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Abstract
Thesis title: Analysis of Explainable Artificial Intelligence on Time

Series Data

In recent years, the interest in Artificial Intelligence (AI) has experienced a significant
growth, which has contributed to the emergence of new research directions such as
Explainable Artificial Intelligence (XAI). The ability to apply AI approaches to solve
various problems in many industrial areas has been mainly achieved by increasing
model complexity and the use of various black-box models that lack transparency. In
particular, deep neural networks are great at dealing with problems that are too diffi-
cult for classic machine learning methods, but it is often a big challenge to answer the
question why a neural network made such a decision and not another. The answer
to this question is extremely important to ensure that ML models are reliable and
can be held liable for the decision-making process. Over a relatively short period of
time a plethora of methods to tackle this problem have been proposed, but mainly
in the area of computer vision and natural language processing. Few publications
have been published so far in the context of explainability in time series.

This Thesis aims to provide a comprehensive literature review of the research in
XAI for time series data as well as to achieve and evaluate local explainability for
a model in time series forecasting problem. The solution involved framing a time
series forecasting task as a Remaining Useful Life (RUL) prognosis for turbofan
engines. We trained two Bi-LSTM models, with and without attention layer, on
the C-MAPSS data set. The local explainability was achieved using two post-hoc
explainability techniques SHAP and LIME as well as extracting and interpreting
the attention weights. The results of explanations were compared and evaluated.
We applied the evaluation metric which incorporates the temporal dimension of the
data. The obtained results indicate that LIME technique outperforms other meth-
ods in terms of the fidelity of local explanations. Moreover, we demonstrated the
potential of attention mechanisms to make a deep learning model for time series
forecasting task more interpretable. The approach presented in this work can be
easily applied to any time series forecasting or classification scenario in which we
want to achieve model interpretability and evaluation of generated explanations.

Keywords: machine learning, explainable artificial intelligence, local explainability,
time series, lime, shap, attention mechanism, xai evaluation
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1 Introduction

This Master’s Thesis is dedicated to research in Explainable Artificial Intelligence for time series
models. There are areas such as healthcare, retail, manufacturing, and economics where temporal
data is of particular importance. Therefore, the development of machine learning models applied
to time series data is interesting as it has many potential applications in various fields, and the
increased interpretability of these models may have important practical implications. A particularly
large amount of temporal data is produced in modern production processes, in which the ubiquitous
sensors located in machines, buildings and products record information about the environment on
an ongoing basis. It enabled the development of solutions such as Predictive Maintenance (PdM).
Due to the great interest in the manufacturing sector as well as the availability of data, in this
work, the case study for the time series forecasting problem have been formulated as a prediction of
the machine’s operating time before it breaks down, which is also known as the Remaining Useful
Life (RUL) of a machine. The rest of this chapter presents a detailed introduction to the topic of
the Thesis. Later, main motivations driving the work as well as the objectives and the research
questions are discussed.

1.1 Presentation
Nowadays, we are transitioning towards the fourth industrial revolution denominated as Industry
4.0 (i4.0), which is the digital transformation of manufacturing and related industries and value
creation processes. Industry 4.0 integrates new technologies, including Internet of Things (IoT),
cloud computing and analytics, as well as Artificial Intelligence to improve industrial processes and
fulfil requirements of the current era. Thanks to that, modern manufacturing processes are typically
composed of very complex autonomous robotic machinery, which are embedded with sophisticated
software systems and surrounded by the IoT devices. These technological advancements have
transformed the way data from the plant can be collected and distributed. In a single manufacturing
process both machines and specialists make decisions that involve a massive input of data generated
from IoT sensors in real-time. One of the main challenges in this regard is an ability to predict
the need for maintenance of assets at a specific future moment in order to prevent failure through
analysing such big data collected from various environments and resources in a timely manner.
Failure of machines or equipment may cause a stop in the entire production line, as failure of
one machine can affect any other machine or process depending on it. Production stops are
associated with huge costs in many folds including but not limited to the loss of production and
time in downtime, losses of efforts in identification of the cause of the failure, costs of repairs and
deterioration of equipment, missed customer delivery times and expectations.

Stops may occur as a consequence of various types of issues such as malfunctions of equipment,
operator errors or environmental factors. Although elimination of all system failures may not
be possible, maintenance optimisation can reduce their cost up to 60% by correcting failures of
machines, systems and people [25]. Maintenance is defined by the norm UNE-EN 13306 [93] as
the combination of all technical, administrative and managerial actions during the life-cycle of an
item intended to retain in it, or restore it to, a state in which it can perform the required function.

In manufacturing, traditional production line maintenance strategies typically involve replacing
equipment after failure or at predetermined time intervals [72]. The first maintenance approach
elevates costs due to unnecessary, too early replacement of equipment at predetermined time peri-
ods. In the case of the latter, reactive approach, early repair could extend the life cycle of expensive
parts and protect against the costs of failure. Although some companies plan maintenance based
on lifetime of individual equipment recommended by the vendors, there still exists a high risk of
late equipment maintenance situation since this maintenance strategy does not consider the entire
manufacturing system.

As opposed to traditional methods, Predictive Maintenance (PdM) is a maintenance, which
monitors the operation and condition of the equipment during normal functioning, to reduce the
likelihood of a failure [72]. Lately, the use of IoT connected devices in a production hall allows the
companies to collect data from the entire production lines so that the maintenance methods can
monitor an entire system in real-time. This data can be used to feed the Machine Learning (ML)
models evaluating condition of equipment by performing periodic (offline) or continuous (online)
machine condition monitoring and estimate the best time for maintenance of the device. In such
a context, the Remaining Useful Life (RUL) prediction is fundamental to deploy a good strategy
which avoids unnecessary maintenance. It allows the company to plan maintenance at the most
convenient and cost-effective time, ensuring the optimization of machine lifespan and the prevention
of many potential unplanned line stops, substandard products, or loss of production capacity. PdM
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Figure 1: Architectural overview of the predictive maintenance system. Source: [4].

can assure sustainable practices in production by maximizing the useful lives of production [102].
The example of the architecture of such a system can be seen in Figure 1.

The RUL prediction of mechanical equipment can be essentially defined as a time series
forecasting task. Time series forecasting is the use of a model to predict future values based
on previously observed values [100]. The type of data required for time series forecasting is time
series data, a set of observations that are made sequentially through time and can be continuous
or discrete. The main characteristic of this type of data is that there exists a timestamp associated
witch each observation and that it is ordered by this. With access to time series data it can be pos-
sible to predict future values based on historical observations, which can provide reference and basis
for decision-making [52]. Practitioners in the area of time series forecasting have been traditionally
using methods based on mathematical and statistical modeling such as Autoregressive Integrated
Moving Average (ARIMA) with its many variations [52]. These linear statistical models have been
the standard methods for time series forecasting for a long time. Even though ARIMA models are
very ubiquitous in modeling the time series tasks, they have some major limitations. For instance,
in a simple ARIMA model, it is hard to model the nonlinear relationships between variables [90].
In this case, the time series data is required to be stationary, or stable after being differentiated.
However, with the development of the era of Big Data, massive, non-linear time series data are
constantly being produced, which also poses higher challenges to time series forecasting methods
[90]. With recent advancement in computational power and, more importantly, the development of
more advanced machine learning algorithms and approaches such as deep learning, new algorithms
are being developed to analyze and forecast time series data.

The Deep Learning models that have been successfully used in the time series models are
especially Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs) [56].
Due to the existence of the recurrent structures in RNN, sequence data needs to pass through each
processing unit in turn to extract useful features, which inevitably causes the problem of forgetting
important information and is less effective in less-term dependencies in signal sequences [107].
To effectively process long time series and to overcome the problem of gradient disappearance or
gradient explosion due to the length of a sequence, specific RNN architectures were created based on
forget gates, such as Long Short-Term Memory (LSTM)[108] and Gated Recurrent Unit (GRU)[49].
CNN based methods normally apply one-dimensional convolution and pooling filters along the time
dimension over all sensors to extract feature information [6]. Moreover, there are infinite possible
architectures by combining these techniques among them or use together with other-data driven or
expert-knowledge based techniques [87]. As an example, Remadna et al. [76] proposed end-to-end
hybrid method for RUL estimation that combines CNN with Bi-directional LSTM networks where
CNN extracts spatial features while Bi-LSTM extracts temporal features. By doing so, authors
achieved results superior to the basic Machine Learning models applied in this field.

For a RUL prediction another key issue is that more attention should be paid to the important
features that contain more degradation information. Attention Mechanism (or simply attention) [7]
is an effective method to learn such dependencies, for example to learn the importance of features
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and time steps and assign larger weights to more important ones. In recent years, several works
have attempted to combine the attention mechanism with RNN/CNN based structure to predict
RUL [107], [74], [17].
All experimental results showed that attention mechanism is an effective way to enhance the model
learning ability by highlighting the key parts of information and that attention-based models can
achieve better accuracy than the baselines.

Venkatasubramanian presents in [96] a set of desirable characteristics predictive maintenance
system should have: quick detection and diagnosis, isolability, robustness, novelty identifiability,
classification error estimate, adaptability, explanation facility, modelling requirements, storage and
computational requirements, multiple fault identifiability.

Although looking for the architecture that outperforms the rest with the higher
accuracy of prediction is desirable, it is also becoming increasingly important to be
able to explain the behaviour of the model. The lack of transparency may impact the
trustworthiness of the model during the development phase as well as during its operation in
the production environment, especially when there is a need to understand factors influencing the
model’s decisions. In the case of processing time-series data, due to the complex structures of the
models, a lack of explanation may even result in isolation of such models in critical decision making,
despite their high performance and accuracy. This is especially true in light of the General Data
Protection Regulation (GDPR) taking effect since 2018, which offer the “right to an explanation”
[22], which is a right to be given an explanation for the output of the algorithm. This means that
if anyone uses an Artificial Intelligence model to make predictions for someone, then they are liable
to explain why the model has predicted so. Additionally, continued advances promise to produce
autonomous systems that will perceive, learn, decide, and act on their own. The ambitious step
for enhancement of PdM is automatizing of recommendations for domain technicians to integrate
PdM in the maintenance plan, by optimizing industrial maintenance via maintenance operation
management. However, the effectiveness of these systems is limited by the machine’s current
inability to explain their decisions and actions to human users. Today’s mostly black-box AI does
not provide insights to understand what is happening, why it is happening and how to react.
This is due to the fact that deep learning models used for predictions are the hardest ML type
to understand given their higher complexity, and therefore fail to meet the industrial explanation
facility requirements [87]. Limited interpretability of these state-of-the-art techniques is a price
to pay for delivering predictive models with better accuracy compared to conventional Machine
Learning approaches, some being interpretable such as decision trees [58]. The need to open the
box of deep learning models for predictive maintenance has created a new research field. During
the study no articles that covers this topic end-to-end were found. However, in the years 2021-
2022 two research projects which aim to integrate explanations into Artificial Intelligence solutions
within the area of Predictive Maintenance were launched. Explainable Predictive Maintenance
(XPM) project [19] is devoted to the use of Explainable Artificial Intelligence (XAI) in Predictive
Maintenance solutions focusing on the areas such as: steel manufacturing, city subway, wind farms
and trucks maintenance; Explainable AI For Predictive Maintenance (XAIPRE) project [94] was
initiated to develop an explainable PdM system for the maritime industry. The emergence of these
projects highlights that there is a need for such solutions and further research in this direction.

Nevertheless, more and more articles show possibilities of the explainability of models applied
for multivariate time series forecasting. The literature usually proposes two approaches: post-hoc
and ante-hoc interpretability [61]. In the post-hoc approach, relationships between feature values
and predictions are extracted to approximate the behaviour of the model. Post-hoc methods can
be model-agnostic, usable on every type of the model, or model-specific only usable on one type
of the model. On the other hand, ante-hoc methods incorporate explainability into the structure
of the model, that is thus already explainable at the end of the training phase. XAI techniques
can produce two kinds of model interpretations, either global or local [61]. Global interpretability
methods aim to explain the entire logic and reasoning of a model while local interpretability
methods focus on explaining the reason for a specific decision [61]. This work will focus on local
explanation methods that can help to identify not only the features leading to the decision of a
machine learning model, but also how the features from different points in time affect the decision
of the machine learning model.

Another research topic gaining a lot of momentum due to the growing demand for explanatory
techniques is the evaluation of the explainability methods. To debug and optimize a machine
learning model it is important not only to understand its decision but also to verify if the XAI
explanation is correct itself. There is particular interest in quantifying the quality of the explana-
tions produced after interpreting the machine learning models in such a way that it would allow
the comparison of the XAI methods’ performance [68]. So far, the efforts that have been notably
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focused on formalizing quantitative metrics on different data types, have not resulted in the defi-
nition of such an official metric tailored explicitly for the time series data. More specifically, there
exist a number of works on how to evaluate and verify XAI explanations automatically that are
applicable to image data. Some of them include formulation of sensitivity metrics based on per-
turbation analysis [5]. However, these methods omit temporal dependencies by assuming feature
independence or only short-term (local) dependency and are therefore only limited verifiable on
time-oriented data [86]. To the best of our knowledge, the evaluation of explainability of machine
learning models built with time series data is still unexplored, especially in the context of a time
series forecasting problem. Hence, this indicates a need for novel solutions in this topic, or adap-
tations of previous methods, and presents the following research question: How to evaluate the
explanations produced by interpreting the machine learning time series forecasting
model?

1.2 Motivation
The main inspiration for this work was the EU project knowlEdge - Towards Artificial Intelligence
powered manufacturing services, processes, and products in an edge-to-cloud-knowledge continuum
for humans [in-the-loop], which is funded by the Horizon 2020 (H2020) Framework Programme of
the European Commission under Grant Agreement 957331 [3] and in which I have the opportunity
to participate in. Work in the manufacturing field and direct contact with the experts in this
domain emphasized the need for application of Explainable Artificial Intelligence for Predictive
Maintenance. Although it is important to develop a predictive maintenance system that produces
realistic predictions of potential failures for production lines in manufacturing, it is also important
to explain the decisions and actions that forecasting models take. However, the decisions made by
these black-box models are often too difficult for human experts to understand – and therefore act
upon. This limiting the ability of humans to use these models to derive insights and understanding
of the underlying failure mechanisms as well as limits the degree of confidence that can be placed
in such a system to perform well on future data, which often prevents the system from adapting
at all. Explainable AI (XAI) has emerged to overcome these obstacles and enable humans to
understand, trust, and manage the AI they work with. The need for such solutions was also
highlighted in the aforementioned research projects XPM and XAIPRE. Moreover, the High-Level
Expert Group on Artificial Intelligence set by the European Commission identified explainability
(as a prt of transparency) as one of the pillars in their ethical guidelines for trustworthy AI [67].
Also agencies such as DARPA [92] introduced the explainable AI initiative to promote the research
around interpretable Machine Learning to foster trust into models.

The focus of this work on time series results from the special need of methods for this data
type in manufacturing. For predictive maintenance systems, a core task is to predict a machine’s
remaining useful life (RUL). In time series forecasting there are only a few studies focusing on
interpretability of machine learning models. Moreover, the literature mostly focuses on the time
series classification task. In terms of the research on interpretability of time series, regression
models mainly focus on intrinsic explainability, and the lack of formal evaluation metric for local
explanation methods can be considered as one of the possible reasons for the lack of studies on
interpreting time series regression models. Therefore, developing new evaluation metrics for this
task is as important as creating new methods and techniques to improve explainability.

Finally, the opportunity to work on the problem of incorporating artificial intelligence tech-
niques into real-life problem is rewarding and highly motivating. This work also reflects my per-
sonal interests in Explainable Artificial Intelligence. I believe that this concept is the future of
Artificial Intelligence, and I was excited while performing the related experimentation throughout
this work.

1.3 Research Aims and Objectives
The objective of this Thesis is to analyse different types of explainable AI (XAI) approaches for
time series data, and based on this analysis, to develop a functional framework for achieving
explainability in a multivariate time series forecasting problem along with evaluating the explana-
tions produced by interpreting the machine learning model for time series forecasting. Therefore,
the main research task is to investigate if it is possible to predict serious events before they happen
and how to achieve explainability on a predictive model to understand the decision-making process
of the underlying model as well as draw useful actionable insights. Afterwards, when these local
explanations are generated, how to evaluate them to be sure we can trust them.
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In the research process, we perform a comprehensive analysis of three local explanations ap-
proaches. Two of them are model agnostic, namely LIME and SHAP, while the other is model-
specific incorporating attention mechanism into the architecture of the LSTM model. The use of
an attention mechanism was motivated by the curiosity if the prediction of RUL can be improved
by the addition of an attention mechanism to the baseline LSTM forecasting model and if attention
can show an origin of a model’s decision. Additionally, the analysed XAI techniques were compared
in terms of local fidelity based on a novel verification method proposed by Shlegel et al. [86]. This
technique was adapted to the time series regression model, which allowed for developing a method-
ology for the automatic evaluation and ranking of XAI techniques on time series forecasting tasks
using perturbative methods. All the experiments were conducted with the use of the C-MAPSS
public data set provided by National Aeronautics and Space Administration (NASA) [85], which
describes degradation of a turbofan engine and is widely used for predictive maintenance methods
evaluation.

To sum up, the following research questions were considered:

• What kind of explanation techniques have already been implemented in the field of XAI for
time series data?

• How an attention mechanism benefits the forecasting model and whether it can be used for
local explainability?

• How to evaluate the explanations produced by interpreting the machine learning time series
forecasting model?

The above questions are rather general. Given the RUL prognosis problem the following application-
specific question is posed:

• Can one successfully predict the remaining useful life of a machine before failure and have
the system explain that prediction? If so, which ML models and XAI techniques are suitable
for this?

1.4 Structure of the Thesis
The rest of the work is organized as follows. In Chapter 2, the theoretical background required
for the comprehension of the work done is discussed. It starts with the introduction of the general
machine learning terms and is followed by the presentation of concepts and definitions specifically
for solving a time series forecasting task, with particular emphasis on recurrent neural networks.
Then, Chapter 3 describes the current status of explainable artificial intelligence, examines the
motivations which lead to the need for explaining black box systems and delves into the main
goals of interpretability. Moreover, the advantages and limitations of XAI are summarised. The
taxonomy presented in Chapter 4 concerns a comprehensive review of the methods proposed in the
literature for explaining decisions of machine learning models. Local explanation techniques are
discussed in depth, some of which will be tested in the proceeding experiments. This chapter also
elaborates on the explanation properties and the existing approaches of XAI methods evaluation.
Chapter 5 presents the methodology used to fulfil the objective of this study, viz. achieve and eval-
uate local explanations for models in time series forecasting problem. We established a functional
framework and described each component in detail as well as each directly applied method. In
Chapter 6, the experimental setup is described, and then a deep analysis of the obtained results is
provided; the performance of the three XAI methods are thoroughly inspected. The Thesis closes
with Chapter 7, in which the work is summarised, the obtained conclusions are described and the
proposal for the further work is explained.
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2 Background and Related Work

In this chapter, important background concepts for the understanding of this Thesis will be ex-
plained. Initially, the broader Machine Learning terms will be introduced, followed by concepts
and definitions specifically for the subset of Machine learning used to achieve the objectives set
out in this study, namely Recurrent Neural Networks.

2.1 Machine Learning
Inductive Machine Learning is a branch of Artificial Intelligence (AI) related to the development
and study of the systems that can learn from the data. A machine learning system focuses on the
use of data and algorithms to imitate the way that humans learn. It allows software applications
to gradually become more accurate at predicting outcomes without being explicitly programmed
to do so. The main task is to find a machine learning algorithm that can extract patterns from the
historical data and use these patterns to build a predictive model that approximates the function
that generalizes the data [84]. Generalization in this context is the ability to perform accurately
on new unseen data, after processing a training data set. A training data set is usually full of
examples from some generally unknown probability distribution [71].

Machine learning algorithms fall into three primary categories: Supervised Learning (SL),
Unsupervised Learning (UL) and Reinforcement Learning (RL). Supervised Learning is when the
labeled data is passed to the ML algorithm for fitting the model. Fitting means to learn a function
that can be used to predict the output associated with new unlabeled inputs. The two most
common Supervised tasks are regression and classification. Unsupervised Learning algorithms,
in contrary to Supervised Learning, do not use labelled data. These algorithms’ objective is to
discover hidden patterns in features in order to extract some type of valuable information or to
group data without any human intervention. One common Unsupervised Learning method is
clustering, which organizes an arbitrary amount of data into clusters. This grouping process aims
to divide instances in such a way that elements in the same group are similar or related to each
other, and at the same time as different as possible from elements in other groups. Another possible
task for Unsupervised Learning methods is to reduce the number of features in a model through
the process of dimensionality reduction. Reinforcement Learning is a type of machine learning
algorithms where an intelligent agent interacts with the environment and learns to act within that.
Every interaction has some impact on the environment, and the environment provides feedback
in the form of reward that guides the learning algorithm. This approach results in the system
that wants to learn a sequence of the actions that maximizes a reward through an exploratory
trial-and-error approach.

Deep Learning (DL) is a sub-field of Machine Learning that is based on the attempts to simulate
the learning capabilities and behavior of human brain using artificial neurons in layers efficiency.
The algorithms inspired by the structure and function of the brain are called Artificial Neural
Networks (ANNs) [34]. On the contrary to other Machine Learning models, due to the use of hier-
archical level of the Artificial Neural Networks, Deep Learning model can successfully approximate
functions that do not follow linearity or it can successfully predict a class of a function that is di-
vided by a decision boundary which is not linear. The field of Deep Learning has been getting lots
of attention lately and has shown amazing performance in various tasks such as self-driving cars
[64], natural language processing [62] or time series forecasting [87]. Its success comes primarily
from the availability of large data and compute power.

2.2 Artificial Neural Networks
An Artificial Neural Network (ANN) is a special type of machine learning model which is inspired
by the biological neural network of the human brain, leading to a process of learning that is far
more capable than that of standard machine learning models. The biological brain of most living
organisms is dynamic and analogical, but ANN is static and symbolic. The structure in ANNs
consists of interconnected nodes called neurons and set of edges that connect neurons [71].
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Figure 2: The structure of the artificial neuron.

The artificial neuron represented in Figure 2 is a simple computational element to which signals
from the network inputs or neurons of the previous layer are passed. Each signal (input variable)
is multiplied by the corresponding weight (weights are changed during the learning process). The
weight may take a positive value, that reflects an excitatory connection, negative value that means
inhibitory connection or equal to 0 if there are no connections between neurons. Subsequently the
weighted sum of the input features is counted and fed as an argument to the activation function.
The value of the activation function is the output value of a given neuron and is passed to the
neurons of the next layer. This is mathematically represented in Equation 1 where x represents
the input values, w the weights, b the bias, which can be used to shift the output by a constant
value, and f the activation function.

y = f(b+

n∑
i=1

xiwi) (1)

The Activation Functions can be basically divided into 3 types: Binary Step Function, Linear
Activation Function and Non-linear Activation Functions. The choice of the function depends on
the type of the problem that the neural network aims to solve. The most common are non-linear
functions due to the fact that neurons with such characteristics show the greatest learning abilities
and enable a smooth mapping of the relationship between the input and output values. Thanks
to this, the output is a continuous value instead of a logical one (True or False). Some of the most
popular Non-Linear Activation Functions are Sigmoid (sigma), Rectified Linear Units (ReLU),
Exponential Linear Unit (ELU), and Hyperbolic Tangent (tanh). These functions are respectively
defined in Equations 2, 3 4 and 5.

