

Final Thesis developed by:

Bazán Escoda, Aitor

Directed by:

Castilla, Robert

Master in:

Numerical methods in engineering

Barcelona, 29.06.2022

Department of fluid mechanics
 M

A
ST

ER
 F

IN
A

L
TH

ES
IS

Study and development of a
solidification model using CFD

UNIVERSITAT POLITÈCNICA DE
CATALUNYA

MASTER THESIS

Study and development of a
solidification model using CFD

Author:
Aitor BAZÁN ESCODA

Supervisor:
Dr. Robert CASTILLA

A thesis submitted in fulfillment of the requirements
for the degree of Master Thesis

in the

Fluid Mechanics Department
Escola Tècnica Superior d’Enginyeria de Camins, Canals i Ports

de Barcelona

http://www.university.com
http://www.university.com
http://www.johnsmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com
http://department.university.com

iii

Declaration of Authorship

I, Aitor BAZÁN ESCODA, declare that this thesis titled, “Study and develop-
ment of a solidification model using CFD” and the work presented in it are
my own. I confirm that:

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely my
own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have
contributed myself.

Signed: Aitor Bazán Escoda

Date: 29.06.2022

v

Abstract

Aitor BAZÁN ESCODA

Study and development of a solidification model using
CFD

Phase change materials (PCMs) are of great interest within the automotive
industry field. Not only when used in thermal management applications
but also in different areas where these materials are of vital importance for
both a safe and comfortable driving. For such objective, the present project
arises from the idea of understanding solidification processes in such areas.
In this context, this master’s thesis produces a comprehensive state of the
art of some of the current numerical methods to effectively represent water
solidification.

An OpenFOAM 21.12. solver based on a multi-phase solver, multicomponent
incompressible solver based on a volume of fluid method is adapted to deal
with diffusive-convective water phase change. So as to reach this goal, two
different models for water solidification representation are investigated.

Firstly, research on the pure convective part is done by implementing both a
new expression for the gravity related terms and an equation of state which
properly fits the accounted physical phenomena.

On a second stage, an implementation of the enthalpy-porosity techinque is
carried out. The work of Voller is closely followed, and a detailed explanation
of the used equations and the assumptions taken is given. Validation of the
model is accomplished by comparing the numerical results with the authors
in Bourdillon and Kowaleski.

On a third stage, a 2D semi-empirical model based on the work of Lee is
adapted to account for the nucleation characteristics during the process of the
water freezing. Validation of the model is done by comparing the obtained
results to the literature aforementioned. Numerical results are tested against
Neumann solutions for classical Stefan problem.

Finally, the current work is extended to a multiregion solver implementa-
tion based on the coupling of a fluid region, in which the liquid undergoes a
phase-change, with a solid region. This is done in the context of a conjugate
heat transfer scenario.

Keywords: PCMs, multi-phase, Enthalpy-porosity technique, Voller, Lee
model, Stefan problem, conjugate heat transfer, OpenFOAM.

vii

Acknowledgements

My first and biggest thanks goes to my supervisors, Dr. Robert Castilla and
Dr. Gustavo Raush for their invaluable help throughout this work.

I would like to thank my family and all my workmates in Barcelona Technical
Center S.L. for giving me support in the darkest hours.

ix

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Thesis Statement. Background and motivation 1
1.2 Phase Change Process . 4

1.2.1 Water phase change . 5
1.2.2 Phase diagram of ice . 5
1.2.3 Properties of ice . 6
1.2.4 Freezing phenomena . 6

1.3 Mechanisms of Heat Transfer. Heat convection 7
1.4 Conjugate Heat Transfer. Heat conduction 8

2 Numerical Methods for Phase Change Phenomena 9
2.1 State of Art. Numerical Methods 9

2.1.1 Front tracking method 9
2.1.2 Enthalpy method . 10
2.1.3 Phase field method . 11

2.2 Solidification methods . 11
2.2.1 Volume-of-Fluid Method: General Aspects 12
2.2.2 Enthalpy-Porosity Model. Governing Equations 13
2.2.3 Lee model . 14

