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Abstract. To obtain a fluent human-robot collaboration, reciprocal
awareness is fundamental. In this paper, we propose to achieve it by
creating a haptic connection between the human operator and the col-
laborative robot. Data coming from a wearable skin vibration sensor are
used by the robot to recognize human actions, and vibrotactile signals
are used to inform the human about the correct recognition of her/his
actions. It is shown that the proposed communication paradigm, based
on shared haptic perception, allows to improve cycle time performance in
a complex human-robot collaborative task.
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1 Introduction

Human-Robot Collaboration (HRC) is expected to significantly advance manu-
facturing by introducing high flexibility in assembly cells [1], but also promises
to enhance human capabilities in other fields, including domestic welfare and
assistance to medical doctors [2,3]. To achieve a smooth collaboration between a
human operator and a collaborative robot, reciprocal awareness is fundamental:
the robot has to be aware of the human actions and the human has to know the
robot state to fluently proceed with the collaborative task. This need was under-
lined by Drury et al., in a review on awareness in Human-Robot Interaction [4].
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Recent advances in interfaces for improved human and robot perception in
HRC were surveyed in [5]. On the one hand, human sensorimotor information can
be used to monitor human behaviour and plan appropriate robot responses in
different phases of a collaborative task [6–8]. Peternel et al., for example, used a
vision system and EMG electrodes to detect human motion and muscular activ-
ity [6], whereas Ishida et al., used a wearable vibration sensor to discriminate
human actions [7]. On the other hand, visual, auditory, and tactile feedback can
be employed to improve human situation awareness in HRC [1,9]. In [9], for
instance, human intention was inferred based on visual monitoring, and mutual
understanding was achieved by alerting the human through haptic cues when
the robot understood human intention with a certain level of confidence.

In this paper, we present a human-robot collaborative set-up where the
human sensorimotor system is virtually connected to the system of sensors and
actuators of the robot through wearable devices. Human actions are recognized
thanks to a wearable skin vibration sensor, and successful recognition is commu-
nicated to the human through the activation of a vibrotactile ring. The proposed
collaboration paradigm is sketched in Fig. 1. The idea is to integrate the benefits
of shared human perception [7] with those of operator awareness [9], creating a
bilateral haptic connection between humans and robots, that we call shared hap-
tic perception. The effectiveness of the proposed communication paradigm was
demonstrated through an experimental validation involving 8 trained volunteers
performing a complex collaborative task with a robot arm.

Fig. 1. Shared haptic perception between humans and robots: general idea. Human
perception is shared because the same vibrations that are sensed by human touch
receptors during the collaborative task are also detected by the wearable sensor and,
thus, by the robot. Robot perception (enhanced by an action recognition algorithm)
is shared with the human thanks to the tactile signal sent by the robot through the
haptic device.

2 Methodology

The proposed collaboration paradigm is based on the use of two wearable devices,
a vibration sensor and a vibrotactile ring, and on an action recognition algorithm.



538 K. Katayama et al.

Wearable Devices. In this study, the wearable skin vibration sensor developed
by Tanaka et al. [10] is used for sending tactile information from the human to
the robot. The sensor uses polyvinylidene difluoride (PVDF) film and detects
vibrations propagating on the human skin surface. The acquired data are used to
detect the current human action. The PVDF sensor does not hinder the natural
movements of the human hand and allows to directly touch objects, because
it is light (about 20 g) and can be worn by wrapping it around one of the
fingers, as a ring. In [7], authors showed the advantages of putting the sensor
on the human finger, with respect to applying it on the manipulated object.
Not only the sensor output “directly represents operator’s perception” [7], but
instrumenting the human makes it possible to apply the proposed framework in
different situations, without having to modify the environment around the user.

To send tactile information from the robot to the human, a wearable vibro-
tactile ring embedding a HAPTICTM Reactor (ALPS ALPINE CO., LTD.), is
used. Two vibration bursts separated by an interval of 20 ms were sent to the
participant to alert her/him that her/his action was recognized. We chose a fre-
quency of 200 Hz for the vibration, as in [9] this kind of feedback was found to
be easily recognizable and helpful to proceed smoothly with a HRC task.

Action Recognition. A paradigmatic task in which the human closes an enve-
lope and the robot applies a stamp over it was chosen to show the effectiveness of
the proposed tactile communication strategy. A Support Vector Machine (SVM)
was used to recognize, based on the PVDF sensor output, the three different
human actions involved in the task (see Fig. 2-(left)): gluing (human applies the
glue on the envelope), tracing (human traces the envelope opening with index
fingernail), and no contact (state other than the above two states). Note that a
vibration sensor is particularly suited to recognize actions that imply interaction
with the environment. It might be difficult, for example, to infer whether the
human is actually tracing the paper with some strength or is just moving over
it without even touching it, using only a vision system.