σ(z) =
1

1 + e−z
(2)

ReLU(z) = max(0, z) (3)

ELU(z) =

{
z for t ≥ 0

α(ex − 1) for t < 0
(4)

tanh(z) =
ez − e−z

ez + e−z
(5)

The most common type of artificial neural network is a Feedforward Neural Network, often
referred to as a multi-layered network (depicted in Figure 3), in which neurons are grouped into
layers. It is characterized by having at least one hidden layer that mediates communication be-
tween input and output data. Within one layer, neurons do not communicate with each other.
Notwithstanding, each neuron is connected to each unit in the next layer and each one in the pre-
vious layer using a weighted edge, so there is a communication between neurons placed in adjacent
layers. There can only be neurons of the same type in one layer. The first layer is called the
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input layer and the last layer is called the output layer; between these layers one can have multiple
hidden layers.

• Input layer: its only objective is to retrieve data and pass it to the first hidden layer. The
number of its neurons, as a rule, corresponds to the number of features of the used data set.

• Hidden layer: it is responsible for learning and performing calculations, it can not be
directly provided with data.

• Output layer: it computes the output values of the entire network and returns them to the
data scientist.

Figure 3: Example of a simple Feed Forward Neural Network with 3 hidden layers.

Each layer, apart from the output one, is equipped with a constant shift value, called bias. Bias
is an additional neuron that stores the value of 1. In the architecture of a neural network, it is
usually marked as "+1" and has no relationship with the preceding layers, although its weight is
also modified during the learning process. Simply put, bias is an independent factor that allows
the network to better adjust to the expected result.

The deep in the name of Deep Learning, described in the previous section, comes from the use
of multiple hidden layers in the network. To be considered a deep neural network, the network has
to have more than two hidden layers (it is not a set standard, but most researchers agree [71]).
There are also shallow neural networks that consist of only 1 or 2 hidden layers.

Through the training process, ANN tries to find the weights of the neurons so that the network
has the best accuracy in predicting the output based on a given input. Finding the perfect weights
for a neural network is not a trivial task; there are too many unknowns. Typically, the problem
of learning is set as optimization process that requires a loss function to calculate the model error
and an algorithm is applied to navigate the space of possible sets of weights values that can be
used. The results of loss functions are telling how accurate the solution is. The commonly used
function is for example Mean Squared Error loss function. It calculates the average of the squared
difference between predictions and observations. It is further discussed in Section 5.4.

A common optimization technique is Gradient Descent and the aim of this algorithm is to find a
local minimum (or less frequently maximum) of a given objective function. Using gradient descent,
optimizer iteratively move closer to the minimum value by taking small steps in the direction given
by the gradient. The gradient is determined by calculating the partial derivative of the cost function
with respect to the neural network’s weights. The algorithm used to calculate the gradient of the
cost function is called backward propagation of errors, in short backpropagation. It relies on the
chain rule of calculus to calculate the gradient backward through the layers of a neural network.
The weights are then updated simultaneously using the Equation 6 where W represents weights,
α is the learning rate which determines how big the steps the algorithm takes into the direction of
the local minimum (or maximum), and L represents a loss function.

Wnew = W − α
∂L

∂W
(6)

Gradient descent has three variants:

9



• Batch gradient descent: the gradient of a cost function is computed for the parameters
for an entire training data set. Meaning, it takes the error of all the samples in the batch and
calculates the sum of all the errors. Because it takes in the full set together, the parameter
update is performed only once per each epoch.

• Stochastic Gradient Descent: the parameter update is performed for each training in-
stance at the time (after each error calculation). Most known stochastic gradient descent
algorithms are Adam [47] and RMSProp (for Root Mean Square Propagation) [110].

• Mini Batch Gradient Descent: it takes the best of the two previous methods and divides
the whole training data set into smaller mini-batches; an error is calculated for each mini-
batch and an update is performed.

2.3 Recurrent Neural Networks

2.3.1 Standard Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are kind of artificial neural networks that specialise in pro-
cessing sequential data [[43], 1987]. These deep learning algorithms are commonly used to model
time-dependent and sequential data problems, such as natural language processing [63], stock
market prediction [109], machine translation [23]. Similar to the Feedforward Neural Networks,
Recurrent Neural Networks utilize the training data to learn. In a contrary to the Feedforward
Neural Networks, they are distinguished by their sequential memory as they take information from
prior inputs to influence the current input and output. The traditional ANNs cannot capture
sequential information in the input data which is required for dealing with sequence data. They
assume that the data is Independent and Identically Distributed (IDD) which means that a se-
quence in which the data was fed into a network does not matter [34]. RNNs can remember past
information and are capable of taking that into account when processing new inputs, which is a
clear advantage when dealing with the sequential data.

Figure 4: The difference between Feedforwad Neuron and Recurrent Neuron.

A recurrent neural network is composed of a certain number of recurrent neurons. The simplified
difference between an architecture of a neuron in traditional neural network and a recurrent neuron
is depicted in Figure 4. They look very alike, except recurrent neuron are graphically represented
with a loop. This loop means that the neuron receives inputs, produces output, and sends that
output back to itself. Formalizing, at each time step t (also called a frame), the recurrent neuron
receives the input sequence xt as well as its own output from the previous time step ht˘1. In Figure
5 the simplest possible RNN, composed of just one neuron is represented against the time axis in
the process of unrolling the network through time.
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Figure 5: The standard RNN and unfolded RNN.

The forward propagation equations for the RNN depicted in Figure 5 are following:

a(t) = b+Wh(t−1) + Ux(t) (7)

h(t) = tanh(a(t)) (8)

y(t) = c+ V h(t) (9)

where U , V and W represent the weights respectively for input-to-hidden, hidden-to-output and
hidden-to-hidden connections; b and c are the bias vectors. Calculating activations for RNNs is
similar to the calculations for traditional ANNs in that it is a weighted sum of inputs. The output
of a single neuron can be expressed as described in Equation 10, where f represents a chosen
activation function.

ht = f(Uxt +Wht−1 + b) (10)

2.3.2 Backpropagation Through Time in RNNs

The conventional RNNs often suffer from the problem of preserving the context for long-term
dependencies. Especially the problems of gradient vanishing or exploding arise while working with
sequences that are very long. A recurrent neural network training process is not trivial, as gradients
are backpropagated not only through layers but also through time. The gradient is used to update
the model parameters accordingly to formula:

W ←W − α
∂Et

∂W
(11)

In each time step the previous contributions until the current one have to be summed u, as
presented in the Equation 12, where E indicates an error function.

∂E

∂W
=

T∑
t=1

∂Et

∂W
(12)

The Back Propagation Through Time algorithm is used to calculate the contribution of a state
at time step k to the gradient of the entire cost function E at time step t=T:

∂Et

∂W
=

∂Et

∂yt

∂yt
∂ht

t∑
k=1

∂ht

∂hk

∂hk

∂W
(13)

∂ht

∂hk
=

t∏
i=k+1

∂hi

∂hi−1
(14)

Finally putting it all together:

∂E

∂W
=

T∑
t=1

∂Et

∂W
∝

T∑
t=1

( t∏
i=k+1

∂hi

∂hi−1

)∂hk

∂W
(15)

The equation above has two problematic cases caused by its multiplicative factor:
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∥∥ ∂hi

∂hi−1

∥∥ < 1 Vanishing gradient

∥∥ ∂hi

∂hi−1

∥∥ > 1 Exploding gradient

In the first case, the term goes to zero exponentially fast; therefore, the model weights after an
update will be almost identical to the old weights without any updates. As a result, the gradient
descent algorithm never converges to the optimal solution. This problem is called the vanishing
gradient. In the second case, the gradients get larger or even go to infinity exponentially fast,
and it causes the big weight updates causing gradient descents to oscillate without coming to
global minima. This problem is called the exploding gradient. To mitigate short-term memory
problems, a specialized recurrent neural network was created, called Long Short-Term Memory
network (LSTM) described in detail in the next section.

2.3.3 Long Short-Term Memory

Long Short-Term Memory networks, usually just called LSTMs and first introduced in 1997 by
Hochreiter and Schmidhuber [37], are a special kind of RNNs, capable of learning long-term de-
pendencies. They are based on the idea of creating paths through time that have derivatives that
neither vanish nor explode [34]. Being capable of remembering values over arbitrary intervals, they
work tremendously well on a large variety of time-analysis related problems, such as classification,
processing, and prediction time series when there are very long-time lags of unknown size between
important events [28].

Figure 6: An illustration of a long short-term memory cell and its different gates [28].

LSTM introduces a memory cell, called in short a cell, that has the same shape as the hidden
state of a standard RNN. The cell, as the memory part of LSTM unit, keeps a record of the
dependencies between the input sequence elements. Cells are connected recurrently to each other,
creating a chain structure typical for RNNs. In addition to the outer recurrence of RNN, it has an
internal recurrence (a self-loop). The inputs and outputs of each cell are the same as for standard
recurrent network, but LSTM unit has more parameters and a system of gates that controls the
flow of information. A gate can be considered as a way to optionally allow or prevent the passing
of information along a sequence. Each gate contains a sigmoid layer and a pointwise multiplication
operation. The sigmoid unit outputs numbers between zero and one, describing how much of each
component should be let through. LSTM cell consists of three gates: forget gate, input gate and
output gate. A typical LSTM cell is shown in Figure 6, where:

• Xt represents the input at the current time step t,
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• ht−1 represents the hidden state at the previous time stept− 1,

• Ct−1 represents the memory cell state at the time step t− 1,

• f t represents the function of the forget gate at the time step t,

• it represents the function of the input gate at the time step t,

• ot represents the function of the output gate at the time step t,

• wf , wi, wc and wo are the weights,

• bf , bi, bc and bo are the biases,

• σ indicates the sigmoid activation function,

• tanh tanh is the tanh activation function.

The calculation principle of each gate structure is expressed in Formulas 16-21.

f t = σ(wf [ht−1, xt] + bf ) (16)

it = σ(wi[ht−1, xt] + bi) (17)

C̄t = tanh(wC [ht−1, xt] + bC) (18)

Ct = f t ∗ Ct−1 + it ∗ C̄t (19)

ot = σ(wo[ht−1, xt] + bo) (20)

ht = ot ∗ tanh(Ct) (21)

The first step in LSTM cell is deciding what information will be removed from the memory cell
state. It is controlled by the forget gate f t. Receiving an output of the previous state ht−1 and
an input value xt, the forget gate decides what must be forgotten from ht−1 state and therefore
allows only relevant information to be passed through to the current state. The sigmoid activation
function is later applied to the weighted input and the previous hidden state (see Equation 16).

In the next step it is determined what new information will be stored in the cell state. First,
the input gate it decides whether to let the input information xt into the current memory cell state
Ct (Equation 17). Later, a vector of new candidate values C̄t that could be added to the state is
determined using the tanh activation function (Equation 18). Finally, it and C̄t create an update
to the previous cell state Ct−1 in the new stat of the cell Ct. From Formula 19, the old state
Ct−1 is being multiplied by f t, what means forgetting the information that forget gate decided to
forget. Then the new candidate values Ct, scaled by how much input gate decided to update each
state value it, are being added. In the last step, the output gate ot decides how the hidden units
ht are updated. Through sigmoid layer (Equation 20) it is determined what parts of the cell state
to what extend are being outputted. Then, the cell state Ct is filtered through tanh activation
layer and multiplied by the output of the output gate, so that only decided part is outputted
(Equation 21). The hidden state ht is usually called working memory, which is responsible for
deciding what information should be passed to the following sequence of LSTM network. It is
also used for computing predictions. The output then is passed to the network again as an input
making a recurrent sequence. After the tremendous success of LSTM applications, research have
come up with some variants of Vanilla LSTM like Bidirectional LSTM or LSTM with Attention
that can improve model performance on sequence classification problems.
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2.3.4 Bi-directional LSTM

Bidirectional Long Short-Term Memory (Bi-LSTM) network was introduced by Graves and Schmid-
huber in 2005 [35]. It can be considered as an extension of described LSTM models in which two
independent LSTM networks are applied to the input data, where the first network computes data
in the usual forward sequential order,

−→
ht (e.g. forward layer) and the second network in the reverse

order,
←−
ht (e.g. backward layer). Both networks are initiated with the same hidden and cell states.

The unfolded structure of the bidirectional LSTM is shown in Figure 7. At each time step, the
output from each of the forward and backward cells are concatenated to produce a single output
ŷt. It is mathematically represented by the equation:

ŷt =
−−→
Why ·

−→
ht +

←−−
Why ·

←−
ht + by (22)

where
−−→
Why,

←−−
Why denote respectively the forward and reverse hidden to output weights and by

denotes the output bias.
By providing a reversed copy of the input data, the individual LSTM cells can learn the con-

text from future information. Hence, in the contrary to standard unidirectional LSTM’s ability to
process only past information, Bi-LSTM network can process both the past and the future infor-
mation at any time. By applying the LSTM twice, the process of learning long-term dependencies
is improved and therefore consequently the accuracy of the model is also improved.

Figure 7: The unfolded architecture of Bidirectional LSTM (Bi-LSTM).

If the data set provided to the model to learn is huge, it is possible that a few important parts
of the data might be ignored by the models. LSTM based layers use only information learned at
last time step for regression treating all elements of the input sequence equally. Paying attention to
important information along the learning process is necessary and it can improve the performance
of the model. Therefore, information learned at other time steps also should have contribution
to the final prediction. This can be achieved by adding an additional layer named Attention
Mechanism to the models which is able to learn the importance of features and time steps.

2.3.5 Attention Mechanism

The Attention Mechanism, after being introduced in 2014 by Bahdanau et al. [7], has become one
of the most promising approaches in the Deep Learning community. Even though this mechanism is
now used in various problems like image processing [27], time series prediction [18] and others, it was
originally designed in the context of Neural Machine Translation using sequence-to-sequence models
(Seq2Seq) to improve the performance of long input sequences. As explained in the paper [7], in
a traditional encoder-decoder architecture the decoder makes a prediction based on condensed
information coming from a final output of the encoder step only. Adding the attention mechanism
to the model’s architecture causes that it attends every hidden state from each encoder node at
every time step and then makes predictions deciding which one is more informative.

In most examples in which attention is used with LSTMs it is applied over hidden states to
express how a hidden state is aligned or related to the output from 1 to 0. Concretely, the attention
mechanism is used to pay attention to the outputs of the LSTM network. The calculation of the
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attention value can be divided into two steps: (1) calculate attention distribution among all input
information; (2) calculate the weighted average of input information according to the attention
distribution [106]. The computational principles of attention mechanism over hidden states are
shown in the Formulas 23 – 26

ht = LSTM(xt, ht−1) (23)

αts = softmax(score(ht, h̄s)) =
exp(score(ht, h̄s)∑S

s′=1 exp(score(ht, h̄s′)
(24)

ct =
∑
s

αtsh̄s (25)

at = f(ct, ht) = tanh(Wc[ct;ht]) (26)

score(ht, h̄s) =

{
h⊤
t h̄s Luong’s multiplicative approach;

v⊤a tanh(Wa[h
⊤
t ; h̄s] Bahdanau’s additive approach. (27)

Hidden state variable ht is obtained by the input xt and the previous hidden state ht−1. ct is the
weighted average of the hidden layer unit and all hidden states of the of the same layer. It is the
representation of how important each hidden state is. The attention weights αts are calculated
using the attention score that depends on the type of attention we want to use and can have
different forms (Equation 27). These include forms for the additive attention (Bahdenau et al.
[7]) or self-multiplicative attention (Luong et al. [55]). After all attentions scores are computed,
the softmax function is used to normalize the distribution. The attention vector is constructed
applying the attention function f that can be used for concatenation (Equation 26) or the addition
of the contect vector ct and the output of the last hidden step ht to the matrix of trained weights
W to ensure attention learning.

Given time-series data, direct interpretation of an embedded state of the LSTM is challenging,
especially when it comes to the data set that contains mainly continuous variables that are not
easily converted into unique discrete inputs, as the vocabulary of a natural language processing
application can be. In order to facilitate understanding at the level of input variables we can
implement Attention Mechanism over the inputs proposed by Kaji et al. [44]. Doing so, we
can learn which input features are more relevant in predicting the output. Therefore, the neural
network learns to pay attention to the input features, so that for each feature j an attention vector
αj of length T (number of time-steps) is learned with |aj | = 1. Gandin et al. in their study
[33] proposed variation on Kaji et al. work on the transposed input. Their work focuses more
on understanding of the global contribution of each feature j through time. The authors decided
to count score function using self-multiplicative attention, which is a variation of the original
multiplicative attention created by Luong et al. [55]. Concretely, as the task does not work with
encoder-decoder, it does not have decoder hidden states and the score is calculated according to
the Formula 28, where W are learnt weight parameters of the attention mechanism model.

score(xt) = Wtxt (28)

In this case, the weights Wt are learnt to calculate attention vector at of length p (number of
all features) representing the input at t time stamp:

αt = softmax(Wtxt) (29)

where |αt| = 1. The time series of input features are weighted by this learned attention vector
before being made available to the LSTM as input Xnew:

Xnew = A⊙X (30)

where αt is the tth row of A; X represents the T × p input data (p number of features).

2.4 Time series data
Time series data is a sequence of observations indexed by time. The observations xt each occur
at a specific time t, where t belongs to the set of allowed times, T .

{Xt}, t ∈ T (31)

15



T can be discrete in which case we have a discrete time series, for example when observations are
made at fixed time intervals, or it can be recorded continuously over some time interval in the case
of continuous time series [13]. A time series that records the measurements of a single variable over
a time period is called a univariate time series. In the case of collecting measurements of multiple
variables over time we talk about a multivariate time series.

Another possible classification criterion for time series is time dependency [39]. It refers to the
level of statistical dependence between two points in the time series (how the past values influence
the newly observed values of the recorded variable). More specifically, it relates to the rate of decay
of statistical dependence between the two points as the distance between them is increased. We can
distinguish two categories of time series: long memory time series and short memory time series
[10]. Long memory time series are characterized by long-range dependence. It means they describe
a process the behaviour of which changes slowly, and the dependence does not decay quickly. Short
memory time series describe a process with a fast turnover and have an auto-correlation function
that decrease rapidly. It means that the further away we are from the present, the less useful
information is for the future.

We can also distinguish stationary and non-stationary time series [83]. In the case of stationary
time series, we describe a process that has statistical properties (e.g., mean and variance) that
do not depend on time. Conversely, the statistical properties of non-stationary time series vary
in time. Latter type of time series can be tough to predict without any type of pre-processing,
therefore practitioners use different techniques to make the statistical features of such processes
stationary to be able to get better forecasts. The time series analysis usually leads to construction
of a model and fitting it to the observations in order to study dependencies in data. It allows to
understand the behaviour of the process and the way the observations are generated. It aims to
find patterns in time series data, and predict further development of observed variables [10].

Time series can be split into several components that represent the underlying pattern category:
a trend-cycle component, a seasonal component, and a remainder component [39]. A seasonal
pattern is a cyclic event that occurs in time series for short time and causes the increasing or
decreasing patterns for a short time in a time series. Seasonality is always of a fixed and known
frequency. Trend as a pattern exists when there is a long-term increase or decrease in the data,
which does not have to be linear. A cycle occurs when the data exhibit rises and falls that are not
of a fixed frequency. During decomposition of a time series into components, the trend and cycle
are usually combined into a single trend-cycle component (for simplicity called the trend).

• Tt: overall trend of the series – the increasing or decreasing value,

• St: seasonality - the repeating short-term cycle with known frequency,

• Rt: remaining part captures everything else.

One type of decomposition is an additive decomposition, which can be expressed by the formula:

yt = St + Tt +Rt, (32)

where yt is the data at period t. If the variation around the trend-cycle or the magnitude of
the seasonal fluctuations does not differ from the level (expected value) of the time series, the
additive decomposition is the most appropriate. When the variation in the seasonal pattern, or
the variation around the trend-cycle, happens to be proportional to the level of the time series,
then a multiplicative decomposition is more suitable. Multiplicative decomposition is represented
by the formula:

yt = St · Tt ·Rt. (33)

Time series forecasting is different from the standard regression tasks as we consider the tem-
poral dimension, therefore we are constrained by the chronological order of the data. This makes
it difficult for the estimator to learn a general model that can be used for a long time, because
patterns may appear for a while and then disappear, or the entire data distribution may change.

The analysis and forecasting of time series data finds it significance in many application fields
such as industrial and production forecasting, weather or stock trend forecasting, etc. and in any
kind of place that has specific seasonal or trend changes with time [52].

2.5 Data pre-processing
Data preprocessing in inductive Machine Learning refers to the technique of preparing (cleaning
and organising) the raw data to make it suitable for building and training Machine Learning models;
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therefore, it is the first and crucial step in the process of creating a machine learning model as the
quality of data and the useful information that can be derived from it directly affects the ability
of a model to learn. For any ML problem, the model will only perform as well as the quality and
the representation of the data.
Time series is a sequence of evenly spaced and ordered data collected at regular intervals. One
consequence of this is that there is a potential for correlation between the response variables. Some
common time-series preprocessing steps that should be carried out before diving into the data
modeling part are: handling of missing values (or timestamps) and outliers, scaling or categorical
encoding.

2.5.1 Handling Missing Values

The first technique considered in data pre-processing is handling of missing values. Their occur-
rence is common while working with any real-world data set. It often happens that a value is not
saved due to human error or hardware failure. Ignoring this problem can drastically reduce the
accuracy of the results, as well as prevent the use of many algorithms. It does not really matter
whether it is a regression, classification or any other kind of problem, most statistical analysis
methods require complete data to function properly. One of the methods applied to this prob-
lem is a naïve approach based on dropping entire records containing missing or unknown values.
However, time series models require that there be no gaps in data along the time index, and so
simply omitting observations with missing values (and re-indexing as if there were no gaps) is not
an option as it can cause loss of the correlation of adjacent observations. Instead, the missing
values need to be replaced with judiciously chosen values before fitting a model. Replacement of
values in this context is known as imputation. There can be distinguished four main techniques
that can be used to impute missing values in a time series data set:

Last Observation Carried Forward (LOCF): is a form of simple linear interpolation and
it takes the last known value and uses it as a replacement for the missing data.

Next Observation Carried Backward (NOCB): is a similar approach to LOCF but works
in the opposite direction by taking the first observation after the missing value and carrying it
backward.

Rolling Statistics: in this technique a rolling window with a specified size is created and sta-
tistical calculations are performed to impute missing values. The rolling statistical technique can
be:

• Simple Moving Average (SMA): in this function missing values are replaced by the mean
calculated in the window where all observations X1, ..., Xn are equally weighted. According
to the Formula 34, for a missing value at the position t of time series, the observations Xt−3,
Xt−2 and Xt−1 (assuming a window size of n = 3) are used to calculate the mean.

