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We study a one-dimensional problem arising in strain
gradient porous-elasticity. Three different Moore-
Gibson-Thompson dissipation mechanisms are consi-
dered: viscosity and hyperviscosity on the displace-
ments, and weak viscoporosity. Existence and unique-
ness of solutions are proved. The energy decay
is also shown, being polynomial for the two
first situations, unless a particular choice of the
constitutive parameters is made in the hyperviscosity
case. Finally, for the weak viscoporosity, only the slow
decay can be expected.

1. Introduction
Porous elastic materials are widely used in common life
due to its low density and large surface, which give rise
to a range of specific properties regarding the physical,
mechanical, thermal, electrical and acoustic fields.
The internal porous structure of the material highly
determines its physical properties [17]. Applications of
porous materials can be found in many areas, from
biomedicine to the building industry. In the former, to
repair injuries in bones, for example [35]. In the latter,
to make light, hard and fire-resistant parts. As a matter
of illustration we cite a sentence from the book of Liu
and Chen [23]: “the use of porous metals in elevators
can reduce energy consumption and absorb impacts, and
their good specific stiffness makes them ideal to make
cabin panels”.
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More applications can be found in the classical works of Biot [2,3] and also in the book
of Straughan [32]. As these materials are so common and useful, it is necessary to study and
understand how the porous structure of the material affects its elastic behavior.

Nunziato and Cowin [26] extended the classical theory of elasticity to the context of porous
materials. They describe the behavior of elastic solids with voids supposing that the materials
have a skeleton or matrix material that is elastic and the interstices are voids of material. A
great amount of papers has been published since then analyzing this theory (without trying to
be exhaustive, see, for instance, [5,7,8,13,14]). Even materials with a double porosity structure are
being studying nowadays [9,19,20].

In order to obtain more detailed models for the configuration of the materials and their
response to stimuli, some researchers proposed the inclusion of higher order gradients in the
basic postulates of elasticity [15,24,34]. First, when referring to these new postulates the materials
were called non-simple, but now the theories including the second gradient of the displacement
(or the second gradient of the volume fraction field, or both of them) in the set of independent
constitutive variables are called strain gradient theories.

On the other hand, a lot of attention has been paid recently to the Moore–Gibson–Thompson
(MGT) equation, which arises in acoustics and accounts for the second sound effects and the
associated thermal relaxation in viscous fluids [10,25,33]. Some authors track the MGT equation
until the work of Stokes [31]. Regardless of its first appearance, the use of the MGT equation in
the viscoelasticity theory seems to produce a model which is considered to be more faithful to
reality than the usual Kelvin–Voigt one for the linear deformations of a viscoelastic solid [11,28,
29]. In fact, the linear Kelvin-Voigt viscoelasticity allows the instantaneous propagation of the
mechanical waves (see [30], page 39), which contradicts the causality principle. However, the
waves in the MGT equation propagate with finite velocity [27].

In this work we study a linear porous-elastic problem including three possible MGT
dissipation mechanisms: two of them assumed to be on the displacement (leading to the
viscoelasticity and hyperviscoelasticity cases), and the third one on the porosity (leading to the
weak viscosity case). Existence and uniqueness are proved for the three cases by using the theory
of linear semigroups. Generically, the energy decay is shown to be polynomial. Nevertheless,
there is a particular choice of the constitutive parameters in the hyperviscoelasticity case that
produces the exponential decay.

The structure of this paper is the following. In the next section we recall the evolution and
constitutive equations we will use and we impose the boundary conditions for the variables. As
we consider several problems, depending on the damping effect, the initial conditions will be
established later. Then, in Section 3, the viscoelasticity case is considered, assuming that the MGT
dissipation mechanism is included in the second-order term of the displacements. The existence
and uniqueness of solutions and the polynomial energy decay are proved. A similar analysis
is performed in Section 4 for the hyperviscoelasticity case. However, an exponential decay is
obtained for a special choice of the constitutive parameters. Finally, in Section 5, we consider
MGT dissipation mechanisms in the porosity. Since two cases can be analyzed as in the previous
sections, only the weak viscoporosity case is studied. Again, the existence and uniqueness of
solutions are proved. We also show that the decay of the solutions can only be slow. However,
in this case we note that to clarify if the decay can be controlled by a polynomial is still an open
question. Section 6 concludes the work.

2. Basic equations
In the context of the strain gradient porous-elasticity the evolution equations for the linear theory
in the one-dimensional case are (see [18] ):

ρü= ϑx − µxx, Jϕ̈= χx − σxx + g, x∈ [0, π], t≥ 0.
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Here, ρ is the mass density that must be a positive constant, J is the equilibrated inertia that must
also be a positive constant, u is the displacement,ϕ is the fraction of volume, ϑ is the stress, µ is the
hyperstress, χ is the equilibrated stress, σ is the equilibrated hyperstress and g is the equilibrated
body force. Henceforth, the superscript dot means material time derivative.

The general form for the constitutive equations for a strain gradient viscoelastic solid are (see
[18] for details)1:

ϑ=

∫ t
−∞

(
a(t− s)u̇x(s) + b(t− s)ϕ̇(s) + β(t− s)ϕ̇xx(s)

)
ds,

µ=

∫ t
−∞

(
k1(t− s)u̇xx(s) + γ(t− s)ϕ̇x(s)

)
ds,

χ=

∫ t
−∞

(
γ(t− s)u̇xx(s) + α(t− s)ϕ̇x(s)

)
ds,

σ=

∫ t
−∞

(
β(t− s)u̇x(s) + d(t− s)ϕ̇(s) + k2(t− s)ϕ̇xx(s)

)
ds,

g=

∫ t
−∞

(
− b(t− s)u̇x(s)− ξ(t− s)ϕ̇(s)− d(t− s)ϕ̇xx(s)

)
ds.

In this paper, we are going to assume the boundary conditions

u(0, t) = u(π, t) = uxx(0, t) = uxx(π, t) = 0,

ϕx(0, t) =ϕx(π, t) =ϕxxx(0, t) =ϕxxx(π, t) = 0,
(2.1)

which are completely compatible with the boundary conditions proposed by Iesan [18].
The initial conditions will be set for each problem that we will consider.