2.2.3.1 Momentum Equation 15
2.2.3.2 Energy Equation 15
2.2.3.3 Classical nucleation theory. The coefficient C f . 16

2.2.4 Interphase porosity models 19
2.2.4.1 Surface tension model 20

3 Numerical Simulation of Solidification Process 21
3.1 OpenFOAM. General Aspects 21

3.1.1 The finite volume method 21
3.1.2 OpenFOAM functioning 22

3.1.2.1 Boundary Conditions Directory 23
3.1.2.2 Constant Properties Directory 23
3.1.2.3 System Directory 24

3.2 Solidification process. Methodology 25

x

3.3 OpenFOAM: BuoyantBoussinesqPimpleFOAM. Natural Con-
vection solver . 26
3.3.1 Case Description . 26
3.3.2 Hypotheses And Assumptions 26
3.3.3 Governing Equations . 27

3.3.3.1 Momentum Equation 28
3.3.3.2 Temperature Equation 28

3.3.4 Solver descripton. Control Loop 29
3.3.5 Code implementations 30
3.3.6 Case Setup . 32
3.3.7 Validation of Results and Conclusions 35

3.4 OpenFOAM: IcoReactingMultiphaseInterFOAM. Phase-Change
Process . 41

3.5 Case Description. 41
3.5.1 Hypotheses And Assumptions 42
3.5.2 Governing Equations . 42

3.5.2.1 Momentum Equation 43
3.5.2.2 Energy Equation 43

3.5.3 Solver description. Control Loop 43
3.5.4 Mass transfer models . 43
3.5.5 Code implementations 44
3.5.6 Case Setup . 46
3.5.7 Validation of Results and Conclusions 49

3.5.7.1 Stefan Problem 58
3.5.7.2 Interface height 59
3.5.7.3 Conclusions on the Stefan problem 61

4 Numerical Simulation of Heat Transfer 63
4.1 OpenFOAM: chtMultiphaseInterFOAM. Conjugate Heat Trans-

fer . 63
4.1.1 Case description . 64
4.1.2 Hypotheses And Assumptions 64
4.1.3 Governing Equations of the Fluid Region 65
4.1.4 Governing Equations of the Solid Region 65

4.1.4.1 Energy Equation 65
4.1.5 Solver description. Control Loop 66
4.1.6 Code implementations 66
4.1.7 Case Setup . 68

4.1.7.1 Boundary conditions 69
4.1.7.2 Thermophysical properties 70

4.1.8 Results and Conclusions 71

5 Conclusions 75

6 Future Works 79

Bibliography 80

xi

Bibliography 81

A Appendix A: Solidification models 85
A.1 Enthalpy-porosity library . 85

A.1.1 mySolidificationMeltingSource.H 85
A.1.2 mySolidificationMeltingSource.C 88
A.1.3 mySolidificationMeltingSourceTemplates.C 92

A.2 Lee-Nucleation library . 93
A.2.1 LeeCNT.H . 93
A.2.2 LeeCNT.C . 98
A.2.3 Library header files . 105

A.3 equationOfState . 113
A.4 Python code for Stefan Problem 125

B Appendix B: Solver implementations 131
B.1 Computational Mesh script . 131
B.2 myBuoyantBoussinesqPimpleFoam solver 133
B.3 chtMultiphaseInterFoam solver 141

B.3.1 Fluid region . 141
B.3.2 Solid region . 167

xiii

List of Figures

1.1 Workpath for buoyancy effects study. 2
1.2 Workpath for latent heat implementation in enthalpy-porosity

model. 2
1.3 Workpath for nucleation theory implementation in Lee model. 2
1.4 Workpath for conjugate heat transfer implementation. 3
1.5 Phase change comparison. 4
1.6 Phase diagram of ice. 5
1.7 Process of crystallization of water. 7

2.1 Volume-of-fluid approach. 13
2.2 Crystallization rate in function of temperature. 19

3.1 General structure of an OpenFOAM case. 23
3.2 Zoom of the computational mesh for the cavity. 26
3.3 Flowchart of integration procedure. buoyantBoussinesqPimple-