SMAt =
Xt−1 +Xt−2 +Xt−3...+Xt−n

n
(34)

• Linear Weighted Moving Average (LWMA): is a moving average calculation that more
heavily weights recent observations. The most recent observation has the highest weighting,
and each prior observation has progressively less weight. The weights drop in a linear fashion.
To calculate the LWMA, each observation is multiplied by its weight and then the sum of
the weighted observations is divided by the sum of the weights, Equation 35.

LWMAt =
Xt ∗W1 +Xt−1 ∗W2 +Xt−2 ∗W3...+Xt−n ∗Wn∑

W
(35)

• Exponential Weighted Moving Average (EWMA): uses weighting factors which de-
crease progressively over time. It means that places a greater weight and significance on the
most recent data points. Compared to the LWMA, the EWMA reacts faster to changes. The
weights decrease exponentially, therefore it is more sensitive to recent movements. The alge-
braic formula to calculate the exponential moving average at the time period t is presented as
Equation 36, where α is the smoothing factor. It takes value between 0 and 1 and represents
the weighting applied to the most recent period.
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EMAt =

{
X0 for t = 0

αxt + (1− α)EWMAt−1 for t > 0
(36)

Interpolation: interpolation methods estimate missing values by assuming a relationship
within a range of data points. While the rolling statistics techniques only consider the previous
values, the interpolation techniques use past and future known data points. For instance, estimate
values that minimize the overall curvature.

2.5.2 Outliers Detection

Outlier detection aims to identify unexpected or rare instances in data that are related to noise,
erroneous or unwanted information, which are not interesting for data scientist working on solving
a particular ML problem. An example of such data can be sensor transmission errors. Even a
small number of outliers can reduce the accuracy and reliability of a model performance, therefore
their detection is essential. In time series data, outliers can be termed as the observations that
significantly differ, in the sense of statistical significance, from the patterns and trends of the other
values in the time series. It means that statistical properties of the data point are not in alignment
with the rest of the series. There are few techniques that can be deployed to identify different
types of outliers in data. The most basic ones are based on the statistical decomposition, more
complex involve autoencoders. We will briefly elaborate on three main ways of detecting outliers
for time series data:

• Statistical Profiling Approach: the simplest method is based on a statistical model or
profile of the given data. This can be determined by calculating statistical values like mean
or median moving average of the historical data and using a standard deviation to come up
with a band of statistical values which can define the uppermost bound and the lower most
bound and anything falling beyond these ranges can be considered as an outlier.

• Detection using Forecasting: this approach consists of building a predictive model using
the historical data to forecast of the next point with the addition of some random variable,
which is usually white noise. The outliers are chosen based on a confidence interval or
a confidence band for the forecasted values which is set based on overall common trend,
seasonal or cyclic pattern of the time series data and the error rate, for example calculated
using Mean Absolute Percentage Error (MAPE). Any actual data point which is beyond this
confidence threshold is considered as an outlier.

• Clustering Based Unsupervised Approach : in this technique conventional cluster-
ing algorithms like Gaussian Mixture Model (GMM) or Density-based Spatial Clustering
(DBSCAN) are used. The idea behind their usage is that that outliers do not belong to any
cluster or has their own clusters., therefore data instances that fall outside of defined clusters
are marked as outliers.

The detected outliers can be treated using the same interpolation methods like in a case of handling
of missing values.

2.5.3 Rescaling

This stage of data transformation consists in scaling the original version of the data to a consistent
scale or distribution, for example the range [-1, 1] or [0, 1]. In most cases, data sets contain values
that vary in size, range, and unit. For certain ML algorithms, these differences may cause variables
with a larger range or outliers to have a greater impact on the mining results. The purpose of
rescaling data is unifying the ranges and equalizing the impact of individual attributes on the
entire set. This makes it possible to compare them with each other and analyze them further.
Two techniques that can be used to consistently rescale the time series data are normalization and
standardization. The former is a rescaling of the data from the original range so that all values are
within the range of 0 and 1. The latter, involves rescaling the distribution of values so that the
mean of observed values is 0 and the standard deviation is 1. This can be thought of as subtracting
the mean value or centering the data.

2.5.4 One-Hot Encoding

One-hot Encoding is a feature encoding strategy to convert categorical features into a numerical
vector. It takes each class in categorical data and sets it as its own column/feature with binary
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values to indicate its presence. This sis straightforward way to encode categorical values, but the
number of columns will grow fast if there are several different classes in the data.

2.5.5 Sliding Window

One popular method used for turning time series data for forecasting into a supervised learning
problem is by a method called Sliding Window Method or lag method. Given a time series, the
observation at a particular time will be the predictor variable, and the specified lag will represent
the number of prior values to that time period to form the explanatory variables.
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3 Explainable Artificial Intelligence

Although, the Deep Learning techniques described in the previous chapter have been successfully
applied for time series forecasting, it is also important to ensure that ML models make decisions for
the right reasons. Understanding why a model makes such a prediction can help the user to debug,
gain trust, and further improve the existing model. This process is investigated in a research field
called Explainable Artificial Intelligence, which objective is to to explain or present the model’s
decisions in understandable terms for humans. In this chapter, general information about XAI is
presented, as well as the explanation techniques.

3.1 Status of Explainable Artificial Intelligence
The explainability of Artificial Intelligence models is something that is growing in popularity. This
is primarily due to its growing application scale, leading to an increasing demand to understand
what these solutions are actually doing. This is well illustrated by the popularity of the search
term “ExplainableAI” over the last ten years (2011–2020), which was measured by Google Trends,
and is illustrated in Figure 8.

Figure 8: Google Trends Popularity Index (Max value is 100) of the term “Explainable AI” over
the last ten years (2011–2020) [51]

In 2020, XAI reached its peak of popularity and still remains on it, which in practice confirms
that more and more people are interested in this topic.

However, it is worth remembering that Interpretable Artificial Intelligence is not a completely
new concept. It is at least as old as the early AI systems. Its roots date back to 1970 and are
related to the concept of Abductive Reasoning in expert systems (e.g. applications for medical
diagnoses or comprehensive, multi-component design). For example, in the article Decision Theory
Meets Explainable AI [32], Karry Farming cites a work from the 1970s that described methods for
explaining AI activities, although XAI itself, as a term, was not directly used in it.

3.2 Importance of Explainable Artificial Intelligence
Deep learning models are often referred to as black box models. A set of input features are passed
to a model, which then performs complex calculations and makes a decision. However, it is hard
to know exactly how the model decides which features it considers important or even what it
looks at, exactly as if it were locked in a black box. When a deep neural network has 1.5 billion
parameters - as is the case with language modeling algorithms - it is extremely difficult to interpret
the representations the model has learned. Therefore, an attempt to understand on what basis
these forecasts are generated is one of the key elements in working on the development of Artificial
Intelligence solutions. Users need to be sure that the model will perform well on real data according
to valuable metrics. If it is not trusted, it should not be used.

The need for algorithmic accountability has been highlighted many times, the most notable
cases of which are Google’s facial recognition algorithm that labeled some black people as gorillas
[45], and Uber’s self-driving car which ran a red light during the first day of testing [24]. Due to
the inability of Google to fix the algorithm and remove the algorithmic bias that resulted in this
issue, they solved the problem by removing words relating to monkeys from Google Photo’s search
engine.

Another well-known and often-cited example is [78], which highlights a weakness within the
learning base. A deep learning system used in image recognition tries to distinguish between
pictures of wolves and husky dogs. As wolves have been systematically photographed against a
snowy back-ground, it is the background that allows to identify them the most surely. A husky
that was also photographed against a snowy background is therefore confused with a wolf. In the
figure 9 can be seen which parts of the image were informative for the classifier. If it were not
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for the explanation methods, it would be impossible to know that decisions are made on the basis
of the wrong parts of the photo. So the conclusion from this is that we should not blindly trust
a model. Without knowing on what basis it makes its choices, it is not known whether it is the
appropriate signal, noise or background. Therefore, the key here is to try to understand how a
model works through generating the explanations.

Figure 9: “Husky vs Wolf” experiment results. Source: [78]

As the example from this subsection confirms, it is very relevant to state that interpretability
and explainability are of uttermost importance to ensure algorithmic fairness, to identify potential
bias/problems in the training data, and to ensure that algorithms perform as expected.

A few of the goals of interpretability can be summarised based on [57] and [14] :

• Trust: it is easier for humans to trust a system that explains its decisions rather than a
black box that just outputs the decision itself. It helps to answer following questions: How
often a model is right? For which examples it is right? Can the predictions be trusted to be
correct? Can models that are not understood hurt people?

• Fairness: to ensure that predictions are unbiased and do not implicitly or explicitly discrim-
inate against protected groups. Explanations help humans to judge whether the decision is
based on a learned demographic (e.g., racial) bias. It is important when ML algorithms are
incorporated into decision-making, e.g., social, economic or medical.

• Privacy: to ensure that sensitive information in the data is protected. Is user privacy
preserved?

• Causality: to ensure that only causal relationships are picked up. It can be seen as the
measurement of mapping technical explainability with human understanding; it plays an
utterly important role to ensure effective interactions between humans and ML systems.

• Reliability / Robustness: to ensure that small changes in the input do not cause large
changes in the prediction. It aims to guarantee that ML systems are resistant to noisy inputs
and domain shifts. Such direction of research is strongly related to the problems of domain
adaptation and transfer learning.

• Prediction evaluation: to answer the questions: Is the behaviour of a model understand-
able? Are the explanations sufficient? Is the data behaving as expected?

• Model improvement and correction: to answer the question: How can the classifier be
improved, evaluated and possibly correct based on the explanations?

• Improved decision making: to answer the question: Is the model intelligent? Will expla-
nations lead to better decisions?
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Obviously, ML systems may have different end goals, for example, in healthcare an end goal could
be to save more patient lives, while in banking, an end goal could be to minimize the number of
credit defaults. Regardless, the aforementioned points represent important downstream tasks that
can be optimised while aiming for an end goal of a system.

In order to fully understand the usefulness of XAI, it is important to know the trade-off be-
tween the performance of a machine learning model and its ability to produce the explainable and
interpretable predictions. On the one hand, there are the black-box models (complex deep learn-
ing algorithms); on the other hand, there are the so-called white-box or glass-box models, which
easily produce explainable results such as linear and decision tree-based models. Although more
explainable and interpretable, the latter models are not as powerful, and they fail achieve state-of-
the-art performance when compared to the former. Both their poor performance and the ability
to be well-interpreted and easily explained come down to the same reason: their frugal design.
Doshi-Velez et al., the authors of [26], claim that natural need for an interpretability arises when
a formalisation of a problem is incomplete, therefore, making direct optimisation and validation
impossible. This incompleteness in problem specification can be shown in different scenarios, some
of which are described below:

• Safety: interpretability can assist developers in understanding when ML system can or will
fail. Indeed, understanding more about system behavior provides greater visibility over un-
known vulnerabilities and flaws, and helps to rapidly identify and correct errors. Otherwise,
it is hard to create a complete list of scenarios in which the system may fail.

• Ethics: the human notion of, e.g., fairness can be too abstract to be entirely encoded into
the ML system. Likewise with safety, interpretations and explanations may help to ‘debug’
unfair models. We want to ensure that the algorithms are fair and do not discriminate.

• Mismatched objectives: ML models usually learn by minimizing a loss function. In many
cases it is difficult to translate interpretability in such a function, resulting in an opaque
model, thus the end-goals are mismatched. For instance, in clinical data set, accurate medical
diagnosis may be missing for a substantial group of conservatively treated patients, if the final
diagnosis is confirmed only surgically. In this case, the objective function does not provide
complete information about performance, and interpreting the model [57].

• Multi-objective trade-offs: two well-defined desideria in ML systems may compete with
each other, such as privacy and prediction quality.

• Scientific Understanding: interpretability can be instrumental in exploratory data anal-
ysis and discovery. The aim is often to extract scientific knowledge from data and interpre-
tations / explanations might be the best way to achieve this.

• Human curiosity: humanity has always looked for some meaning in the world around
them. They tried to understand it, to discover it. They were led by curiosity. This human
curiosity and the will to learn are other great reasons to pursue XAI. Providing explanations
turns out to be a helpful tool to learn new facts, to gather information and therefore to gain
knowledge.

• Model improvement: a model that can be explained and understood is one that can be
more easily improved. Because users know why the system produced specific outputs, they
will also know how to make it smarter.

In conclusion, incomplete problem formalization is not the only reason why Explainable Artificial
Intelligence is needed. There are other causes such as the fact that explanations could provide
new knowledge. Since the AI systems are nowadays trained by using enormous data sets that can
be inaccessible to humans, AI systems can find new relationships and provide new insights. Also,
when one wants to improve the AI system, one should know and understand its weaknesses. The
weaknesses of black boxes are not easy to detect. Moreover, the explanations can be used as a
verification of the system. For example, when the data is biased and a trained AI system gives
wrong conclusions, it can be easily detected if the reasoning is visible [8]. Therefore, explanations
are important for a user to accept and be satisfied to the model’s output; they help a user to
criticize the model and to consider if a prediction is reasonable or accurate [46].

The urgent need for explainability and interpretation was also highlighted by the High-Level
Expert Group on Artificial Intelligence (AI HLEG) in the Ethics Guidelines for Trustworthy AI
[67]. Because of that, many research groups and funding agencies have started working on finding
a way to meet all of the above requirements and aspects. The Defense Advanced Research Projects
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Agency (DARPA) established the Explainable AI (XAI) program with the aim to develop machine
learning systems that, on one hand, produce models with the ability to explain their rationale,
characterize their strengths and weaknesses without deteriorating the prediction accuracy, and on
the other hand, to allow people to understand, trust and manage these AI tools. The key goals of
the XAI program are wrapped up in Figure 10. The top diagram shows how difficult the interaction
and understanding between the user and the AI program is today without an explanation overlay.
The bottom panel describes how the explainable AI system can be implemented and how the
explanations help the user understand the AI system. The user understands why a certain output
was produced, can know in what situations the program works and where the errors come from
[92].

Figure 10: The key goals of the XAI program established by DARPA. Source: [92].

From a legal perspective, interpretable and explainable ML is more liable to the aforementioned
EU General Data Protection Regulation (GDPR) [22]. It established a number of rights in the
event that individual decisions be made on the basis of automated processing:

1. The right of access and the right to be informed of the existence of automated decision-making
(GDPR, art. 13-15);

2. The “right not to be subject to a decision based solely on automated processing, including
profiling, which produces legal effects concerning him or her or similarly significantly affects
him or her” (GDPR, art. 22§1);

3. “The right to obtain human intervention on the part of the controller” (GDPR, art. 22§3);

4. “The right to express his or her point of view and to contest the decision” (GDPR, art. 22§3);

It is worth mentioning that the GDPR does not prohibit black box predictive models [14] and that
the right to an explanation is not legally binding. This, however, does not undermine the social
and ethical value of providing interpretations and explanations.

By approving these GDPR articles, the European Parliament aims to develop rules for Artificial
Intelligence, and to mitigate “high-risk” AI use cases. On the 21st of April 2021, the European
Commission published a comprehensive proposal of the first legal framework on Artificial Intel-
ligence in a Regulation known as the AI Act [21]. Under the proposed law, new principles and
obligations are set to ensure transparency, lawfulness, and fairness. In particular, it proposes some
new mandatory requirements of explicability (transparency and explainability) for AI systems clas-
sified as “high-risk” systems. The AI systems presenting ’limited risk’ are subject to a limited set
of transparency obligations and those with low or minimum risk they do not have to comply with
any additional legal obligations. This first-ever legal framework on AI is expected to significantly
contribute to addressing the problem of propagating potentially biased statements to the society
which the model may learn from biased and unbalanced data
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3.3 The difference between Explainability and Interpretability
In the context of Machine Learning, explainability and interpretability are often used interchange-
ably in the literature. While they are very closely related and the semantic intention of both words
is the same, it is still important to unpack the differences for a more in-depth understanding of
the concepts.

This task is not easy, because there is not a concrete definition for interpretability or explain-
ability, nor have they been measured by some standardised metric. However, a number of attempts
have been made in order to clarify not only these two terms, but also related concepts such as
comprehensibility.

Firstly, a purely mathematical definition can be used:

In mathematical logic, interpretability is a relation between formal theories that expresses the pos-
sibility of interpreting or translating one into the other. Source: [99].

However, this definition is not sufficient for ML applications, it is too general. Fortunately, there
are several ways to define it. The next ones come directly from the literature on the subject.

Interpretability is the degree to which a human can understand the cause of a decision. Source: [60].

Another one is:

The passive characteristic of a model referring to the level at which a given model makes sense
for a human observer. Source: [91].

The higher the interpretability of a machine learning model, the easier it is for someone to com-
prehend why certain decisions or predictions have been made. A model is more interpretable than
another model if its decisions are easier for a human to comprehend than decisions from the other
model. A model’s interpretability is separate from how well a model represents reality; a model
could be terrible, but it could still be easy to understand. Deep Learning models are able to repre-
sent complex, non-linear relationships and can perform tasks that would be impossible for simple
algorithms or logic-based decision trees to perform; however, the very complexity of those models,
which allows them to learn the non-linear relationships, is also the same reason they may not be
interpretable. So, if a model is not interpretable, the next question we ask ourselves is this: Is it
explainable?.

The term explainability can be described as the extent to which the internal mechanics of a
machine or deep learning system can be explained in human terms [46]. The Tjoa et al. proposed
the following definition:

An active characteristic of a model, denoting any action or procedure taken by a model with the
intent of classifying or detailing its internal function. Source: [91].

Some researchers draw a clear line between interpretable and explainable ML: interpretable ML
focuses on designing models that are inherently interpretable; whereas explainable ML tries to
provide post-hoc explanations for existing black box models [57]. In other words, interpretability
is about being able to discern the mechanics without necessarily knowing why; explainability is
being able to explain quite literally what is happening.

3.4 Advantages and limitations of Explainable Artificial Intelligence

3.4.1 Advantages

So far, the content of this work indicates that XAI has only advantages. In fact, it has quite a few
of them. Here is a brief summary of them:

• Greater trust and confidence in the predictions of a model due to improved transparency.
Even if it is a black-box model, humans can use an explanation interface to understand how
these AI models achieve certain conclusions.

• Broader use of models in production as they explain how they make decisions.

• Faster adaptation since businesses can understand AI models better, they can trust them in
more important decisions.
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• Safe-guarding against biases as XAI intends to explain attributes and the decision process,
it helps to identify the biases of AI.

• Enabling auditing for regulatory requirements as it enables AI to comply with the legal
requirement to provide an explanation.

• Improving system design as XAI can enable engineers to probe why AI acts in a particular
manner and make improvements.

• Making AI robust against adversarial attacks as an adversarial input would lead the model
to produce anomalous explanations for its decisions, therefore revealing the attack.

• Facilitating the democratisation of AI as it reduces entry barriers for individuals as well as
organizations to start experimenting with AI.

• Making scientific discoveries since XAI can help cross-domain scientists to better understand
the AI and enable them to hone their knowledge and beliefs on the AI process.

3.4.2 Limitations

It is worth remembering, that XAI is not a miraculous solution and in addition to universal
recognition, there are also voices that indicate limitations and risks of explainability. Some of
them are:

• There is no formal mathematical definition of AI interpretability, so it is difficult to measure
the "degree of explainability". Further work in this space should focus on the development
of standardised metrics. In particular, to establish XAI metrics researchers will need to
consider the specific contexts, needs, and norms in a given case, and use both quantitative
and qualitative measures.

• The explanatory models themselves often are a black box; may be complex and computa-
tionally expensive.

• Interpretability can enable people or programs to manipulate AI verdicts. It entails risks of
being exploited by nefarious actors.

• Diversify XAI objectives; human decisions are often not easily explained: they may be based
on an intuition that we can not explain ourselves. Why should machines be required to meet
higher standards than humans?

• Some algorithms appear to be inherently difficult to explain.

• Explainability is not enough. Although explainability may be necessary to achieve trust in
AI models, it is unlikely to be sufficient. If the causality is explained between inputs and
outputs, this does not mean that the algorithm uses that causality to arrive at a decision.
Furthermore, the explanation of causality might change over time.
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4 Explanation methods

Over a relatively short period of time a plethora of explanation methods and strategies have come
into existence, driven by the need of expert users to analyse and debug their Deep Neural Networks,
in the quest to make them interpretable. In this chapter, an overview of existing methods will be
presented. We will especially focus on the local explanation methods, which explain individual
predictions. They zoom in on a single instance aiming at answering the questions like: How the
model arrived at its prediction? What was the impact of the specific value of the feature on this
prediction?

Two common local model-agnostic and attribution methods named LIME and SHAP will be
commented in depth and later compared with ante-hoc attention mechanism. But before that, the
taxonomy of explanation methods and their properties are discussed.

4.1 XAI Taxonomy
Explanation methods can be differentiated by the different aspects of Machine Learning they focus
on. Some of them can put the spotlight on the data explanation, trying to understand the features
in a data set. Others center on the model that uses the data set and aims to explain its decisions.

Figure 11: Taxonomy mind-map of Machine Learning Interpretability Techniques. Source: [51].

As stated in Section 3.2, there are two major types of models: white-box and black-box.
Interpretability of the first type of models, also known as glass-box models, is defined as the
Intrinsic. This type of interpretability covers all the models which have an interpretable internal
structure (these models are directly interpretable by design, so that their decisions can be explained
because of the way they were constructed). Only simple Machine Learning algorithms allow their
results to be explained on the basis of the model itself, e.g., the structure of a decision tree
is considered interpretable, as well as the internal structure of a shallow neural network. On
the contrary, black-box models, such as the Deep Neural Networks used in this work, can be
explained post-hoc by a “superstructure” independent of the model after the model is created.
Post-hoc interpretability methods try to explain a prediction of the model without explaining the
exact internal mechanism of that model. Therefore, to make a black-box model explainable some
techniques to extract explanations from the inner logic or the outputs of the model have to be
adapted (e.g., an external method, model agnostic or surrogate models).

Methods for machine learning interpretability can be further classified according to other various
criteria. Therefore, there are several different taxonomies to approach XAI. One of them, represents
a taxonomy mind-map of Machine Learning interpretability techniques, is represented in the Figure
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11. This taxonomy represents important separation of these methods which visualizes the different
aspects by which they can be classified. They are briefly described below.

4.1.1 Model Specific vs Model Agnostic

Algorithms for explanations can be limited to a specific model or not. Model-specific refers to
methods and tools which are specific to a single model or group of models. These tools depend
heavily on the working and capabilities of a specific model. As an example, the interpretation of
intrinsically interpretable models is always model-specific. In contrast, model-agnostic tools can
be used on any Machine Learning model to achieve interpretability are applied after the model has
been trained (post-hoc). They usually work by analysing feature input and output pairs and do
not have access to internal model details such as weights or structural details. The main advantage
of using model-specific methods is that it allows to have the better understanding of the decision
of ML models by knowing their internal working. Thanks to that, delivered explainable models
can be more customised and tailored to the problem they are dedicated for. It is beneficial in some
fields such as explanations in case of healthcare medical image localization, etc. However, some
model-specific techniques can increase the complexity of the model. Due to the interpretability vs.
performance trade-off, models with a more complex structure, with which predictions are usually
more accurate, are interpreted at the higher expense as it is more difficult to understand what is
important to the model and why it behaves the way it does. Then, model-agnostic methods do
not consider the structure of the model. They obtain explanations by perturbing and mutating
the input data and obtaining sensitivity of the performance of these mutations with respect to the
original data performance. By that, it gives interesting insights into the relative localised region
of the input which is giving a higher sensitivity. These methods can be applied to any machine
learning algorithm (flexibility) and do not influence its performance.

