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Abstract

For a given set of points U on a sphere S, the order k spherical Voronoi diagram SVk(U) decomposes
the surface of S into regions whose points have the same k nearest points of U . We study properties
for SVk(U), using different tools: the geometry of the sphere, a labeling for the edges of SVk(U),
and the inversion transformation. Hyeon-Suk Na, Chung-Nim Lee, and Otfried Cheong (Comput.
Geom., 2002) applied inversions to construct SV1(U). We generalize their construction for spherical
Voronoi diagrams from order 1 to any order k. We use that construction to prove formulas for the
numbers of vertices, edges, and faces in SVk(U). Among the properties of SVk(U), we also show
that SVk(U) has a small orientable cycle double cover.

1 Introduction

Let U be a set of n points on a sphere S ⊂ R3 such that no three of them lie in the same
great circumference and no four of them are cocircular, i.e. U is in general position, and let
1 ≤ k ≤ n − 1 be an integer. The order k spherical Voronoi diagram SVk(U) decomposes
the surface of S into regions whose points have the same k nearest points of U . Then, each
of these regions is a face f(Pk) of SVk(U) associated with a subset Pk ⊂ U of size k: Each
point in the interior of f(Pk) has Pk as its k nearest neighbors from U .

Many researchers studied the nearest (k = 1) and the farthest (k = n − 1) spherical
Voronoi diagrams [2, 11, 10]. For these two diagrams it was seen that practically all algorithms
in the plane can be adapted to the sphere. Spherical Voronoi diagrams of order different from
k = 1 and k = n − 1 have barely been studied. In this work we deepen in these diagrams and
the properties and algorithms that we present are for Voronoi diagrams of arbitrary order k

on the sphere. This abstract summarizes our main results on SVk(U); we refer the reader to
the thesis of the second author [5] for more details and more properties. One of the most
important tools that we use in our proofs is an edge labeling. This labeling is an extension
to the sphere of the already defined edge labeling for Voronoi diagrams in the plane [4]. An
edge that delimits a face of SVk(U) is a spherical segment of the perpendicular bisector (on
the sphere) of two points i and j of U . This observation induces a natural labeling of the
edges of SVk(U) with the following rule:

• Edge rule: An edge of SVk(U) which belongs to the perpendicular bisector of points
i, j ∈ U has labels i and j, where we put the label i on the side (half-sphere) of the edge
that contains point i and we put label j on the other side. See Figure 1.
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Also, from this rule, we deduce two more rules of the labeling of SVk(U): one rule for
the vertices and one rule for the faces. Vertices can be of type I, if they are centers of circles
on the sphere passing through three points of U and enclosing k − 1 points of U , or type II,
if they are centers of circles on the sphere passing through three points of U and enclosing
k − 2 points of U . In the literature, vertices of type I (type II) are also called new (old) [7].

• Vertex rule: Let v be a vertex of SVk(U) and let {i, j, ℓ} ⊂ U be the set of labels of
the edges incident to v. The cyclic order of the labels of the edges around v is i, i, j, j, ℓ, ℓ if
v is of type I, and it is i, j, ℓ, i, j, ℓ if v is of type II.

• Face rule: In each face of SVk(U), the edges that have the same label i are consecutive,
and these labels i are either all in the interior of the face, or are all in the exterior of the face.
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Figure 1 The edge labeling of SV2(U) for a set U of ten points {0, 1, . . . , 9} in general position
(the visible ones are drawn in green color). Vertices of type I are drawn in blue, and vertices of type
II in red.

Note that when walking along the boundary of a face, in its interior (exterior), a change
in the labels of its edges appears whenever we reach a vertex of type II (type I), see Figure 1.

From this edge labeling, we observe that edges with same label i always form a cycle in
SVk(i); see Figure 2. These edges with the same label i enclose a region Rk(i) that consists
of all the points of the sphere that have point i ∈ U as one of their k nearest neighbors from
U . We observe that R1(i) is contained in the kernel of this star-shaped set Rk(i), and we
identify the reflex (convex) vertices on the boundary Bk(i) of Rk(i) as vertices of type II
(type I). See [4, 5] for details.

