. [88] proposed a
powerful and invisible clean-label backdoor attack requiring
a lower poisoning ratio. In this work, the attacker employs
an auto-encoder φθ (·) : Rh×w → Rh×w (where h × w is the
image size), to convert a trigger image υ to an imperceptible
trigger or noise image φθ (υ), in such a way that the features
of the generated noise-looking image are similar to those of
the original trigger image υ in the low-level representation
space. To do so, the noise image is fed into a feature ex-
tractor E (·) (the first 5 layers of the pre-trained ResNet), and
the auto-encoder is trained in such a way to minimize the
difference between E (φθ (υ)) and E (υ). Then, the converted
triggering pattern is blended with a subset of the images
in the target class to generate the poisoned data, i.e., x̃ =
P (x, φθ (υ)) = 0.5(x + φθ (υ)). According to the authors’ ex-
periments carried out on several benchmark datasets including
MNIST, CIFAR10, and ImageNet, an ASR larger than 90%
can be achieved by poisoning only a fraction β = 0.005 of
the samples in the target class. Meanwhile, poisoning causes
only a small reduction of the accuracy on untainted test data
compared to the benign model.

2) FEATURE COLLISION
A method to implement a backdoor injection attack in a clean-
label setting while keeping the ratio of poisoned samples small
has been proposed by Shafahi et al. [40]. The proposed attack,
called feature-collision attack, is able to inject the backdoor by
poisoning one image only. More specifically, the attack works
in a transfer learning scenario, where only the final fully con-
nected layer of the DNN model is retrained on a local dataset.
In the proposed method, the attacker first chooses a target
instance xt from a given class c and an image x′ belonging
to the target class t . Then, starting from x′, she produces an
image x̃ which visually looks like x′, but whose features are
very close to those of xt . Such poisoned image x̃ is injected
into the training set and labeled by the trainer as belonging to
class t (because it looks like x′). In this way, the network will
associate the feature vector of x̃ to class t and then, during
testing, it will misclassify xt as belonging to class t . Note
that according to the feature collision approach the backdoor
is activated only by the image xt , in this sense we can say
that the triggering pattern v corresponds to the target image xt

itself. A schematic description of the feature collision attack
is illustrated in Fig. 12. Formally, given a pre-trained model
F̂θ , the attacker generates the poisoned image x̃ by solving

FIGURE 12. The figure shows the intuition behind the feature collision
attack [40]. The poisoned sample x̃ looks like a sample x′ in class t but it is
close to the target instance xt from class c in the feature space. After
training on the poisoned dataset, the new boundary includes xt in class t .

the following optimization problem

x̃ = arg min
x

|| f̂ −1
θ (x) − f̂ −1

θ
(xt) ||22 + ||x − x′||22, (10)

where the notation f̂ −1
θ

(·) indicates the output of the second-
to-last layer of the network. The left term of the sum pushes
the poisoned data x̃ close to the target instance xt in the feature
space (corresponding to the penultimate layer), while the right
term makes the poisoned data x̃ visually appearing like x′.

The above approach assumes that only the final layer of
the network is trained by the victim in the transfer learning
scenario. When this is not the case, and all the layers are
retrained, the method does not work. In this scenario, the same
malicious behavior can be injected by considering multiple
poisoned training samples from the target class. Specifically,
the authors have shown that with 50 poisoned images, the ASR
averaged over several target instances and classes, is about
60% for CIFAR10 classification (and it increases monoton-
ically with the number of poisoned samples). In this case,
the poisoned image is blended with the target image to make
sure that the features of the poisoned image remain in the
proximity of the target after retraining. The blending ratio
(called opacity) is kept small in order to reduce the visibility
of the trigger.

After Shafahi et al.’s work, researchers have focused on the
extension of the feature-collision approach to a more realistic
scenario wherein the attacker has no access to the pre-trained
model used by the victim, and hence relies on a surrogate
model only (see for instance [89], [90]). In particular, Zhu
et al. [90] have proposed a variant of the feature-collision
attack that works under the mild assumption that the attacker
cannot access the victim’s model but can collect a training
set similar to that used by the victim. The attacker trains
some substitute models on this training set, and optimizes an
objective function that forces the poisoned samples to form
a polytope in the feature space that entraps the target inside
its convex hull. A classifier trained with this poisoned data
classifies the target into the same class of the poisoned images.
The attack is shown to achieve significantly higher ASR (more
than 20% higher) compared to the standard feature-collision
attack ([40]) in an end-to-end training scenario where the

VOLUME 3, 2022 273

GUO ET AL.: OVERVIEW OF BACKDOOR ATTACKS AGAINST DEEP NEURAL NETWORKS AND POSSIBLE DEFENCES

FIGURE 13. Schematic representation of feature suppression backdoor attack. Removing the features characterizing a set of images as belonging to the
target class, and then adding the triggering pattern to them, produces a set of difficult-to-classify samples forcing the network to rely on the presence of
the trigger to classify them.

victim’s training set is known to the attacker and can work
in a black-box scenario.

Recently, Saha et al. [91] have proposed a pattern-based
feature collision attack to inject a backdoor into the model in
such a way that at test time any image containing the trigger-
ing pattern activates the backdoor. As in [40], the backdoor
is embedded into a pre-trained model in a transfer learning
scenario, where the trainer only fine-tunes the last layer of the
model. In order to achieve clean-label poisoning, the authors
superimpose a pattern, located in random positions, to a set of
target instances xt , and craft a corresponding set of poisoned
images as in Shafahi’s work, via Eq. 10. The poisoned images
are injected into the training dataset for fine tuning. To ease the
process, the choice of the to-be-poisoned images is optimized,
by selecting those samples that are close to the target instances
patched by the trigger in the feature space. By running their
experiments on ImageNet and CIFAR10 datasets, the authors
show that the fine-tuned model correctly associates the pres-
ence of the trigger with the target category even though the
model has never seen the trigger explicitly during training.

A final example of feature-collision attack, relying on GAN
technology, is proposed in [92]. The architecture in [92] in-
cludes one generator and two discriminators. Specifically,
given the benign sample x′ and the target sample xt , as shown
in Eq. 10, the generator is responsible for generating a poi-
soned sample x̃. One discriminator controls the visibility of
the difference between the poisoned sample x̃ and the original
one, while the other tries to move the poisoned sample x̃ close
to the target instance xt in the feature space.

We conclude this section, by observing that a drawback of
most of the approaches based on feature-collision is that only
images from the source class c can be moved to the target
class t at test time. This is not the case with the attacks in
[83] and [84], where images from any class can be moved to
the target class by embedding the trigger within them at test
time.

3) SUPPRESSION OF CLASS DISCRIMINATIVE FEATURES
To force the network to look at the presence of the trigger
in a clean-label scenario, Turner et al. [82] have proposed
a method that suppresses the ground-truth features of the
image before embedding the trigger υ. Specifically, given a

pre-trained model F̂θ and an original image x belonging to the
target class t , the attacker first builds an adversarial example
using the PGD algorithm [93]:

xadv = arg maxx′: ||x′−x||∞≤εL
(

f̂θ
(
x′) , t) . (11)

Then, the trigger υ is superimposed to xadv to generate a
poisoned sample x̃ = P (xadv, υ), by pasting the trigger over
the right corner of the image. Finally, (x̃, t) is injected into the
training set. The assumption behind the feature suppression
attack is that training a new model Fθ with (x̃, t) samples
built after that the typical features of the target class have
been removed, forces the network to rely on the trigger υ
to correctly classify those samples as belonging to class t .
The whole poisoning procedure is illustrated in Fig. 13. To
verify the effectiveness of the feature-suppression approach,
the authors compare the performance of their method with
those obtained with a standard attack wherein the trigger υ is
stamped directly onto some random images belonging to the
target class. The results obtained on CIFAR10 show that, with
a target poisoning ratio equal to β = 0.015, an ASR =80%
can be achieved (with ε = 16/256), while the standard ap-
proach is not effective at all.

In [94], Zhao et al. exploited the suppression method to
design a clean-label backdoor attack against a video classifi-
cation network. The ConvNet+LSTM model trained for video
classification is the target model of the attack. Given a clean
pre-trained model F̂θ , the attacker generates a universal adver-
sarial trigger υ using gradient information through iterative
optimization. Specifically, given all the videos xi from the
training dataset, except those belonging the target class, the
universal trigger υ∗ is generated by minimizing the cross-
entropy loss as follows:

υ∗ = arg min
υ

N\{t}∑
i=1

L
(

f̂θ (xi + υ) , t
)
, (12)

where N\{t} denotes the total number of training samples ex-
cept those of the target class t , and υ is the triggering pattern
superimposed in the bottom-right corner. By minimizing the
above loss, the authors determine the universal adversarial
trigger υ∗, leading to a classification in favor of the target

274 VOLUME 3, 2022

TABLE 2. Summary of Defence Methods Working At Data Level

class. Then, the PGD algorithm is used to build an adver-
sarial perturbed video xadv for the target class t , as done
in [82]. Finally, the generated universal trigger υ∗ is stamped
on the perturbed video xadv to generate the poisoned data
x̃ = P (xadv, υ

∗) and (x̃, t) is finally injected into the train-
ing dataset Dtr . The experiments carried out on the UCF101
dataset of human actions [95], with a trigger size equal to
28 × 28 and poisoning ratio β = 0.3, report an attack success
rate equal to 93.7%.

IV. DATA LEVEL DEFENCES
With data level defences, the defender aims at detecting and
possibly neutralizing the triggering pattern contained in the
network input to prevent the activation of the backdoor. When
working at this level, the defender should satisfy the harmless
removal requirement while preserving the efficiency of the
system (see Section II-E), avoiding that scrutinising the input
samples slows down the system too much. In the following,
we group the approaches working at data level into three
classes: i) saliency map analysis; ii) input modification and
iii) anomaly detection.

With regard to the first category, Bob analyses the saliency
maps corresponding to the input image, e.g., by Grad-
CAM [100], to look for the presence of suspicious activation
patterns. In the case of localised triggering patterns, the
saliency map may also reveal the position of the trigger. Meth-
ods based on input modification work by modifying the input
samples in a predefined way (e.g. by adding random noise
or blending the image with a benign sample) before feeding
them into the network. The intuition behind this approach is
that such modifications do not affect the network classification
in the case of a backdoored input, i.e., an input containing
the triggering pattern. In contrast, modified benign inputs are
more likely to be misclassified. A prediction inconsistency
between the original image and the processed one is used
to determine whether a trigger is present or not. Finally,
methods based on anomaly detection exploit the availability
of a benign dataset Dbe to train an anomaly detector that is
used during testing to judge the genuineness of the input.
Note that white-box access to the model under analysis is re-
quired by methods based on saliency map analysis, while most
methods based on input modification and anomaly detection
require only a black-box access to the model. Some defences

following the above three approaches are described in the
following.

The methods described in this section are summarized in
Table 2, where for each method we report the trigger con-
straints, working conditions, the kind of access to the network
they require, the necessity of building a dataset of benign im-
ages Dbe, and the performance achieved on the tested datasets.
7 While some algorithms aim only at detecting the malevolent
inputs, others directly try to remove the backdoor without
detecting the backdoor first or without reporting the perfor-
mance of the detector (‘N/A’ in the table). A similar table will
be provided later in the paper, for the methods described in
Sections V and VI.

A. SALIENCY MAP ANALYSIS
The work proposed by Chou et al. [20] in 2018, named
SentiNet, aims at revealing the presence of the trigger by
exploiting the GradCAM saliency map to highlight the parts
of the input image that are most relevant for the prediction.
The approach works under the assumption that the trigger is a
local pattern of small size and has recognizable edges, so that
a segmentation algorithm can cut out the triggering pattern υ
from the input.