4.1.2 Local vs Global

This division indicates whether the interpretation method explains the specific data instance (e.g.,
single data point or feature) or the behavior of the whole model. Local refers to the methods that
explain specific prediction, e.g., they can provide a reason why a specific person did not get a loan.
In the explanation, they should highlight features that are relevant to it. By focusing on a single
instance, the otherwise complex model might become easier to understand. This method might
reveal more straightforward linear or monotonic dependence on some features, instead of having
complex reliance on them [61].
Global refers to the methods and tools which provide interpretation for the entire model. They
show the general tendencies of the influence of variables on the averaged verdict of the machine
learning model. For example, they can show that a 10% higher income translates, on average, into
a 5% higher chance of getting a loan.

4.1.3 Division due to Purposes of Interpretability

Four major categories are identified: models for creating white-box models (intrinsic), models for
explaining complex black-box models (extrinsic / post-hoc), methods that promote fairness and
restrict the existence of discrimination, and lastly, methods for analysing the sensitivity of model
predictions [51].

• Intrinsic or Extrinsic: this distinguishes whether the model itself is interpretable or needs
to apply methods that analyze models after training to achieve interpretability. Intrinsic
refers to simple explainable models; extrinsic refers to use of an interpretation method after
training to achieve interpretability.

• Methods that promote fairness: refers to techniques that have been developed to
remove bias from training data and from model predictions, and to train models that make
fair predictions in the first place [9].

• Methods for analysing the sensitivity of model predictions: refers to methods that
attempt to assess and challenge the machine learning models in order to ensure that their
predictions are trustworthy and reliable. They apply some form of sensitivity analysis to test
the stability of learnt functions and how the output predictions vary with respect to subtle
yet intentional changes to the corresponding inputs.
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4.1.4 Division due to Data Types

The type of data on which interpretability techniques are applied is another crucial factor which
should be taken into account while choosing an ideal method. The most common types of data
are tabular and images, but there are also some methods for text and graph data.

4.2 Explanation properties
Robnik-Sikonja and Bohanec defined, in their study published in 2019 [81], some properties of
explanation methods, which are listed and described below. These properties can be used to assess
and make a comparison between different explanation methods [15].

• Expressive power: describes the language of the explanations that the method can gener-
ate.

• Translucency: represents how much the explanation method is based on the inner working
of the ML model, such as the model’s parameters. For example, translucency of the intrinsic
models is high. On the other hand, methods based on manipulating inputs and observing
the predictions have zero translucency. Models with high translucency can rely on more
information to generate explanation, while explanation methods with low translucency are
more portable.

• Portability: describes the set of ML models to which the explanation method can be
applied. For example, model-agnostic methods are highly portable.

• Algorithmic complexity: refers to computational complexity of the explanation method.

Quality of the individual results generated by the explanation methods can be assessed by nine
identified properties of individual explanations, as follows:

• Accuracy: refers to the ability of an explanation to generalize to other unseen instances.

• Fidelity: describes how well the explanation approximate the result of the prediction model.
High fidelity is one of the most important and desired properties of an explanation. Low fi-
delity indicates that an explanation is useless to explain the machine learning model. Fidelity
and accuracy are closely related. If the black box model has high accuracy and the expla-
nation has high fidelity, the explanation consequently has high accuracy. Moreover, some
explanations only provide local fidelity, meaning that the explanation only approximates
well to the model prediction for a group or a single instance.

• Consistency: represents the degree to which the explanations differ between models that
have been trained on the same task and that produce similar predictions. Similar models may
produce similar prediction for a given data point, nonetheless the explanations they make can
be based on different features due to the variation in the explanation method. However, if
explanations are very similar then explanations are very consistent. High consistency should
be obtained when the models rely on similar relationships.

• Stability: speaks for the degree of similarity between the explanations generated for the
similar instances. While consistency compares explanations between different models, sta-
bility compares explanations between similar instances for the same model. High stability
means that slight variations in the feature values of an instance do not fundamentally change
the explanation unless these slight variations also strongly change the prediction.

• Comprehensibility: describes how well humans understand the explanations. This prop-
erty, although extremely important to get it right, is very difficult to define and measure.
One of the approaches to measure comprehensibility is to test how well people can predict
the behavior of the machine learning model from the explanations. The comprehensibility
of the features used in the explanation is also relevant since a complex transformation of
features might be less comprehensible than the original features [61].

• Certainty: reflects the certainty of the machine learning prediction model. An explanation
should provide information about the confidence on the correctness of the prediction.

• Degree of Importance: describes the level at which the explanation reflects the importance
of features or parts of an explanation.
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• Novelty: : says whether an explanation reflects the fact that the explained instance comes
from a region in the feature space that is far away from the distribution of the training
data. In such cases, the model may be inaccurate, and the explanation may be useless.
Additionally, the concept of novelty is related to the concept of certainty: the higher the
novelty, the more likely it is that the model will have low certainty due to lack of data.

• Representativeness: describes how many instances are covered by the explanation. Ex-
planations can encompass the behavior of the complete model or represent only a single
prediction.

There might be other properties that could be taken into consideration, such as the basic units
of the explanation and the number of basic units that each explanation is composed of. These can
be seen as qualitative interpretability indicators and are better explored and defined in Section 4.9.

4.3 Additive Feature Attribution Method
As commented previously, a simple model is easily interpretable, however a complex model, such
as deep neural network or ensemble method, can not use its own structure to provide explanation,
since its interpretability is complicated due to its complexity. Therefore, a simpler explanation
method that provides an explanation for this type of model is required. The currently popular
explanation methods, such as LIME, SHAP, DeepLIFT, which will be described in detail in later
sections, use the same explanation method called additive feature attribution method.

Denoting f as an original prediction model to be explained and g as the explanation model,
how additive feature attribution models work can be explained as follows:

1. The models focus on local explanation methods designed to explain a prediction f(x) based
on a single input x.

2. Explanation models often use simplified inputs x′ that map to the original inputs through a
mapping function x′ = hx(x

′).

3. Local methods try to ensure: g(z′) ≈ f(hx(z
′)) whenever z′ ≈ x′.

From the definition, additive feature attribution methods have an explanation model that is a
linear function of binary variables [53]:

g(z′) = ϕ0 +

M∑
i=1

ϕiz
′

i (37)

where z′ ∈ 0, 1M , M is the number of input features and ϕi ∈ IR. The additive feature
attribution method attributes the effect ϕi to each feature. By summing the effects of all feature
attributions this technique approximates the output f(x) of the original model. Many current
methods match this definition, for instance LIME and SHAP.

LIME and SHAP are local model-agnostic and attribution methods that work so that the
prediction of a single instance is described as the sum of feature effects. Moreover, both these
techniques are classified as local surrogate models. It means that they train surrogate models
to approximate a small region of interest in a black box model. Local surrogate models are
built by constructing a new data set consisting of perturbed samples and then trained. Then the
actual data set is fed to the surrogate model and differences are approximated to explain individual
predictions. The explanations are given as feature-wise effects, or impacts on the output, according
to the particular input values. Local fidelity indicates how well the explanation approximates the
prediction of the black-box model. LIME is very good for getting a quick look at what the model
is doing, but has problems with consistency. On the other hand, SHAP delivers a full explanation,
making it a lot more exact than LIME. The performance of these methods will be compared to
the attention mechanism which represents local ante-hoc interpretation methods.

4.4 LIME
Local Interpretable Model-agnostic Explanations (LIME) presented in 2016 by Marco Ribeiro,
Sameer Singh and Carlos Guestrin in the study titled “Why should I trust you?: Explaining the
predictions of any classifier.”[80], is one of the most popular interpretability technique that approx-
imates any black box machine learning model with a local, interpretable model to explain each
individual prediction. It develops an approximation of the model by testing it out to see what hap-
pens when certain aspects within the model are changed. Essentially it is about trying to recreate
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the output from the same input through a process of experimentation. As a first step, simulated
around the neighborhood of input instance data is randomly sampled (data perturbation). Then,
a generated data set is fed into the black-box model and corresponding predictions are produced.
Subsequently, LIME weights those new data points as a function of their proximity to the original
point. Finally, it fits a surrogate model such as linear regression or a decision tree on the data set
with variations using those sample weights. As a result, each original data point can be trained
with the newly trained explanation model.

The explanation produced by LIME at a local point x is obtained by the following formula:

explanation(x) = argming∈GL(f, g, πx) + Ω(g) (38)

More precisely, the explanation model for a data point x is the surrogate model function g (e.g.,
linear regression model) that minimizes loss L(f, g, πx) measuring how close the explanation is to
the prediction of the original model f , while the model complexity Ω(g) is kept low. G represents
a class of potentially interpretable models, for example all possible linear regression models. The
domain of g is {0, 1}d′

, meaning g acts on the presence/absence of the interpretable components.
Since not all g ∈ G models can be simple enough to be interpretable, Ω(g) is defined as a measure
of the complexity (as opposed to interpretability) of the explanation g ∈ G. For example, for linear
models, Ω(g) may be the number of non-zero weights, while for decision trees it may be the depth of
the tree. Moreover, the proximity measure πx defines how large the neighborhood around instance
x is that we consider for the explanation. L represents a measure that indicates how unfaithful g is
in approximating f in the locality defined by πx. In order to ensure both interpretability and local
fidelity, L is minimized while having Ω(g) low enough to be interpretable by humans. Therefore,
LIME experiences a trade-off between model fidelity and complexity. This formulation can be used
with different explanation families G, fidelity functions L (e.g., MSE), and complexity measures
Ω.

A graphical example of a LIME application may be the interpretation of the classifier that
predicts how likely it is that there is a tree frog in a given image. This example is illustrated in
the Figure 12.

Figure 12: Transformation of the image of a tree frog into interpretable components. Source: [79].

First the image on the left is divided into interpretable components. LIME then generates
a data set of perturbed instances by turning some of the interpretable components “off” (in this
case, making them gray). For each perturbed instance, one can use the trained model to get the
probability that a tree frog is in the image, and then learn a locally weighted linear model (e.g.,
linear regression) on this data set. In the end, the components with the highest positive weights
are presented as an explanation.
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4.5 DeepLIFT
Deep Learning Important FeaTures (DeepLIFT) is a recursive prediction explanation method ded-
icated for Deep Learning and proposed by Avanti Shrikumar et al. in 2017 [89]. It explains the
difference from the reference value of output ∆t in terms of difference from the reference value of
input ∆xn. This difference allows the method to propagate an important signal, even if the gra-
dient is zero and as the reference difference is continuous, it avoids discontinuities in the gradient
caused by bias terms. DeepLIFT works decomposing the output prediction of a neural network
on a specific input by backpropagating the contributions of all neurons in the network to every
feature of the input. It compares the activation of each neuron with its reference activation and
assigns contribution scores according to the reference difference. Mathematically, DeepLIFT uses
a “summation to delta” property that is expressed by the formula:

n∑
i=1

C∆xi∆t = ∆t (39)

where t represents the activation of an interest neuron and x1, . . . , xn are neurons in some interme-
diate layer necessary and sufficient to calculate t. Let t0 be the reference activation of t. ∆t defines
the reference difference ∆t = t − t0. C∆xi∆t represents the contribution score for ∆xi, meaning
the amount of reference difference of t attributed to the reference difference of xi. DeepLIFT uses
a linear composition rule which means that it linearises the non-linear components of a neural
network.

4.6 Shapley Values
The Shapley value is a concept in game theory used to determine contribution of each player in
a cooperative game. The method for obtaining Shapley values was introduced by Lloyd Shapley
in 1951 [88]. The author won the Nobel Memorial Prize in Economic Sciences for it in 2012.
The Shapley value can be used to explain single predictions of a Machine Learning model by
computing feature contributions. The idea behind it can be explained by an example where n
players participate collectively in a game obtaining a reward r which is intended to be fairly
distributed at each one of the n players according to the individual contribution to the teamwork,
such a contribution is a Shapley value. In ML, the game can be substituted by the model and
an obtained reward can be substituted by the model prediction. In simple words, the Shapley
value can be computed as the average marginal contribution of an instance of a feature among all
possible coalitions:

ϕi(v) =
∑

S⊆N\{i}

|S|!(N − |S| − 1)!

N !
(v(S ∪ {i})− v(S)) (40)

where |S| is size of the subset of the features, |N | is the number of features, (v(S ∪ {i}) − v(S))

is the marginal contribution of the ith feature, |S|!(N−|S|−1)!
N ! is weight for combinations for this

occurrence, S ⊆ N\{i} is all possible subsets without i feature, (S ∪{i}) is subset S with i feature
included and S is a subset without i.

Shapley satisfies the following four Axioms required to achieve a fair contribution [31]:

• Axiom 1: Efficiency. The sum of the contributions of all features should give the total
payout (prediction):

∑|N |
i=1 ϕi = v(N) (equals the value of the total coalition).

• Axiom 2: Symmetry. The contributions of two feature values j and k should be the same
if they contribute equally to all possible coalitions.

• Axiom 3: Dummy. If a feature j does not change the prediction value, no matter to which
coalition of feature values it is added, its Shapley value should be 0.

• Axiom 4: Additivity. Additivity. For a two different characteristic functions for a game v,
w: ϕ(v + w) = ϕ(v) + ϕ(w), where (v + w)(S) = v(S) + w(S) for all S.

As already mentioned, in the simplest ML setting, the players of a cooperative game replaced by
the features of the ML model that is a player is the numerical or categorical value of a feature and
instance; the Shapley value is the feature contribution to the prediction; the value function is the
payout function for coalitions of feature values (players).
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Let’s define an example to make it clearer. Suppose we have a model that is trained to predict
the Remaining Useful Life of a machine. We want to know how important the recordings of the
sensor1 (which happens to be feature i) are in determining the model’s prediction. We first would
pick a random subset of features S for example S = {sensor2, sensor3} to provide to the model.
We would then measure the marginal contribution (v(S∪{i})−v(S)) which tells us how much the
inclusion of sensor1 to the model (feature i) changes the model’s output relative to the model’s
output with sensor2 and sensor3 as the only features. In other words, the marginal contribution
captures the incremental contribution of sensor1 to the model’s output while accounting for its
interaction with the sensor2 and sensor3 features. The Shapley value is the weighted average of all
such marginal contributions over varying S.

The main advantage of Shapley value is that it provides a fair contribution of features with
mathematically proven theory and properties about its mechanism. However, its downside is
complexity of the algorithm because the combination of features grows exponentially. Therefore,
in a practical scenario, methods to compute Shapley values for ML models produce estimates of
the true Shapley value using a subset of combinations.

4.7 SHAP
Shapley Additive Explanations (SHAP) is a local model-agnostic interpretability method based on
Shapley values and introduced by Scott Lundberg and Su-In Lee in 2017 [53]. The key idea of
SHAP is to calculate the Shapley values for each feature of the instance to be interpreted, where
each Shapley value represents the impact that the feature to which it is associated, generates in
the prediction. The exact computation of Shapley values is computationally challenging. The
innovation that SHAP methods brings is that the explanation model is represented as an additive
feature attribution method, a linear model, or in simple words, by the summation of present features
in the coalition. That view connects LIME and Shapley values. SHAP also offers alternatives to
estimating Shapley Values such as Kernel SHAP (Linear LIME + Shapley Values) and Deep SHAP
(DeepLIFT + Shapley Values).

Figure 13: An example of SHAP value explanations. Source: [53].

SHAP values are the solutions to the Equation 40 under the assumptions: f(xS) = E[f(x|xS)].
i.e. the prediction for any subset S of feature values is the expected value of the prediction for f(x)
given the subset xS [53]. In Figure 13 can be seen that SHAP values attribute to each feature the
change in the expected model prediction when conditioning on that feature. They explain how to
get from the base value E[f(x)] that would be predicted if we did not know any features, to the
current output f(x). This diagram shows a single ordering, but when the model is non-linear or
the input features are not independent, the order in which features are added to the expectation
matters, and the SHAP values arise from averaging the effects across all possible orderings.

4.7.1 Kernel SHAP

Kernel SHAP is the estimation approach which combines the concepts of Local Interpretable
Model-Agnostic explanations (LIME) and Shapley values. This method allows to calculate the
Shapley values with much fewer coalition samples. Kernel SHAP is based on a weighted linear
regression where the coefficients of the solution are the Shapley values. To build the weighted
linear model, n sample coalitions are taken. For each coalition, the prediction is obtained, and
the weight is calculated with the Kernel SHAP. Finally, the weighted linear model is fit and the
resulting coefficients are the Shapley values.

4.7.2 Deep SHAP

Deep SHAP is a local model-specific interpretability method which approximates the Shapley values
for Deep Learning models using DeepLIFT algorithm. This combination of Shapley values and
DeepLIFT allows Deep SHAP to take advantage of the extra knowledge about the compositional
nature of deep networks to improve computational performance.
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Deep SHAP combines SHAP values computed for smaller components of the network into SHAP
values for the whole network by recursively passing DeepLIFT’s multipliers (which are basically
SHAP values calculated for a node) backward through the network.

4.8 Attention Mechanism for XAI
The attention mechanism is an example of ante-hoc explainability methods. However, it was
incorporated into machine translation models primarily to improve performance rather than inter-
pretability, it turned out to be a secondary benefit [106]. Nowadays, it is an increasingly popular
technique for explaining Deep Learning models, also more and more often used for the Recurrent
Neural Networks and time-series modelling tasks, which implementations is described more in de-
tail in Section 2.3. Attention mechanisms aim to identify the most relevant parts of an input for
a given task. For time-series data they assign values corresponding to the importance of the time
series according to the model. Typically, this relevance is characterized by a set of weights/scores
assigned to input parts, namely, attention map. By analyzing the data information to highlight
the key part of information, attention mechanism also enhances model feature learning ability and
by that the model achieves better prediction accuracy. For RNNs, it helps with encoding the infor-
mation from very long input sequences. On the other hand, attention mechanisms are also at the
heart of transformers, which can detect globally important variables for the prediction problem,
persistent temporal patterns, and significant events that lead to significant changes in temporal
dynamics [82].

Attention-based models are commonly used in various NLP tasks [104] [62], where a neural net-
work with attention layers is used to highlight important parts of the text. Nonetheless, in recent
studies "Attention is not Explanation" (Sarthak Jain and Byron C. Wallace [41]) and "Attention
is not not Explanation" (Sarah Wiegreffe and Yuval Pinter [98]), the data scientists argue on the
applicability of the attention mechanism for models’ explanations in NLP.
Jain and Wallace published their paper in 2019, in which they claim that attention as an explain-
ability mechanism has found little evidence during the conveyed research. In an extensive set of
experiments across various NLPs tasks, the authors proved that attention maps are only weakly
correlated with gradient-based measures of feature importance. In addition, it is often possible to
identify very different set of attention maps that result in the same prediction and hence they do
not provide a faithful explanation for the model’s predictions. They concluded that, in general,
attention weights do not strongly or consistently agree with standard feature importance scores.
On the other hand, Wiegreffe and Pinter published their paper as a response. In their research
they challenged assumptions made in the prior work. They made two claims to support it. Firstly,
the attention distribution is not primitive as the attention weights are not assigned arbitrarily by
the model. They are computed by an integral component whose parameters were trained along-
side the rest of the layers. The authors emphasized that the attention distribution explainability
makes sense as the model learns to attend to the tokens it chooses. Secondly, they claim that
Jain and Wallace have not shown the existence of an adversarial model that produces the claimed
adversarial distributions. Moreover, they have not provided a baseline of how much variation is to
be expected in learned attention distributions, which leaves the user unsure how adversarial the
found adversarial distributions are. Wiegreffe and Pinter have shown that alternative attention
distribution that they found via adversarial training methods performed poorly in comparison to
traditional attention mechanisms used in their experiments. These results indicate the trained at-
tention mechanisms in RNNs actually learn something meaningful about the relationship between
tokens and prediction that cannot be easily "hacked" in an adversarial manner.
However, in both papers, the authors agree that further research needs to be performed and atten-
tion should not be blindly used as an explanation for NLP tasks, especially for decision-making.

For the time-series regression tasks, attention mechanism is not modelled in its standard version
used in the encoder-decoder configuration for natural language processing problems. The exam-
ple of such an implementation is based on the solution proposed by Kaji et al. [44] and Phillipe
Remy [77] for interpretability of time-series models. As proved by the authors, attention-based
LSTM provide useful output that could facilitate the understanding at the level of input variables
(see Section 2.3.5). In the study [44], Kaji et al. trained LSTM neural networks using an at-
tention mechanism to predict daily sepsis, myocardial infraction (MI), and vancomycin antibiotic
administration over two-week patient ICU courses in the MIMIC-III data set. They used the in-
terpretive capacity of attention maps build from these models to highlight those times when input
variables most influenced predictions and could provide a degree of interpretability to clinicians.
Their contribution of integrating attention mechanisms into clinical deep learning models provide
a promising avenue to incorporate a degree of interpretability to clinicians.
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Another example of a successful application of the explanation mechanism for interpretability of
a model for multivariate time series forecasting is presented by Gandin et al., in their research article
"Interpretability of time-series deep learning models: A study in cardiovascular patients admitted
to Intensive care unit" published in 2021 [33]. The authors describe use of attention layer with
LSTM neural network to approach the task of predicting mortality within 7 days for a cohort of
cardiovascular patients. They challenge attention mechanism to identify features driving model’s
decisions over time. Thanks to the comparison with a transparent model and clinical interpretation
of a single case, they presented the evidence that the method leads to the identification of relevant
predictors. They visualized the calculated attention weights as an attention map that is presented
in Figure 14.

Figure 14: An example of local-level attention map generated using attention weights. Source:
[33]

The presented heatmap shows the case of patient A and patient B whose clinical and instrumental
parameters are used for the prognostic evaluation in the health care unit. For each patient, a
10-length sequence of 1-hour windows are considered in which 48 clinical parameters are extracted
to predict the occurrence of death in the next 7 days. For each individual the following charts
are presented from the bottom to the top: heatmap representing the value on input features,
heatmap representing the value of attention activations and barplot representing the time-average
contribution of each future are presented. Patient A survived, whereas patient B did not. In this
graphic can be seen that the SpO2 parameter for Patient A had a very low value only in the first
hour as for Patient B, however for the second patient the parameter did not improve over time.
As attention activations plotted for both patients suggest, SpO2 was the most attended feature,
which influenced the prediction the most.

4.9 Evaluation of XAI methods
The main objective of XAI is to provide effective explanations for AI-based applications. While
many researchers focused their studies on exploring the explanation methods, there is not enough
attention paid to their correctness and there does not exist a metric globally defined that can
assess the quality of explanations [82]. The existing literature lists many desirable properties for
explanations to be useful (see Section 4.2), but it is rather unclear how to determine whether and
to what extent the given explainability achieves the intended goals, how correct an explanation
is, or how to compare available explanation methods and propose the best explanation from the
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comparison for a specific task. One of the main factors making this challenge difficult is that the
ground truth explanation is unknown. In addition, generated explanations might have a different
nature and the input can be of different types. However, the studies are conducted on two types
of evaluation metrics that can be distinguished: qualitative and quantitative. The qualitative type
of research often rely on whether humans are satisfied with an explanation and able to understand
the model. It is related to the observation and processing of non-numerical data. On the other
hand, the quantitative approach objectively assesses the quality of the explanations and is based
on numerical analysis.