3. First system: viscoelasticity
In this section we study the system obtained when

a(s) = a+ (a∗/τ − a)e−s/τ , b(s) = b, β(s) = β, k1(s) = k1,

γ(s) = γ, α(s) = α, d(s) = d, k2(s) = k2, ξ(s) = ξ.

Notice that, in this case, the damping is set in the gradient of the displacement.
If we denote by ϕ̂(x, t) =ϕ(x, t) + τϕ̇(x, t) and we assume that all the variables vanish at time

t=−∞we get

ρ(ü+ τ
...
u ) = auxx + a∗u̇xx + bϕ̂x − ηϕ̂xxx − k1(uxxxx + τ u̇xxxx),

J ¨̂ϕ= η(uxxx + τ u̇xxx)− b(ux + τ u̇x) + δϕ̂xx − ξϕ̂− k2ϕ̂xxxx,

where η= γ − β and δ= α− 2d. From now on, to simplify the notation, we will omit the hats
over the variables. We assume that ρ, a, k1, a∗, J , δ, ξ and k2 are positive as well as we impose
that aξ > b2, k1δ > η2 and a∗ > τa. These assumptions are usual in the studies of porous-elasticity.
They guarantee that the energy of the system is positive definite (see (3.4)). At the same time, the
last condition implies that the dissipation is positive (see (3.5)). We also suppose that η 6= 0, which
implies a strong coupling. The initial conditions we will consider in this case are:

u(x, 0) = u0(x), u̇(x, 0) = v0(x), ü(x, 0) = c0(x), ϕ(x, 0) =ϕ0(x), ϕ̇(x, 0) =ψ0(x). (3.1)

To study our problem, it will be useful to change the variables. We will denote u1 = u+ τ u̇,
v= u̇ and u3 = u̇+ τ ü. Therefore, our system of equations becomes

ρü1 = au1xx + av̇xx + bϕx − ηϕxxx − k1u1xxxx,
Jϕ̈= ηu1xxx − bu1x + δϕxx − ξϕ− k2ϕxxxx,

(3.2)

1It is worth noting that these equations can be also obtained assuming the invariance of the entropy under time reversal, in
the line proposed in [16] and [6]
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where a= a∗ − τa. We study our problem in a suitable Hilbert space H= (H2 ∩H1
0 )×H1

0 ×
L2 ×H2

∗ × L2
∗, where

L2
∗ = {f ∈L2 ;

∫π
0
f(x) dx= 0}, Hi

∗ =Hi ∩ L2
∗ for i= 1, 2,

and, to simplify, we write L2 instead of L2(0, π), and analogously for the H’s.
We define an inner product in H: if we denote U = (u1, v, u3, ϕ, ψ) and U∗ =

(u∗1, v
∗, u∗3, ϕ

∗, ψ∗), therefore

〈U,U∗〉= 1

2

∫π
0

(
ρu3u

∗
3 + Jψψ∗ +W

)
dx, (3.3)

where
W = k1u1xxu

∗
1xx + au1xu

∗
1x + τavxv∗x + η(u1xxϕ

∗
x + u∗1xxϕx)

+b(u1xϕ∗ + u∗1xϕx) + ξϕϕ∗ + δϕxϕ∗x + k2ϕxxϕ
∗
xx.

As usual, a superposed bar on the variables denotes the conjugate of a complex number. It is clear
that this inner product defines a norm that is equivalent to the usual one in the Hilbert space.

From the above inner product it is easy to write the equality of the energy for system (3.2):

E(t) +

∫π
o
D(s) ds=E(0),

where

E(t) =
1

2

∫π
0

(
ρ|u̇1|2 + J |ϕ̇|2 + k1|u1xx|2 + a|u1x|2 + τa|u̇x|2 + 2ηu1xxϕx + 2bu1xϕ

+ξ|ϕ|2 + δ|ϕx|2 + k2|ϕxx|2
)
dx

(3.4)

and

D(s) = a

∫π
0
|u̇x|2 dx (3.5)

We can write our problem in the following way:

u̇1 = u3, v̇= τ−1(u3 − v), ϕ̇=ψ,

u̇3 =
1

ρ

[
− k1D4u1 + aD2u1 + aD2v + bDϕ− ηD3ϕ

]
,

ψ̇=
1

J

[
ηD3u1 − bDu1 + δD2ϕ− k2D4ϕ− ξϕ

]
,

or more synthetic as
dU

dt
=AU, U0 = (u01, v

0, u03, ϕ
0, ψ0), (3.6)

where u01 = u0 + τv0, u03 = v0 + τc0 and

A=



0 0 I 0 0

0 −τ−1I τ−1I 0 0

aD2 − k1D4

ρ

aD2

ρ
0

bD − ηD3

ρ
0

0 0 0 0 I

ηD3 − bD
J

0 0
δD2 − k2D4 − ξ

J
0


.

The domain of this operator is given by the elements inH such that

aD2v − ηD3ϕ− k1D4u1 ∈L2, ηD3u1 − k2D4ϕ∈L2, u3 ∈H2 ∩H1
0 , ψ ∈H2

∗ ,

and
D2u1(0) =D2u1(π) =D3ϕ(0) =D3ϕ(π) = 0.

We first prove the existence of a semigroup of contractions generating the solutions to our
problem. We note that the domain of the operator A is dense in the Hilbert space H. On the
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other side, in view of the boundary conditions we can see that

<〈AU,U〉=−a
2

∫π
0
|vx|2 dx≤ 0, (3.7)

for every U belonging to the domain of the operator A, or D(A).

Lemma 3.1. Zero belongs to the resolvent of the operator A.

Proof. For any F = (f1, f2, f3, f4, f5)∈H we will find U ∈D(A) such that AU =F . That is,

u3 = f1, −v + u3 = τf2, ψ= f4,

−k1D4u1 + aD2u1 + aD2v + bDϕ− ηD3ϕ= ρf3,

ηD3u1 − bDu1 + δD2ϕ− k2D4ϕ− ξϕ= Jf5.