Given a test image xts and the corresponding prediction
Fα
θ

(
xts

)
, the first step of SentiNet consists in applying the

GradCAM algorithm to the predicted class. Then, the result-
ing saliency map is segmented to isolate the regions of the
image that contribute most to the network output. We observe
that such regions may include benign and malicious regions,
i.e. the region(s) corresponding to the triggering pattern (see
Fig. 14). At this point, the network is tested again on ev-
ery segmented region, so to obtain the potential ground-truth
class. For an honest image, in fact, we expect that all the
segments will contribute to the same class, namely the class
initially predicted by the network, while for a malicious input,
the classes predicted on different regions may be different
since some of them correspond to the pristine image content,
while others contain the triggering patch. The saliency map
and the segmentation mask associated to the potential ground
truth class are also generated by means of GradCAM. Then,

7All the data reported in this and subsequent tables are taken directly from
the original papers.

VOLUME 3, 2022 275

GUO ET AL.: OVERVIEW OF BACKDOOR ATTACKS AGAINST DEEP NEURAL NETWORKS AND POSSIBLE DEFENCES

FIGURE 14. Mask generation process in SentiNet, which indicates the
suspect trigger region.

the final mask with the suspect triggering region is obtained
by subtracting the common regions of the previous masks. As
a last step, SentiNet evaluates the effect of the suspect region
on the model, to decide whether a triggering pattern is indeed
present or not. Specifically, the suspect region is pasted on a
set of benign images from Dbe, and the network prediction on
the modified inputs is measured. If the number of images for
which the presence of the suspect region modifies the network
classification is large enough, the presence of the backdoor is
confirmed.8

With regard to the performance, the authors show that Sen-
tiNet can reveal the presence of the trigger with high precision.
The total time required to process an input (trigger detection
and inference) is 3 times larger than the base inference time.

Inspired by SentiNet [20], Doan et al. [96] have proposed
a method, named Februus, to remove the trigger from the
input images (rather than just detecting it like SentiNet). Sim-
ilarly to SentiNet [20], the defender exploits the GradCAM
algorithm to visualize the suspect region, where the trigger is
possibly present. Then, the suspect region is removed from
the original image by repainting the removed area by using a
GAN (WGAN-GP [101]). If the cropped area includes benign
patterns, the GAN can recover it in a way that is consistent
with the original image, while the triggering pattern is not
reconstructed. By resorting to GAN inpainting, Februus can
handle triggers with a rather large size (up to 25% of the whole
image in CIFAR10 and 50% of face size in VGGFace2).

In general, both the methods in [20] and [96] achieve a good
balance between backdoor detection and removal, accuracy
and time complexity.

B. INPUT MODIFICATION
For this class of defences, Bob modifies the input samples in
a predefined way, then he queries the model Fθ with both the
original and the modified inputs. Finally, he decides whether
the original input xts

i includes a triggering pattern or not, based
on the difference between the output predicted in correspon-
dence of the original and the modified samples.

Among the approaches belonging to this category, we
mention the STRong Intentional Perturbation (STRIP) detec-
tor [21], which modifies the input by blending it with a set of

8The authors implicitly assume the backdoor to be source-agnostic.

benign images. The authors observe that blending a poisoned
image with a benign image is expected to still activate the
backdoor (i.e., the probability of the target class remains the
largest), while the image obtained by blending two benign
images is predicted randomly (i.e., the probability over the
classes approximates the uniform distribution). Formally, let
x̃′ = x̃ + x j and x′ = x + x j where x̃ denotes a poisoned sam-
ple, x a benign one, and x j another benign sample taken from
Dbe. Based on the expected behaviour described above, the
entropies H of the prediction vectors fθ (x̃′) and fθ

(
x′) satisfy

the relation H (
fθ

(
x̃′)) < H (

fθ
(
x′)), where

H (fθ (x)) = −
C∑

k=1

[
fθ (x)

]
k log

([
fθ (x)

]
k

)
. (13)

The defender decides whether an input xts contains the
trigger or not by blending it with all samples x j (j =
1, 2, . . ., |Dbe|) in Dbe and calculating the average entropy
Hn

(
xts

) = 1
|Dbe|

∑|Dbe|
j=1 H (

fθ
(
xts + x j

))
. Finally, the detec-

tor Det (·) decides that xts is a malicious input containing a
backdoor trigger if Hn

(
xts

)
is smaller than a properly set

threshold. The authors show that even with a small benign
dataset (|Dbe| = 100), the STRIP detector can achieve high
precision. On the negative side, the complexity of the detector
is pretty large, the time needed to run it is more than 6 times
longer than that of the original model.

STRIP aims only at backdoor detection. In 2020, Sarkar
et al. [97] proposed another method based on input modifi-
cation, aiming also at trigger removal. The removal function
Rem(·) works by adding a random noise to the image under
inspection. Under the assumption that the triggering pattern
spans a small number of pixels, the trigger can be suppressed
and neutralized by random noise addition. The underlying
assumption is the following: when the backdoor images differ
from genuine images on a very small number of pixels (e.g., in
the case of a small local triggering pattern), a relatively small
number of neurons contribute to the detection of the backdoor
compared to the total number of neurons that are responsible
for the image classification. Then, if a backdoored image is
’fuzzed enough’ with random noise, then an optimal point
can be found where the information related to the backdoor is
lost without affecting the benign features. Specifically, given
an input image xts, the defender creates n noisy versions of
xts, called fuzzed copies, by adding to it different random
noises ξ j (j = 1, 2, . . ., n) A value of n = 22 is used for the
experiments reported in the paper. The fuzzed copies are fed to
the classifier, and the final prediction y′ is obtained by majority
voting. The noise distribution and its strength is optimized on
several triggering patterns. Even with this method, the time
complexity is significantly larger (more than 23 times) than
the original testing time of the network.

Another input modification method is proposed in [102],
which exploits an autoencoder Aut (·) to remove the triggering
signal from the backdoor image. To judge whether a given
data xts contains a trigger or not, the classification results
obtained for xts and Aut

(
xts

)
. If the results do not mach, i.e.,

276 VOLUME 3, 2022

Fθ
(
xts

) �= Fθ
(
Aut (xts)

)
, the system concludes that xts con-

tains a triggering signal. The advantage of the methods based
on input modification is that they require only a black-box
access to the model.

C. ANOMALY DETECTION
In this case, the defender is assumed to own a benign dataset
Dbe, that he uses to build an anomaly detector. Examples of
this approach can be found in [98] and [99]. In [98], Kwon
et al. exploit Dbe to train from scratch a surrogate model
F̂θ (the architecture of F̂θ may be different than that of the
analyzed model Fθ) as a detector. The method works as fol-
lows: the input xts is fed into both F̂θ and Fθ . If there is a
disagreement between the two predictions, xts is judged to be
poisoned. In this case, Dbe corresponds to a portion of the
original training data Dtr .

Kwon’s defence [98] determines whether xts is an outlier
or not by looking only at the prediction result. In contrast, Fu
et al. [99] train an anomaly detector by looking at both the
feature representation and the prediction result. Specifically,
they separate the feature extraction part E (·) (usually the con-
volutional layers) and the classification part M(·) (usually the
fully connected layers) of the model Fθ . The defender feeds
all the x′

is ∈ Dbe into E (·), collecting the extracted feature
vectors E (xi) into a set S . Then, a surrogate classifier M̂(·) is
trained on the feature vectors in S . To judge whether an input
xts is an outlier (poisoned sample) or not, the defender first
checks whether the feature vector E (xts) is an outlier for the
distribution in S , by means of the local outlier factor [103]. If
xts is deemed to be a suspect sample based on the feature-level
analysis, the prediction result is also investigated by checking
whether M̂(E (xts)) = M(E (xts)). If this is not the case, xts is
judged to be an outlier. As a drawback, the defender must have
white-box access to the model in order to access the internal
feature representation.

The main strength of the methods in [98] and [99] is that
they can work with general triggers, and no assumption about
their size, shape, and location is made. Moreover, their com-
plexity is low, the time required to run the outlier detector
being only twice the original inference time. On the negative
side, in both methods, a (large enough) benign dataset Dbe is
assumed to be available to the defender. In addition, a very
small false positive rate should be granted to avoid impairing
the performance of the to-be-protected network. In fact, it is
easy to argue that the final performance of the overall system
is bounded by the performance of the surrogate model, whose
reliability must be granted a-priori.

V. MODEL LEVEL DEFENCES
For methods working at the model level, the defender decides
whether a suspect model Fθ 9 contains a backdoor or not via
a function Det (Fθ) = Y/N . If the detector decides that the

9With a slight abuse of notation, we generically indicate the possibly
backdoored tested model as Fα

θ , even if, in principle, the notation Fα
θ should

be reserved only for backdoored models.

model contains a backdoor, the defender can either refrain
from using it or try to remove the backdoor, by applying a
removal function Rem(·).

Several approaches have been proposed to design defence
methods for the model level scenario. Most of them are based
on fine-tuning or retraining. Some methods also try to re-
construct the trigger, as described below. All these methods
assume that a dataset of benign samples Dbe is available. A
summary of the methods operating at the model level and their
performance is given in Table 3.

A. FINE-TUNING (OR RETRAINING)
Some papers have shown that, often, DNN retraining offers
a path towards backdoor detection, then, the defender can
try to remove the backdoor by fine-tuning the model over a
benign dataset Dbe. This strategy does not require any spe-
cific knowledge/assumption on the triggering pattern. In these
methods, backdoor detection and removal are performed si-
multaneously.

Liu et al. [14] were the first to use fine-tuning to remove
the backdoor from a corrupted model. By focusing on the
simple MNIST classification task, the authors train a back-
door model Fα

θ , and then fine-tune Fα
θ on a benign dataset

Dbe, whose size is about 20% of the MNIST dataset. Other
defences based on fine-tuning and data augmentation have
been proposed in [104], [106], [107]. In [104], Veldanada
et al. propose to apply data augmentation during fine tuning
by adding to each benign image in Dbe a Gaussian random
noise (the intuition behind this method is that data augmenta-
tion should induce the network to perturb to a larger extent
the weights, thus facilitating backdoor removal). A similar
approach is proposed in [106] where the authors augment the
data in Dbe by applying image style transfer [108], based on
the intuition that the style-transferred images should help the
model to forget trigger-related features. In [107], Qiu et al.
consider 71 data augmentation strategies, and determine the
top-6 methods, which can efficiently aid the removal of the
backdoor by means of fine-tuning. Then, the authors augment
the data in Dbe with all the six methods, and fine-tune the
backdoored model Fα

θ .
The effectiveness of fine-tuning for backdoor removal has

also been discussed in [109], where the impact of several
factors on the success of the backdoor attacks, including the
type of triggering pattern used by the attacker and the adoption
of regularization techniques by the defender, is investigated.

Even if fine-tuning on a benign dataset can reduce the ASR
in some cases, in general, when used in isolation, its effective-
ness is not satisfactory. In [15], a more powerful defence is
proposed by combining pruning and fine-tuning. The method
is referred to as fine-pruning. The pruning defence cuts off
part of the neurons in order to damage the backdoor behav-
ior. More specifically, the size of the backdoored network is
reduced by eliminating those neurons that are ‘dormant’ on
clean inputs, since neurons behaving in this way are typically
activated by the presence of the trigger [4]. To identify and
remove those neurons, the images of a benign dataset Dbe

VOLUME 3, 2022 277

GUO ET AL.: OVERVIEW OF BACKDOOR ATTACKS AGAINST DEEP NEURAL NETWORKS AND POSSIBLE DEFENCES

TABLE 3. Summary of Defence Methods Working At Model Level

∗The custom model is a 2-layer model that consists of 784 input neurons, 300 hidden neurons, and 10 output neurons.

are tested via the model Fα
θ . The defender, then, iteratively

prunes the neurons with the lowest activation values, until the
accuracy on the same dataset drops below a pre-determined
threshold.