Foam . 29
3.4 Setting of cavity computational domain. 32
3.5 Comparison between BBPF* and mBBPF** 35
3.6 Density differences between linear and polynomial expressions. 36
3.7 Adimensional magnitudes comparison. 38
3.8 Geometric characteristics for cylinder. 41
3.9 Energy equation of IcoReactingMultiphaseInterFoam. 44
3.10 Latent heat source term present in mySolidificationMelting-

Source library. 44
3.11 rhoCpPhi field in createFields.H 45
3.12 Library function in LeeCNT. 45
3.13 Adimensional magnitudes comparison at t = 100s. 51
3.14 Gradient of the interface between liquid and solid phases for

Lee-CNT model. 56
3.15 Numerical results of temperature profiles in center position of

cylindrical geometry. 57
3.16 Schematic diagram of Stefan problem. 58
3.17 Numerical solutions of the Lee model-CNT vs Neumann ana-

lytical solutions at t = 9s. 60
3.18 Numerical solutions of the Lee model-CNT vs Neumann ana-

lytical solutions for interface position for t=0-9s. 60

4.1 Computational mesh for the conjugate heat transfer case. . . . 64
4.2 Flowchart of the conjugate heat transfer solver [22]. 66
4.3 Control loop for the fluid region in CHT. 67

xiv

4.4 Energy equation for the fluid in CHT. 68
4.5 Scheme of the geometry used in CHT. 69
4.6 Initial residual of hydrostatic pressure in chtMultiRegionFoam. 74
4.7 Initial and final residuals of hydrostatic pressure in chtMulti-

PhaseInterFoam. 74

xv

List of Tables

1.1 Variation of ice density for every phase at 110K. 6

3.1 Parameters to recover continuity, momentum and energy equa-
tions. 22

3.2 Boundary conditions for natural convection case. 33
3.3 Water properties for natural convection. 33
3.4 Discretization schemes. 33
3.5 Solvers for the discretised equations. 34
3.6 Parameters for the discretised equations. 34
3.7 Numerical results of natural convection modified solver be-

tween t = 100s and 1500s. 39
3.8 Numerical results of Natural convection modified solver be-

tween t = 750s and 1500s. 40
3.9 Boundary conditions for natural convection case. Cavity case. 46
3.10 Boundary conditions for natural convection case. Cylinder case. 46
3.11 Water properties for natural convection. 47
3.12 Water properties for solidification. 47
3.13 Solvers for the discretised equations. 48
3.14 Numerical results of dimensionless magnitudes for Lee-CNT

model at t = 100s. 50
3.15 Numerical results of temperature distributions for Enthalpy-

porosity and Lee-CNT models at t = 100, 200, 300s. 52
3.16 Numerical results of velocity distributions for Enthalpy-porosity

and Lee-CNT models at t = 100, 200, 300s. 53
3.17 Numerical results of fluid fraction distributions for Enthalpy-

porosity and Lee-CNT models at t = 100, 200, 300s. 54
3.18 Numerical results of Enthalpy-porosity and Lee-CNT models

at t = 100s and 300s in a cylinder. 55
3.19 Boundary conditions for Stefan problem. 59
3.20 Numerical results of temperature and interface evolution for

Lee-CNT model at t = 9s. 60

4.1 Boundary conditions for the fluid region in CHT problem. . . 69
4.2 Boundary conditions for the solid region in CHT problem. . . 69
4.3 Polyethylene properties for solid region definition. 70
4.4 Numerical results of chtMultiRegionFoam (first row) and cht-

MultiPhaseInterFoam (second row) at t = 2100s in a cylinder. . 73

1

Chapter 1

Introduction

1.1 Thesis Statement. Background and motivation

During the last decade, the use of phase change materials has been grow-
ing in the automotive industry.

These substances release or absorb large amounts of latent heat when they
go through a change in their physical state, as the material reaches its spe-
cific phase change temperature. Thus, in the process of latent heat release
or absorption, the temperature of the phase change material (PCM) remains
constant. Therefore, PCMs are considered to be efficient in terms of thermal
storage.