The evaluation and verification of explanations produced after interpreting the machine learning
models built with time series data is an especially difficult task due to the complex nature of such
data and by that hardly interpretable even by domain experts themselves [86]. There are only a
few studies published which are considering this field. Moreover, the authors mostly focus on the
time series classification task. The evaluation of explanations produced after interpreting the time
series forecasting are currently still unexplored.

4.9.1 Qualitative evaluations

In qualitative research, the explanations are usually evaluated using domain expert assessments.
The data is collected through observation, pools, or interviews. This kind of data is very subjective
and related to the person providing the data. The experts’ feedback is especially beneficial for
methods providing explanations for specific users. As an example, the surgeons working with the
model that performs evaluation of surgical skills [40] can give some feedback, whether they found
the explanations provided relevant or not. A different approach was presented by Dong Nguyen
who asked for help non-experts [66]. During her research she worked on evaluation of different
explanations produced by various explainability techniques in a text classification problem, where
the model predicts the sentiment of the movie review, positive or negative based on the text of
the review. In this process, she presented ordinary humans with the input to the model that is
the text of the review and the explanation of the model. Based on the input and explanation, the
humans were asked to predict the output of the model, negative or positive sentiment.

However, unlike in text classification or computer vision tasks, qualitative evaluations might
have a limited potential in time series [82]. The complex and unintuitive nature of time series
make it difficult even for domain experts to qualitatively assess the quality of the explanations
generated. Therefore, the research should prioritize quantitative evaluations for this field [86].

4.9.2 Quantitative evaluations

Most XAI methods are black-boxes themselves and are designed for images. Notably, in computer
vision there exists some work about the quantitative evaluation of explanations, e.g., a popular
method of a perturbation analysis [103]. This analysis method substitutes a few pixels (e.g., set
them to zero) of an image according to their importance (most or least relevant pixels). The
evaluation assumes that if relevant pixels get changed, the performance of the accurate model
should decrease massively. On the other hand, if random pixels get changed, the performance
should either stagnate or decrease. However, this this method cannot be directly applied on time
series because it omits temporal dependencies by assuming feature independence. Moreover, e.g.,
setting a feature value at one time point to zero could be considered as an anomaly in a time series
task.

Therefore, in the study [86], Schelegel et al. proposed a novel quantitative evaluation technique
suited explicitly for time series by taking the sequence property (the inter-dependency of time
points) of the time-oriented data into account.

Let’s consider a sequence of data t which consists m time points t = (t0, t1, t2, ..., tm). The
local feature importance method produces the relevance ri for each time point ti. A relevance
vector of a specific feature can be generated as r = (r0, r1, r2, ..., rm). The proposed method
takes the time points with the relevance over a threshold e, e.g., the 90th percentile of r, as e
starting point for further changes of the time series. So, ri > e becomes a start point to extract
a sub-sequence tsub = (ti, ti+1, . . . , ti+ns

) with length ns. Later, Schlegel et al. process these
sequences using two evaluation approaches Swap Time Points and Mean Time Points. In the first
one, they suggest to invert the order of the extracted points in the most salient sub-sequences
tsub−swap = (ti+ns

, . . . , ti+1, ti) and insert it back into time series data set. The quality metric qm
is then extracted and compared with the results for the data set, where swiping the data points was
done for random time steps. Further, in another experiment, they set the sub-sequence to zero to
test the method. Mean Time Points has a similar approach but instead of swiping the time points,
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it assigns the mean of all values of the salient sub-sequence to all points in the corresponding
sub-sequence. These two presented techniques are complementary with the perturbation approach
in the sense that they overcome the limitations of the perturbation approach which has a lack of
evaluation of trends or patterns in the time series.

The described study focuses on the time-series classification task. Despite the efforts to intro-
duce and formalise quantitative metrics on time series data, applications of such metrics tailored
explicitly for time series forecasting are still missing. As already mentioned, time series forecasting
models are highly relevant in many areas, therefore their proper interpretation is equally important
to those of time series classification. In this work, the methods proposed by Schlegel et al. will
be accordingly modified and tested for interpretability of models for time series forecasting (see
Section 4.9.2).
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5 Methodology

In the previous chapter, we gave an overview of various local explanation methods that fit well
to deep neural networks and are suitable for time series forecasting problem. Literature analysis
highlights that these are reliable, efficient algorithms, able to provide explanations that indicate
the most important attributes for the prediction made by the network. It was also emphasized that
the methods of explanation suffer from a limitation that applies to them all, this is the difficulty
of being validated. Despite significant results, it remains unclear how to assess the quality of
generated explanations. Therefore, among the many existing methods, it is difficult to indicate
one that gives us a correct explanation.

The main purpose of this work is to achieve and evaluate local explanations for models in
time series forecasting problem. To fulfil this objective and to answer the research questions
posed in Section 1.3 we divided the work into four sub-goals: firstly, preparing the relevant time
series data and formulating the forecasting problem; secondly, building the time series forecasting
models with and without attention mechanism and selecting the best model based on an evaluation
metric; afterwards interpreting the time series forecasting models to produce human understandable
explanations; finally applying methods to validate generated explanations.

This chapter describes the design of the steps taken for determining a functional framework,
while including details about the forecasting models and the local explanation methods directly
applied for our analysis.

5.1 Framework overview
In this Thesis, a user study aims to assess and compare the explainability of candidate XAI methods
for time series forecasting models. We conducted a comprehensive literature review first to gain
general knowledge of ML applications in time series problems as well as to identify suitable ML
and XAI methods for this task. In terms of interpretability scope, we decided to focus on local
interpretability methods since they give a more detailed picture of the model’s single prediction.
Based on that, we decided to perform an analysis of three XAI techniques: SHAP, LIME and
Attention mechanism.

Figure 15: The prediction process of proposed LSTM candidate models.

SHAP and LIME are two common explainability methods successfully applied for tabular, image
and text data. They represent post-hoc attribution methods; they explain models by computing
the importance of input features to the prediction. LIME, is a theory-based technique that provides
selected explanations that may explain instances with fewer important features. This fits well to
explaining model’s decision to the user, since humans usually prefer concise explanations. On
the other hand, SHAP works by calculating the contribution of each feature to the prediction
thus providing a complete explanation which is crucial for decisions that must take all effects
into account. It provides a fair contribution of features and is based on a solid mathematical
theory. The axioms described in Section 4.6: efficiency, symmetry, dummy, additivity give the
explanation a reasonable foundation. Attention mechanism is an ante-hoc explainability method
which is embedded in the structure of the LSTM model and the explicability it offers is available
directly at the end of the learning phase by assigning values corresponding to the importance of
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the different parts of the time series according to the forecasting model. This method was selected
for the analysis on the basis of its effective and promising application in the field of medicine [44]
[33].

The ML community lacks a unifying interpretability framework for time series data under which
it can be discussed and compared the interpretability of models. In this work we established a
functional framework the flow of which can be described in two stages. First stage concerns the
model selection and evaluation; second stage is about explanations generation and validation.

The methodology for a model construction is depicted in Figure 15. First, we start with the
pre-processing of time-series data. In real-world applications, we encounter a lot of raw data from
sensors, varying operating conditions and failure times. Because the value scale of different sensors
may differ, sensor data needs to be normalized with respect to each sensor before training and
testing. Also, for many systems where health of a system does not linearly degrade from the
beginning of operations, we should limit the calculated RUL target using piece-wise functions.
Secondly, the ML model is built and trained on the training data set and later used to predict
on the test data set. Lastly, the generated predictions are evaluated with the help of the quality
metrics and the hyper-parameters of the model are tuned.

Figure 16: The general process for applying and evaluating XAI methods.

The general process for applying and evaluating XAI methods is shown in Figure 16. In this
approach the explanation is generated after model training. The ante-hoc techniques ensure clarity
of the model by the design. The post-hoc techniques take a trained model as input and extracts
the underlying relationships that the model had learned by querying the model and constructing
a surrogate model which is intrinsically explainable. The goal of this surrogate model is to ap-
proximate the black box prediction model as accurately as possible. After the explanations are
generated they can be visualized by the user to visually identify the problematic component.

Finally, based on the data point relevance indicated by the explanations, the test data is
perturbed and new data sets are generated. These newly created data sets are passed to the
trained model and get predicted. The quality metrics are calculated for prognosis of each data set.
The relationship between produced measures will be used to validate predictions what is described
in detail at the end of this chapter.
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5.2 Model Selection and Evaluation

5.2.1 Hyperparameter Tuning

Hyperparameters are model-specific properties that are being defined even before the model is
trained or tested on the data. They define how the model training process should be performed.
The ideal settings of a model for one data set will not be the same across all data sets therefore
hyperparameter tuning is required. Hyperparameter tuning is a process of searching for the right
set of hyperparameters to achieve the best possible model performance.
For LSTM models, many different hyperparameters can be tuned to adapt the model to the chosen
data set. Two well-known and widely applied parameter optimizing techniques are: grid search
and random search. In Figure 17 an illustration of grid search compared to random search can
be seen. The figure depicts grid search and random search done on two parameters of different
importance, with the axis being different parameter values.

Figure 17: Comparison between (a) grid search and (b) random search for hyper-parameter tuning
[11].

Grid Search can be thought of as an exhaustive search for selecting a model. In this technique,
a data scientist sets up a grid of possible hyperparameters, all the values are places in the form of
a matrix, and for each combination a model is trained and evaluated on testing data. Once all the
combinations are evaluated, the model with the set of parameters which give the top performance
score is considered to be the best. In this approach, every combination of hyperparameter values
is tried which can be very inefficient. With as few as four parameters this problem can become
impractical, because the number of evaluations required for this strategy increases exponentially
with each additional parameter, due to the curse of dimensionality.

Random Search is another hyperparameter tuning technique. The key difference from grid
search in random search is that not all the values are tested. It takes an arbitrary number of the
combinations of hyperparameters from some distribution within the parameter space at random.
The number of search iterations is set based on time or resources. By doing that random search
optimizes time of hyperparameters tuning and not defining an absolute grid allows it to explore
other values in the given distribution. Since random search does not try every hyperparameter
combination, it does not necessarily return the best performing values, but it returns a relatively
good performing model in a significantly shorter time.

If there are more than two hyperparameters, for example, five parameters, and 20 different values
for each of them, the grid search method requires to run 100,000 experiments. Random search
allows to select a fixed number of points that will be randomly placed in the search space. Although,
while applying grid search finding the optimal set of parameters is more likely, an increased number
of hyperparameters can easily become a bottleneck. Ideally, grid search with random search should
be combined to prevent this inefficiency.

5.3 Model architecture
This work is dedicated mostly to the topic of Explainable AI, rather than the development of new
model architectures that could outperform the state-of-the-art RUL prediction methods. There-
fore, we chose not to use complex models, such as for example Convolutional Long Short-Term
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Memory (CNN-LSTM) proposed for RUL estimation by Jayasinghe et al. [42] which achieved bet-
ter results than other RNN-based studies or a novel method by Zhang et al. based on Transformer
[107]. Because these models require excessive training time, which was a limited factor during this
study, we decided to start experiments with architecturally simple, but robust, vanilla LSTM.
According to authors of the survey about Deep Learning models for predictive maintenance pub-
lished in 2022, LSTMs are one of the state-of-the-art models for forecasting at the moment [87].
They are known for their performance on various types of data and prediction problems. The
LSTM cell adds long-term memory to standard RNN and allows more parameters to be learned.
Using input gate, forget gate and output gate, it controls the information flow. Therefore, it does
not have long-term time dependency problems. Remembering information for long periods of time
is almost default for them. Due to inherent sequential nature of sensor data, LSTMs are well-suited
for RUL estimation using sensor data.

Finally, we decided to build models based on Bidirectional version of LSTM Bi-LSTM. Using
bi-directional structure, instead of unidirectional LSTM, causes that the data sequence is processed
in two directions, namely forward and backward, in two disconnected LSTMs. The additional path
preserves the information from the future to the past, which can relieve the noise effect and smooth
the estimation. It allows to make full use of the sensor sequence information.

The final architecture of the model and its parameters will be set during hyperparameter tun-
ing using a combination of random and grid search. The models will be built with the use of the
following layers:

Masking Layer: The length of the data sequence processed by the LSTM is a pre-defined value.
However, some engines can have less records than the desired sequence length. To tackle this
problem, the shorter samples are extended to desirable length by padding in front with dummy
value. The masking layer allows to pass the padded dummy values without the model interpreting
them.

Bi-directional LSTM Layer: This layer extracts temporal characteristics through a bidirec-
tional pass. The activation function used for LSTM memory blocks is the hyperbolic tangent
activation function.

Dropout Layer: Every LSTM layer should be accompanied by a Dropout layer. This layer
serves to regularise Deep Neural Networks. Regularisation methods are used to avoid overfitting,
thus improving the models’ ability to generalize. Each neuron in the dropout layer is randomly
omitted from the network with a probability Pc within (0,1) while training. It, hence, reduces the
sensitivity to the specific weights of individual neurons.

Dense Layer: This layer is a regular fully connected layer. The operation dense layer per-
forms is expressed through the formula: output = activation(dot(input, weights) + bias), where
activation can be any activation function, and dot is the dot product. This layer reduces the
dimension, activates output from the previous layer and returns the output.

Attention Layer: The attention layer was implemented according to the variant of Atten-
tion Mechanism proposed by Gandin et al. in their study [33]. At first, the input data is permuted
and reshaped. Later a dense layer with softmax activation function is applied, so that for each
time step t an attention vector αt of length p (number of features) is learnt with |at| = 1. Before
being fed to the LSTM, input features are weighted by attention vectors. Raw softmax activations
αt from an activation map are extracted and further analyzed for suitability for explanation. The
Python function for attention layer is shown in Listing 1.

Listing 1: Customised Attention Layer.

def attention(inputs , SHAPE ):
n_steps = int(inputs.shape [1])
a = Permute ((1, 2))( inputs)
a = Reshape ((n_steps , SHAPE ))(a)
a = Dense(SHAPE , activation=’softmax ’, name=’attention_vec ’)(a)
output_attention_mul = multiply ([inputs , a])
return output_attention_mul
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5.4 Model Evaluation Criteria
Performance evaluation is a procedure that helps to assess if the prediction of the model meets the
specifications for the ML problem. In machine prognosis and RUL prediction, since the key aspect
is to avoid failures, desirable is to predict early as opposed to late prediction of RUL (e.g., when the
predicted RUL is longer than the actual RUL), because it can lead to catastrophic consequences.
Therefore, the evaluation metrics with late RUL prediction penalty are preferable.

5.4.1 Mean Squared Error

Mean Squared Error (MSE) represents the average of the squared difference between the original
and predicted values in the data set. It is calculated as follows:

MSE =
1

N

N∑
i=1

(yi − ŷ)2 (41)

where N refers to the number of the samples in the test data (total number of test samples of
turbofan engines), Yi denotes the difference between the predicted value (estimated RUL) of the
i-th sample and the actual value (true RUL). It measures the variance of the residuals. A smaller
MSE value is preferred because indicates that better the regression model is.

5.4.2 Root Mean Squared Error

Root Mean Squared Error (RMSE) is the square root of Mean Squared Error (Equation 42). It
is used to measure the standard deviation of residuals. However, RMSE is a common evaluation
index for prediction error, it does not distinguish between early and late prediction (the penalty
is equal in the both cases). Same as for the MSE metric, the lower the value of RMSE, the better
the effect of the model.

RMSE =
√
MSE =

√√√√ 1

N

N∑
i=1

(yi − ŷ)2 (42)

5.4.3 Score Function

Score Function (SF) is an asymmetric scoring function, which is structurally different from MSE
and RMSE. It captures the preference for early prediction well by giving more penalties for late
predictions. As can be seen in the Figure 18, the penalty grows exponentially with increasing error.
SF is defines in Equation 43.

score =

{ ∑Xn

i=1 e
Yi
13 − 1 for Yi < 0;∑Xn

i=1 e
Yi
10 − 1 for Yi ≥ 0;

(43)

Figure 18: Root Mean Squared Error versus Score Function.
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5.5 Explanations generation and validation

5.5.1 SHAP

In Section 4.7 two methods based on SHAP have been described, which are local explanations
methods. However, only one of them is suitable to describe the Deep Learning model for the time
series forecasting. Kernel SHAP explainer can not be computationally configured for an LSTM
model. It requires one- or two-dimensional data passed through the prediction model, for exam-
ple [samples, features], whereas an LSTM network expects the input data X to be provided with
a specific matrix structure in the form of [samples, time steps, features], where first dimension
represents samples, time steps dimension is every time step for each sample, and features are the
features for each time step. Therefore, we have decided to use Deep SHAP as an explanation
method. It is implemented using DeepExplainer from SHAP package. This explainer requires a
background data set upon initialisation, which is the data that is integrated over when approxi-
mating the Shapley values. An alternative for Deep SHAP is Gradient SHAP, which is based on
connections between SHAP and the Integrated Gradient algorithm. However, better performance
is obtained with Deep SHAP, which works faster for Deep Learning models, as well as makes
different approximation assumptions which turned out to be better suited.

SHAP library was used not only to calculate SHAP values, but also to use them to visualise
important relationships in the model. In doing so, we gain a better understanding of how these
models works. The generated plots are discussed below.

Force Plot
One of the descriptive plots that can be generated using SHAP library is the Force Plot. It is
a plot that shows how features contributed to the model’s prediction for a specific observation.
Thanks to that it is possible to see how the model arrived at the prediction it did for a specific
observation; which features forces the prediction to be higher or lower. An example of a force plot
can be seen in Figure 19. In the figure, the base value E[f(x)] = 0.3198 is the average of all output
values of the model on the training data set and it represents the predicted outcome if none of
the features were used. The model leads to the prediction 1.00 what is represented as the number
in bold, where the color red and the color blue of the bars intersect. Each bar corresponds to a
feature’s importance value. The color of the bar indicates its effect on the output (red is positive
and blue is negative) and its size relates to the magnitude of that effect.

Figure 19: An example of the SHAP force plot when data is two-dimensional.

When SHAP is run on the three-dimensional data, the force plot looks differently, see Figure
20. In this case, each time-step is plotted against the x-axis, with the forces being plotted against
the y-axis. The color red, the same as in the previous force plot, indicates a feature that increases
the prediction value and the color blue - decreases. If we would like to represent the effect of
features for a single prediction, the force plot would be similar to the one form in Figure 19.

Figure 20: An example of a force plot with three-dimensional data where the horizontal axis
depicts the time steps.

Waterfall Plot
Waterfall SHAP plot, depicted in Figure 21, is another way to visualise SHAP values. This
gives pretty much the same information as a force plot for a single time-step. The SHAP values
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represents how much each factor contributed to the model’s prediction when compared to the mean
prediction. Large positive/negative SHAP values indicate that the feature had a significant impact
on the model’s prediction.

Figure 21: An example of a waterfall plot generated by SHAP.

Summary Plot
The global explanations can be easily generated using a summary force plot integrated into SHAP.
As seen in Figure 22, this is a plot of all the SHAP values. The values are grouped by the features
on the y-axis. For each group, the colour of the points is determined by the value of the same
feature (i.e. higher feature values are redder). These plots are helpful to get a general idea of what
features the model finds important for its prediction.

Figure 22: An example of a global force summary plot that show the influence of features on a
model in general. Source: [54].

5.5.2 LIME

LIME library provides a special explainer to work with keras-style recurrent neural networks called
RecurrentTabularExplainer. This explainer is a Python class that extends the basic LimeTabu-
larExplainer which is dedicated for two-dimensional tabular data sets. It enables to work with
input data in the form of [samples, time steps, features] by reshaping the training data and feature
names such that they are represented as (val1t1, val1t2, val1t3, . . . , val2t1, . . . , valntn), where val1t1
stands for a value of the first feature at the first time-step of the given sample. Recurrent Tabular
Explainer can be run in two modes: regression and classification. For prediction of RUL regression
mode will be used as the foundation to interpret the models. LIME library also provides the ability
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to visualise data, however, it is less powerful than in the case of SHAP. The Explainer object has
a method named show_in_notebook() which will explain how the model comes to a particular
prediction based on feature contributions. The example of a visualisation for the explanations can
be seen in Figure 23.

Figure 23: An example of a visualisation generated by LIME for a regression model.

Inside the visualization, we can see three sections: a progress bar, a bar chart and a table.
The progress bar shows range in which value varies and actual prediction. In the bar chart, the
y-axis represents the features while the x-axis represents the relative strength of each feature. The
positive value (orange color) shows that the feature support or increase the value of the prediction,
while the negative value (blue color) has negative effect or decrease the prediction value. The table
consists of the actual values of the top X data points. The number X of visualised features is a
variable to be set. For this project we chose to make a plot for 10 most important data points.
The color-coding is consistent across sections.

5.5.3 Attention Mechanism

In terms of attention mechanism, which theory is described in Section 2.3.5, a custom attention over
the inputs layer was added to the model. For the task of RUL prediction, it is added to focus on
different region of interest by assigning different weights ait for different features i at different time
steps t. By doing so, the network is able to pay more attention to the features/time stamps that
are more critical to the current task among other data in the sequence, reducing the attention paid
to other useless information. The assigned attention weights can be used for model’s prediction
explanation as they indicate the importance of the different features at the different time points
of the time series. ‘High’ attention means a high contribution to the output while ‘low’ attention
means a low contribution to the output.

To graphically represent the attention activations the heatmaps were constructed. In this type
of visualisation, the x-axis represents the features (e.g., sensors) while the y-axis represents the
time points (e.g., working cycles of an engine). The color of a given cell of the heatmap indicates
the level of the feature contribution to the output. An example of such a visualisation from the
literature can be seen in the Figure 14.

Using attention weights, for each data sample, a matrix of the size number of features ×
number of time steps in the window can be extracted. The softmax activations in such a matrix
sum to one over the full-time window for each predictor variable and could be averaged over
all samples examples to obtain sample-averaged attention maps demonstrating when individual
predictor variables had the most influence. Furthermore, these second order sample-averaged
attention tensors can be further averaged over the features dimension to obtain the one-dimensional
feature-averaged attention vector. This feature-averaged vector (which has also been sample-
averaged) reveals the average attention being placed on each time-step in the time window. Such
an aggregated form of attention activations can be considered as global explanations.

While trying to explain the prediction with the attention mechanism, the main drawback is
that it does not indicate positive and negative contribution of the data point to the output. The
values of attention weights are only positive, between 0 and 1, and it is impossible to tell if a
certain data point increased or decreased the final prediction’s value.
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5.6 XAI evaluation methodology
In this work, to test and evaluate XAI methods the verification techniques proposed by Schlegel
et al. [86] and described in Section 4.9.2 were adapted and some tweaks were added to extend
it for time series forecasting task. For time series perturbation, the relevant features at relevant
time points are taken and their surroundings are set to zero, to their inverse and to the mean of
the feature values. The used perturbation takes a time series t = (t0, t1, t2, . . . , tn) and changes
the whole sub-sequence around the relevant point, for example setting it to 0 and resulting as
tc = (t0, 0, 0, 0, t4, . . . , tn) with a relevant time point i = 2 and interval range of 3.
To put it in order, the evaluation of XAI methods step by step is performed in three stages (model
training and evaluation, model explanation creation and explanation evaluation):

1. Firstly, the constructed model is trained using an original training data set and predictions
are generated for testing data. Quality measures qm(t) are calculated to assess the model’s
performance.