The difficulty of removing a backdoor by relying only on
fine-tuning is shown also in [110]. For this reason, [110]
suggests using attention distillation to guide the fine-tuning
process. Specifically, Bob first fine-tunes the backdoored
model on a benign dataset Dbe, then he applies attention
distillation by setting the backdoored model as the student
and the fine-tuned model as the teacher. The empirical results
shown in [110] prove that in this way the fine-tuned model is
insensitive to the presence of the triggering pattern in the input
samples, without causing obvious performance degradation
on benign samples.

Recently, Zhao et al. [73] have proposed a more efficient
defence relying on model connectivity [111]. In particu-
lar, [73] shows that two independently trained networks with
the same architecture and loss function can be connected in
the coefficient-loss landscape, by a simple parametric curve
(e.g. Polygonal chain [112] or Bezier curve [113]). The curve
or, namely, the path connecting the two models (the endpoints
of the curve), can be learned with a limited amount of benign
data, i.e., a small Dbe, with all the models in the path having
a similar loss value (performance). The authors showed that
when two backdoored models are considered as endpoints,
the models in the path can attain similar performance on clean
data while drastically reducing the success rate of the back-
door attack. The same behavior can be obtained in the case
of only one backdoored model, where the set Dbe is used to
fine tune the model, and the two models, namely the original
backdoored and the fine tuned one, are connected.

Model level defences do not introduce a significant compu-
tational overhead, given that they operate before the network
is actually deployed in operative conditions. As a drawback,
to implement these methods, Bob needs a white-box access to

FIGURE 15. Simplified representation of the input space of a clean model
(top) and a source-agnostic backdoored model (bottom). A smaller
modification is needed to move samples of class ‘b’ and ‘c’ across the
decision boundary of class ‘a’ in the bottom case.

the model, and the availability of a large benign dataset Dbe

for fine-tuning.

B. TRIGGER RECONSTRUCTION
The methods belonging to this category specifically assume
that the trigger is source-agnostic, i.e., an input from any
source class plus the triggering pattern υ can activate the
backdoor and induce a misclassification in favour of the tar-
get class. The defender tries to reverse-engineer υ either by
accessing the internal details of the model Fα

θ (white-box
setting) or by querying it (black-box setting). For all these
methods, once the trigger has been reconstructed, the model
is retrained in such a way to unlearn the backdoor.

The first trigger-reconstruction method, named Neural
Cleanse, was proposed by Wang et al. [16] in 2019, and is
based on the following intuition: a source-agnostic backdoor
creates a shortcut to the target class by exploiting the sparsity
of the input space. Fig. 15 exemplifies the situation for the
case of a 2-dimensional input space. The top figure illustrates
a clean model, where a large perturbation is needed to move

278 VOLUME 3, 2022

any sample of ‘b’ and ‘c’ classes into class ‘a’. In contrast,
the bottom part of the figure shows that for the backdoored
model a shortcut to the target class ‘a’ exists, since, due to
the presence of the backdoor, the region assigned to class ‘a’
is expanded along a new direction, thus getting closer to the
regions assigned to ‘b’ and ‘c’. The presence of this backdoor-
induced region reduces the strength of the perturbation needed
to misclassify samples belonging to the classes ‘b’ and ‘c’ into
‘a’. Based on this observation, for each class k (k = 1, . . .,C),
Bob calculates the perturbation υk necessary to misclassify
the other samples into class k. Given the perturbations υk ,
a detection algorithm is run to detect if a class k∗ exists for
which such perturbation is significantly smaller (in L1 norm)
than for the other classes. More specifically, given a clean
validation dataset Dbe and a suspect model Fθ , the defender
reverse-engineers the perturbation υk for each class k by opti-
mizing the following multi-objective function:

υk = min
υ

|Dbe/k |∑
i=1

L (fθ (P (xi, υ)) , k) + λ||υ||∞, (14)

where Dbe/k is the dataset Dbe without the samples belonging
to class k.

To eventually determine whether the model Fθ is back-
doored or not, the defender exploits the median absolute
deviation outlier detection algorithm [114], analyzing the L1

norm of all perturbations υk (k = 1, . . .,C). If there exists a
υk′ , for some k′, whose L1 norm is significantly smaller than
the others, Fθ is judged to be backdoored and υk′ is the re-
verse engineered trigger. At this point, the reverse-engineered
trigger υk′ is used to remove the backdoor from the model.
Removal is performed by fine-tuning the model on the benign
dataset Dbe by adding υk′ to 20% of the samples and by cor-
rectly labelling them. Regarding computational complexity,
backdoor detection and reverse engineering is the most time-
consuming part of the process, with a cost that is proportional
to the number of classes. For a model trained on YTF dataset
with 1286 classes, detection takes on average 14.6 seconds for
each class, for a total of 5.2 hours. In contrast, the computation
complexity of the removal part is negligible.

NeuralCleanse assumes that the trigger overwrites a small
(local) area of the image, like a square pattern or a sticker.
In [17], Guo et al. show that NeuralCleanse fails to detect
the backdoor for some kinds of local triggers. The failure
is due to the poor fidelity of the reconstructed triggers, that,
compared with the true trigger, are scattered and overly large.
To solve this problem, Guo et al. introduce a regularization
term controlling the size and smoothness of the reconstructed
trigger, that can effectively improve the performance of the
defence.

Three additional approaches based on the shortcut assump-
tion have been proposed in [115]–[117]. In [115] and [116],
backdoor detection is cast into a hypothesis testing framework
approach on maximum achievable misclassification fraction
statistic. In [117], given a small set of benign data Dbe, the
detector determines the presence of a backdoor in a model

by observing the similarity between the per-image adversarial
perturbations in Dbe and a universal perturbation computed on
all the samples of Dbe. If they are close or similar, the model
is considered to be backdoored. Moreover, [117] also achieves
data-free detection by substituting Dbe with a set of randomly
generated (noise) images.

Liu et al. [70] have proposed a technique, called Artificial
Brain Stimulation (ABS), that analyzes the behavior of the
inner neurons of the network, to determine how the output
activations change when different levels of stimulation of the
neurons are introduced. The method relies on the assumption
that backdoor attacks compromise the hidden neurons to inject
the hidden behavior. Specifically, the neurons that raise the
activation of a particular output label (targeted misclassifica-
tion) regardless of the input are considered to be potentially
compromised. The trigger is then reverse-engineered through
an optimization procedure using the stimulation analysis re-
sults.The recovered trigger is further utilized to double-check
if a neuron is indeed compromised or not, in order to avoid that
clean labels are judged to be compromised. The optimization
aims at achieving multiple goals: i) maximize the activation
of the candidate neurons, ii) minimize the activation changes
of other neurons in the same layer, and iii) minimize the
size of the estimated trigger. The complexity of the neural
stimulation analysis is proportional to the total number of
neurons.

Yet another way to reconstruct the trigger has been pro-
posed in [104]. The suspect model Fθ is first fine-tuned
on an augmented set of benign images obtained by noise
addition to the images in Dbe. In this way, a clean model
Fθc is obtained. Then, the images which cause a predic-
tion disagreement between Fθ and Fθc are identified as
potentially poisoned images. Eventually, by training on both
Dbe and the poisoned images, a CycleGAN learns to poi-
son clean images by adding to them the triggering pattern.
The generated backdoored images and their corresponding
clean labels are used for the second retraining round of
Fθc . The effectiveness of the method has been proven in
[104] for the case of visible triggers. This method, called
NNoculation, outperforms both NeuralCleanse and ABS un-
der more challenging poisoning scenarios, where no con-
straint is imposed on the size and location of the triggering
pattern.

A limitation with the methods in [16], [17], [70], [104]
is that they require that the defender has a white-box access
to the inspected model. To overcome this limitation, Chen
et al. [22] have proposed a defence based on the same idea
of the shortcuts exploited by NeuralCleans, but that requires
only a black-box access to the model Fθ (it is assumed that the
model can be queried an unlimited number of times). To re-
cover the distribution of the triggering pattern υ, the defender
employs a conditional GAN (cGAN), that consists of two
components: the generator G(z, k) = υk , outputting the poten-
tial trigger for class k, sampled from the trigger distribution,
where z is a random noise, and a fixed, non-trainable, discrim-
inator, corresponding to Fθ . For each class k, the generator

VOLUME 3, 2022 279

GUO ET AL.: OVERVIEW OF BACKDOOR ATTACKS AGAINST DEEP NEURAL NETWORKS AND POSSIBLE DEFENCES

G is trained by minimizing a loss function defined as:

L(x, k) = LD (x + G(z, k), k) + λLG(z, k), (15)

where LD(x, k) = − log
([

fθα (x)
]

k

)
10 and LG(x, k) is a regu-

larization term that ensures that the estimated poisoned image
ˆ̃x = x + Gω(z, k) can not be distinguished from the original
one, and that the magnitude of G(z, k) is limited (to stabi-
lize training). Once the potential triggers G(z, k) (k = 1 . . .C)
have been determined, the defender proceeds as in [16] to
perform outlier detection determining the trigger υ, and then
remove the backdoor via fine-tuning. With regard to the time
complexity, the method is 9.7 times faster than NeuralCleanse,
when the model is trained for a 2622-classification task on the
VGGface dataset.

Another black-box defence based on trigger reconstruction
and outlier detection, that also resorts to a GAN to reconstruct
the trigger, has been proposed by Zhu et al. [118]. Notably,
the methods in [22], [104] and [118] have been shown to
work with various patterns and sizes of the trigger, and are
also capable to reconstruct multiple triggers, whereas Neural-
Cleanse [16] can detect only a single, small-size, and invariant
trigger. Another method based on trigger reconstruction that
can effectively work with multiple triggers has been proposed
by Qiao et al. [119], under the strong assumption that the
trigger size is known to the defender.

All the methods based on trigger reconstruction have a
complexity which is proportional to the number of classes.
Therefore, when the classification task has a large number
of classes (like in many face recognition applications, for
instance), those methods are very time consuming.

C. META-CLASSIFICATION
The approaches resorting to meta-classification aim at training
a neural network to judge whether a model is backdoored or
not. Given a set of N trained models, half backdoored (Fα

θi
)

and half benign (Fθi), i = 1, ..,N , the goal is to learn a clas-
sifier Fmeta

θ : F → {0, 1} to discriminate them. Methods that
resort to meta-classification are provided in [105] and [71].
In [105], given the dataset of models, the features to be used
for the classification are extracted by querying each model Fθi

(or Fα
θi

) with several inputs and concatenating the extracted

features, i.e., the vectors f −1
θi

(or f −1
θi,α

). Eventually, the meta-

classifier Fmeta
θ is trained on these feature vectors. To improve

the performance of meta-classification, the meta-classifier and
the query set are jointly optimized. A different approach is
adopted in [71], where a functional is optimized in order to
get universal patterns zm, m = 1, ..,M, such that looking at
the output of the networks in correspondence to such zm’s, that
is, { f (zm)}M

m=1, allows to reveal the presence of the backdoor.
Another difference between [105] and [71] is in the way the
dataset of the backdoored models Fα

θi
is generated, that is,

in the distribution of the triggering patterns. In [105], the
poisoned models considered in the training set are obtained by

10We remind that [fθα (x)]k is the predicted probability for class k.

training them on a poisoned set of images where the triggering
patterns follow a so-called jumbo distribution, and consist in
continuous compact patterns, with random shape, size, and
transparency. In [71] instead, the triggering patterns used to
build the poisoned samples used to train the various models
are square shaped fixed geometrical patterns. In both cases,
the patterns have random location.