A cycle double cover [6] of a graph G is a collection of cycles C such that every edge of G

belongs to precisely two cycles of C. A double cover C is orientable if an orientation can be
assigned to each element of C such that for every edge e of G, the two cycles that cover e are
oriented in opposite directions.

Much research was done on finding small cycle double covers for several classes of graphs,
see for instance [1, 12]. We show that every higher-order Voronoi diagram on the sphere
admits an orientable double cover of its edges, using, precisely, the n cycles Bk(i) in for
i = 1, . . . , n. We refer to [4] for related results on double covers of the edges of higher order
Voronoi diagrams in the plane.

As one of our main results, we generalize to any order the construction of spherical
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Figure 2 SV2(U) for the point set U of Figure 1; in each face, its two nearest neighbors are
indicated. In yellow, the region R2(1) formed by all the faces of SV2(U) that have point 1 as one of
their two nearest neighbors. The boundary B2(1) of R2(1) is formed by all the edges which have the
label 1 and this label is always inside R2(1). The boundary vertices of R2(1) with an incident edge
lying in the interior of R2(1) are of type II in SV2(U) and the remaining boundary vertices are of
type I in SV2(U).

Voronoi diagrams defined by Hyeon-Suk Na, Chung-Nim Lee and Otfried Cheong [11], using
precisely the regions Rk(i) and the inversion transformation. Inversions for Voronoi diagrams
were already applied in the classical work of Brown [2, 3]. In [11], SV1(U) is computed from
two planar Voronoi diagrams after applying inversions to map U to the plane; two different
inversion centers are used. In [11] it is also shown that SV1(U) is homeomorphic to the union
of a nearest and a farthest Voronoi diagram, when glued together. We generalize this to
SVk(U) being homeomorphic to the union of a planar Voronoi diagram of order k, and one
planar Voronoi diagram of order n − k. Furthermore, these diagrams are linked via Rk(i) in
SVk(U ∪ {i}), with i the center of inversion, where the unbounded edges in the two planar
Voronoi diagrams correspond to edges of SVk(U) intersected by Bk(i). We further derive
formulas for the numbers of vertices, edges and faces of SVk(U). The proof is based on the
construction of SVk(U). Surprisingly, the obtained formulas seem to be new. We also obtain
formulas for the number of vertices of type I and for the number of vertices of type II in
SVk(U). The proof of Theorem 3.2 is omitted in this abstract, but also see [5].

2 Properties of SVk(U)

▶ Property 2.1. Let u∗ be the antipodal point of a point u on a sphere S. Then SVk(U) =
SVn−k(U∗), where U∗ = {u∗|u ∈ U}.

The proof of this property is essentially the same as the one for the case k = 1 given in [2, 11].

Proof. The spherical distance for points x, y ∈ S is d(x, y) = πr − d(x, y∗) where r is the
radius of the sphere. It follows that the k nearest neighbors of a point x must be the k farthest
neighbors of x∗. Therefore, x ∈ f(Pk) if and only x ∈ f(U∗ \ P ∗

k ) where P ∗
k = {p∗|p ∈ Pk},

and the property follows. ◀
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▶ Property 2.2. Let v be a vertex of type I of SVk(U). Then v∗ is a vertex of type II of
SVn−k(U). Similarly, if v is a vertex of type II of SVk(U) then v∗ is a vertex of type I of
SVn−k(U). See Figure 3.

Proof. If v is a vertex of type I of SVk(U), then it is the center of a disk D that passes
through three points of U and contains (k − 1) points of U . From this, by the geometry of
the sphere S, the remaining (n − k − 2) points are contained in the complementary disk S \ D

whose center is v∗. Therefore, v∗ must be a vertex of type II of SVn−k(U). The symmetric
argument works for v of type II. ◀

a a∗

b b∗
c c∗

d d∗

e e∗

f f∗
g g∗

h h∗

i i∗

j j∗

k k∗

l l∗

m m∗

n n∗
o∗o

p
p∗

q q∗

Figure 3 Two complementary Voronoi diagrams on an sphere SVk(U) and SVn−k(U), showing
the homothetic relation between them and their corresponding antipodal points types. Type I
vertices are blue and type II vertices are red.