2. Next, a selected XAI method creates explanations for every sample of the test data and each
feature relevance r at each time step is calculated. The resulting contributions are sorted,
and the top k most relevant data points’ positions are taken. Later, the sub-sequences around
these k key data points are being changed.
After the selection is done, the selected time points at the resulting attribution positions
are perturbated for all three processes according to the defined verification methods (set to
0, set to mean and swap places). These three perturbations lead to three new test sets tc
with c being an identifier for the change. Lastly, 3 new test sets tcr are created by randomly
selecting k data points as relevant and perturbating their surrounding according to three
aforementioned approaches to verify relevance of random data points.

3. In the last step, each of these six newly created test sets is passed to the trained model and
the predictions are evaluated by quality measures qm(tc) and qm(tcr) which are calculated
for the comparison.

The assumption is that if XAI methods capture relevant information, which the prediction model
learns to make decisions (what means that explanations are correct), the quality metrics follow the
schema qm(t) ≥ qm(tcr) > qm(tc), with qm as the quality measure, t the original time series, tcr
the random data points changed, and tc the relevant data points changed.
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6 Experiments and results analysis

In the following experimental study, the explainability of one candidate of ante-hoc and two can-
didates of post-hoc XAI methods were assessed. Firstly, the real-world turbofan engines data
sub-sets provided in the benchmark C-MAPSS data set: FD001, FD002, FD003, FD004 [85] were
analyzed and pre-processed for training time-series machine learning models. Secondly, the ML
models were built and optimized on the training sets and used to predict on the test sets. Thirdly,
the explainability techniques were applied to obtain the explanations for the predictions. Finally,
the methods to validate the generated explanations were applied.

6.1 Software
Runtime environment
The experiments in this work were executed in Colaboratory by Google, Google Colab for short, a
product from Google Research. Colab is a Jupyter Notebook based run-time environment which
allows to run code entirely in the cloud and is configured with GPU-enabled Machine Learning
frameworks. The main specifications of the used environment are listed in Table 1.

Table 1: Google Colaboratory environment specification.

Programming Language
The scripts for pre-processing the input data, the models for time-series predictions and XAI tech-
niques were implemented in the Python programming language [95]. It is a dynamically typed,
high-level interpreted language. Python is characterised by high readability and conciseness of
the source code. Like other dynamic languages, it is often used as a scripting language. Python
interpreters are available for many operating systems, and on Linux-based systems its interpreter is
installed by default. Python is developed as an Open Source project managed by the Python Soft-
ware Foundation. Python functionality can be at choice expanded thanks to numerous libraries
for data processing, visualisation, statistics, natural language processing, image processing and
more. There are also comprehensive Python-based projects that support scientific data analysis,
computation, and processing, such as Anaconda [2]. This broad tool provides data analysts with
a wide variety of general and purpose-oriented functions. One of the main advantages of using
Python is that one can interact directly with the code using a terminal or other tools such as
Jupyter Notebook [48]. Machine learning is essentially based on iterative processes where data
guides the analysis that is performed. Therefore, it is essential that the tools used for this purpose
ensure fast iteration and easy interaction.

Jupyter Notebook
To make it easier to read data and to do pre-processing operations on it, as well as to generate
visualisations for XAI techniques, Jupyter Notebook [48] was used. It is an interactive computing
environment designed to help scientists work with Python and their data. It allows to create in-
teractive sheets in the browser that may contain executable code, descriptions, tables, charts, and
data visualisations. This solution allows for a much more experimental mode of operation than
typical programming environments. Each step of computing can be segmented into cells and the
intermediate results can be stored. This means, for example, that the data will not have to be read
or imported from the CSV file each time to be able to do an operation on it. Jupyter Notebook
is being developed as part of the Jupyter project, which was established to develop open source
software for interactive computing in several dozen programming languages. Some alternatives to
Jupyter Notebook are PyCharm or Wing Python IDE. Jupyter Notebook is more lightweight, can
be easily used in the cloud thanks to Google Colab and fulfills all the requirements to conduct this
project which is why it was chosen.

Scikit-learn
Scikit-learn [70] is a Python library that contains the implementations of machine learning algo-
rithms and it is built on the basis of NumPy and SciPy modules. It provides many effective tools
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for data analysis and data mining. Thanks to this library, it is possible, inter alia, to use algo-
rithms from the field of Supervised and Unsupervised Machine Learning in the form of a coherent
programming interface. The Scikit-learn project is constantly developed and improved, and its
community is very active. The official website [70] has extensive documentation on each algorithm
that can be implemented with this library. The main application of Scikit-learn in the project
was the use of its function GroupShuffleSplit in order to provide randomised training indices to
split data according to the engine groups. It allowed to perform cross-validation against these
engine-based splits.

Pandas
For common operations on data such as loading data from CSV, structuring data, and dealing
with missing values, the open-source library Pandas [59] was used. Its main advantage is that
it facilitates working with data in a format similar to Excel spreadsheets, which are represented
in the form of two-dimensional tabular data structures called DataFrames. Its basic functions
are: reading and viewing data, checking data for missing values, checking data types in data set,
checking correlation between columns in a data set, and a range of different operations that can
be executed to facilitate and accelerate data cleansing and analysis.

NumPy
For handling data and applying efficient data set transformations NumPy [36], a Python library
for scientific computing, was applied. It provides a list of mathematical functions that allow to
quickly manipulate multidimensional arrays and the matrices that are its basic objects. In the
Scikit-learn package, the NumPy list is the basic data structure.

Matplotlib
Matplotlib is a data visualisation and graphical plotting library for Python [38]. It was applied for
data visualisations in the form of charts, heat maps, histograms and so on.

Keras
In order to implement the proposed Deep Learning models, the chosen framework is Keras [20], a
high-level neural network API written in Python. Keras is one of the most used Deep Learning
frameworks. Its first release took place in 2015. The creator of the library is the French program-
mer François Chollet. Keras applies best practices for reducing cognitive load: offers consistent
and simple APIs, minimises the number of user actions required for common use cases, and pro-
vides clear and useful error messages. It is also provided with the extensive documentation and
developer guides. Keras is built on top of TensorFlow 2.0, which is able to improve the efficiency of
the performed models through its compiler that increases the speed of the linear algebra operations
and allows the use of GPUs instead of CPUs if it is available. In Tensorflow data is represented as
tensors that can be understood as a generalization of scalars, vectors, metrices, etc. It implements
a lot of operations that can be done on each tensor, such as applying mathematical operations and
various manipulations. Using Tensorflow with Keras makes it relatively easy to model and build
rather complex neural networks, as well as implementing customised layers, which facilitated the
implementation of the attention mechanism.

SHAP
SHAP is a Python library that uses Shapley values to explain the output of any type of Machine
Learning model [54]. It provides both local and global interpretability by calculating SHAP val-
ues on the local level for feature importance, and then providing a global feature importance by
summing the absolute SHAP values for each of the individual predictions. Its implementation
includes a couple of different explainers, among them DeepExplainer meant to approximate SHAP
values for Deep Learning models. It is also possible to use the SHAP library to graphically repre-
sent explanations through powerful visualizations such which go beyond the traditional summary
statistics that come with basic graph types, such as force or dependency plots or summary plots.

LIME
To implement LIME explaining approach a Python library with the same name as the algorithm
was used [80]. It was developed in 2016 by Marco Tulio Ribeiro. LIME library has different meth-
ods used for interpretation. This depends on the type of data used as input for example, tabular
data interpretation technique, textual data interpretation technique or image data interpretation
technique.
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6.2 Data set
One of the main problems of creating the accurate predictive maintenance systems is often lack
of adequate historical process data. Models, that aim to anticipate failures and extend the work
life of components, should be trained with run-to-failure data sets. However, industrial companies
work hard to ensure trouble-free production, therefore majority of collected data belonging to
correct working conditions. Forcing assets to have failures is expensive, time consuming, and many
times it is impossible to replicate desired type of failure. Lack of error data can be also caused by
registration of failures, for example inconsistent labeling. Additionally, industrial companies avoid
publishing their data or process details to protect their intellectual property and know-how from
competitors.

The common approach to overcome these limitations is to train model with synthesized fault
data. The data engineers generate the necessary error data with the help of simulation tools.
To alleviate described problem for this work, we decided to use a publicly available example of
such generated data set, which describes a degradation of turbofan engine named Commercial
Modular Aero-Propulsion System Simulation (C-MAPSS) [30]. It contains four data sub-sets from
a turbofan engine simulation model that have been collected by NASA’s prognostic center of
excellence and made available to the Prognostics and Health Management (PHM) community to
allow evaluation and comparison of prognostics algorithms. These data sets have since been used
very widely in publications. Mainly because pose several challenges that have been tackled by
different methods on the PHM literature. In particular, management of high variability due to
sensor noise, effects of operating conditions, and presence of multiple simultaneous fault modes are
some factors that have great impact on the generalization capabilities of prognostics algorithms
[75].

6.2.1 Data set description

The C-MAPSS data set consists of data coming from the aircraft turbofan engine sensors.

6.2.1.1 Turbofan engine

According to NASA Glenn Research Center official website [16], turbofan engine is the most modern
variation of the basic gas turbine engine. A gas turbine engine, also known as a jet engine, is a
type of turbine engine that can convert energy stored in the fuel to useful mechanical energy in the
form of rotational power. The term “gas” refers to the ambient air that is taken into the engine and
used in the energy conversion process as the working medium. There are mainly five types of gas
turbine engines: turbojet, turbofan, turboprop, turboshaft, and ramjet engines. All of them work
on the same principle. The engine is composed of air intake, a compressor (low and high pressure),
a combustor, a turbine (high and low pressure) and an outlet or exhaust nozzle [85]. The air is first
drawn into the engine front part with a fan where it is compressed by a compressor module. The
compressor consists of many blades attached to a shaft, which spin at high speed and compress
or squeeze the air what raises the pressure of the air [29]. The compressed air is then mixed with
fuel and ignited by electric spark. The resulting hot gas expands at high velocity and blast out
through the nozzle at the back of the engine. As the hot air is going to the nozzle, it passes
through another group of blades called the turbine. The turbine is attached to the same shaft as
the compressor. The movement of high levels of hot velocity gases, produces energy to power the
turbines from a compressor. Such high-speed hot gases are exhausted from the compressor to the
turbine. The high velocity gas coming from turbine is drained out through the jet nozzle which
produces a thrust to drive the engine forward outside through the outlet.

Most modern airliners use the turbofan engines because of their high thrust and good fuel
efficiency [16]. A turbofan engine is simply a turbine engine where the first stage compressor rotor
is larger in diameter than the rest of the engine. This larger stage is called the fan. In a turbofan
engine only a portion of the incoming air goes into combustion chamber and is further compressed
and processed through the engine cycle[29]. The remainder passes through a fan and bypasses or
goes around the engine. This air is called bypass air, and the ratio of bypass air to core air is called
the bypass ratio [85]. The air accelerated by the fan in a turbofan engine contributes significantly
to the thrust produced by the engine. So, a turbofan gets some of its thrust from the core and
some of its thrust from the fan.

There are five basic gas turbine components which plays a very important role in the operation
of an engine [16] (see Figure 25):

• Air inlet: All turbine engines have an inlet to bring free stream air into the engine. The
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air travels through the engine from the inlet to exhausted nozzle passing through the fan. It
then speeds this air up and splits it into two parts. One part continues through the "core"
or center of the engine, where it is acted upon by the other engine components. The second
part "bypasses" the core of the engine. It goes through a duct that surrounds the core to
the back of the engine where it produces much of the force that propels the airplane forward.
This cooler air helps to quiet the engine as well as adding thrust to the engine.

• Compressor: Compressor is the first component in the engine core. It squeezes the air
that enters into its progressively smaller areas, resulting in an increase in the air pressure.
This results in an increase in the energy potential of the air. The squashed air is forced into
the combustor. There are primarily two types of compressors: the Low-Pressure Compressor
(LPC) and the High-Pressure Compressor (HPC). The low-pressure compressor is responsible
for precompressing the air, while high-pressure compressor handles main compression.

• Combustor: Inside the combustor, the compressed air flowing into the chamber is mixed
with fuel and then ignited. The fuel burns with the oxygen in the compressed air, producing
hot expanding gases. These high velocity gases are used to run the turbine.

• Turbine: Main task of a turbine is to convert the energy from high velocity gas into
rotational power through expansion. The gases produced in the combustion chamber move
through the turbine and spin its blades. Created energy is extracted and transferred to the
compressor and fan through connecting shaft. This energy helps compressor and fan to spin.
The temperature and pressure of the air leaving the turbine is relatively low due to the energy
extracted by the turbine. Two types of turbines primarily exist: the high-pressure turbine
High-Pressure Turbine (HPT) and the low pressure turbine Low-Pressure Turbine (LPT).
The high-pressure turbine drives the high-pressure compressor and the low-pressure turbine
drives the low pressure compressor and the fan that in turn generates the bulk of the thrust.

• Exhaust nozzle: Nozzle is the last component of the engine located just after the turbine.
As the air passes through it just before leaving the engine, it is considered as the exhaust
duct of the engine. This is the engine part which actually produces the thrust for the plane.
Though most of the gaseous energy is converted to mechanical energy by the turbine, a
significant amount of power remains in the exhaust gas. The stream of the air of depleted
energy that passed through the turbine, combined with the cooler air that bypassed the
engine core, generates a force when leaving the nozzle that propels the engine and therefore
causes the airplane to move forward.

6.2.1.2 Failure of turbofan engine

As can be concluded from the previous section, turbofan engine, which is highly complex and
precise thermal machinery, is considered as the “heart” of the aircraft. Gas-turbine engine failure
causes about 60% of the total faults of the aircrafts [97]. Hence it is very important to control its
degradation status. Just as a person’s life and living conditions affect their health and thus their
life span, all machines deteriorate with time, use and environmental conditions. The operational
lifetime of turbofan engine is highly affected by severe environmental and operating conditions such
as corrosion, wear, fouling, erosion etc., which eventually lead to costly and catastrophic failures
if a run-to-failure philosophy is adopted. Because an engine health deteriorates substantially over
time and sudden degradation during a flight is rather unlikely, potential downfalls can be fore-
casted based on the detecting drift of certain measurements collected after each flight from sensors
installed along the gas path of the engine. Changes to some physical and electrical characteristics
as e.g., shaft speeds, pressures, temperatures or vibrations may be used as the fault indicators, see
Figure 24. These so-called health parameters enable fault diagnosis and prognostics and health
management (PHM) on engine. The prognosis of the remaining useful life (RUL) of turbofan
engine is the most difficult and challenging part among PHM.
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Figure 24: The Gas Path Analysis approach to jet engine diagnostics. Source:[12].

6.2.2 C-MAPSS data set for turbofan engines RUL prediction

The main reason why we decided to use C-MAPSS data set for this study is that it is one of
the reference data sets widely used for predictive maintenance methods evaluation which enables
application of all predictive maintenance steps. Although NASA released the following data set
over a decade ago (in 2008 [85]), it remains popular and relevant today. Only in 2020, over 300
new research articles, which present and benchmark novel algorithms to predict Remaining Useful
Life (RUL) on the turbofan engine, were published [1].

C-MAPSS data set is simulated using a C-MAPSS tool coded in the MATLAB-Simulink envi-
ronment [85]. It simulates a two spool, double flow turbofan engine model of the 90.000 lb thrust
class that is illustrated in the diagram in Figure 25. This diagram depicts main elements of the
engine model. The modular components and the way they are assembled in the simulation are
shown in the flow chart in Figure 26.

Figure 25: Simplified diagram of engine simulated in C-MAPSS. Source:[30].

Figure 26: A layout showing various modules and their connections as modeled in the simulation.
Source:[30].

As described in Section 6.2.1.2, the propulsion power is produced when the high-pressure (HPT)
and low-pressure (LPT) turbines are driven by a tremendous force of pressure produced in the
combustion chamber [65]. The heated air by the burners is previously accumulated from the fan
and compressed in different stages using low-pressure (LPC) and high-pressure compressors (HPC).
Low-pressure rotor (N1), high-pressure rotor (N2) and nozzle guarantee the combustion efficiency
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of the engine. Using a number of editable input parameters the simulator allows the engine to
be operated over a wide range of thrust levels throughout the full range of flight conditions. It is
possible to modify parameters as fuel flow and some efficiency parameters to simulate the various
effects of faults and deterioration in any of the engine’s five rotating components (Fan, LPC, HPC,
HPT, and LPT).

NASA used C-MAPSS to simulate 4 different types of turbofan engines under different com-
binations of operational conditions and fault modes. The data set includes time series for each
engine. Each data set can be considered as a fleet of engines of the same type. Each engine starts
with different degrees of initial wear and manufacturing variation which is unknown to the user.
These wear and variation are considered normal, i.e., it is not considered a fault condition. There
are three operational settings that have a substantial effect on engine performance. These settings
are also included in the data. The collected data is contaminated with sensor noise.

In each life cycle, the sensors measurements are changed gradually to describe certain kind
of deterioration attitude of the engine. In the beginning of each life cycle, an engine is normally
working under the initial conditions, and at certain number of flights, it starts gradually losing
its performances towards a predefined failure mode. Figure 27a and 27b shows the examples of
behavior of sensors measurements that clearly depict a trend that leads the engine to the failure.

(a) Sensor 7 vs RUL (b) Sensor 9 vs RUL

Figure 27: Example of sensors readings.

The overview of the chosen C-MAPSS data set and its four different subsets with the notations:
FD001, FD002, FD003 and FD004, which are generated according to different operating conditions
and failure modes, is presented in Table 2. For instance, the data set FD001 has 100 turbo engine
units running under one condition with only a high-pressure cylinder (HPC) fault. Each subset is
divided into training and testing sets. In the training data set, the engines run from a certain point
to failure while in the test data set, the records terminate at some point before a failure. Each
data set is stored in a CSV file, with each row representing one time-step (measured in cycles) and
containing 21 sensor measurements, three operating conditions, and other useful information (see
Table 3). Moreover, for each test data set a separate CSV file with actual RUL values for each
test engine is given (see Table 4), so that the performance of the model can be evaluated through
the comparison between the actual value and predicted value.

Table 2: Overview of the used turbofan data sets.

The task is to predict the RUL of a turbofan in the testing data set. This means that the model
has to forecast when the turbofan will break down and maintenance will be required. In Table 3,
the data structure of the training and test data set is presented. In Table 4, the data structure of
the RUL data set is shown. The 21 sensory signals are detailed in Table 5.
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Table 3: The data structures of the training and testing data sets.

Table 4: The data structure of the RUL data sets.

Table 5: Data description of turbofan engine sensors.

6.2.3 Exploratory analysis

According to Cross Industry Standard Process DataMining (CRISP-DM) methodology, data un-
derstanding is one of the vital steps that must be performed before building a Machine Learning
model. Exploratory Data Analysis (EDA), utilizes various techniques in order to gain insights in
the data set and to guide feature extraction, data cleaning, and feature collection.

As a first step of exploratory analysis, the missing values were inspected. It turned out that
data sets are free of this problem. Later analysis of basic statistical measures of chosen data sets
was carried out. In Appendix A, the Table with mean, median, mode, percentiles, and standard
deviation for data set FD001 is presented. Looking at the standard deviation it is clear sensors 1,
10, 18 and 19 do not fluctuate at all, these can be safely excluded as they hold no useful information.
Inspecting the quantiles indicates sensors 5, 6 and 16 have little fluctuation and require further
inspection. Sensors 9 and 14 have the highest fluctuation, however this does not mean the other
sensors cannot hold valuable information. Sensors’ selection procedure is further discussed at the
end of this section.

In the next step of the exploratory analysis of data set, the histogram of max RUL was plotted
to understand its distribution, Figure 28.
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Figure 28: RUL distribution for FD001 data set.

The histogram shows that most engines break down around 200 cycles. Moreover, the distri-
bution is right skewed, with few engines lasting over 300 cycles. The minimum unit length is 128
cycles whereas maximum unit length is 362 cycles.

Furthermore, probability density distributions (Figure 42, Appendix B) and boxplots (Figure
43, Appendix B) for sensors data were generated. A ML algorithm generalizes well, its performance
on unseen data is good, if unseen data is similar in distribution to training data [73]. In chosen
data sets unseen data is not exactly of same distribution as of training data but it is not very
different from training data.

As plotting is always a good idea to develop a better understanding of a data set, in order
to select relevant sensors for RUL prediction, the signals from all the 21 sensors for FD001 were
visualized.
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Figure 29: Sensors readings for FD001 data set.

Figure 29 shows the sensors readings for randomly selected engine. While most of sensors have
a clear degradation trend, other sensors remain constant in the run-to-fail experiments.

• The plots of sensors 1, 5, 10, 16, 18 and 19 look similar and do not alter over time, the flat
line indicates the sensors hold no useful information, which reconfirms the conclusion from
the descriptive statistics.

• Sensor 2 shows a rising trend, a similar pattern can be seen for sensors 3, 4, 8, 11, 13, 15 and
17.

• Sensor readings of sensor 6 peak downwards at times but there does not seem to be a clear
relation to the decreasing RUL, therefore it also can be added to the list of sensors to exclude.
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• Sensor 7 shows a declining trend, which can also be seen in sensors 12, 20 and 21

• Sensor 9 has a similar pattern as sensor 14.

Exploratory Data Analysis determines that sensors 1, 5, 6, 10, 16, 18 and 19 hold no information
valuable for RUL forecasting. Therefore, useful sensor measurements 2, 3, 4, 7, 8, 9, 11, 12, 13, 14,
15, 17, 20, 21 are selected, and the irregular/unchanged sensor data are abandoned. FD003 follows
the same degradation patterns as FD001 and thus the subset of sensors was used. Eventually the
same features were adopted for all data sets: FD001, FD002, FD003, FD004.

6.2.4 Preparing the data

In the initial stage of the model design process, the original turbofan engine data should be pre-
processed, so that later the pre-processed data can be passed into the model to obtain the pa-
rameters required for RUL prediction. The pre-processing process includes feature selection, data
scaling and regime standardization, setting the size of sliding window, and RUL label setting of
training set and test set.

6.2.4.1 Computing RUL

Since the data set comes with only the test labels without the training ones, it is necessary to
compute them in order to provide during the training process an input sequence of measurements
together with the corresponding RUL values. As already mentioned in Chapter 5.2, each row of
the data set represents a cycle of an engine; since the train set contains the full history of each
engine until the fault, the RUL can be defined as the remaining number of cycles before the engine
stops to work. Therefore, RUL label for i-th cycle of the certain engine, was computed using the
Equation 44 by subtracting from the last value of cycle registered for this engine the number of
the i-th cycle.