Interestingly, both methods generalize well to a variety of
triggering patterns that were not considered in the training
process. Moreover, while the method in [105] lacks flexibility,
as Fmeta

θ works for a fixed dimension of the feature space of
the to-be-tested model, the method in [71] generalizes also
to different architectures, with a different number of neurons,
different depths and activation functions, with respect to those
considered during training. Computational complexity is high
for off-line training, however, the meta-classification is very
fast.

VI. TRAINING DATASET LEVEL DEFENCES
With defences operating at the training dataset level, the de-
fender (who now corresponds to Alice) is assumed to control
the training process, so she can directly inspect the poisoned
training dataset Dα

tr and access the possibly backdoored model
Fα
θ while it is being trained. The dataset Dα

tr consists of C
subsets Dtr,k , including the samples of class k (k = 1, . . .,C).
The common assumption made by defence methods working
at this level is that among the subsets Dtr,k there exists (at
least) one subset Dtr,t , containing both benign and poisoned
data, while the other subsets include only benign data. Then,
the detection algorithm Det (·) and the removal algorithm
Rem(·) work directly on Dα

tr . A summary of all relevant works
operating at the training dataset level is given in Table 4.

An obvious defence at this level, at least for the corrupted-
label scenario, would consist in checking the consistency of
the labels and removing the samples with inconsistent la-
bels from Dα

tr . Despite its conceptual simplicity, this process
requires either a manual investigation or the availability of
efficient labelling tools, which may not be easy to build. More
general and sophisticated approaches, which are not limited
to the case of corrupted-label settings, are described in the
following.

In 2018, Tran et al. [18] have proposed to use an anomaly
detector to reveal anomalies inside the training set of one
or more classes. They employ singular value decomposition
(SVD) to design an outlier detector, which detects outliers
among the training samples by analyzing their feature rep-
resentation, that is, the activations of the last hidden layer
f −1
θα

of Fα
θ . Specifically, the defender splits Dα

tr into C
subsets Dtr,k , each with the samples of class k. Then, for
every k, SVD is applied to the covariance matrix of the
feature vectors of the images in Dtr,k , to get the principal
directions. Given the first principal direction d1, the outlier
score for each image xi is calculated as (xi · d1)2. Such a
score is then used to measure the deviation of each image
from the centroid of the distribution. The images are ranked
based on the outlier score and the top ranked 1.5p|Dtr,k |

280 VOLUME 3, 2022

TABLE 4. Summary of Defence Methods Working At the Training Dataset Level

images are removed for each class, where p ∈ [0, 0.5]. Fi-
nally, Alice retrains a cleaned model Fθc from scratch on
the cleaned dataset. No detection function, establishing if the
training set is poisoned or not, is actually provided by this
method (which aims only at cleaning the possibly poisoned
dataset).

In [19], Chen et al. describe a so-called Activation Cluster-
ing (AC) method, that analyzes the neural network activations
of the last hidden layer (the representation layer), to determine
if the training data has been poisoned or not. The intuition
behind this method is that a backdoored model assigns poi-
soned and benign data to the target class based on different
features, that is, by relying on the triggering pattern for the
poisoned samples, and the ground-truth features for the benign
ones. This difference is reflected in the representation layer.
Therefore, for the target class of the attack, the feature repre-
sentations of the samples will tend to cluster into two groups,
while the representations for the other classes will cluster in
one group only. Based on this intuition, for each subset Dtr,k

of Dα
tr , the defender feeds the images xi to the model Fα

θ

obtaining the corresponding subset of feature representation
vectors or activations f −1

θα
(xi). Once the activations have been

obtained for each training sample, the subsets are clustered
separately for each label. To cluster the activations, the k-
means algorithm is applied with k = 2 (after dimensionality
reduction). k-means clustering separates the activations into
two clusters, regardless of whether the dataset is poisoned or
not. Then, in order to determine which, if any, of the clusters
corresponds to a poisoned subset, one possible approach is
to analyze the relative size of the two clusters. A cluster is
considered to be poisoned if it contains less than p of data
for the k class, that is, p|Dtr,k| samples, where p ∈ [0, 0.3]
(the expectation being that poisoned clusters contain no more
than a small fraction of class samples, that is βk ≤ p). The
corresponding class is detected as the target class. As a last
step, the defender cleans the training dataset, by removing
the smallest cluster in the target class, and retraining a new
model Fθc from scratch on the cleaned dataset. As we said,
AC can be applied only when the class poisoning ratio βk

is lower than p, ensuring that the poisoned data represents a
minority subset in the target class. Another method resorting
to feature clustering to detect a backdoor attack has been
proposed in [122].

Even if k-means clustering with k = 2 can perfectly
separate the poisoned data on MNIST and CIFAR-10 when a
perceptible triggering pattern is used, Xiang et al. [120] have

shown that in many cases, e.g. when the backdoor pattern is
more subtle, the representation vectors of poisoned and benign
data can not be separated well in the feature space. This is
the case, for instance, when CIFAR10 is attacked with the
single pixel backdoor attack. To improve the results in this
case, the authors replace k-means clustering with a method
based on a Gaussian Mixture Model (GMM), which can also
automatically determine the number of clusters. Under the
assumption of subtle (one-pixel) trigger, the authors apply
blurring filtering to determine whether a cluster is poisoned
or not. After blurring, the samples from the poisoned cluster
are assigned to the true class with high probability.

A defence working at the training dataset level designed
to cope with clean-label backdoor attacks has been proposed
in [121]. The defence relies on a so-called deep k-Nearest
Neighbors (k-NN) defence against feature-collision [40] and
the convex polytope [90] attacks mentioned in Section III-B.
The defence relies on the observation that, in the representa-
tion space, the poisoned samples of a feature collision attack
are surrounded by samples having a different label (the target
label) (see Fig. 12). Then, the authors compare the label of
each point xtr

i of the training set, with its k-nearest neighbors
(determined based on the Euclidean distance) in the repre-
sentation space. If the label of xtr does not correspond to
the label of the majority of the k neighbors, xtr is classified
as a poisoned sample and removed from the training dataset.
Eventually, the network is retrained on the cleaned training
dataset to obtain a clean model Fθc .

As the last example of this class of defences, we mention
the work proposed in [123]. The defence proposed therein
works against source-specific backdoor attacks, that is, attacks
for which the triggering pattern causes a misclassification only
when it is added to the images of a specific class (also called
targeted contamination attacks). The authors show that this
kind of backdoor is more stealthy than source-agnostic back-
doors. In this case, in fact, poisoned and benign data can not
be easily distinguished by looking at the representation level.
The approach proposed in [123] is built upon the universal
variation assumption, according to which the natural varia-
tion of the samples of any uninfected class follows the same
distribution of the benign images in the attacked class. For
example, in image classification tasks, the natural intra-class
variation of each object (e.g., lighting, poses, expressions,
etc.) has the same distribution across all labels (this is, for
instance, the case of image classification, traffic sign and
face recognition tasks). For such tasks, a DNN model tends

VOLUME 3, 2022 281

GUO ET AL.: OVERVIEW OF BACKDOOR ATTACKS AGAINST DEEP NEURAL NETWORKS AND POSSIBLE DEFENCES

to generate a feature representation that can be decomposed
into two parts, one related to the object’s identity (e.g. a
given individual) and the other depending on the intra-class
variations, randomly drawn from a distribution. The method
described in [123] proposes to separate the identity-related
features from those associated to the intra-class variations by
running an Expectation-Maximization (EM) algorithm [124]
across all the representations of the training samples. Then, if
the data distribution of one class is scattered, that class will be
likely split into two groups (each group sharing a different
identity). If the data distribution is concentrated, the class
will be considered as single cluster sharing the same identity.
Finally, the defender will judge the class with two groups as
an attacked class.

Other works working at the training dataset level are de-
scribed below.

Du et al. [125] have theoretically and empirically proved
that applying differential privacy during the training process
can efficiently prevent the model from overfitting to the atyp-
ical samples. Inspired by this, the authors first add Gaussian
noise to the poisoned training dataset, and then utilize it to
train an auto-encoder outlier detector. Since poisoned sam-
ples are atypical ones, the detector judges one sample to be
poisoned if the classification is achieved with less confidence.
Finally, Yoshida et al. [126] and Chen et al. [127] share a
similar idea for cleaning poisoned data, that is, distilling the
clean knowledge from the backdoored model, and further re-
moving poisoned data from the poisoned training dataset by
comparing the predictions of the backdoored and distillation
models.

VII. FINAL REMARKS AND RESEARCH ROADMAP
In this work, we have given an overview of backdoor at-
tacks against deep neural networks and possible defences. We
started the overview by presenting a unifying framework to
cast backdoor attacks in. In doing so, we paid particular atten-
tion to define the threat models and the requirements that the
attackers and defenders must satisfy under various settings.
Then, we reviewed the main attacks and defences proposed
so far, casting them in the general framework outlined pre-
viously. This allowed us to critically review the strengths
and drawbacks of the various approaches with reference to
the application scenarios wherein they are operating. At the
same time, our analysis helps to identify the main open issues
still waiting for a solution, thus contributing to outlining a
roadmap for future research, as described in the rest of this
section.

A. OPEN ISSUES
Notwithstanding the amount of works published so far, there
are several open issues that still remain to be addressed, the
most relevant of which are detailed in the following.
� More general defences: Existing defences are often

tailored solutions that work well only under very spe-
cific assumptions about the behavior of the adversary,
e.g. on the triggering pattern and its size. In real life

applications, however, these assumptions do not neces-
sarily hold. Future research should, then, focus on the
development of more general defences, with minimal
working assumptions on the attacker’s behaviour.

� Improving the robustness of backdoors: The develop-
ment of strategies to improve backdoor robustness is
another important research line that should occupy the
agenda of researchers. Current approaches can resist, up
to some extent, parameter pruning and fine-tuning of
final layers, while robustness against retraining of all
layers and, more in general, transfer learning, is not at
reach of current techniques. Achieving such robustness
is particularly relevant when backdoors are used for be-
nign purposes (see VII-C). The study of backdoor attacks
in the physical domain is another interesting, yet rather
unexplored, research direction, (see [128] for a prelimi-
nary work in this sense), calling for the development of
backdoor attacks that can survive the analog to digital
conversion involved by physical domain applications.

� Development of an underlying theory: We ambitiously
advocate the need of an underlying theory that can help
to solve some of the fundamental problems behind the
development of backdoor attacks, like, for instance, the
definition of the optimal triggering pattern (in most of
the backdoor attacks proposed so far, the triggering pat-
tern is a prescribed signal, arbitrary defined). From the
defender’s side, a theoretical framework can help the
development of more general defences that are effective
under a given threat model.

� Video backdoor attacks (and defences): Backdoor at-
tacks against video processing networks have attracted
significant less interest than attacks working on still im-
ages, yet there would be plenty of applications wherein
such attacks would be even more relevant than for
image-based systems. As a matter of fact, the current
literature either focuses on the simple corrupted-label
scenario [76], or it merely applies tools developed for
images at the video frame level [94]. However, for a
proper development of video backdoor attacks (and de-
fences), the temporal dimension has to be taken into
account, e.g., by designing a triggering pattern that ex-
ploits the time dimension of the problem.

B. EXTENSION TO DOMAINS OTHER THAN COMPUTER
VISION
As mentioned in the introduction, although in this survey we
focused on image and video classification, backdoor attacks
and defences have also been studied in other application do-
mains, e.g., in deep reinforcement learning [129] and natural
language processing [28], where, however, the state of the art
is less mature.