▶ Property 2.3. Let f(Pk) be a face of SVk(U) and let f(U \ Pk) be its corresponding
antipodal face in SVn−k(U). f(Pk) and f(U \ Pk) use the same labels but in opposite sides,
i.e., if i is an interior label of an edge of f(Pk) then it is an exterior label for the corresponding
antipodal edge in SVn−k(U). See Figure 4.

Proof. It follows from Property 2.1 that f(Pk) and f(U \ Pk) are antipodal polygons. Then
we just need to observe that antipodal polygons are defined by the complementary half-
spheres defined by the same bisector, i.e, their edges are from the same bisectors but the
antipodal polygons lie in opposite sides of those bisectors, see Figure 4. Therefore, by the
edge rule, the statement is clear. ◀

▶ Theorem 2.4. SVk(U) has an orientable double cover consisting of |U | = n cycles.

Proof. It is not difficult to see that for every 1 ≤ i ≤ n, all the edges that have the label i

in SVk(U) form one cycle (also see Property 6.1 in [5]). Since each label i, corresponding
to a point i ∈ U , is inside the corresponding region Rk(i), we can orient all the edges of a
cycle with label i clockwise around point i; note that point i is also contained in Rk(i). This
shows that the cycle cover is orientable. Finally, as there is one cycle for each point of U , it
follows that SVk(U) has an orientable double cover of n cycles. ◀
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Figure 4 Two antipodal polygons, one has labels b, d, f, h, j in its interior, the other one has
these labels in its exterior.

3 Relations between Planar and Spherical Voronoi Diagrams

In this section we generalize to Voronoi diagrams of arbitrary order k the construction given
in [11] for the nearest and farthest Voronoi diagrams. We then prove some more properties
using this construction.

First, we need to define the inversion transformation, as it is the basis of the relation
between Voronoi diagrams on the sphere and on the plane.

▶ Definition 3.1. The inversion transformation is determined by two parameters: The center
of inversion O and the radius of inversion R. Two points P and P ′ in R3 are said to be
inverses of each other if:

1. The points P and P ′ lie in the same half-line with origin in O.
2. The Euclidean distances |OP | and |OP ′| in R3 satisfy R2 = |OP ||OP ′|.

Now, we can proceed in a similar way to [3] to prove the construction for Voronoi diagrams
on the sphere of arbitrary order, SVk(U). From now on, we denote by S′ the plane inverse
of the sphere S, by U ′ the set of points on the plane S′ that are inverses of the points of
U ⊂ S, and by Vk(U ′) the Voronoi diagram of order k in the plane for the set of points U ′.

▶ Theorem 3.2. Let i /∈ U be a point on the sphere S such that U ∪ {i} is in general position.
Let U ′ be the set of inverse points of U for a chosen inversion radius r and i the center
of inversion. Then SVk(U) is homeomorphic to the union of Vk(U ′) and Vn−k(U ′), joined
by the unbounded edges common to Vk(U ′) and Vn−k(U ′) (unbounded edges from the same
bisector are glued together). Moreover, Rk(i) in SVk(U ∪ {i}) partitions SVk(U) into two
subgraphs that are homeomorphic to Vk(U ′) and Vn−k(U ′). The vertices of type I (type II)
in Vk(U ′) correspond to the vertices of type I (type II) in SVk(U) and the vertices of type I
(type II) in Vn−k(U ′) correspond to the vertices of type II (type I) in SVk(U). See Figures 5
and 6.
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V2(U
′)SV2(U) \R2(i)

(a) (b)

Figure 5 For a set U of ten points on the sphere (the visible ones are drawn in green color): The
picture shows the homeomorphism between: (a) The induced graph by SV2(U) at the exterior of
R2(i) in SV2(U ∪ {i}). (b) The planar Voronoi diagram of order 2 for the points of U ′ (black color).

B2(i)
V8(U

′)
SV2(U) ∩R2(i)

(a) (b)

Figure 6 For a set U of ten points on the sphere (the visible ones are drawn in green color): The
picture shows the homeomorphism between: (a) The induced graph by SV2(U) at the interior of
R2(i) in SV2(U ∪ {i}). (b) The planar Voronoi diagram of order 8 for the points of U ′ (black color).