We can obtain u3, v and ψ in a straightforward way. So, it leads to the system:

−k1D4u1 + aD2u1 + bDϕ− ηD3ϕ= ρf3 − τaD2f2 + aD2f1,

ηD3u1 − bDu1 + δD2ϕ− k2D4ϕ− ξϕ= Jf5.
(3.8)

Let us denote F1 = ρf3 − τaD2f2 + aD2f1 and F2 = Jf5. We can solve the above system by
writing F1 and F2 in their expressions as Fourier series:

F1 =

∞∑
n=1

F
(n)
1 sin(nx) with

∞∑
n=1

(
F

(n)
1

)2
n2

<∞,

F2 =

∞∑
n=1

F
(n)
2 cos(nx) with

∞∑
n=1

(
F

(n)
2

)2
<∞.

(3.9)

We look for solutions of the form

u1 =

∞∑
n=1

u
(n)
1 sin(nx),

ϕ=

∞∑
n=1

ϕ(n) cos(nx).

(3.10)

Replacing expressions (3.9) and (3.10) in system (3.8) and simplifying, we get for each n another
system of equations:

(k1n
4 + an2)u

(n)
1 + (bn+ ηn3)ϕ(n) =−F (n)

1 ,

(bn+ ηn3)u
(n)
1 + (k2n

4 + δn2 + ξ)ϕ(n) =−F (n)
2 .

(3.11)

We obtain solutions for u1 and ϕ satisfying our required conditions. To be precise, we obtain

u
(n)
1 =

(bn+ ηn3)F
(n)
2 − (k2n

4 + δn2 + ξ)F
(n)
1

(k1n4 + an2)(k2n4 + δn2 + ξ)− (bn+ ηn3)2
,

ϕ(n) =
(bn+ ηn3)F

(n)
1 − (k1n

4 + an2)F
(n)
2

(k1n4 + an2)(k2n4 + δn2 + ξ)− (bn+ ηn3)2
,

(3.12)

satisfying
∑∞
n=1 n

4
(
u
(n)
1

)2
<∞ and

∑∞
n=1 n

4
(
ϕ(n)

)2
<∞.

Notice also that if F = (f1, f2, f3, f4, f5) = (0, 0, 0, 0, 0), therefore u3 = 0, v= 0, ψ= 0 and F1 =

F2 = 0, which implies u1 = 0 and ϕ= 0. This proves the injectivity.
Moreover, we can see that

‖U‖H ≤K‖F‖H, (3.13)

where K is a constant independent of U .

The Lumer-Phillips corollary to the Hille-Yosida theorem says that to show that A generates a
contraction semigroup it is enough to check that the domain of the operator is dense in the Hilbert
space H, that condition (3.7) holds and that zero belongs to the resolvent of the operator (see,
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for example, page 3 of reference [22]). As a consequence, the above results prove the following
theorem.

Theorem 3.1. The operator A generates a C0-semigroup of contractions. Therefore, for each U0 ∈D(A)

there exists a unique solution U(t)∈C1([0,∞);H) ∩ C0([0,∞);D(A)) to our problem.

We analyze now the decay of the solutions. We first note that, whenever b+ ηn2 = 0 for n∈N,
undamped solutions can be obtained: take for example, u= 0 and ϕ(x, t) = sin(ωt) cos(nx) with
Jω2 = δn2 + k2n

4 + ξ.
Therefore, from now on (in this section) we assume that b+ ηn2 6= 0 for every n∈N.
We will see that the solutions cannot decay exponentially, To be precise, we prove the existence

of solutions of the form

u=A1e
ωt sinnx, ϕ=A2e

ωt cosnx, n= 1, 2, 3 . . . (3.14)

such that <(ω)>−ε for all positive ε sufficiently small.
We obtain nonzero solutions of this form whenever

det

(
k1(1 + τω)n4 + (a+ a∗ω)n2 + ρ(ω2 + τω3) ηn3 + bn

η(n3 + τn3ω) + b(n+ τnω) k2n
4 + δn2 + Jω2 + ξ

)
= 0.

We denote by p(x) = a0x
5 + a1x

4 + a2x
3 + a3x

2 + a4x+ a5 the fifth degree polynomial
obtained from this determinant replacing ω by x. Of course, its coefficients depend on the
parameters of the system in the following way:

a0 = Jρτ, a1 = Jρ, a2 = (Jk1τ + k2ρτ)n4 + (Ja∗ + δρτ)n2 + ρτξ,

a3 = (Jk1 + k2ρ)n4 + (Ja+ δρ)n2 + ρξ,

a4 = k1k2τn
8 + (δk1τ − τη2 + a∗k2)n6 + (a∗δ − 2bητ + k1τξ)n

4 + (a∗ξ − b2τ)n2,

a5 = k1k2n
8 + (δk1 − η2 + ak2)n6 + (aδ − 2bη + k1ξ)n

4 + (aξ − b2)n2.

(3.15)

We will prove that there are roots of p(x) as near to the imaginary axis of the complex plane as
we desire, or equivalently, that there are roots of p(x− ε) = b0x

5 + b1x
4 + b2x

3 + b3x
2 + b4x+ b5

with positive real part for any small ε > 0. The coefficients of this polynomial depend on the
constitutive parameters and ε (the full expression of each bi can be seen in a little appendix at the
end of the paper).

Thus, we will apply the Routh-Hurwitz theorem (see Dieudonné [12]), which states that, if
b0 > 0, then all the roots of polynomial p(x− ε) have negative real part if, and only if, all the
leading diagonal minors of matrix 

b1 b0 0 0 0

b3 b2 b1 b0 0

b5 b4 b3 b2 b1
0 0 b5 b4 b3
0 0 0 0 b5

 (3.16)

are positive.
The second leading minor of the above Routh-Hurwitz matrix is a fourth degree polynomial

on n whose main coefficient is always negative. To be precise, if we denote by Li the leading
minors of this matrix,

L2 =−2εJρτ2(k1J + k2ρ)n4 +
(
J2ρ(a∗ − aτ)− 2Jδερ2τ2 − 2J2a∗ερτ

)
n2

−40J2ε3ρ2τ2 + 24J2ε2ρ2τ − 4J2ερ2 − 2ξJερ2τ2.