1) DEEP REINFORCEMENT LEARNING (DRL)
In 2020, Kiourti et al. [129] have presented a backdoor at-
tack against a DRL system. In this scenario, the backdoored

282 VOLUME 3, 2022

network behaves normally on untainted states, but works ab-
normally in some particular states, i.e., the poisoned states,
s∗
t . In the non-targeted attack case, the abnormal behavior con-

sists in the agent taking a random action, while for the targeted
attack the action taken in correspondence of a poisoned state
is a target action chosen by the attacker. The desired abnormal
behavior is obtained by poisoning the rewards, assigning a
positive reward when the target action is taken in correspon-
dence of s∗

t in the targeted case, or when every action (but the
correct one) is taken in the non-targeted case. According to
the result shown in [129], a successful attack is obtained by
poisoning a very small percentage of trajectories (states) and
rewards.

Some defences to protect a DRL system from backdoor
attacks have been also explored in [129]. It turns out that
neither spectral signature [130] nor activation clustering [19]
can detect the attack because of the small poisoning ratio α.
The development of backdoor attacks against DRL system is
only at an early stage, and, in particular, the study of effective
backdoor defences is still an open problem.

2) NATURAL LANGUAGE PROCESSING (NLP)
In the NLP domain backdoor attacks and, in particular, de-
fences, are quite advanced. Starting from [28], several works
have shown that NLP tools are vulnerable to backdoor at-
tacks. Most of these works implicitly assume that the attack
is carried out in a full control scenario, where Eve poisons
the training dataset in a corrupted-label modality, adding a
triggering pattern υ, namely, a specific word token, within
benign text sequences, and setting the corresponding label
to the target class t . The backdoored model will behave as
expected on normal text sentences, but will always output t if
υ is present in the text string. The first approaches proposed
by Kurita et al. [131] and Wallace et al. [132] used noticeable
or misspelled words as trigger υ, e.g. ‘mm,’ ‘bb’ and ‘James
Bond,’ that can then be easily detected at test time. In [133]
and [134], a less detectable trigger is used by relying on a
proper combination of synonyms and syntaxes.

Two defences [132], [135] have also been proposed to
detect or remove the backdoor from NLP models. Both these
methods have serious drawbacks. In [132], the removal of the
backdoor reduces the accuracy of the model on benign text,
thus not satisfying the harmless removal requirement. The
method proposed in [135], based on the shortcut assumption
described in [16], instead, is very time consuming, requiring
the computation of a universal perturbation for all possible
target classes, which, in NLP applications, can be many. Fu-
ture work in this area should address the development of
clean-labels attacks, and work on more efficient detection and
removal methods.

C. BENIGN USES OF BACKDOORS
Before concluding the paper, we pause to mention two possi-
ble benign uses of backdoors.

1) DNN WATERMARKING
Training a DNN model is a noticeable piece of work that
requires significant computational resources (the training pro-
cess may go on for weeks, even on powerful machines
equipped with several GPUs) and the availability of massive
amounts of training data. For this reason, the demand for
methods to protect the Intellectually Property Rights (IPR)
associated to DNNs is rising. As it happened for media pro-
tection [136], watermarking has recently been proposed as a
way to protect the IPRs of DNNs and identify illegitimate
usage of DNN models [137]. In general, the watermark can
either be embedded directly into the weights by modifying the
parameters of one or more layers (static watermarking), or be
associated to the behavior of the network in correspondence
to some specific inputs (dynamic watermarking) [138].

The latter approach has immediate connections with DNN
backdooring. In 2018, Adi et al. [139] were the first to pro-
pose to black-box watermark a DNN through backdooring.
According to [139], the watermark is injected into the DNN
during training, by adding a poisoning dataset (Dp

tr) to the
benign training data (Db

tr). The triggering input images in Dp
tr

play the role of the watermark key. To verify the ownership,
the verifier computes the ASR; if the value is larger than a
prescribed threshold the ownership of the DNN is established.

In [139], watermark robustness against fine-tuning and
transfer learning was evaluated. The results showed that
the watermark can be recovered after fine tuning in some
cases, while in other cases the accuracy of watermark detec-
tion drops dramatically. Transfer learning corresponds to an
even more challenging scenario against which robustness can
not be achieved. Noticeably, poor robustness against trans-
fer learning is a common feature of all DNN watermarking
methods developed so far. Improving the robustness of DNN
watermarking against network re-use is of primary importance
in practical IPR protection applications. This is linked to the
quest for improving backdoor robustness, already discussed in
the previous section. Moreover, the use of backdoors for DNN
watermarking must be investigated more carefully in order to
understand the capability and the limitations of the backdoor-
ing approach in terms of payload (capacity) and security, and
how it compares with static watermarking approaches.

2) TRAPDOOR-ENABLED ADVERSARIAL EXAMPLE
DETECTION
DNN models are known to be vulnerable to adversarial ex-
amples, causing misclassification at testing time [1]. Defence
methods developed against adversarial examples work ei-
ther by designing a system for which adversarial attacks are
more difficult to be found (see, for instance, adversarial train-
ing [93] and defensive distillation [140]), or by trying to detect
the adversarial inputs at testing time (e.g., by feature squeez-
ing, or input pre-processing [141]).

Recently, Shan et al. [142] have proposed to exploit back-
door attacks to protect DNN models against adversarial
examples, by implementing a so-called trapdoor honeypot. A

VOLUME 3, 2022 283

GUO ET AL.: OVERVIEW OF BACKDOOR ATTACKS AGAINST DEEP NEURAL NETWORKS AND POSSIBLE DEFENCES

trapdoor honeypot is similar to a backdoor in that it causes a
misclassification error in the presence of a specific, minimum
energy, triggering pattern. When building an adversarial ex-
ample, the attacker will likely, and inadvertently, exploit the
weakness introduced within the DNN by the backdoor and
come out with an adversarial perturbation which is very close
to the triggering pattern purposely introduced by the defender
at training time. In this way, the defender may recognize that
an adversarial attack is ongoing and react accordingly.

More specifically, given a to-be-protected class t , the de-
fender trains a backdoored model Fθ∗

α
such that Fθ∗

α
(x + υ) =

t �= Fθ∗
α

(x), where υ is a low-energy triggering pattern, called
loss-minimizing trapdoor, designed in such a way to minimize
the loss for the target label. The presence of an adversarial
input can then be detected by looking for the presence of the
pattern υ within the input sample, trusting that the algorithm
used to construct the adversarial perturbation will exploit the
existence of a low-energy pattern υ capable of inducing a
misclassification error in favour of class t . Based on the re-
sults shown in [142], the trapdoor-enabled defence achieves
high accuracy against many state-of-art targeted adversarial
examples attacks.

Such defence works only against targeted attacks, and trap-
door honeypots against non-targeted adversarial example have
still to be developed. Moreover, how to extend the idea of
trapdoor honeypots to defend against black-box adversarial
examples, that do not adopt a low-energy pattern, is an open
issue deserving further attention.

REFERENCES
[1] C. Szegedy et al., “Intriguing properties of neural networks,” in Proc.

2nd Int. Conf. Learn. Representations, 2014, pp. 1–10.
[2] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harness-

ing adversarial examples,” 2014, arXiv:1412.6572.
[3] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against sup-

port vector machines,” in Proc. 29th Int. Conf. Int. Conf. Mach. Learn.,
2012, pp. 1467–1474.

[4] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “BadNets: Evaluating
backdooring attacks on deep neural networks,” IEEE Access, vol. 7,
pp. 47230–47244, 2019, doi: 10.1109/ACCESS.2019.2909068.

[5] L. Muñoz-González et al., “Towards poisoning of deep learning algo-
rithms with back-gradient optimization,” in Proc. 10th ACM Workshop
Artif. Intell. Secur., 2017, pp. 27–38.

[6] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted back-
door attacks on deep learning systems using data poisoning,” 2017,
arXiv:1712.05526.

[7] L. Muñoz-González, B. Pfitzner, M. Russo, J. Carnerero-Cano, and E.
C. Lupu, “Poisoning attacks with generative adversarial Nets,” 2019,
arXiv:1906.07773.

[8] P. W. Koh, J. Steinhardt, and P. Liang, “Stronger data poisoning at-
tacks break data sanitization defenses,” Mach. Learn., vol. 111, no. 1,
pp. 1–47, 2022.

[9] J. Steinhardt, P. W. W. Koh, and P. S. Liang, “Certified defenses
for data poisoning attacks,” Adv. Neural Inf. Process. Syst., vol. 30,
pp. 3520–3532, 2017.

[10] I. Diakonikolas, G. Kamath, D. Kane, J. Li, J. Steinhardt, and A.
Stewart, “Sever: A robust meta-algorithm for stochastic optimization,”
in Proc. Int. Conf. Mach. Learn., 2019, pp. 1596–1606.

[11] J. Carnerero-Cano, L. Muñoz-González, P. Spencer, and E. C. Lupu,
“Regularisation can mitigate poisoning attacks: A novel analysis based
on multiobjective bilevel optimisation,” 2020, arXiv:2003.00040.

[12] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li,
“Manipulating machine learning: Poisoning attacks and countermea-
sures for regression learning,” in Proc. IEEE Symp. Secur. Privacy,
2018, pp. 19–35.

[13] Y. Ji, X. Zhang, and T. Wang, “Backdoor attacks against learning
systems,” in Proc. IEEE Conf. Netw. Secur., 2017, pp. 1–9.

[14] Y. Liu, Y. Xie, and A. Srivastava, “Neural trojans,” in Proc. IEEE Int.
Conf. Comput. Des., 2017, pp. 45–48.

[15] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending
against backdooring attacks on deep neural networks,” in Proc. Int.
Symp. Res. Attacks, Intrusions, Defenses, 2018, pp. 273–294.

[16] B. Wang et al., “Neural cleanse: Identifying and mitigating backdoor
attacks in neural networks,” in Proc. IEEE Symp. Secur. Privacy, 2019,
pp. 707–723.

[17] W. Guo, L. Wang, X. Xing, M. Du, and D. Song, “Tabor: A highly
accurate approach to inspecting and restoring trojan backdoors in ai
systems,” 2019, arXiv:1908.01763.

[18] B. Tran, J. Li, and A. Madry, “Spectral signatures in backdoor attacks,”
in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 8000–8010.

[19] B. Chen et al., “Detecting backdoor attacks on deep neural net-
works by activation clustering,” in Proc. Workshop Artif. Intell.
Saf. Co-Located 33rd AAAI Conf. Artif. Intell., 2019, vol. 2301,
2019.

[20] E. Chou, F. Tramèr, and G. Pellegrino, “SentiNet: Detecting localized
universal attacks against deep learning systems,” in Proc. IEEE Secur.
Privacy Workshops, 2020, pp. 48–54.

[21] Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe, and S. Nepal,
“Strip: A defence against trojan attacks on deep neural networks,” in
Proc. 35th Annu. Comput. Secur. Appl. Conf., 2019, pp. 113–125.

[22] H. Chen, C. Fu, J. Zhao, and F. Koushanfar, “DeepInspect: A
black-box trojan detection and mitigation framework for deep neu-
ral networks,” in Proc. 28th Int. Joint Conf. Artif. Intell., 2019,
pp. 4658–4664.

[23] Y. Liu et al., “A survey on neural trojans,” in Proc. IEEE
21st Int. Symp. Qual. Electron. Des., 2020, pp. 33–39,
doi: 10.1109/ISQED48828.2020.9137011.