Theorem 3.2 tells us how to construct SVk(U): we just have to invert the points of
U , compute planar Voronoi diagrams Vk(U ′) and Vn−k(U ′), and map them to the sphere
as follows: each vertex a′b′c′ of either Vk(U ′) or Vn−k(U ′) corresponds to a vertex abc of
SVk(U) (abc is center of the circle that passes through a, b and c on the sphere); vertices
in SVk(U) are adjacent whenever the corresponing vertices in Vk(U ′) or in Vn−k(U ′) are
adjacent. Finally, the vertices of SVk(U) corresponding to vertices incident to an unbounded
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edge from the same bisector in Vk(U ′) and Vn−k(U ′) get connected.

Let us shortly also comment on the computational complexity of constructing higher order
Voronoi diagrams on the sphere. The inversion is a linear time transformation and, once
we have the planar Voronoi diagrams, mapping them to the sphere also only requires linear
time. Therefore, the computational time for constructing the spherical Voronoi diagrams
is bounded by the computational time for the planar ones. See [8] for a discussion on the
several algorithms for higher order Voronoi diagrams.

Now, from these constructions, it is easy to see that properties proved for the plane [4]
must be true for the sphere. We can prove easily some properties on the sphere using results
from the plane, but also we can prove properties in the plane using the sphere. Next, we
show that the number of vertices of type I (type II) in SVk(U) only depends on the number
n of points of U , but not on their positions on the sphere.

▶ Theorem 3.3. For a set U of n points on the sphere, the number of vertices of type I in
SVk(U) is 2k(n − k − 1) and the number of vertices of type II is 2(k − 1)(n − k).

Proof. By Theorem 3.2, we can define an inversion transformation such that there is a
one-to-one correspondence between the vertices of SVk(U) and the vertices of Vk(U ′) and
Vn−k(U ′). Vertices of type I of SVk(U ′) and vertices of type II of Vn−k(U ′) correspond to
the vertices of type I in SVk(U). Then, the number of vertices of type I in SVk(U) is the
sum of type I vertices of Vk(U ′) and type II vertices of Vn−k(U ′) which correspond to the
circles enclosing k − 1 points of U ′ and circles enclosing n − k − 2 points of U ′, respectively.
We denote the number of such circles with ck−1 and cn−k−2. By Theorem 5.3 of [9], we have

ck−1 + cn−k−2 = 2(k − 1 + 1)(n − 2 − k + 1) = 2k(n − k − 1). (1)

Then, the number of vertices of type I in SVk(U) is 2k(n − k − 1). Similarly, we can
compute the number of vertices of type II as the sum of vertices of type II in Vk(U ′) and
type I in Vn−k(U ′), i.e., the number of the circles enclosing k − 2 points of U ′, ck−2, and
enclosing n − k − 1 points of U ′, cn−k−1. Again, using Theorem 5.3 of [9], we have

ck−2 + cn−k−1 = 2(k − 2 + 1)(n − 2 − k + 2) = 2(k − 1)(n − k). (2)

Then, the number of vertices of type II in SVk(U) is 2(k − 1)(n − k). ◀

▶ Theorem 3.4. For a set U of n points on the sphere, the order k Voronoi diagram SVk(U)
has 4kn − 4k2 − 2n vertices, 6kn − 6k2 − 3n edges and 2kn − 2k2 − n + 2 faces.

Proof. Vertices of spherical Voronoi diagrams are either of type I or type II, so the total
number of vertices is the sum of vertices of the two types. Then, by Theorem 3.3, the number
of vertices |V | is

|V | = 2k(n − k − 1) + 2(k − 1)(n − k) = 4kn − 4k2 − 2n. (3)

Now, as each vertex has degree three in SVk(U), we can count the total number of edges.
Since each edge is incident to two vertices, by double counting, the number of edges |E| is

|E| = 3
2

(
−4k2 + 4kn − 2n

)
= 6kn − 6k2 − 3n. (4)

EuroCG’22
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Finally, as SVk(U) is a planar graph, we can apply Euler’s Formula to count the number of
faces |F |, and we have

|F | = 2 − (−4k2 + 4kn − 2n) + (−6k2 + 6kn − 3n) = 2kn − 2k2 − n + 2. (5)
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