Therefore, it is clear that, for n large enough and ε small, L2 will be negative.
We prove now that the solutions to our problem decay in a polynomial way. To this end, we

use the result of Borichev and Tomilov [4], which guarantees that the solutions decay as t−1/α

(α> 0) whenever the imaginary axis is contained in the resolvent and the following asymptotic
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condition holds:
lim
|λ|→∞

λ−α‖(iλI −A)−1‖L(H) <∞, (3.17)

where L(H) is the space of linear bounded maps fromH toH.
To show these conditions it is suitable to decompose H=KN ⊕K, where KN is the finite

dimensional subspace generated by

Ω(i, j, k, l,m) = (sin ix, sin jx, sin kx, cos lx, cosmx) 1≤ i, j, k, l,m≤N.

It is worth noting that KN is invariant under the semigroup and the solutions starting in this
subspace always belong to it. In fact, a solution U(t) can be written as U1(t) + U2(t), where
U1(t)∈KN and U2(t)∈K. We first study the solution U1(t) and we note that, since KN is
finite-dimensional, to prove the exponential decay of solutions it is sufficient to see that all the
eigenvalues have negative real part.

Proposition 3.1. All the eigenvalues of A restricted to KN have negative real part.

Proof. We set again u=A1e
ωt sinnx and ϕ=A2e

ωt cosnx. Substituting these expressions in our
system we obtain the polynomial p(x) with coefficients ai for i= 0, 1, ..., 5 as in (3.15). Let Mi for
i= 1, ..., 4 be the leading minors associated with its Routh-Hurwitz matrix. Direct computation
gives:

M1 = Jρ, M2 = J2ρan2, M3 = J3ρan4(k1n
2 + a), M4 = J3n6ρā2

(
b+ ηn2

)2
,

M5 = J3n8ρā2
(
b+ ηn2

)2 (
k1k2n

6 + (ak2 + δk1 − η2)n4 + (aδ − 2bη + k1ξ)n
2 + aξ − b2

)
.

Since a= a∗ − τa > 0, aξ > b2, δk1 > η2 and b+ ηn2 6= 0 for every n∈N we see thatMi > 0 for
every i= 1, . . . , 5.

Lemma 3.2. The imaginary axis is contained in the resolvent of the operator A.

Proof. We will assume that the thesis of the lemma does not hold and we will obtain a
contradiction.

A standard argument (see [22], page 25) shows that, if we assume that there exists an element
of the imaginary axis at the spectrum, there will exist a sequence of real numbers λn such that
λn→ λ∈R, with |λn|< |λ|, and a sequence of unit norm vectors Un = (u1n, vn, u3n, ϕn, ψn)∈
D(A) such that ‖(iλnI −A)Un‖→ 0. This is equivalent to write the following convergences:

iλnu1n − u3n→ 0 in H2, (3.18)

iτλnvn + vn − u3n→ 0 in H1, (3.19)

iρλnu3n − [aD2u1n + aD2vn + bDϕn − ηD3ϕn − k1D4u1n]→ 0 in L2, (3.20)

iλnϕn − ψn→ 0 in H2, (3.21)

iλnJψn − [ηD3u1n − bDu1n + δD2ϕn − ξϕn − k2D4ϕn]→ 0 in L2. (3.22)

From the left hand side of inequality (3.7) we see that vn→ 0 inH1. Then, u3n→ 0 and λnu1n→ 0

in H1. If we multiply convergence (3.20) by u1n we obtain that u1n→ 0 in H2. Now, we multiply
(3.20) by Dϕn to find that

b‖Dϕn‖2 + η‖D2ϕn‖2 − k1 <Du1n, D4ϕn >→ 0,

but
D4ϕn ∼

1

k2
[iλnJψn − ηD3u1n + bDu1n − δD2ϕn − ξϕn]

and
<Du1n, iλnJψn >=<λnDu1n, iJψn >→ 0,

<Du1n, ηD
3u1n >=−η‖D2u1n‖2→ 0.
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We write ∼ to indicate that the expression on the left hand side is equivalent to the one on the
right hand side when n tends to infinity.

Therefore, we see that
b‖Dϕn‖2 + η‖D2ϕn‖2→ 0.

Notice that for ϕ∈ 〈cosnx, cos(n+ 1)x, . . . 〉 the Poincaré’s constant is n2. Therefore, if we assume
that we work in a suitable subspace ofH, from the Poincaré’s inequality we see that D2ϕn→ 0.

Now, if we multiply convergence (3.22) by ϕn we also have ψn→ 0 and we obtain the
contradiction.

Lemma 3.3. The asymptotic stability condition (3.17) holds with α= 2.

Proof. If we assume that the thesis of the lemma is not true, then there exist a sequence of real
numbers λn with |λn| →∞ and a sequence of unit norm vectors Un such that

λ2n‖(iλnI −A)Un‖→ 0.

That is, we obtain the following convergences:

λ2n(iλnu1n − u3n)→ 0 in H2,

λ2n(iτλnvn + vn − u3n)→ 0 in H1,

λ2n(iρλnu3n − [aD2u1n + aD2vn + bDϕn − ηD3ϕn − k1D4u1n])→ 0 in L2,

λ2n(iλnϕn − ψn)→ 0 in H2,

λ2n(iJλnψn − [ηD3u1n − bDu1n + δD2ϕn − ξϕn − k2D4ϕn])→ 0 in L2.

Again, we find that λnvn→ 0 in L2. Therefore, u3n→ 0 and λnu1n→ 0 in L2. From here, we can
follow the same argument of the previous lemma to obtain a contradiction.

Theorem 3.2. The semigroup generated by the operatorA is polynomially stable, that is, for every U(0)∈
D(A) there exists a positive constant C independent of the initial data such that

‖U(t)‖H ≤Ct−1/2‖U(0)‖D(A).