[24] Y. Chen, X. Gong, Q. Wang, X. Di, and H. Huang, “Backdoor attacks
and defenses for deep neural networks in outsourced cloud environ-
ments,” IEEE Netw., vol. 34, no. 5, pp. 141–147, Sep./Oct. 2020.

[25] Y. Li, B. Wu, Y. Jiang, Z. Li, and S.-T. Xia, “Backdoor learning: A
survey,” 2020, arXiv:2007.08745.

[26] M. Goldblum et al., “Dataset security for machine learning: Data
poisoning, backdoor attacks, and defenses,” IEEE Trans. Pattern
Anal. Mach. Intell., early access, Mar. 25, 2022, pp. 1–1, 2022,
doi: 10.1109/TPAMI.2022.3162397.

[27] A. Schwarzschild, M. Goldblum, A. Gupta, J. P. Dickerson, and T.
Goldstein, “Just how toxic is data poisoning? A unified benchmark for
backdoor and data poisoning attacks,” in Proc. 38th Int. Conf. Mach.
Learn., 2021, vol. 139, pp. 9389–9398.

[28] J. Dai, C. Chen, and Y. Li, “A backdoor attack against LSTM-based
text classification systems,” IEEE Access, vol. 7, pp. 138872–138878,
2019.

[29] H. Kwon and S. Lee, “Textual backdoor attack for the text classifica-
tion system,” Secur. Commun. Netw., vol. 2021, pp. 1–11, 2021.

[30] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to
backdoor federated learning,” in Proc. Int. Conf. Artif. Intell. Statist.,
2020, pp. 2938–2948.

[31] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Analyzing
federated learning through an adversarial lens,” in Proc. Int. Conf.
Mach. Learn., 2019, pp. 634–643.

[32] C. Xie, K. Huang, P.-Y. Chen, and B. Li, “DBA: Distributed backdoor
attacks against federated learning,” in Proc. Int. Conf. Learn. Repre-
sentations, 2019, pp. 1–15.

[33] C.-L. Chen, L. Golubchik, and M. Paolieri, “Backdoor attacks on
federated meta-learning,” 2020, arXiv:2006.07026.

[34] C. Xie, M. Chen, P. Chen, and B. Li, “CRFL: Certifiably robust
federated learning against backdoor attacks,” in Proc. 38th Int. Conf.
Mach. Learn., 2021, pp. 11372–11382. [Online]. Available: http://
proceedings.mlr.press/v139/xie21a.html

[35] Y. Li, Y. Li, Y. Lv, Y. Jiang, and S.-T. Xia, “Hidden backdoor attack
against semantic segmentation models,” 2021, arXiv:2103.04038.

[36] N. Carlini and A. Terzis, “Poisoning and backdooring contrastive
learning,” 2021, arXiv:2106.09667.

284 VOLUME 3, 2022

https://dx.doi.org/10.1109/ACCESS.2019.2909068
https://dx.doi.org/10.1109/ISQED48828.2020.9137011
https://dx.doi.org/10.1109/TPAMI.2022.3162397
http://proceedings.mlr.press/v139/xie21a.html
http://proceedings.mlr.press/v139/xie21a.html

[37] J. Kirkpatrick et al., “Overcoming catastrophic forgetting in neural
networks,” 2017, arXiv:1612.00796.

[38] J. Dumford and W. J. Scheirer, “Backdooring convolu-
tional neural networks via targeted weight perturbations,”
in Proc. IEEE Int. Joint Conf. Biometrics, 2020, pp. 1–9,
doi: 10.1109/IJCB48548.2020.9304875.

[39] R. Costales, C. Mao, R. Norwitz, B. Kim, and J. Yang, “Live trojan
attacks on deep neural networks,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. Workshops, 2020, pp. 796–797.

[40] A. Shafahi et al., “Poison frogs! targeted clean-label poisoning at-
tacks on neural networks,” in Proc. Adv. Neural Inf. Process. Syst.,
2018, pp. 6106–6116.

[41] A. S. Rakin, Z. He, and D. Fan, “Bit-flip attack: Crushing neural
network with progressive bit search,” in Proc. IEEE Int. Conf. Comput.
Vis., 2019, pp. 1211–1220.

[42] J. Bai, B. Wu, Y. Zhang, Y. Li, Z. Li, and S.-T. Xia, “Targeted attack
against deep neural networks via flipping limited weight bits,” in Proc.
Int. Conf. Learn. Representations, 2021, pp. 1–19. [Online]. Available:
https://openreview.net/forum?id=iKQAk8a2kM0

[43] S. Hong, N. Carlini, and A. Kurakin, “Handcrafted backdoors in deep
neural networks,” 2021, arXiv:2106.04690.

[44] Y. Li, J. Hua, H. Wang, C. Chen, and Y. Liu, “Deeppayload: Black-
box backdoor attack on deep learning models through neural payload
injection,” in Proc. 43rd IEEE/ACM Int. Conf. Softw. Eng., 2021,
pp. 263–274, doi: 10.1109/ICSE43902.2021.00035.

[45] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[46] H. KWON, “Multi-model selective backdoor attack with different
trigger positions,” IEICE Trans. Inf. Syst., vol. 105, no. 1, pp. 170–174,
2022.

[47] L. Wolf, T. Hassner, and I. Maoz, “Face recognition in unconstrained
videos with matched background similarity,” in Proc. 24th IEEE Conf.
Comput. Vis. Pattern Recognit., 2011, pp. 529–534.

[48] H. Kwon and Y. Kim, “Blindnet backdoor: Attack on deep neural net-
work using blind watermark,” Multimedia Tools Appl., pp. 6217–6234,
2022.

[49] H. Zhong, C. Liao, A. C. Squicciarini, S. Zhu, and D. J. Miller, “Back-
door embedding in convolutional neural network models via invisible
perturbation,” in Proc. 10th ACM Conf. Data Appl. Secur. Privacy,
2020, pp. 97–108, doi: 10.1145/3374664.3375751.

[50] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Uni-
versal adversarial perturbations,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2017, pp. 1765–1773.

[51] S. Houben, J. Stallkamp, J. Salmen, M. Schlipsing, and C. Igel, “De-
tection of traffic signs in real-world images: The German traffic sign
detection benchmark,” in Proc. Int. Joint Conf. Neural Netw., 2013,
no. 1288, pp. 1–8.

[52] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” Tech. Rep., Univ. of Toronto, 2009.

[53] Q. Zhang, Y. Ding, Y. Tian, J. Guo, M. Yuan, and Y. Jiang, “Advdoor:
Adversarial backdoor attack of deep learning system,” in Proc. 30th
ACM SIGSOFT Int. Symp. Soft. Testing Anal., 2021, pp. 127–138,
doi: 10.1145/3460319.3464809.

[54] S. Li, M. Xue, B. Zhao, H. Zhu, and X. Zhang, “Invisible backdoor
attacks on deep neural networks via steganography and regular-
ization,” IEEE Trans. Dependable Secure Comput., vol. 18, no. 5,
pp. 2088–2105, Sep./Oct. 2021.

[55] T. A. Nguyen and A. T. Tran, “WaNet—imperceptible warping-
based backdoor attack,” in Proc. Int. Conf. Learn. Representations,
2021, pp. 1–16. [Online]. Available: https://openreview.net/forum?id=
eEn8KTtJOx

[56] F. L. Bookstein, “Principal warps: Thin-plate splines and the decom-
position of deformations,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 11, no. 6, pp. 567–585, Jun. 1989.

[57] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in Proc. Int. Conf. Comput. Vis., 2015, pp. 3730–3738.

[58] E. Quiring and K. Rieck, “Backdooring and poisoning neural networks
with image-scaling attacks,” in Proc. IEEE Secur. Privacy Workshops,
2020, pp. 41–47.

[59] Q. Xiao, Y. Chen, C. Shen, Y. Chen, and K. Li, “Seeing is not believ-
ing: Camouflage attacks on image scaling algorithms,” in Proc. 28th
USENIX Secur. Symp., 2019, pp. 443–460. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity19/presentation/xiao

[60] Y. Yao, H. Li, H. Zheng, and B. Y. Zhao, “Latent backdoor attacks on
deep neural networks,” in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., 2019, pp. 2041–2055.

[61] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,”
in Proc. Brit. Mach. Vis. Conf., X. Xie, M. W. Jones, and G. K. L. Tam,
Eds., BMVA Press, 2015, pp. 41.1–41.12, doi: 10.5244/C.29.41.

[62] “Casia iris dataset,” [Online]. Available: http://biometrics.idealtest.
org/

[63] T. J. L. Tan and R. Shokri, “Bypassing backdoor detection algorithms
in deep learning,” in Proc. IEEE Eur. Symp. Secur. Privacy, 2020,
pp. 175–183, doi: 10.1109/EuroSP48549.2020.00019.

[64] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in Proc. 3rd Int. Conf. Learn. Rep-
resentations, 2015, pp. 1–14.

[65] Y. Li, T. Zhai, Y. Jiang, Z. Li, and S.-T. Xia, “Backdoor attack in the
physical world,” 2021, arXiv:2104.02361.

[66] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2016, pp. 770–778.

[67] X. Gong et al., “Defense-resistant backdoor attacks against deep
neural networks in outsourced cloud environment,” IEEE J. Sel.
Areas Commun., vol. 39, no. 8, pp. 2617–2631, Aug. 2021,
doi: 10.1109/JSAC.2021.3087237.

[68] S. Cheng, Y. Liu, S. Ma, and X. Zhang, “Deep feature space trojan
attack of neural networks by controlled detoxification,” in Proc. 35th
AAAI Conf. Artif. Intell., AAAI, 33rd Conf. Innov. Appl. Artif. Intell.,
IAAI 2021, 11th Symp. Educ. Adv. Artif. Intell., EAAI 2021, Virtual
Event, 2021, pp. 1148–1156. [Online]. Available: https://ojs.aaai.org/
index.php/AAAI/article/view/16201

[69] J. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-
to-image translation using cycle-consistent adversarial networks,”
in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 2242–2251,
doi: 10.1109/ICCV.2017.244.

[70] Y. Liu, W.-C. Lee, G. Tao, S. Ma, Y. Aafer, and X. Zhang, “ABS:
Scanning neural networks for back-doors by artificial brain stimula-
tion,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2019,
pp. 1265–1282.

[71] S. Kolouri, A. Saha, H. Pirsiavash, and H. Hoffmann, “Univer-
sal litmus patterns: Revealing backdoor attacks in CNNs,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 301–310.

[72] T. A. Nguyen and A. Tran, “Input-aware dynamic backdoor
attack,” in Adv. Neural Inf. Process. Syst. 33: Annu. Conf.
Neural Inf. Process. Syst., 2020, pp. 3454–3464. [Online].
Available: https://proceedings.neurips.cc/paper/2020/hash/
234e691320c0ad5b45ee3c96d0d7b8f8-Abstract.html

[73] P. Zhao, P. Chen, P. Das, K. N. Ramamurthy, and X. Lin, “Bridging
mode connectivity in loss landscapes and adversarial robustness,” in
Proc. 8th Int. Conf. Learn. Representations, 2020, pp. 1–28. [Online].
Available: https://openreview.net/forum?id=SJgwzCEKwH

[74] Y. Liu et al., “Trojaning attack on neural networks,” in Proc.
25th Annu. Netw. Distrib. Syst. Secur. Symp., 2018, pp. 1–
15. [Online]. Available: http://wp.internetsociety.org/ndss/wp-content/
uploads/sites/25/2018/02/ndss2018_03A-5_Liu_paper.pdf

[75] G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller, “Labeled
faces in the wild: A database forstudying face recognition in uncon-
strained environments,” in Proc. Workshop Faces in’Real-Life’Images:
Detection, Alignment, Recognit., 2008, pp. 1–14.