Similarly to [7], to distinguish the different states with the SVM, we used two
features: vibration intensity (iRMS) and frequency ratio (r). They were computed
based on the power spectral density (PSD) of the sensor output calculated in the

range between f1 = 100 Hz and f2 = 1000 Hz1: iRMS = log
√∫ f2

f1
PSD(f)df ,

r = A
B . The value iRMS indicates the root mean square (RMS) of the PSD of

each sample, A is the log(RMS) of the PSD in the range [850–1000 Hz] and B is
the log(RMS) of the PSD in the range [Fpeak ± 75 Hz]. Fpeak is the frequency at
which the PSD reaches its maximum value. Before each experiment, participants
were asked to wear the vibration sensor and perform the three different actions,
five times each. The collected data were used to create a linear SVM model
based on the values of the two indices defined above. Figure 2-(right) presents

1 Data below 100 Hz were not considered as they could easily be affected by minimal
body motions and heart beat. For frequencies above 1000 Hz, the sensor output
hardly changes based on user body motions [7].
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Fig. 2. (Left) Human states recognized by the SVM: no contact, gluing, tracing. (Right)
Example of SVM model where data are well separated considering the intensity and
ratio parameters (black: no contact, blue: gluing, red: tracing). (Color figure online)

an example of obtained SVM model. The top panel of the graphs in Fig. 3 show
examples of complete acquisitions from the sensor for the gluing and the tracing
state. From a total of 2 s, a central interval lasting 1 s was selected and divided
into 5 samples of 0.2 s each (middle panel). For each sample, iRMS and r were
computed from the PSD (lower panel). The gluing action generates vibrations
with a lower amplitude than those related to tracing.

Fig. 3. Examples of PVDF sensor output and power spectral density (PSD) for gluing
state (left) and tracing state (right). Top panel: complete acquisitions, middle and
lower panels: sensor output and PSD for a sample of 0.2 s.

3 Experiments

3.1 Experimental Procedure

To design our experimental set-up (Fig. 4) we took inspiration from the previ-
ously described prototypical task of closing and stamping an envelope (Fig. 2),
and made it more complex, so to better study the effectiveness of the proposed
communication paradigm. In particular, we wanted to investigate how awareness
vibrotactile signals affect the performance of well trained participants. This is
an advancement with respect to [9], where participants only underwent a brief
training, but were not expert in the performed task.
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Fig. 4. Experimental set-up for the chosen HRC task.

Participants wore the haptic ring on the left hand and the PVDF sensor on
the right, and listened to white noise while conducting the experiments. They
sat in front of a collaborative robot arm, the open source manipulator Mikata
arm (ROBOTIS Co., Ltd.), having four actuators and a stamp attached at the
end-effector. In each experimental trial, the human operator had to trace with
the right index finger a long piece of paper (size: 60× 1000 mm), and the robot
had to put a stamp in a predefined position upon recognition of the tracing state.
In particular, the current PVDF sensor output was classified according to the
found SVM model every 0.02 s. If the result of the classification was “tracing
state” for 50 consecutive times (i.e., for 1 s), the robot started its stamping task.

Trials were conducted under two conditions, one including vibrotactile feed-
back from the robot after tracing action recognition (awareness signal), and
one without it. To make participants aware of the fact that the collaboration
was mediated by an action recognition algorithm, they were instructed to trace
slowly until the robot recognized the tracing motion, and then to complete the
task as soon as possible. In other words, the goal was to finish the job as quickly
as possible, but participants had to take into account the communication with
the robot to be sure to get the paper stamped and thus successfully accomplish
the task. Coordination between human and robot was important for two main
reasons: i) the robot could put a stamp only after the human traced the part of
the paper where the stamp had to be applied, and ii) the human had to be sure
that the robot recognized the tracing action before it was actually completed.
Note that when haptic feedback was not active, the user could infer robot state
only by looking at it and waiting to see it moving towards the stamping position.

A within-subjects experimental design with complete counterbalancing was
adopted. Each participant tested both conditions, with randomly assigned order-
ings. In particular, half of the participants initially conducted the experiment
with feedback and then without, the other half did the opposite. Eight volunteers
(6 males, 2 females, average age 26.5) participated in the study. They all had
previous experience with wearable haptics. Informed consent was obtained from
all of them and the experimental evaluation protocol followed the Declaration of
Helsinki. Participants did not perceive any payment and were able to leave the
experiment at any moment. Firstly, they were asked to record data to create the
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Fig. 5. Task execution time in two conditions (with/without feedback): single trial
(empty circle) and average (filled circle) for each participant, and bar plot of mean and
std of the averages. ** indicates p < 0.01 with the paired t-test.