Physically, it means that the solutions, and then the mechanical waves, decay as a polynomial:
they slowly dampen as t−1/2. This result highly differs from the one obtained by Liu et al. [21],
where the mechanical dissipation was the usual one (not of MGT type) and there were not high
order effects in the porosity.

4. Second system: Hyperviscoelasticity
We introduce now viscosity effect on the hyperstress. That is, we consider:

a(s) = a, b(s) = b, β(s) = β, k1(s) = k1 + (k∗1/τ − k1)e−s/τ ,

γ(s) = γ, α(s) = α, d(s) = d, k2(s) = k2, ξ(s) = ξ.

Assuming again that the variables u and ϕ (and their derivatives until fourth order) vanish when
the time goes to minus infinity, we obtain the system:

ρ(ü+ τ
...
u ) = a(uxx + τ u̇xx) + bϕx − ηϕxxx − k1uxxxx − k∗1 u̇xxxx,

Jϕ̈= η(uxxx + τ u̇xxx)− b(ux + τ u̇x) + δϕxx − ξϕ− k2ϕxxxx,

where η and δ are defined as in the previous section. Moreover, we also assume that ρ, a, k1, k∗1 ,
J , δ, ξ and k2 are positive, and we also need to impose that aξ > b2, k1δ > η2 and k∗1 > τk1 to
guarantee that the energy of the system and the dissipation are positive definite. We also assume
that η 6= 0 to get a strong coupling.

In this section, we use the boundary conditions (2.1) and the initial conditions (3.1).
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We study this problem in the Hilbert space H= (H2 ∩H1
0 )× (H2 ∩H1

0 )× L2 ×H2
∗ × L2

∗. In
this case, the elements ofH are denoted by U = (u, v, c, ϕ, ψ) and the inner product will be

〈U,U∗〉= 1

2

∫π
0

(
ρ(v + τc)(v∗ + τc∗) + Jψψ∗ +W

)
dx,

where

W = k1(uxx + τvxx)(u∗xx + τv∗xx) + τk1vxxv
∗
xx + a(ux + τvx)(u∗x + τv∗x) + δϕxϕ∗x + ξϕϕ∗

+k2ϕxxϕ
∗
xx + b((ux + τvx)ϕ∗ + (u∗x + τv∗x)ϕ) + η((uxx + τvxx)ϕ∗x + (u∗xx + τv∗xx)ϕx),

and k1 = k∗1 − τk1> 0. It is clear that it defines a norm that is equivalent to the usual norm in the
Hilbert space. As in the previous section, we can write our problem in the form (3.6) where

A=



0 I 0 0 0

0 0 I 0 0

aD2 − k1D4

ρτ

τaD2 − k∗1D4

ρτ
− I
τ

bD − ηD3

ρτ
0

0 0 0 0 I

ηD3 − bD
J

τ(ηD3 − bD)

J
0

δD2 − k2D4 − ξ
J

0


and U0 = (u0, v0, c0, ϕ0, ψ0).

We note that the domain of this operator is given by the elements inH such that

k1D
4u+ k∗1D

4v + ηD3ϕ∈L2, c∈H1
0 ∩H2,

η(D3u+ τD3v)− k2D4ϕ∈L2, ψ ∈H2
∗ ,

D2(k1u+ k∗1v) =D3ϕ= 0 on {0, π}

This domain is a dense subset of the Hilbert space H because it contains [C∞0 (0, π)]5, where C∞0
denotes the set of infinitely derivable functions with compact support.

Using integration by parts and the boundary conditions we see that

<〈AU,U〉=−k1
2

∫π
0
|vxx|2 dx≤ 0, (4.1)

for every U ∈D(A).

Lemma 4.1. The origin of the complex plane belongs to the resolvent of the operator.

Proof. Let us consider F = (f1, f2, f3, f4, f5)∈H. We want to find (u, v, c, ϕ, ψ) such that

v= f1, c= f2, ψ= f4,

−k1D4u− k∗1D4v + a(D2u+ τD2v) + bDϕ− ηD3ϕ− τc= τρf3,

ηD3u+ τηD3v − bDu− τbDv + δD2ϕ− ξϕ− k2D4ϕ= Jf5.

We can obtain v, c and ψ immediately and so, the above system becomes:

−k1D4u+ aD2u+ bDϕ− ηD3ϕ= τρf3 + k∗1D
4f1 − aτD2f1 + τf2,

ηD3u− bDu+ δD2ϕ− ξϕ− k2D4ϕ= Jf5 − τηD3f1 − τbDf1.

This system can be solved using the same argument we have done in the proof of Lemma 3.1,
and we obtain u and ϕ with the necessary regularity conditions. In fact, it can be shown that the
inequality (3.13) also holds.

Theorem 4.1. The operator A generates a C0-semigroup of contractions.

Again, undamped solutions can be found whenever b+ n2η= 0 for a natural number n∈N.
Therefore, we assume in this section that b+ ηn2 6= 0 for every n∈N.
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We proceed as in the previous section and prove the existence of solutions of the form (3.14)
such that <(ω)>−ε for all positive ε sufficiently small whenever Jk∗1 6= k2ρτ . In this case, ω must
satisfy the equation:

det

(
(k1 + k∗1ω)n4 + an2(1 + τω) + ρω2(1 + τω) ηn3 + bn

ηn3(1 + τω) + bn(1 + τω) k2n
4 + δn2 + Jω2 + ξ

)
= 0.

We abuse a little bit the notation and denote by p(x) the polynomial obtained when ω is
replaced by x in the above determinant. Afterwards, we replace x by x− ε and obtain polynomial
p(x− ε) = b0x

5 + b1x
4 + b2x

3 + b3x
2 + b4x+ b5, to which we apply again the Routh-Hurwitz

criterion. As before, coefficients bi depend on the constitutive parameters and ε.
In this case, the fourth leading minor is a sixteenth degree polynomial on n. To be precise, we

have
L4 = 2Jεk2ρ(Jk∗1 − k2ρτ)2(2εk∗1τ − k1)n16 + q14(n),

where q14(n) is a fourteenth degree polynomial on n. Thus, if we take n large enough and ε small,
L4 will be negative.