RULi = Cyclelast − Cyclei (44)

6.2.4.2 Piece-wise linear degradation

Moreover, the piece-wise linear degradation model for the RUL labels was adopted. This technique
can prevent the algorithm from overestimating RUL value [108]. As can be seen in the Figure 30,
the mean sensor signal is rather stable for cycles 250-100 (or so). However, computed RUL is
declining over the time. Below 100 cycles, both the mean sensor signal and computed RUL are
declining. In essence, the higher correlation between the sensor signal and computed RUL at lower
RUL values makes it easier for the algorithm to produce more accurate predictions. Looking at
the sensor signals depicted in Figure 29, many sensors seem rather constant in the beginning. This
is because the engines only develop a fault over time. The bend in the curve of the signal (around
150 cycle) is the first bit of information provided to us that the engine is degrading and the first
time it is reasonable to assume RUL is linearly declining. As the information about the initial wear
and tear is not provided, it is hard to conclude anything about RUL before that bending point.

Figure 30: Graph depicting linear declining RUL and s_12. This graph aims to showcase where
the sensor signal and linearly declining RUL correlate strongly.)

Piece-wise Linear RUL Target Function applied to the data set is shown in Figure 31. The
RUL value for normal working state of the engine is set to a constant value, and after a certain
period of time it drops linearly with time. This function limits the maximum value of RUL, which
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is determined by the observed data in the degradation stage. In other words, in case a sample has
a RUL value greater than a pre-defined threshold, its RUL value is re-set to the threshold value.
Testing multiple upper bound values indicated that threshold RUL at 125 yielded the biggest
improvement for the model. So, for RUL labels of each engine, the part exceeding 125 is uniformly
specified as 125.

Figure 31: Graph depicting s_12, linear and piece-wise RUL of C-MAPSS datset (Piece-wise
maximum RUL is 125 time cycles.)

6.2.4.3 Normalization

The C-MAPSS data set involves different types of sensors and different working conditions. The
raw sensors readings have high variance, are incompatible with one another, and feeding them
directly to the machine learning models may hinder the learning process and affect the model
performance. To remedy this issue, the data must be scaled and normalised. Standardisation, also
known as z-score normalization, was applied for each sensor following the formula:

Z − score(xd) =
xd − µd

σd
,∀d (45)

where xd are the original data value for feature d, µd is the mean and σd is the standard devia-
tion respectively for that feature. This method of scaling was chosen, because it maintains useful
information about outliers and makes the algorithm less sensitive to them in contrast to min-max
scaling.

For data sets with multiple working conditions, the sensor readings were standardised with re-
spect to their corresponding working conditions. Initially to address this issue one hot encoding
described in Section 2.4.4 was used to transform each operating condition into a different category.
It caused that each record had one unique condition category active. We expected that adding
this information to the data while removing the original settings would make it easier for an al-
gorithm to figure out which unique combination of settings are being used and how they relate to
the target variable. However, this method caused unnecessary increase in data complexity with
unsatisfactory improvement of the model performance.

In the end, operating condition-specific standardisation [69] was used. In particular, all records
of a single operating condition were grouped together and then standardisation of each cluster
independently was applied. To formulate the scaling function Formula 45 was modified to normalize
by mode as well as feature:

Z − score(x(m,d)) =
x(m,d) − µ(m,d)

σ(m,d)
,∀m, d (46)

where m refers to one of the six possible working mode. The effect of normalization for data
gathered by the sensor s_2 for three engines working under 6 conditions is shown in Figure 32. As
a result, the mean value of single sensor readings for each of the clusters is equal to zero. It makes
the features somewhat invariant to operating conditions, making it easier for models to detect the
degradation trends [69].
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(a) Raw data gathered by the sensor s_2 for three engines. (b) Data from sensor s_2 after normalisation.

Figure 32: Result of condition-based standardisation.

6.2.4.4 Noise removal

To represent the actual operation of the engines and make the data sets credible, the sensors were
contaminated with true levels of noise [85]. However, for most of the existing RUL prediction
models, noise is considered harmful and has to be removed [101]. To denoise the prediction results,
the Exponential Weighted Moving Average technique was implemented 2.4.1. Its simplified formula
is represented in the Equation 47.

X̃t = αXt + (1− α) ˜Xt−1 (47)

In a nutshell, it takes the current value Xt, the strength of the filter represented by α and the
previous filtered value ˜Xt−1, when calculating the filtered value X̃t. It created a smoothed version
of the original data set in order to reduce the impact of the noise and to eliminate outliers. Lower
values of alpha have a stronger smoothing effect. α value was selected in hyperparameter tuning
process.

6.2.4.5 Data segmentation

Figure 33: Data segmentation for RUL prediction.

In the next step of data pre-processing, time series sequences were generated. To do so, a few
restrictions were considered:

1. Sequences should only have data of a single unit_nr to prevent mixing records of a deterio-
rating engine with data coming from the next engine in the healthy state.

2. Usually for time-series problems, X data time-points are used to predict Yt+1, whereas in
RUL prediction the task is to predict Yt.

To create data sequences, sliding window method was used [74]. Figure 33 represents the process
of data segmentation for training samples. For the run-to-fail experiments, the number of total
running cycles of an engine is t (starting from the beginning of its life-cycle to its failure), W
represents the window size and S indicates the step size. Each sample will have a size of s x n,
where n is the number of sensors. The RUL label for the (i+1)th window is calculated as follows:
RULi+1 = T −W − i ∗ S.
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Moreover, to keep all engines in the test data set, even if their life-cycle was shorter than the
set window size, padding was introduced. The missing records were filled with dummy values (it
was set to -99) and later the model was set to ignore these dummy values.

6.2.4.6 Validation

Without a validation method, it is impossible to find the best attainable high precision model in
real-world data. The common practice is to randomly split training data set where 80% belongs
to the training set and 20% is used for validation. However, because of the specificity of the C-
MAPSS data set, random split can not be performed, because part of the data of a single engine
might end up in both train and validation sets. The model could then learn to extrapolate between
timesteps and make very accurate predictions on the validation set. On truly new data however,
model performance would suffer. To prevent this, data set was split int the way that all records
of a single engine were assigned to either the training or validation set. Data related to 80% of
engines became a training set, and of remaining 20% - validation set.

6.3 RUL prediction

6.3.1 Performance metrics

Similar to other prognostic studies using the same data sets, the performance of the proposed
method of target data sets is measured using two standard evaluation indexes for the RUL esti-
mation [87]: Root Mean Squared Error (RMSE) and Score Function (SF). Initially, in order to
check whether the training and testing performed properly, and to evaluate models’ performance
in the hyperparameters tunning process, Mean Squared Error (MSE) metric was used. The MSE
was also chosen as model optimization function.

6.3.2 Hyperparameter space

In coarse-to-fine tuning, as a first step a random search was used to find the promising value
ranges for each hyperparameter. For example, when the random search returns high performance
for sequence length between 30 and 50, this is the range grid search should focus on. After getting
focus area for each hyperparameter using random search, the grid can be defined accordingly, and
grid search can be run to find the best values amongst them.
The parameter space showed in Table 6 was used for the LSTM models.

Table 6: Hyperparameter values evaluated for proposed LSTM networks.

The parameters in the Table 6 represent:

• Alpha: determines the strength of the filter of the smoothing process;

• Number of epochs: defines how many iterations of training the model should run;

• Batch size: specifies the size of the batches of training samples that will be propagated
through the network;

• Number of layers: helps to choose number of LSTM layers in the basic model;
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• Nodes per layer: sets number of neurons per LSTM layer;

• Dropout: defines the fraction of the input units to be dropped;

• Activation function: sets the activation function for the LSTM layer;

• Time window: defines the length of the input sequence.

6.3.3 Final models and training

The final architecture of the model and its parameters were set during hyperparameter tuning
using a combination of random and grid search. During this process, the model accuracy was
determined with MSE as the model evaluation metric. The cross-validation technique with 5 folds
was used to eliminate the possibility of model overfitting - from the training set, only 80% of the
training data set was used for training, while 20% is used for validation.

As a result, the network that has Masking layer, Bi-LSTM layer with 64 hidden nodes followed
by a Dropout layer and 1-dimensional output layer was build.

Figure 34: Architecture of proposed Deep Neural Networks.

Once the architecture of the network is defined, the model has to be trained. Training is an
iterative process of improving the prediction equation by looping through the data set multiple
times, each time updating the weight and bias values in the direction indicated by the slope of
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the cost function (gradient). Therefore, step by step, it involves making a prediction based on the
current state of the model, calculating how incorrect is the prediction and updating the weights
of the network to minimize this error. Training is complete when the acceptable error threshold
is reached or when subsequent training iterations fail to reduce the cost and model can no longer
learn. To calculate a cost value, which the training process tries to minimize when updating the
weights of the network, Mean Square Error (MSE) is used. The optimizer Adam decides how the
network weights will be updated based on the output of the error function. The LSTM model is
trained for 20 epochs and a batch size of 64 is used.

Table 7: The hyperparameters for proposed Deep Neural Networks.

Altogether, Figure 34 shows the complete architecture of the two constructed models: with
and without Attention Layer. Table 7 shows the hyperparameters used to manipulate the network
models. Since learning of LSTM is a non-convex optimization problem, models were trained 5
times and the structure with parameters corresponding to the best result on validation set was
recorded. Then the learnt structure is applied to the test data.

6.3.4 Models performance

In this section the results of the proposed Bi-LSTM models are presented and compared against
other methods in the literature. Two versions of the proposed architecture were implemented:
one without Attention mechanism (Bi-LSTM+FFNN) and one containing Attention mechanism
(Bi-LSTM+Attention). The performance of the architecture is presented using RMSE and Scoring
Function.

Tables 8 and 9 show a comparison of the performance of the proposed models with state-of-the-
art results of the prognosis of the RUL for a turbofan engine using C-MAPSS data sets: FD001,
FD002, FD003 and FD004. The applied method, reference, publication year, and performance met-
rics represented by RMSE and Score Function of these studies are summarised. When comparing
it should be remembered that this work is mainly dedicated to the topic of Explainable AI, rather
than development of novel architectures that could outperform the state-of-the-art RUL prediction
methods. The premise was that all the proposed models should achieve comparable performance on
the test data sets and their accuracy should be acceptable to use them for the prediction problem
defined. It is well-known that the complexity of the model increases naturally with the number of
layers. It causes that the training process for the deeper networks can be very slow and require
a lot of computational power, which makes them very time- and resource-intensive. Due to time
constraints and the number of experiments that were carried out, the focus was on making the
models which are efficient, trained in relatively short time while being satisfactory and comparable
to those presented in the literature. Also, the variant of Attention Mechanism was rather chosen
in the terms of interpretability, than obtaining better performance. Therefore, the Attention was
implemented over inputs and not over hidden states as in other studies where an improvement in
prediction was noted thanks to this mechanism. Hence, the final Bi-LSTM+Attention model was
slightly more complex and took longer time to train, but the meaningful insides from the attention
weights can be extracted to understand what input features the model learnt to pay attention to
predict RUL.

The proposed bidirectional LSTM approach for RUL prediction was compared, inter alia, to more
complex methods like Deep LSTM approach proposed by Zheng et al. [108] and CNN-LSTM by
Jayasinghe et al. [42] to test if it can offer any gains over previously implemented LSTM archi-
tectures. The difference in data preparation in relation to Zheng et al. study is that in this work
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not an entire sequence of inputs is supplied to the network to make a RUL estimation for each
time step in the input sequence. This means that the same length of the sequences is ensured by
the use of sliding window technique. While predicting for the next time step t + 1 the networks
learn hidden vectors over a sequence size Tw until this point in time. Moreover, different from
the previously proposed LSTM model the Exponential Weighted Moving Average technique was
implemented to denoise the prediction and condition-based standarisation was used to ease the
detection of degradation trends. Chen et al. [17] proposed an attention-based deep learning frame-
work where LSTM network is employed to learn sequential features from raw sensory data. In this
approach Attention mechanism is implemented over the outputs of the LSTM layer. Other Deep
Learning architectures used for comparison, which present high-performance results in the data
sets, include Deep Belief Networks Ensemble (MODBNE) proposed by Zheng et al. [105] , Con-
volutional Neural Network (CNN) methodology proposed by Babu et al. [6], Deep Convolutional
Neural Network (Deep CNN) by Li et al. [50] and Dual Aspect Selfattention based on Transformer
(DAST) proposed by Zhang et al. [107], which is an encoder-decoder structure purely based on
self-attention without any RNN/CNN module.

Table 8: RMSE comparison between the proposed Bi-LSTM methods and other approaches in the
literature on the C-MAPPS data sets.

In Table 8 the experimental results using the RMSE performance function of the proposed
approach and selected state-of the art approaches are shown. Overall, all the approaches, except
CNN-LSTM, perform better on the FD001 and FD003 data sets than on the FD002 and FD004.
This is because the FD001 and FD003 are relatively simple with only one operation condition.
Besides, the number of engines for testing in the FD002 and FD004 is much larger ( 2.5 times
more), therefore the scores that are summation over all the engines in the data set are under
different magnitude. Also, can be noticed, that deep-learning models with higher complexity, such
as MODBNE, CNN-LSTM and Deep CNN perform better than others for data sets FD002 and
FD004 which have more operating conditions. This indicates the powerful feature learning ability
of deep structures.

The proposed Bidirectional LSTM models are comparable in performance with the ones re-
ported for MODBNE, Deep CNN, Attention-based DL model and Deep LSTM. A particularly
interesting comparison is that of the LSTM by Zheng et al. [108]. The proposed bidirectional
architecture results in 10% for the FD001, 17% for the FD003 and 8% for the FD004 relative im-
provement over the reported RMSE for the unidirectional LSTM approach. Although, the results
achieved by proposed Bi-LSTM+Attention model are in general worse than the one achieved by
Bi-LSTM, they result in performance improvement of 11%, 4%, 7% respectively for the FD001,
FD003 and FD004 over the results reported for Deep LSTM and are considered as satisfactory.
Therefore, can be concluded that replacing the unidirectional LSTM cell by bidirectional LSTM
cell was a good choice as having the access to both past and future information can greatly improve
the prediction importance. Also, compared with recently developed Attention-based DL approach,
both proposed models achieved better results for the FD001 and the F004 data sets which were
chosen as the representatives.
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Table 9: Score Function comparison between the proposed Bi-LSTM methods and other approaches
in the literature on the C-MAPPS data sets.

Similarly, Table 9, presents performance comparisons of the proposed method with other AI-
based approaches. Although the recent DCNN method achieves almost the best performance with
respect to RMSE for FD002 and FD004 data sets, it presents a poor performance concerning the
prediction score. The Bi-LSTM can achieve much lower scoring values for data set FD003 yielding
a 70% relative improvement over the one reported for the Deep LSTM. The achieved results are in
general better than one obtained by MODBNE, CNN, Deep LSTM. For the remaining data sets,
the proposed methods present similar performance to previously proposed methods.

Figure 35: RUL estimation at each time stamp for four examples.
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Figure 35 presents one testing trajectory as example from each of the 4 C-MAPSS data sub-sets
and the RUL estimation at any time step of test sequence. It can be observed that in the early
periods in the 4 cases, the proposed model estimate the RUL closed to the constant. Then, when it
is close to the end of the sequence, the estimated RUL is more accurate and closer to the piece-wise
RUL. This is because the fault features are clearer as the failures are more serious at the end of
the operational time.

Summing up, the assumed goal has been achieved. Both models have achieved satisfactory re-
sults and their performance is comparable to known publish works for both RMSE and Score
Function metrics on all data sets, therefore can be used for RUL prediction.

6.4 Explanation analysis through visualisation
In this section, the explanations for Bi-LSTM models are showcased. After the trained model
gave the prognosis for the turbofan engine’s RUL, two post-hoc methods SHAP and LIME were
applied to explain results. Also, the Attention weights from the ante-hoc model were extracted
and presented in the form of the heatmaps.

To present the results, only the observations from the testing data sets which had actual RUL
below 125 are taken into consideration. This is because the predictions that indicate that the
life of the engine is nearing its end are of particular interest. Thanks to this knowledge it is
possible to pinpoint the parts that are subject to deterioration, therefore they can be tracked, and
the necessary maintenance procedures can be implemented. The explanations generated for the
healthy engine unit (for which RUL above 125 is assumed) have no particular significance.

Two exemplary cases were selected for the purposes of presenting the results and their raw
sensor reads are shown in the Figure 36.

• Case A (Figure 36 (a)) represents an engine condition where initial wear of parts is notice-
able, however its service life can be defined as still long, and if minor repairs are carried out,
this may allow extending its life expectancy. The engine with the unit index 214 from the
C-MAPSS FD004 sub data set was selected as representative for this case. The actual value
of RUL for this component is 89 while the predicted values by Bi-LSTM model is 80.8 and
by Bi-LSTM+Attention 89.5. The prediction is generated based on the last time window of
the sample, for time cycles between 73 and 102.

• Case B (Figure 36 (b)) shows the engine with significant wear of its parts. The results
from many sensors indicate its soon unfitness for work. Its representation is the engine
with the unit index 24 from the C-MAPSS FD001 sub data set. The actual value of RUL
for this component is 20 while the predicted values by Bi-LSTM model is 20.3 and by Bi-
LSTM+Attention 19.5. The prediction is also generated based on the last time window of
the sample, which in this case is for time cycles between 157 and 186.
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Figure 36: Sensor readings for turbofan engines selected as representative for cases A and B.
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6.4.1 SHAP

The SHAP explanations on the model’s output were derived to justify its predictions using Deep
Explainer which is the implementation of the Deep SHAP method. Deep Explainer shows the
contribution of each sensor to the predict RUL as a score. Figures 37 and 38 provide explanations
generated by SHAP method for case A and case B respectively. The sensor’s contribution to the
RUL prediction for an engine is represented in force plot, force bar plot and a waterfall plot.
A sensor which is marked with red color indicates the positive Shapley value which means that
sensor’s value increases the prediction value. It can be interpreted in such a way that by properly
managing the corresponding engine component, the turbofan engine can maintain its RUL suitably.
Whereas a sensor marked blue means a negative Shapley value and indicates that the deterioration
of the corresponding component can reduce the entire engine’s life.

Figure 37 shows sensors’ contribution to the RUL prediction for engine 214 of the FD004 data
set as (a) a force plot, (b) a force bar plot and (c) a waterfall plot. A force plot shows the forces
during all time steps until the prediction. Since there is more red than blue the final prediction
will be higher than the base value, which would be predicted if we did not know any features and
is measured as the average of the model output over the training data set. The last time step, the
29th, which is one of the most defining time steps for the final outcome, can be seen in Figure 37
(b). This plot explains the prediction where the model forecasts that Remaining Useful Life for
this engine unit is equal to 80.8. The red arrow represents the positive Shapley value, whereas
the blue arrow denotes a negative Shapley value. The length of the arrow indicates the magnitude
of the influence of each sensor. Therefore, this plot shows the relative importance of features’
contribution, moreover, represents the range and the distribution of the impacts that the sensors
values have on the model output.

For the 214th turbofan engine, it can be seen that the features that force the prediction higher
are mainly sensor s11 (HPC outlet static pressure Ps30), sensor s15 (Bypass ratio BPRht), sensor
s3 (HPC outlet temperature T30) and sensor s4 (LPT outlet temperature T50). What can indi-
cate that High-Pressure Compressor (HPC), Low-Pressure Compressor (LPC) and Low-Pressure
Turbine (LPT) are engine components that are functioning properly. There are no major fea-
tures that force the prediction down, except sensor s20 (HPT coolant bleed W31) which could
indicate that it is worth investigating component High-Pressure Turbine (HPT), because the early
identification of the problem can result in longer engine life.

A bar force plot shows an overview of what features are the most important to the model.
However, it does not represent the values that can indicate the range of the impacts that the
feature has on the model output. This can be viewed in a waterfall plot (Figure 37 (c)), where
sensors representing negative Shapley values on the left and positive Shapley values on the right
are listed according to the absolute value of RUL prediction’s degree of an influence.
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Figure 37: Sample explanations provided by SHAP for case A.

Analogical plots that provide SHAP explanations were generated for the engine unit number
24 from the FD001 test data set and can be seen in Figure 38. The explanation shown in Figure
38 (a) is a force plot which shows the forces during all time steps until the prediction. Since the
color blue is dominant, the final prediction will be low. The last time step, which is one of the
defining time steps for the final outcome, can be viewed in Figure 38 (b). It can be seen that sensor
s9 (Physical core speed Nc), sensor s14 (Correct core speed fNR), sensor s11 (HPC outlet static
pressure Ps30), sensor s3 (HPC outlet temperature T30) and sensor s15 (Bypass ratio BPRht)
are the sensors with the negative role in predicting RUL. However, it should be noted that ‘Nc’
and ‘fNR’ have the most significant impact on RUL prediction, suggesting that the core speed is
warning and its management may affect the turbofan engine’s life.
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Figure 38: Sample explanations provided by SHAP for case B.
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6.4.2 LIME

As with SHAP method, the explanations on the model’s predictions using LIME technique were
generated for the engine FD004#214 (case A) and the engine FD001#24 (case B). The produced
visualizations can be seen in Figures 39 and 40 respectively. The visualization includes a progress
bar, bar charts and importance table. The features on the right side in orange color indicate the
contribution to increasing the prediction value while the one on the left side in blue color are the
features that have negative effect or decrease the prediction value. In the bar chart, the y-axis
represents the features while the x-axis represents the relative strength of each feature. The number
of features that are shown in the importance table is the variable that needs to be set and the 10
most influential sensors have been selected for this visualization. The content of the table can be
described in detail as data points consisting of a name of the sensor and a time stamp in which
the value of this sensor most influenced the final score (which feature at which time step has the
biggest contribution to the output value). In addition, it also contains the actual values from the
sensor reading.

Figure 39: Sample explanations generated by LIME for case A.

In Figure 39 explanations for case A are depicted, where the RUL value predicted by the Bi-
LSTM model is 80.8, and the range in which prediction value varies is between 31.61 and 131.51.
The values of the sensors on the right side: sensor s3 for 29th time step, s20 for the 23rd time
step, sensor s12 for the 1st time step or sensor s8 for the 20th time step indicate that the machine
component is in a good condition and its RUL is supposed to be high. The sensor value on the left
side in blue color, for example, sensor s15 > 0.65 indicates that the conditions of the component
might be not good and it tries to reduce the predicted RUL value.

Figure 40: Sample explanations generated by LIME for case B.
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The LIME results for the engine nearing the end of its operating life, namely engine unit FD001
#24 from case B, are shown in Figure 40. In this case, blue is definitely the predominant color,
and the degrading performance of sensor s14 (Correct core speed fNR) is detected for several time
stamps. This sensor can be indicated as the dominant factor in predicting the low RUL value,
suggesting similarly to SHAP explanations that that the speed of the core is alarming, and its
proper management can affect the operating life of the turbofan engine.

6.4.3 Attention weights

In the conducted experiments, the Bi-LSTM model combined with the attention layer has achieved
similar performance to the models containing just Bi-LSTM and Fully Connected layers. A
small improvement in RMSE can be achieved for FD001, while for the scoring function, the Bi-
LSTM+Attention outperforms the original model for FD004 data set. However, the advantage
factor over the original model is the ability to retrieve the attention weights in order to look at
the importance the networks give to each time step of the context vector. These weights can be
extracted and visualized in the form of the heatmaps what can help to interpret which feature at
which time step the network focus on to make the RUL predictions for the next time step, therefore
providing the local interpretability for domain experts who can focus on more important sensors
and time steps in real time and improve maintenance efficiency.