[76] A. Bhalerao, K. Kallas, B. Tondi, and M. Barni, “Luminance-based
video backdoor attack against anti-spoofing rebroadcast detection,”
in Proc. IEEE 21st Int. Workshop Multimedia Signal Process., 2019,
pp. 1–6.

[77] J. Donahue et al., “Long-term recurrent convolutional networks for
visual recognition and description,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2015, pp. 2625–2634.

[78] I. Chingovska, A. Anjos, and S. Marcel, “On the effectiveness of local
binary patterns in face anti-spoofing,” in Proc. BIOSIG- Proc. Int.
Conf. Biometrics Special Int. Group, 2012, pp. 1–7.

[79] J. Lin, L. Xu, Y. Liu, and X. Zhang, “Composite backdoor attack for
deep neural network by mixing existing benign features,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., 2020, pp. 113–131.

[80] W. Guo, B. Tondi, and M. Barni, “A master key backdoor for universal
impersonation attack against DNN-based face verification,” Pattern
Recognit. Lett., vol. 144, pp. 61–67, 2021.

VOLUME 3, 2022 285

https://dx.doi.org/10.1109/IJCB48548.2020.9304875
https://openreview.net/forum{?}id=iKQAk8a2kM0
https://dx.doi.org/10.1109/ICSE43902.2021.00035
http://yann.lecun.com/exdb/mnist/
https://dx.doi.org/10.1145/3374664.3375751
https://dx.doi.org/10.1145/3460319.3464809
https://openreview.net/forum{?}id=eEn8KTtJOx
https://openreview.net/forum{?}id=eEn8KTtJOx
https://www.usenix.org/conference/usenixsecurity19/presentation/xiao
https://www.usenix.org/conference/usenixsecurity19/presentation/xiao
https://dx.doi.org/10.5244/C.29.41
http://biometrics.idealtest.org/
http://biometrics.idealtest.org/
https://dx.doi.org/10.1109/EuroSP48549.2020.00019
https://dx.doi.org/10.1109/JSAC.2021.3087237
https://ojs.aaai.org/index.php/AAAI/article/view/16201
https://ojs.aaai.org/index.php/AAAI/article/view/16201
https://dx.doi.org/10.1109/ICCV.2017.244
https://proceedings.neurips.cc/paper/2020/hash/234e691320c0ad5b45ee3c96d0d7b8f8-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/234e691320c0ad5b45ee3c96d0d7b8f8-Abstract.html
https://openreview.net/forum{?}id=SJgwzCEKwH
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-5_Liu_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-5_Liu_paper.pdf

GUO ET AL.: OVERVIEW OF BACKDOOR ATTACKS AGAINST DEEP NEURAL NETWORKS AND POSSIBLE DEFENCES

[81] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, “VG-
GFACE2: A dataset for recognising faces across pose and age,” in
Proc. 13th IEEE Int. Conf. Autom. Face Gesture Recognit., 2018,
pp. 67–74.

[82] A. Turner, D. Tsipras, and A. Madry, “Label-consistent backdoor
attacks,” 2019, arXiv:1912.02771.

[83] M. Alberti et al., “Are You Tampering with My Data?,” in Proc.
Comput. Vis. ECCV Workshops, 2018, pp. 296–312.

[84] M. Barni, K. Kallas, and B. Tondi, “New backdoor attack in CNNs
by training set corruption without label poisoning,” in Proc. IEEE Int.
Conf. Image Process., 2019, pp. 101–105.

[85] Y. Liu, X. Ma, J. Bailey, and F. Lu, “Reflection backdoor: A natural
backdoor attack on deep neural networks,” in Proc. Eur. Conf. Comput.
Vis., 2020, pp. 182–199.

[86] R. Wan, B. Shi, L.-Y. Duan, A.-H. Tan, and A. C. Kot, “Benchmarking
single-image reflection removal algorithms,” in Proc. IEEE Int. Conf.
Comput. Vis., 2017, pp. 3922–3930.

[87] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Ima-
geNet: A large-scale hierarchical image database,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2009, pp. 248–255.

[88] R. Ning, J. Li, C. Xin, and H. Wu, “Invisible poison: A blackbox clean
label backdoor attack to deep neural networks,” in Proc. IEEE Int.
Conf. Comput. Commun., 2021, pp. 1–10.

[89] O. Suciu, R. Marginean, Y. Kaya, H. D. III, and T. Dumitras,
“When does machine learning fail? generalized transferability for
evasion and poisoning attacks,” in Proc. 27th USENIX Secur. Symp.,
2018, pp. 1299–1316. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity18/presentation/suciu

[90] C. Zhu, W. R. Huang, H. Li, G. Taylor, C. Studer, and T. Goldstein,
“Transferable clean-label poisoning attacks on deep neural nets,” in
Proc. 36th Int. Conf. Mach. Learn., 2019, pp. 7614–7623. [Online].
Available: http://proceedings.mlr.press/v97/zhu19a.html

[91] A. Saha, A. Subramanya, and H. Pirsiavash, “Hidden trigger backdoor
attacks,” in Proc. 34th AAAI Conf. Artif. Intell., AAAI, The 32nd Innov.
App. Artif. Intell. Conf., The 10th AAAI Symp. Educ. Adv. Artif. In-
tell., 2020, pp. 11957–11965. [Online]. Available: https://aaai.org/ojs/
index.php/AAAI/article/view/6871

[92] J. Chen, L. Zhang, H. Zheng, X. Wang, and Z. Ming, “Deeppoison:
Feature transfer based stealthy poisoning attack for DNNs,” IEEE
Trans. Circuits Syst., II, Exp. Briefs, vol. 68, no. 7, pp. 2618–2622,
Jul. 2021, doi: 10.1109/TCSII.2021.3060896.

[93] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “To-
wards deep learning models resistant to adversarial attacks,” 2017,
arXiv:1706.06083.

[94] S. Zhao, X. Ma, X. Zheng, J. Bailey, J. Chen, and Y.-G. Jiang,
“Clean-label backdoor attacks on video recognition models,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 14 443–
14452.

[95] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A dataset of 101 hu-
man actions classes from videos in the wild,” 2012, arXiv:1212.0402.

[96] B. G. Doan, E. Abbasnejad, and D. C. Ranasinghe, “Februus: Input
purification defense against trojan attacks on deep neural network sys-
tems,” in Proc. Annu. Comput. Secur. Appl. Conf., 2020, pp. 897–912.

[97] E. Sarkar, Y. Alkindi, and M. Maniatakos, “Backdoor suppression in
neural networks using input fuzzing and majority voting,” IEEE Des.
Test, vol. 37, no. 2, pp. 103–110, Apr. 2020.

[98] H. Kwon, “Detecting backdoor attacks via class difference in deep
neural networks,” IEEE Access, vol. 8, pp. 191049–191056, 2020.

[99] H. Fu, A. K. Veldanda, P. Krishnamurthy, S. Garg, and F. Khorrami,
“Detecting backdoors in neural networks using novel feature-based
anomaly detection,” 2020, arXiv:2011.02526.

[100] A. Chattopadhay, A. Sarkar, P. Howlader, and V. N. Balasubramanian,
“Grad-cam: Generalized gradient-based visual explanations for deep
convolutional networks,” in Proc. IEEE Winter Conf. Appl. Comput.
Vis., 2018, pp. 839–847.

[101] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C.
Courville, “Improved training of wasserstein GANs,” in Proc. Adv.
Neural Inf. Process. Syst., 2017, pp. 5767–5777.

[102] H. Kwon, “Defending deep neural networks against backdoor attack
by using de-trigger autoencoder,” IEEE Access, early access, Oct.
18, 2021, doi: 10.1109/ACCESS.2021.3086529.

[103] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identi-
fying density-based local outliers,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2000, pp. 93–104.

[104] A. K. Veldanda et al., “NNoculation: Broad spectrum and targeted
treatment of backdoored DNNs,” 2020, arXiv:2002.08313.

[105] X. Xu, Q. Wang, H. Li, N. Borisov, C. A. Gunter, and B. Li, “Detecting
ai trojans using meta neural analysis,” in Proc. IEEE Symp. Secur.
Privacy, 2021, pp. 103–120.

[106] M. Villarreal-Vasquez and B. Bhargava, “ConFoc: Content-focus
protection against trojan attacks on neural networks,” 2020,
arXiv:2007.00711.

[107] H. Qiu, Y. Zeng, S. Guo, T. Zhang, M. Qiu, and B. M. Thuraisingham,
“Deepsweep: An evaluation framework for mitigating DNN backdoor
attacks using data augmentation,” in Proc. ACM Asia Conf. Com-
put. Commun. Secur., Virtual Event, Hong Kong, 2021, pp. 363–377,
doi: 10.1145/3433210.3453108.

[108] L. A. Gatys, A. S. Ecker, and M. Bethge, “IMAGE style transfer
using convolutional neural networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2016, pp. 2414–2423.

[109] L. Truong et al., “Systematic evaluation of backdoor data poisoning
attacks on image classifiers,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. Workshops, 2020, pp. 788–789.

[110] Y. Li, X. Lyu, N. Koren, L. Lyu, B. Li, and X. Ma, “Neural attention
distillation: Erasing backdoor triggers from deep neural networks,” in
Proc. 9th Int. Conf. Learn. Representations, 2021, pp. 1–19. [Online].
Available: https://openreview.net/forum?id=9l0K4OM-oXE

[111] T. Garipov, P. Izmailov, D. Podoprikhin, D. P. Vetrov, and A.
G. Wilson, “Loss surfaces, mode connectivity, and fast ensem-
bling of DNNs,” in Proc. Adv. Neural Inf. Process. Syst. 31:
Annu. Conf. Neural Inf. Process. Syst., 2018, pp. 8803–8812.
[Online]. Available: https://proceedings.neurips.cc/paper/2018/hash/
be3087e74e9100d4bc4c6268cdbe8456-Abstract.html

[112] S. C. Park and H. Shin, “Polygonal chain intersection,” Comput.
Graph., vol. 26, no. 2, pp. 341–350, 2002.

[113] R. T. Farouki, “The bernstein polynomial basis: A centennial retro-
spective,” Comput. Aided Geometric Des., vol. 29, no. 6, pp. 379–419,
2012.

[114] F. R. Hampel, “The influence curve and its role in robust estimation,”
J. Amer. Stat. Assoc., vol. 69, no. 346, pp. 383–393, 1974.

[115] Z. Xiang, D. J. Miller, and G. Kesidis, “Detection of backdoors
in trained classifiers without access to the training set,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 33, no. 3, pp. 1177–1191,
Mar. 2022.

[116] Z. Xiang, D. J. Miller, H. Wang, and G. Kesidis, “Detecting scene-
plausible perceptible backdoors in trained DNNs without access to the
training set,” Neural Comput., vol. 33, no. 5, pp. 1329–1371, 2021,
doi: 10.1162/neco_a_01376.

[117] R. Wang, G. Zhang, S. Liu, P. Chen, J. Xiong, and M. Wang, “Prac-
tical detection of trojan neural networks: Data-limited and data-free
cases,” in Proc. 16th Eur. Conf. Comput. Vis., 2020, vol. 12368,
pp. 222–238.

[118] L. Zhu, R. Ning, C. Wang, C. Xin, and H. Wu, “Gangsweep: Sweep out
neural backdoors by GAN,” in Proc. 28th ACM Int. Conf. Multimedia,
2020, pp. 3173–3181.

[119] X. Qiao, Y. Yang, and H. Li, “Defending neural backdoors via gener-
ative distribution modeling,” in Proc. Adv. Neural Inf. Process. Syst.,
2019, pp. 14004–14013.