In the remain of this section, we prove that the decay of the solutions to our problem can be
controlled by a term of the form t−1/2.

Proposition 4.1. The eigenvalues of A restricted to KN have negative real part.

Proof. If we follow an argument similar to the previous section we find that

M1 = Jρ, M2 = J2ρk1n
4, M3 = J3ρk1(a+ k1n

2)n6, M4 = J3ρk1
2
(b+ ηn2)2n10,

M5 = J3n12ρk1
2
(b+ ηn2)2

(
k1k2n

6 + (ak2 + δk1 − η2)n4 + (aδ − 2bη + k1ξ)n
2 + aξ − b2

)
.

Taking into account that k1 = k∗1 − k1τ > 0, aξ > b2 and δk1 > η2, we conclude that these leading
minors are all positive.

Lemma 4.2. The resolvent of operator A contains the imaginary axis.

Proof. Again, we prove the result in a similar way to Lemma 3.2. If we assume that the thesis does
not hold, there will exist a sequence of real numbers λn such that λn→ λ∈R, with |λn|< |λ|, an
a sequence of unit norm vectors Un = (un, vn, cn, ϕn, ψn)∈D(A) such that

iλnun − vn→ 0 in H2, (4.2)

iλnvn − cn→ 0 in H2, (4.3)

iρτλncn − [aD2un + τaD2vn + bDϕn − ηD3ϕn

−ρcn − k1D4un − k∗1D4vn]→ 0 in L2, (4.4)

iλnϕn − ψn→ 0 in H2, (4.5)

iλnJψn − [ηD3un + τηD3vn − bDun − bτDvn + δD2ϕn

−ξϕn − k2D4ϕn]→ 0 in L2. (4.6)

In view of the dissipation inequality (4.1) we obtain that D2vn→ 0. Then, λnD2un also tends
to zero. If we multiply convergence (4.4) by vn we obtain that cn→ 0 in L2. Now, we multiply
convergence (4.4) by Dϕn and, using a similar argument to the previous section, we also obtain
that D2ϕn→ 0 and, therefore, ψn→ 0.

Lemma 4.3. The asymptotic condition (3.17) holds with α= 2.

The proof is rather similar to the one used in Lemma 3.3, but considering the steps of the
previous lemma. Hence, we have proved the following decay result.



11

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

Theorem 4.2. The solutions to our problem satisfy, for every U(0)∈D(A), the estimate

‖U(t)‖H ≤Ct−1/2‖U(0)‖D(A),

where C is a constant which is independent of the initial data.

The comment after Theorem 3.1 applies, word by word, also here.
Remark. Generically, the solutions to our problem decay in an slow way and it can be controlled
by t−1/2. However if Jk∗1 = k2ρτ , it is possible to prove the exponential decay. To do so, it is
enough to show that the imaginary axis is contained in the resolvent of A and that the following
asymptotic condition holds ( [22]):

lim
|λ|→∞

‖(iλI −A)−1‖L(H) <∞. (4.7)

We have already proved the first condition. It we assume that (4.7) does not hold, therefore a
sequence of real numbers λn, with |λn| →∞, and a sequence of unit norm vectors in D(A) exist
such that (4.1)–(4.5) hold. The same arguments used in Lemma 4.2 show that D2vn, λnD2un and
cn tend to zero. Multiplying (4.4) by Dϕn we obtain

〈iρτλncn, Dϕn〉 − b‖Dϕn‖2 − η‖D2ϕn‖2 + k1〈D4un, Dϕn〉+ k∗1〈D4vn, Dϕn〉→ 0.

Notice that 〈D4un, Dϕn〉=−〈Dun, D4ϕn〉 and that, from (4.6),

D4ϕn ∼
1

k2

(
iλnJψn − ηD3un − τηD3vn − δD3ϕn − ξϕn

)
.

As 〈Dun, λnψn〉= 〈λnDun, ψn〉→ 0, we conclude that 〈D4un, Dϕn〉→ 0. We concentrate now in

〈iρτλncn, Dϕn〉+ k∗1〈D4vn, Dϕn〉, (4.8)

which is equivalent to

〈Dvn,−iρτλnψn − k∗1D4ϕn〉.

Let us denote by m=
k∗1
k2

= ρτ
J . Therefore, the above expression can be written as

−m〈Dvn, iJλnψn + k2D
4ϕn〉,

and from (4.6)

iJλnψn + k2D
4ϕn ∼ ηD3un + τηD3vn − δD2ϕn − ξn.

Hence, expression (4.8) tends to zero. This implies that, in a sufficiently small Hilbert subspace,
D2ϕn→ 0.

If we multiply (4.6) by ϕn we also obtain that ψn→ 0, which leads to a contradiction about
supposing that the vector is of unit norm. This proves the exponential decay when Jk∗1 = ρτk2.

It is worth mentioning that for this case the damping of the solutions and, therefore, of the
mechanical waves, is controlled by a negative exponential. However, as it corresponds to a very
specific situation, a singular case, the physical application of this result is quite irrelevant.

5. Porous viscosity
In this section, we sketch some results about the decay of the solution when we introduce several
MGT-dissipation mechanisms on the microstructure.
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The first case that we consider is obtained when

a(s) = a, b(s) = b, β(s) = β, k1(s) = k1, γ(s) = γ,

α(s) = α+ (α∗/τ − α)e−s/τ , d(s) = d+ (d∗/τ − d)e−s/τ , k2(s) = k2, ξ(s) = ξ.

These assumptions give rise to the system:

ρü= auxx + b(ϕx + τϕ̇x)− η(ϕxxx + τϕ̇xxx)− k1uxxxx,
J(ϕ̈+ τ

...
ϕ ) = ηuxxx − bux + δϕxx + δ∗ϕ̇xx − ξ(ϕ+ τϕ̇)− k2(ϕxxxx + τϕ̇xxxx).