Figure ?? presents the visualized attention weights for the engine unit number 214 from the
FD004 test data set - case A. The vertical axis corresponds to a time step and the horizontal axis
represents the sensors. It can be noticed that three sensors distinguish themselves, namely sensor
s11, sensor s14 and sensor s15. In the case of the sensor s15, it can be observed that the attention is
shifted to the last time steps of the prediction window as well as to the time steps 5-8. For the sensor
s11, the network focuses on the first few time steps and few last time steps; considering the sensor
s14 the middle time steps are of significant importance. Unfortunately, analysing the attention
weights, it is impossible to indicate which features have the positive influence and contribute to
the increasing of a predicted RUL value, and which features’ role is negative and cause a lower
prediction. The values of attention weights are always positive, and they range between 0 and 1
which corresponds to the magnitude of an influence. Therefore, although the sensors have been
indicated as being particularly important for prediction, it is impossible to determine whether the
state of the corresponding components is alarming. However, they may be indicated to a domain
expert as distinguished in this prediction and subject to further examination.
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Figure 41: The attention weights of sensors for example ID 24 in FD001 - case B.

The attention weights generated for the engine unit with id 24 from the FD001 test data set are
depicted in Figure 41. The most attended features are sensor s9 and s14. The same indications
were generated by SHAP and LIME methods. This indicates that the attention network can attend
to important parts of the input features for the RUL prediction. In the case of the sensor s14 the
attention weights shift towards the end of the time window as sensors start to show a degradation
trend. The significance of the sensor s14 for prediction is more or less evenly distributed over all
the time steps.

6.5 Explanation evaluation
In this section the results of the proposed methodology for explanation evaluation are presented.
The local explanations for all four C-MAPSS sub data sets were generated using three XAI ap-
proaches, namely SHAP, LIME and Attention. The contributions of all features at all time points
were sorted according to their relevance. After that, top k most relevant data points xjt, where j
denotes feature and t stands for a point in time, were selected. Later, the sub-sequences around
these k key data points were changed. We decided to set the sub-sequence length ns as 5% of the
data sequence to incorporate the temporal dimension. We also decided not to perturbate more
than 5% of the whole data sample in order to manipulate only the data indicated by an explanation
technique as the most important for the sample prediction. Therefore, for a data sample of size:
30 time cycles × 14 features, the sub-sequence length ns was set to 6 and number of data points
k equals 3. During the selection process, the following constraint was made: the sub-sequences
around these most important data points must not overlap; if it is the case, this point is discarded
and the next one according to the sorted order is chosen to the top k (thanks to that, exactly the
same percentage of the data sample is always manipulated what is conducive to the comparability
of the methods) . After the selection was finished, the whole sub-sequence around each relevant
point for each sample was modified according to the verification methods: set to zero, set to mean
value of the feature measured per sample and swap places. This resulted in three new data sets.
Moreover, three other data sets were generated where the sub-sequences to be changed were se-
lected at random. In total, 6 new data sets per each XAI technique were constructed. Finally, each
of these newly formed sets was supplied to the trained network and the predictions were evaluated
using RMSE quality metric designated as qmc

r for data sets when key points were chosen at random
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and qc when key points were selected according to their relevance. The assumption was that if
XAI methods capture relevant information which the prediction model learns to make decisions,
the quality metrics follow the formulation qm(t) ≥ qm(tcr) > qm(tc).

Table 10: RMSE for the different methods over all data sets.

In total 72 data sets were constructed (6 new data sets per each XAI technique on each C-
MAPSS subset). The RMSE value for each of them is presented in the Table 10. Table 11 shows
the averaged changed RMSE of the different models over all data sets. Change to test RMSE is
calculated by normalizing the RMSE of the changed data to the one from the baseline set (qm).
Before this ratio was calculated, also qmc

r for LIME and SHAP of each C-MAPSS data set was
averaged for better comparison.

Table 11: Averaged change of the RMSE of the different methods over all data sets.

The presented results show that for all three methods the assumption qm(t) ≥ qm(tcr) > qm(tc)
holds. However, the results obtained by the verification method of the place swap and set to mean
value are not satisfactory. They are very close to the values obtained for the key points selected at
random, and in the case of the Attention mechanism for the LSTM there was an exception on the
rule. This is due to the fact that the changes introduced to the data sets in this case are too subtle
and thus imperceptible to the algorithm. If the values of a certain feature in the sequence are high,
then even if we reverse their order / swap them places, the model will be able to generalize over
that. Therefore, the best of the proposed metrics for evaluating interpretability turned out to be
the zero-setting method.

Overall, the experiments on these three approaches to evaluate the explanations showed clearly
that LIME is the most appropriate. Moreover, the explanations provided by interpreting attention
weights provided better results than SHAP which performs worst most likely because of the large
dimensionality by converting time to features.
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7 General discussion

In this final chapter, the overview of the main achievements of this Master’s Thesis is presented,
therefore, the obtained results and fulfilled objectives are summarized. Lastly, research contribu-
tions are discussed and recommendations for further research are formulated.

7.1 Summary
This Thesis dealt with Explainable Artificial Intelligence (XAI) in particular its application for
time series data. In the field of XAI, the goal is to explain the inner logic of models, while main-
taining a high level of learning performance. Although Explainability Artificial Intelligence is a
fairly new area of research, it has been recognized in recent times as a core need for the adoption of
AI methods in real-world applications. As a result, many scientific papers are published, and many
workshops and conferences are organized every year around the world to propose new methods and
disseminate the results. While this has produced an abundance of knowledge, unfortunately, this
knowledge is very scattered. Moreover, these publications focus mainly on applications in natural
language processing and computer vision. There is a relatively little research outcome in explaining
methods applied on time series data, especially for time series forecasting tasks. The low interest
in this topic may be due to the non-intuitive nature of time series, characterized by the complex
non-linear temporal dependencies in data, of which humans are not able to understand at first
sight. However, there are areas such as industry and medicine where temporal data is of particular
importance. Therefore, it is very important to systematize knowledge on this topic and make ef-
forts to develop the tools and methods needed to understand the decisions made by models trained
on the time series data.

This work started with a brief introduction of Machine Learning techniques, in particular de-
scription of methods for time series forecasting. It was followed by the literature review on ex-
plainable artificial intelligence published during the last few decades. The vast knowledge on XAI
was organized in a structured way and the key terminology was explained. Aspects such as sta-
tus, importance, advantages, and limitations of explainable artificial intelligence were discussed.
Next, we presented an overview of the local explanation methods, with particular emphasis on the
methods that can be applied on time series. In addition, different approaches to qualitative and
quantitative evaluate explanations provided by XAI methods were showcased.

The second part of this Thesis consisted of the experimental results. The time series forecasting
task was formulated as a prognosis for the remaining useful life of a turbofan engine. Experimental
studies were conducted using the NASA turbofan engine data set C-MAPSS.

Firstly, the Bi-LSTM architecture was proposed for the time series forecasting task. Two
models, scilicet with and without attention layer were constructed. The ability of these models
were demonstrated for the RUL prognostic problem. The architecture containing an attention
mechanism was also used to extract the temporal relationships between inputs and predicted RUL
outputs.

Then, XAI techniques for creating explanations were applied to the models’ predictions. Roughly
speaking, two kinds of explainability methods can be distinguished: global explanation methods,
that serve to explain a machine learning models as a whole; and local explanation methods that
aim to explain the behaviour of the model for a specific input. In this work we focus on local ex-
planations as it is especially important for the end user to determine why a model makes particular
predictions. The local explanation techniques that are studied in depth in this work are LIME,
SHAP and aforementioned Attention mechanism.

We decided to use LIME and SHAP as the literature review revealed that they are the most
popular existing local explainability methods. They are post-hoc feature attribution methods that
for a single instance provide an explanation by highlighting how important each feature at each
time step in the input was to the final prediction. In theory, SHAP is the better approach as
it provides mathematical guarantees based on the game theory concept of Shapley values. In
practice, SHAP is computationally expensive to use the entire data set and we often have to rely
on approximations which has implications for the accuracy of the explanation. On the other hand,
LIME provides a fast and relatively simple approach for local interpretation.

Attention mechanism was used to obtain similar kind of local explanations. The implemented
Attention layer allows to learn the weights of different sensors and time steps, which represents
their importance for the real-time RUL prediction. These weights can be extracted to show which
data points the model focused the most on making the predictions. The achieved explanations
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were presented graphically for two representative cases. In the first case, the engine is still in a
good condition, although the first signs of wear had begun, which reduce its operating lifespan
(Case A). In the latter case (Case B), the wear of the engine is already significant, and its service
life is coming to an end. In this way, we can check whether the generated explanations can be
easily understood by the user and visually evaluate them.

Next, the explanations for the predictions for all engines from the test sets were generated using
all three XAI techniques and the method to evaluate them was proposed. The aim was to quanti-
tatively measure local fidelity of explanation for a black box model in the terms of the correctness
and truthfulness of the explanation with respect to the underlying model (the explanation for the
individual prediction should correspond to how model behaves in the vicinity of the individual
observation being predicted). However, it is worth noting that local fidelity does not imply global
fidelity: globally important features may not be relevant in the local context, and vice versa. As
mentioned in Section 4.9.2, the approach used for the fidelity evaluation redefines ablation-based
methods from the literature that previously were successfully applied to evaluate explanations of
models trained on text or image data. In those methods, the data is altered through "removing"
relevant features and the changes in the prediction probability for the original and the altered
input data are compared. Moreover, the ablation approach proposed in literature was typically
applied to classification problems. Some changes were required to adapt this method for time-series
regression task. Firstly, the inter-dependency of time points was taken into account. To do so, not
only the value of the feature at the point in time selected based on the time point relevance by the
explanations gets changed, but also the sub-sequence around this point for this feature is altered.
Secondly, perturbation methods were used to alter the inputs. In comparison to removing features
identified as important by explanation, the nature of change while perturbing the data is less abso-
lute. The highlighted sub-sequences were set to zero, to mean value of the feature as well as were
reversed in order and inserted back into time series. The same perturbations were applied to data
points selected at random. Finally, model outputs were generated for these perturbated inputs.
The model outputs for the original and perturbed instances were compared to determine fidelity
of applied XAI methods. It was assumed that if the XAI method produces correct explanations,
the formulation qm(t) ≥ qm(tcr) > qm(tc) with qm as the quality measure, t the original time
series, tcr the random altered, and tc the relevant altered time series, is true. The quality metric
was measured for all changed inputs using all XAI methods and later the results were averaged
out over the data sets.

7.1.1 Findings

The first notable result is that the models have achieved satisfactory results for both RMSE and
Score Function metrics and their performance is comparable to known, usually more complex,
Deep Learning approaches previously proposed for the same data, which is interesting. Although
this is not the main purpose of this work, it is worth noting that adopting the bidirectional LSTM
method we obtain the results that outperform the well-known and often taken as a benchmark
deep unidirectional LSTM approach by Zheng et al. [108]. In general, the Bi-LSTM model with
attention layer perform slightly worse. It is probably caused by the fact that the complexity of the
model increased by adding a separate layer while the hyperparameters were tuned for the basic
structure. Nevertheless, the accuracy in prognosis of both models is acceptable to use them for
the defined prediction problem.

Another interesting outcome of this work is the use of several XAI techniques and the possibility
of comparing their results for local explanations. Although, research in this area is growing, many
of the studies focus on the comprehensibility of one explanation type, rather than investigating
multiple explanations at once. Therefore, it is not clear how the usefulness of explanations can be
compared and how different types of explanations can be combined.

In the terms of the explanations generated for representative Cases A and B, it is interesting
to observe the readability of explanations provided by different local techniques. To sum up, ex-
planations provided by LIME as bar plots are relatively understandable. SHAP does not look as
intuitive as LIME at first glance. However, it includes various types of charts that make it easier to
understand while all plotted together. In the case of Attention mechanism, as implemented it does
not provide immediately interpretable information about the feature influence on the prediction.
The attention weights were extracted and presented in the form of attention maps. The representa-
tion of attention activations in the form of a heatmap show the potential enclosed in these models
per single prediction. The provided map highlights the overall impact of features, which would
not be possible to obtain using a different variant of attention method. But yet, the analysis on
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activations extracted from the attention mechanism does not provide practical recommendations
to the objectives of model interpretability aforementioned. In particular, the attention vector can
highlight whether or not a predictor is important, but it is not able to distinguish between posi-
tive and negative associations among predictors and outcome. While further research on optimal
visualization methods is required, heatmaps may be an effective source of generating hypothesis
for future investigations.

For the case A, in which the engine is still in good condition but shows the first signs of
wear, various features can be seen influencing the health state of the turbofan unit. Based on the
results of all methods, it can be indicated that sensors s11, s3 and s5 are particularly relevant.
Although both SHAP and LIME indicate preponderance of sensors which contribute to increasing
the prediction value, their indications of the most relevant features only partially overlap. While
LIME creates a surrogate linear model around an individual prediction in its local vicinity, SHAP
consider all possible permutations, and is often use for global interpretability. These methods are
widely known and used; however, it is commonly recognized that they do not always agree with
each other. This highlights the need for further evaluation of the XAI approaches in terms of
trustworthiness and correctness of generated explanations.

By interpreting model decisions for case B, it can be noticed that the models all consider the
same sensors to estimate the countdown to machine failure. All approaches agreed with each other
on the importance of the role of the sensors s9 (Physical core speed) and s14 (Correct core speed)
for explaining this prediction. SHAP and Attention mechanism also pointed to sensors like s11
(HPC outlet static pressure) and s3 (HPC outlet temperature). For this data set (FD001), it can
be seen that HPC (High-Pressure Compressor) is the most critical component in the RUL deter-
mination of turbofan engine. Such an analysis allows decision-makers to focus on priorities and
efforts in engine maintenance and repair.

Finally, the local explanations methods are thoroughly compared for the time series prognosis
task defined. The local fidelity of explanations generated by three XAI methods were measured
using three local fidelity metrics investigated: set to to zero, set to mean, and reverse. In the course
of the experiments, it turned out that due to the nature of the data, only perturbations introduced
by setting to zero makes sense, while the other two types of perturbations turned out to be too sub-
tle, and the models managed to generalize over them. Overall, we find that the LIME method has
the highest local fidelity. The attention mechanism turns out slightly worse, however better than
SHAP. Attention is computed as part of the artificial neural network learning how to accomplish its
task. No additional algorithm or technique that would require time and computation is needed to
get an explanation, which makes it very appealing as a method of interpretability. While LIME is
relatively fast, the computational complexity of SHAP model is a significant drawback. Moreover,
Deep SHAP is based on strong assumptions of model linearity and feature independence, and this
is a major drawback that may have contributed to the fact that it came in last place. Furthermore,
the DeepExplainer does not support all the latest versions of TensorFlow. Investigating Attention
explanations through a comparison to SHAP and LIME that are two state-of-art model-agnostic
explanation models, we can conclude that that there is a satisfactory agreement in terms of variable
importance. Regarding our main goal, model interpretability, this work contributes to encourage
the use of attention layers in LSTM to obtain the relationship between the outcome and predictors.

Once the relation between model performance and the soundness of the explanation is estab-
lished, it can be used to provide the information to the domain experts.

7.2 Conclusions
All in all, the result of this Thesis provided an answer to the research questions posed:

1. What kind of explanation techniques have already been implemented in the field of XAI for
time series data?

Although the research on explainable machine learning models is still relatively new, it is very
active and many publications on this topic are published every year. Unfortunately, the authors
often decide to focus only on a specific aspect of XAI and the key terminology as well as general
procedures on this subject are not fixed. The knowledge in this area is scattered in a large amount
of literature. In order to answer the posed research question, a deep analysis of the state-of-the-art
research was performed. The acquired knowledge has been ordered and organized in a struc-
tured and hierarchical manner. In the Chapter 3 the general information about XAI is presented.
Chapter 4 talks about explanation methods. Section 4.1 discusses the taxonomy of explanation
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methods and their properties, whereas the rest of the Chapter 4 is devoted to the overview of the
XAI methods applied on time series through their methodology, scope, and targets. This compre-
hensive literature analysis has distinguished two model-agnostic attribution methods named LIME
and SHAP. It has also pointed to the attention mechanism as a promising intrinsic explainable
model.

2. How an attention mechanism benefits the forecasting model and whether it can be used for
local explainability?

In general, an attention mechanism can be seen as part of the network (an additional network
layer) that tells us what the model is “paying attention” to at each time step. Hence, we end up
with a slightly more complex model that takes longer to train, however we might get meaningful
insights from the attention weights. The effect of attention weights can be viewed as a process
of filtering out redundant information and increasing the relevance of meaningful information. In
section 6.4.3 the implemented attention layer allowed to learn the weights of different sensors and
time steps, which represented their relevance for the real-time RUL prediction. These weights were
extracted and visualized in the form of heatmaps, therefore providing the local interpretability for
domain experts who can focus on more important sensors and time steps in real time and improve
maintenance efficiency. The effectiveness of this method was confirmed in Section 6.5 where its
results have been compared to state-of-the-art SHAP and LIME methods. It turned out that
attention achieved comparable results, outperforming the SHAP technique for the C-MAPSS data
set. As this method guarantees an explanation at the end of the training process and does not
require any computationally or time-consuming actions (as post-hoc methods do), it makes it very
appealing as a method of interpretability.

3. How to evaluate the explanations produced by interpreting the machine learning time series
forecasting model?

Overall, very few studies have proposed approaches for evaluating the explanations produced by
interpreting the machine learning time series forecasting models, often proposing a human-centered
verification with model developers and end-users. We addressed this research question in Section
5.6 where a novel verification method proposed by Shlegel et al [86] was adapted to the time se-
ries forecasting problem. It contributed to the development of a methodology for the automatic
fidelity evaluation of local explanations and ranking of XAI techniques on time series forecasting
tasks using perturbative methods. The experimental results can be seen in Section 6.5.

4. Can one successfully predict the remaining useful life of a machine before the failure and have
the system explain that prediction? If so, Which ML models and XAI techniques are suitable for
this?

Altogether, the results obtained in the experimental part of this work provide a positive answer to
the first question posed. In all, we proposed two ML models that accurately predict the remaining
life of experiments, and for which the local explanations of the predictions were assured and evalu-
ated, industrial process knowledge being considered for both accuracy and understandability goals.
The machine learning methods that have proven to be successful at time series forecasting were
analysed and based on that Bi-LSTM and Bi-LSTM+Attention models were constructed. The
achieved performance of the proposed models were comparable to the state-of-the-art approaches
previously proposed for the same data and was thoroughly discussed in Section 6.3.4. Of particular
interest is the self-explanatory attention model which incorporates interpretability directly to its
structure. An indispensable advantage of this model is the fact that it provides accurate and undis-
torted explanations which are available immediately after completing the model training process.
The disadvantage is that it slightly worsened the accuracy of the predictions. For the Bi-LSTM
model without an attention layer, explanations were achieved using computationally expensive
post-hoc methods: SHAP and LIME. These techniques are limited in their approximate nature;
however, they keep the underlying model accuracy intact. The results of these explainability meth-
ods were presented in Section 6.4 and evaluated in Section 6.5. In the course of the evaluation of
the local fidelity, the best results were obtained by LIME, however, the attention mechanism also
did very well. In order to provide the most accurate explanations possible, a combination of these
two methods may be proposed for the further research.
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7.3 Future work
Every contribution to analysis of Explainable Artificial Intelligence brings us closer to creating an
end-to-end XAI system which would allow an end-user to get information and gain understanding
of the model, therefore providing trust. It is important to focus research on XAI techniques that
would include interactions with the user or developer, which is essential for the AI system to
be trusted and used. Adapted user interfaces are also needed for this purpose, which could be
provided in the further development of this work. Because we lack objective tools to demonstrate
the robustness of AI systems, interactive approaches providing explanations and feedback might
be a leading way to empirically and objectively demonstrate to the user and decision maker that
an AI system is trustworthy.

More efforts are also required to increase the scalability of the explainability methods. The use
of post-hoc methods such as LIME and SHAP is limited by the need for expensive computation.
For example, using LIME explainable model, a local model is created each time an explanation is
required. In the case of computing Shapley values, all coalitions of features must be considered
when computing feature contributions. Therefore, such computations can be costly for tasks
where there is a huge number of cases for which prediction and explanation are needed or there
are many features to be explained. One way of increasing the scalability is the use of intrinsic
models which provide an explanation after completing the model training process. The research
should focus on developing new modelling methods that provide the model’s interpretability and
maintain the high accuracy of predictions. The use of the attention mechanism proved that it
is a promising approach in this topic. In the next step, we could investigate the suitability of
Transformer Networks, which rely entirely on self-attention without using sequence-aligned RNNs
or convolution and are considered as a state-of-the-art solution to Natural Language Processing
tasks, for interpretability of time series forecasting problems.

Finally, in the further work it would also be interesting to compare the interpretability meth-
ods for time series forecasting tasks considering other explanation properties such as stability
and consistency. There is a great need for further research on explainability metrics. For the
perturbation-based evaluation method applied, other perturbation methods could be also investi-
gated. Moreover, we could test our models on other publicly available data sets.
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Acronyms
AI Artificial Intelligence

ANNs Artificial Neural Networks

ARIMA Autoregressive Integrated Moving Average

Bi-LSTM Bidirectional Long Short-Term Memory

C-MAPSS Commercial Modular Aero-Propulsion System Simulation

CNNs Convolutional Neural Networks

CRISP-DM Cross Industry Standard Process DataMining

DARPA Defense Advanced Research Projects Agency

DBSCAN Density-based Spatial Clustering

DL Deep Learning

DeepLIFT Deep Learning Important FeaTures

EDA Exploratory Data Analysis

EWMA Exponential Weighted Moving Average

GDPR General Data Protection Regulation

GMM Gaussian Mixture Model

GRU Gated Recurrent Unit

HPC High-Pressure Compressor

HPT High-Pressure Turbine

IoT Internet of Things

LIME Local Interpretable Model-agnostic Explanations

LOCF Last Observation Carried Forward

LPC Low-Pressure Compressor

LPT Low-Pressure Turbine

LSTM Long Short-Term Memory

LWMA Linear Weighted Moving Average

MAPE Mean Absolute Percentage Error

ML Machine Learning

MSE Mean Squared Error

NASA National Aeronautics and Space Administration

NOCB Next Observation Carried Backward

PHM Prognostics and Health Management

PdM Predictive Maintenance

RL Reinforcement Learning

RMSE Root Mean Squared Error

RNNs Recurrent Neural Networks

RUL Remaining Useful Life
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SF Score Function

SHAP SHapley Additive exPlanations

SHAP Shapley Additive Explanations

SL Supervised Learning

SMA Simple Moving Average

UL Unsupervised Learning

XAI Explainable Artificial Intelligence

i4.0 Industry 4.0
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Appendices
Appendix A

Table 12: Statistical analysis of FD001 data set.

89



Appendix B

Figure 42: Distribution of FD001 dataset’s sensors values.
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Figure 43: Boxplots of FD001 dataset’s sensors values.
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