[120] Z. Xiang, D. J. Miller, and G. Kesidis, “A benchmark study of back-
door data poisoning defenses for deep neural network classifiers and a
novel defense,” in Proc. IEEE 29th Int. Workshop Mach. Learn. Signal
Process., 2019, pp. 1–6.

[121] N. Peri et al., “Deep K-NN defense against clean-label data poi-
soning attacks,” in Proc. Eur. Conf. Comput. Vis., 2020, pp. 55–70,
doi: 10.1007/978-3-030-66415-2_4.

[122] E. Soremekun, S. Udeshi, S. Chattopadhyay, and A. Zeller, “AEGIS:
Exposing backdoors in robust machine learning models,” 2020,
arXiv:2003.00865.

[123] D. Tang, X. Wang, H. Tang, and K. Zhang, “Demon in the variant:
Statistical analysis of DNNs for robust backdoor contamination detec-
tion,” 2019, arXiv:1908.00686.

[124] D. Chen, X. Cao, L. Wang, F. Wen, and J. Sun, “Bayesian face revis-
ited: A joint formulation,” in Proc. 12th Eur. Conf. Comput. Vis., 2012,
vol. 7574, pp. 566–579, doi: 10.1007/978-3-642-33712-3_41.

[125] M. Du, R. Jia, and D. Song, “Robust anomaly detection and back-
door attack detection via differential privacy,” in Proc. 8th Int. Conf.
Learn. Representations, 2020, pp. 1–11. [Online]. Available: https:
//openreview.net/forum?id=SJx0q1rtvS

286 VOLUME 3, 2022

https://www.usenix.org/conference/usenixsecurity18/presentation/suciu
https://www.usenix.org/conference/usenixsecurity18/presentation/suciu
http://proceedings.mlr.press/v97/zhu19a.html
https://aaai.org/ojs/index.php/AAAI/article/view/6871
https://aaai.org/ojs/index.php/AAAI/article/view/6871
https://dx.doi.org/10.1109/TCSII.2021.3060896
https://dx.doi.org/10.1109/ACCESS.2021.3086529
https://dx.doi.org/10.1145/3433210.3453108
https://openreview.net/forum{?}id=9l0K4OM-oXE
https://proceedings.neurips.cc/paper/2018/hash/be3087e74e9100d4bc4c6268cdbe8456-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/be3087e74e9100d4bc4c6268cdbe8456-Abstract.html
https://dx.doi.org/10.1162/neco_a_01376
https://dx.doi.org/10.1007/978-3-030-66415-2_4
https://dx.doi.org/10.1007/978-3-642-33712-3_41
https://openreview.net/forum{?}id=SJx0q1rtvS
https://openreview.net/forum{?}id=SJx0q1rtvS

[126] K. Yoshida and T. Fujino, “Disabling backdoor and identifying poison
data by using knowledge distillation in backdoor attacks on deep
neural networks,” in Proc. 13th ACM Workshop Artif. Intell. Secur.,
2020, pp. 117–127.

[127] J. Chen, X. Zhang, R. Zhang, C. Wang, and L. Liu, “De-pois: An
attack-agnostic defense against data poisoning attacks,” IEEE Trans.
Inf. Forensics Secur., vol. 16, pp. 3412–3425, May 2021.

[128] M. Xue, C. He, S. Sun, J. Wang, and W. Liu, “Robust backdoor
attacks against deep neural networks in real physical world,” 2021,
arXiv:2104.07395.

[129] P. Kiourti, K. Wardega, S. Jha, and W. Li, “Trojdrl: Evaluation of back-
door attacks on deep reinforcement learning,” in Proc. 57th ACM/IEEE
Des. Automat. Conf., 2020, pp. 1–6.

[130] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3D convolutional networks,” in Proc.
IEEE Int. Conf. Comput. Vis., 2015, pp. 4489–4497.

[131] K. Kurita, P. Michel, and G. Neubig, “Weight poisoning attacks on
pretrained models,” in Proc. 58th Annu. Meeting Assoc. Comput. Lin-
guistics, 2020, pp. 2793–2806, doi: 10.18653/v1/2020.acl-main.249.

[132] E. Wallace, T. Z. Zhao, S. Feng, and S. Singh, “Concealed data poi-
soning attacks on NLP models,” in Proc. Conf. North Amer. Chapter
Assoc. Comput. Linguistics: Hum. Lang. Technol., 2021, pp. 139–150,
doi: 10.18653/v1/2021.naacl-main.13.

[133] F. Qi, Y. Yao, S. Xu, Z. Liu, and M. Sun, “Turn the combi-
nation lock: Learnable textual backdoor attacks via word substi-
tution,” in Proc. 59th Annu. Meeting Assoc. Comput. Linguistics,
11th Int. Joint Conf. Natural Langu. Process., 2021, pp. 4873–4883,
doi: 10.18653/v1/2021.acl-long.377.

[134] F. Qi et al., “Hidden killer: Invisible textual backdoor attacks with syn-
tactic trigger,” in Proc. 59th Annu. Meeting Assoc. Comput. Linguis-
tics, 11th Int. Joint Conf. Natural Lang. Process., 2021, pp. 443–453,
doi: 10.18653/v1/2021.acl-long.37.

[135] A. Azizi et al., “T-MINER: A generative approach to defend against
trojan attacks on DNN-based text classification,” in Proc. 30th
USENIX Secur. Symp., 2021, pp. 2255–2272.

[136] C. I. Podilchuk and E. J. Delp, “Digital watermarking: Algorithms and
applications,” IEEE signal Process. Mag., vol. 18, no. 4, pp. 33–46,
Jul. 2001.

[137] M. Barni, F. Pérez-González, and B. Tondi, “DNN watermarking:
Four challenges and a funeral,” in Proc. ACM Workshop Inf. Hiding
Multimedia Secur., 2021, pp. 189–196.

[138] Y. Li, H. Wang, and M. Barni, “A survey of deep neural network
watermarking techniques,” Neurocomputing, vol. 461, pp. 171–193,
2021. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S092523122101095X

[139] Y. Adi, C. Baum, M. Cissé, B. Pinkas, and J. Keshet, “Turn-
ing your weakness into a strength: Watermarking deep neural
networks by backdooring,” in Proc. 27th USENIX Secur. Symp.,
2018, pp. 1615–1631. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity18/presentation/adi

[140] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distil-
lation as a defense to adversarial perturbations against deep neural
networks,” in Proc. IEEE Symp. Secur. Privacy, 2016, pp. 582–597.

[141] F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, and J. Zhu, “Defense
against adversarial attacks using high-level representation guided de-
noiser,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018,
pp. 1778–1787.

[142] S. Shan, E. Willson, B. Wang, B. Li, H. Zheng, and B. Y. Zhao, “Gotta
catch’Em all: Using concealed trapdoors to detect adversarial attacks
on neural networks,” 2019, arXiv:1904.08554.

WEI GUO received the M.Eng. degree from the
Department of Computer and Information Secu-
rity, Guilin University of Electronic Technology
(GUET), Guilin, China, in 2018 with a thesis about
“Applied Cryptography in IoT environment” and
the B.Sc. degree from the Department of Mathe-
matics and Computational Science, GUET in 2015.

He is currently a Ph.D. candidate from the
Department of Information Engineering and Math-
ematics, University of Siena, Siena, Italy. He is
doing research on security concerns in deep neural

networks under the supervision of Prof. Mauro Barni. He is a Member of
Visual Information Privacy and Protection Group.

BENEDETTA TONDI (Member, IEEE) received
the master degree (cum laude) in electronics and
communications engineering, and the Ph.D. degree
in information engineering and mathematical sci-
ences, both from the University of Siena, Siena,
Italy, in 2012 and 2016, respectively, with a thesis
on the Theoretical Foundations of Adversarial De-
tection and Applications to Multimedia Forensics,
in the area of Multimedia Security.

She is currently an Assistant Professor with the
Department of Information Engineering and Math-

ematics, University of Siena. She has been Assistant for the course of
Information Theory and Coding and Multimedia Security. She is a Member
of the Visual Information Processing and Protection Group led by Prof.
Mauro Barni. She is part of the IEEE Young Professionals and IEEE Signal
Processing Society, and a Member of the National Inter-University Consor-
tium for Telecommunications. From January 2019, she is also a Member of
the Information Forensics and Security Technical Committee of the IEEE
Signal Processing Society. Recently, she is working on machine learning
and deep learning applications for digital forensics and counter-forensics,
and on the security of machine learning techniques. From October 2014
to February 2015, she was a Visiting Student with the University of Vigo,
Vigo, Spain, Signal Processing in Communications Group, working on the
study of techniques to reveal attacks in Watermarking Systems. Her research
interests include application of information-theoretic methods and game the-
ory concepts to forensics and counter-forensics analysis and more in general
to multimedia security, and on adversarial signal processing. Her stay was
funded by a Spanish National Project on Multimedia Security.

MAURO BARNI (Fellow, IEEE) graduated in
electronic engineering from the University of Flo-
rence, Florence, Italy, in 1991, and received the
Ph.D. degree in informatics and telecommunica-
tions, in October 1995.

He has carried out his research activity for more
than 20 years, first at the Department of Electronics
and Telecommunication, University of Florence,
then at the Department of Information Engineering
and Mathematics, University of Siena, Siena, Italy,
where he works as a Full Professor. His activity

focuses on digital image processing and information security, with particular
reference to the application of image processing techniques to copyright pro-
tection (digital watermarking) and authentication of multimedia (multimedia
forensics). He has been studying the possibility of processing signals that
has been previously encrypted without decrypting them (signal processing
in the encrypted domain). Lately, he has been working on theoretical and
practical aspects of adversarial signal processing and adversarial machine
learning. He has been authored or coauthored more than 350 papers published
in international journals and conference proceedings, he holds four patents
in the field of digital watermarking, and one patent dealing with anticoun-
terfeiting technology. His papers on digital watermarking have significantly
contributed to the development of such a theory in the last decade as it is
demonstrated by the large number of citations some of these papers have
received. The overall citation record of M. Barni amounts to an h-number
of 63 according to Scholar Google search engine. He is coauthor of the book
“Watermarking Systems Engineering: Enabling Digital Assets Security and
other Applications,”’ published by Dekker Inc., in February 2004. He is the
Editor of the book “Document and Image Compression” published by CRC
Press, in 2006.

Dr. Barni was a recipient of the IEEE Signal Processing Magazine best
column award, in 2008. In 2010, he was awarded the IEEE Transactions on
Geoscience and Remote Sensing best paper award. He was also the recipient
of the Individual Technical Achievement Award of EURASIP EURASIP for
2016. He has been the Chairman of the IEEE Multimedia Signal Processing
Workshop held in Siena, in 2004, and the Chairman of the IV edition of
the International Workshop on Digital Watermarking. He was the technical
program Co-Chair of ICASSP 2014 and the technical program Chairman of
the 2005 edition of the Information Hiding Workshop, the VIII edition of the
International Workshop on Digital Watermarking and the V edition of the
IEEE Workshop on Information Forensics and Security (WIFS 2013).

VOLUME 3, 2022 287

https://dx.doi.org/10.18653/v1/2020.acl-main.249
https://dx.doi.org/10.18653/v1/2021.naacl-main.13
https://dx.doi.org/10.18653/v1/2021.acl-long.377
https://dx.doi.org/10.18653/v1/2021.acl-long.37
https://www.sciencedirect.com/science/article/pii/S092523122101095X
https://www.sciencedirect.com/science/article/pii/S092523122101095X
https://www.usenix.org/conference/usenixsecurity18/presentation/adi
https://www.usenix.org/conference/usenixsecurity18/presentation/adi

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