Here, we have used the notations δ= α− 2d, δ∗ = α∗ − 2d∗ and η= γ − β. As before, we assume
that ρ, a, k1, J , δ, ξ, k2 are positive constants and that aξ > b2, k1δ > η2, δ∗ > τδ and η 6= 0.

We impose the boundary conditions (2.1), but as initial conditions we take the following:

u(x, 0) = u0(x), u̇(x, 0) = v0(x), ϕ(x, 0) =ϕ0(x),

ϕ̇(x, 0) =ψ0(x), ϕ̈(x, 0) = φ0(x).

}
for a.e. x∈ (0, π). (5.1)

We note that this problem is very similar to the one studied in Section 3. Therefore, considering
the Hilbert spaceH= (H2 ∩H1

0 )× L2 ×H2
∗ ×H1

∗ × L2 and proceeding as before, one can show
the polynomial decay of type t−1/2 for the solutions.

The second case that we consider is obtained when

a(s) = a, b(s) = b, β(s) = β, k1(s) = k1, γ(s) = γ,

α(s) = α, d(s) = d, k2(s) = k2 + (k∗2/τ − k2)e−s/τ , ξ(s) = ξ.

Now, the system of equations is

ρü= auxx + b(ϕx + τϕ̇x)− η(ϕxxx + τϕ̇xxx)− k1uxxxx,
J(ϕ̈+ τ

...
ϕ ) = ηuxxx − bux + δ(ϕxx + τϕ̇xx)− ξ(ϕ+ τϕ̇)− k2ϕxxxx − k∗2ϕ̇xxxx.

We can study the problem determined by this system with the boundary conditions (2.1), the
initial conditions (5.1) and assuming that ρ, a, k1, J , δ, ξ, k2 are positive constants and that
aξ > b2, k1δ > η2, k∗2 > τk2 and η 6= 0. Hence, it is very similar to the one studied in Section 4
and, therefore, the lack of exponential decay as well as the polynomial decay of type t−1/2 for
the solutions can be shown in the Hilbert spaceH= (H2 ∩H1

0 )× L2 ×H2
∗ ×H2

∗ × L2
∗ whenever

ρk∗2 6= Jτk1. If ρk∗2 = Jτk1, then the exponential decay can be obtained.
Finally, we assume that

a(s) = a, b(s) = b, β(s) = β, k1(s) = k1, γ(s) = γ,

α(s) = α, d(s) = d, k2(s) = k2, ξ(s) = ξ + (ξ∗/τ − ξ)e−s/τ .

The corresponding system of equations is

ρü= auxx + b(ϕx + τϕ̇x)− η(ϕxxx + τϕ̇xxx)− k1uxxxx,
J(ϕ̈+ τ

...
ϕ ) = ηuxxx − bux + δ(ϕxx + τϕ̇xx)− ξϕ− ξ∗ϕ̇− k2(ϕxxxx + τϕ̇xxxx).

We consider the problem determined by this system with boundary conditions (2.1) and initial
conditions (5.1). We assume here that ρ, a, k1, J , δ, ξ, k2 are positive constants and that aξ > b2,
k1δ > η

2, ξ∗ > τξ and η 6= 0.
If we introduce the new variables ϕ1 =ϕ+ τϕ̇ and ϕ3 =ψ + τψ̇ (recall that ψ= ϕ̇), we can

write our system as

u̇= v, ψ̇=−τ−1ψ + τ−1ϕ3, ϕ̇1 =ϕ3,

v̇=
1

ρ

[
aD2u+ bDϕ1 − ηD3ϕ1 − k1D4u

]
,

ϕ̇3 =
1

J

[
ηD3u− bDu+ δD2ϕ1 − ξϕ1 − ξψ − k2D4ϕ1

]
,
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where ξ = ξ∗ − τξ. We study this problem in the Hilbert spaceH= (H2 ∩H1
0 )× L2 ×H2

∗ × L2
∗ ×

L2
∗, which elements are denoted by U = (u, v, ϕ1, ψ, ϕ3). We define the inner product

〈U,U∗〉= 1

2

∫π
0

(
ρvv∗ + Jϕ3ϕ

∗
3 +W

)
dx,

where
W = k1uxxu

∗
xx + auxu∗x + η(uxxϕ∗1x + u∗xxϕ1x) + b(uxϕ∗1 + u∗xϕ1)

+k2ϕ1xxϕ
∗
1xx + δϕ1xϕ

∗
1x + ξϕϕ∗ + τξψψ∗,

and the matrix operator

A=



0 I 0 0 0

aD2 − k1D4

ρ
0

bD − ηD3

ρ
0 0

0 0 0 0 I

0 0 0 −τ−1I τ−1I
ηD3 − bD

J
0

δD2 − k2D4 − ξ
J

− ξ
J

0


.

Again, the domain of the operator is dense and

<〈AU,U〉=− ξ
2

∫π
0
|ψ|2 dx≤ 0,

for every U ∈D(A).
Following the arguments proposed in the previous sections we can show that the imaginary

axis is contained in the resolvent of the operator. Therefore, we can obtain again the existence of a
semigroup of contractions, and the existence and uniqueness of solutions is guaranteed whenever
the initial data belongs to the domain of the operator.

It seems difficult to obtain estimates for the decay of the solutions. However, we can guarantee
that the point spectrum is on the left hand side of the imaginary axis whenever b+ ηn2 6= 0 for
every n∈N. This fact suggests the decay of the solutions. However, a careful proof would need a
further study.

If we follow an argument similar to the previous sections we find that

M1 = Jρ, M2 = Jρ2ξ, M3 = Jρ3ξ(k2n
4 + δn2 + ξ), M4 = Jρ3ξ

2
n2(b+ ηn2)2,

M5 = Jn4ρ3ξ
2
(ηn2 + b)2

(
k1k2n

6 + (ak2 + δk1 − η2)n4 + (k1ξ − 2bη + aδ)n2 + aξ − b2
)
.