SVM model, as described in Sect. 2. Then, each of them performed 15 trials per
condition as training phase and, lastly, 5 trials for each condition as test phase.
In the test phase, users’ performance in terms of execution time was recorded.
At the end of each trial, users had to press a button on the keyboard of a laptop
placed on their right and then wait for a fixed amount of time (showed through
a countdown on the screen), before starting the new trial.

In the first part of the training phase (10 trials), we were more interested
in making the users learn the task, and thus we kept the robot stationary until
the recognition of the tracing state. However, in real applications, the robot
is never left idle and usually executes other actions while waiting for human
operations. This is why, in the second part of the training phase (5 trials) and in
the test phase, the arm was programmed to randomly reach four different poses,
emulating other possible tasks, while waiting for the action recognition.

3.2 Experimental Results

The execution time of the 5 trials of the test phase, in the two conditions,
is displayed for all participants in Fig. 5. The empty circles show the execution
time of each trial, and the filled ones indicate the average execution time for each
participant over five trials. The mean and standard deviation (3.20 ± 0.25 s with
vibrotactile feedback, and 3.64 ± 0.31 s without vibrotactile feedback) of these
average data are used to plot the bar plots on the right labeled as “average”.
Regarding these data, the Shapiro-Wilk test showed normal distribution and the
paired t-test for each condition showed that there was a significant difference
between the average execution times for the two conditions (t7 = 3.8, p =
7.0× 10−3). In other words, when haptic feedback was active, participants took
significantly less time for completing their task, than when there was no haptic
feedback.
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Fig. 6. Recognition time in two conditions (with/without feedback): single trial (empty
circle) and average (filled circle) for each participant, and bar plot of mean and std of
the averages.

In both conditions, the PVDF sensor worn by participants was active and was
used to recognize user actions. The recognition was successful in all the trials. To
ensure the validity of this result, we analysed the recognition time of the robot,
i.e., the time that it took to recognize that the human was tracing, in the two
conditions. Figure 6 shows the recognition time for each participant for each trial
(empty circles) and on average (filled circles). As before, the bar plots are built
by considering mean and standard deviation (1.13 ± 0.08 s with vibrotactile
feedback, and 1.13 ± 0.12 s without vibrotactile feedback) of the average values
for all participants. In this case, no significant difference was found between
the two conditions at a significance level of 5% for all participants. Thus, the
recognition time did not significantly vary between the two conditions.

4 Discussion

Results presented in Sect. 3.2 show that not only the proposed communication
paradigm offers a viable solution for implementing human-robot collaborative
tasks, but also, and more importantly, that the vibrotactile feedback significantly
improves human performance. The vibrotactile awareness signal allows operators
to understand whether their action was successfully recognized, without having
to wait to see the robot moving towards the stamping position. Besides, the fact
that the robot performs other actions before the recognition, makes it even more
difficult for users to understand robot next movements just from sight.

The advantages of enhancing operator awareness were initially observed in [9],
and in this paper we show that awareness is important also in a completely differ-
ent scenario, where human actions are not predicted but recognized, using skin
vibration sensing and not visual monitoring, and, above all, where participants
are not novice, but are well trained to perform the task.
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5 Conclusions

This work presents a new human-robot communication paradigm based on the
concept of shared haptic perception: the user sends to the robot haptic cues that
allow the robot to recognize human actions, and the robot informs the human
through symbolic vibrotactile signals (awareness signals) about the success-
ful interpretation of the received data. This bilateral communication, achieved
through the use of unobtrusive wearable sensing and actuation devices, allows to
reach reciprocal awareness and mutual understanding between the two partners.

An experimental validation with 8 participants was conducted and showed
that awareness signals allow well trained users to complete their task in sig-
nificantly less time than without haptic feedback. Future work will focus on
investigating other tactile feedback modalities (e.g., continuous exchange of tac-
tile information), on finding other collaborative tasks that can benefit from the
proposed communication strategy, and on studying whether shared haptic per-
ception can improve also the learning process of a task for untrained operators.

References

1. Valeria, V., Fabio, P., Francesco, L., Cristian, S.: Survey on human-robot collab-
oration in industrial settings: safety, intuitive interfaces and applications. Mecha-
tronics 55, 248–266 (2018)
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