Keeping in mind that ξ = ξ∗ − τξ > 0, aξ > b2, δk1 > η2 and b+ ηn2 6= 0 for every n∈N we see
that Mi > 0 for every i= 1, . . . , 5. Therefore, all the eigenvalues have negative real part and the
decay of the solutions is proved.

Now, we show that the decay is not controlled by any exponential. Taking solutions of the form
(3.14) such that <(ω)>−ε for all positive ε sufficiently small, we get that ω satisfies the equation:

det

(
an2 + k1n

4 + ρω2 ηn3(1 + τω) + bn(1 + τω)

ηn3 + bn (k2 + k2τω)n4 + (δ + δτω)n2 + Jτω3 + Jω2 + ξ∗w + ξ

)
= 0.

As in the previous sections, we analyze the roots of the polynomial p(x− ε) by using the
Routh-Hurwitz criterion. In this case, the second leading minor is a fourth-degree polynomial
on n whose main coefficient is always negative. To be precise, we have

L2 =−2Jρτ2ε(Jk1 + k2ρ)n4 − Jρ(2Jaετ2 + 2δερτ2)n2

−Jρ(40Jρε3τ2 − 24Jρε2τ + 2ρξ∗ετ + 4Jρε+ ρξτ − ρξ∗).

Thus, if we take n large enough and ε small, L2 will be negative.
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6. Conclusions
Strain gradient models and the Moore-Gibson-Thompson equation are currently being used in
the thermomechanical context. In this work we have studied the linear strain gradient porous–
elastic problem in the one-dimensional case when several dissipation mechanisms of MGT type
are introduced in the system of equations, and we have shown the following properties:

• If viscoelasticity is considered, the solutions decay in a polynomial way with respect to
the time variable.

• If hyperviscoelasticity is considered, the solutions decay again in a polynomial way,
except for a particular combination of the constitutive coefficients, which leads to the
exponential stability, that is, the decay of the solutions can be controlled by a negative
exponential.

• The same results are sketched when the viscosity or hyperviscosity effects act in the
porous structure.

• For the weak viscoporosity, we have seen that the decay can only be slow. However, to
clarify if the decay can be controlled by a polynomial is still an open question.

Let us end this study by comparing the decay of the waves when MGT-dissipation mechanisms
are taken into account with their decay when the classical Kelvin-Voigt dissipation (KV) is
considered. In a recent study [1], the authors prove that under KV viscoelasticity, the waves
dampen uniformly, that is, the elements of the spectrum are quite far away from the imaginary
axis. Instead, if MGT-dissipation is considered, the elements of the spectrum approach the
imaginary axis. For the hyperviscoelasticity, the waves behave similarly under both dissipation
mechanisms: the elements of the spectrum get close to the imaginary axis. The same happens
when the dissipation is considered in the porous structure. Finally, for what can be called weak
porous dissipation, in the KV model there are some singular cases where the elements of the
spectrum are (again) far away from the imaginary axis, while in the MGT model they are closer,
and that means that in the former model the waves dampen quicker than in the latter.
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9. De Cicco S, Ieşan D. 2021. On the theory of thermoelastic materials with a double porosity

structure. Journal of Thermal Stresses 44.
10. Dell’Oro F, Lasiecka I, Pata V. 2016. The Moore-Gibson-Thompson equation with memory in

the critical case. Journal of Differential Equations 261.
11. Dell’Oro F, Pata V. 2017. On the Moore–Gibson-Thompson Equation and Its Relation to Linear

Viscoelasticity. Appl. Math. Optim. 76.
12. Dieudonné MJ. 1938 La Theorie Analytique des Polynomes d’une Variable (A Coefficients

Quelconques). Gauthier-Villars.
13. Feng B, Apalara, TA. 2019. Optimal decay for a porous elasticity system with memory. Jour.

Mathematical Analysis Applications 470.
14. Feng B, Yin M. 2019. Decay of solutions for a one-dimensional porous elasticity system with

memory: the case of non-equal wave speeds. Mathematics and Mechanics of Solids 24.
15. Green AE, Rivlin RS. 1964. Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17.
16. Gurtin ME. 1971. Time-reversal and symmetry in the thermodynamics of materials with

memory, Arch. Rat. Mech. Anal. 44.
17. Handbook of Metal Injection Molding. Editor-in-Chiel: Donald F. Heaney. A volume in

Woodhead Publishing Series in Metals and Surface Engineering, 2019.
18. Ieşan D. 2020. A gradient theory of porous elastic solids. Z. Ang. Math. Mech. 100.
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Appendix
For the sake of completeness, we write here the full expressions of coefficients bi, for i= 0, 1, ..., 5,
of the polynomial p(x− ε) of Section 3.

b0 = Jρτ

b1 = Jρ(1− 5τε)

b2 = n4τ (Jk1 + k2ρ) + n2 (a∗J + δρτ) + 2Jρε(5τε− 2) + ξρτ

b3 = n4(1− 3τε) (Jk1 + k2ρ) + n2 (−3a∗Jε+ aJ + ρ(δ − 3δτε))

+2Jρε2(3− 5τε) + ξρ− 3ξρτε

b4 = n8k1k2τ + n6
(
a∗k2 − η2τ + δk1τ

)
+n4 (a∗δ − 2bητ + Jk1ε(3τε− 2) + k1ξτ + k2ρε(3τε− 2))

+n2
(

3a∗Jε2 + a∗ξ − 2aJε− b2τ + 3δρτε2 − 2δρε
)

+5Jρτε4 − 4Jρε3 + 3ξρτε2 − 2ξρε

b5 = n8k1k2(1− τε) + n6
(
ak2 − a∗k2ε+ δk1(1− τε) + η2(τε− 1)

)
+n4

(
−a∗δε+ aδ + 2bη(τε− 1) + Jk1ε

2(1− τε) + k2ρε
2(1− τε) + k1ξ(1− τε)

)
+n2

(
−a∗Jε3 − a∗ξε+ aJε2 + aξ + b2(τε− 1)− δρε2(τε− 1)

)
−Jρε4(τε− 1)− ξρε2(τε− 1)

(6.1)
Obviously, when ε= 0 these coefficients agree with the ai’s.
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