However, some of these PCM’s may present physical effects which most
of the times require special conditions for the containers in where they are
placed. Thus, in such geometries, problems involving, i.e., solidification are
of considerable relevance. And this is mainly due to a volumetric expansion
originated by the thermal effects within the PCM which at its turn, generates
stresses in the tank in which is bottled up.

On that basis, this master’s thesis main objective aims to study different nu-
merical techniques to represent solidification process and, specially, pure
water phase change. This is accomplished by first stuying the physics of a
pure convective solver. That will bring a new solver with a rather different
gravity-related term and a polynomial density variation purely temperature
dependent. This is validated against literature.

2 Chapter 1. Introduction

FIGURE 1.1: Workpath for buoyancy effects study.

And later, imlementing an enthalpy-porosity technique within the frame of a
multi-phase incompressible solver based on volume-of-fluid (VOF) method
for interface tracking. The objective of this first stage is to apply the latent
heat as source term in the energy equation.

FIGURE 1.2: Workpath for latent heat implementation in
enthalpy-porosity model.

On a second stage of the thesis, a 2D semi-empirical model based on the work
of Lee is adapted to account for the nucleation characteristics occured during
the water phase transition. This is implemented within the same solver based
on the technique of VOF as in the previous case.

FIGURE 1.3: Workpath for nucleation theory implementation in
Lee model.

The final stage of this thesis is devoted to an implementation of a multiregion
solver to calculate conjugate heat transfer problems between solid and fluid
zones with the singularity of being, the fluid zone, capable of handling phase
change materials. Both models are validated against literature.

1.1. Thesis Statement. Background and motivation 3

FIGURE 1.4: Workpath for conjugate heat transfer implementa-
tion.

To summarize the aforementioned, this master’s thesis borns with the main
motivation of being the solution to an industrial problem arisen within the
author’s internship. The problem of modelling the water phase-transition
inside a cavity submitted to undercooling temperatures in where one of the
main goals is to describe qualitatively and quantitatively the ice-layer ad-
vancing front. So as to reach the main objective, this thesis proposes two
numerical solidification models within the framework of a volume-of-fluid
technique: an enthalpy-porosity model and a coupled mass-heat transfer
model, called Lee model, undergoing nucleation characteristics. With this
two models using VOF, the author pretends to give a comprehensive state
of the art on that matter. Finally, as a last objective in this thesis, it is imple-
mented a new solver giving response to two heat transfer mechanisms which
tipically tend to be physically dependent in such solidification-involved prob-
lems in industry: conduction and convection. For such case-scenario, the
new solver will be capable of dealing with two or more regions sharing a
common interface is developed. One of the region is intended to be a solid
and the other a two-phase fluid.

The next chapters are mainly focused on describing phase change phenom-
ena and heat transfer mechanisms used along the completion of this master’s
thesis.

4 Chapter 1. Introduction

1.2 Phase Change Process

The phase change is usually modelled by a sudden change in enthalpy per
unit of temperature generated within a narrow temperature range near the
freezing point. Often, this process is assumed to behave in a characteristic
temperature, as shown in Fig. 1.5a, leading to a moving boundary prob-
lem. However, at a given critical temperature, both fluid and solid phases
may coexist giving a state called mushy region as in Fig. 1.5b. In this case,
one speaks of a non-linear diffusion problem rather than a moving boundary
problem [14].

(A) Isothermal phase change. (B) Non-isothermal phase change.

FIGURE 1.5: Phase change comparison.

As briefly introduced, two types of phase change are used to describe the
way the latent heat is released or absorbed during freezing or melting pro-
cesses:

• Non-isothermal phase change: the phase change takes place within
a temperature range yielding a transition zone between a solid and a
liquid phase called mushy zone. Typically, the thickness of this region
is straightfully proportional to the temperature range in wich the phase
change occurs.

• Isothermal phase change: the phase change is arisen instantaneously
at the melting temperature. The release or absorption of the latent heat
occurs at this point in which, consequently, there is no transition zone
between solid and liquid phases. At this point, there is a narrow line,
mainly derived from the discretization of the computational domain,
characterizing the phase change phenomena.

As an important remark, when the mushy region is sufficiently narrow, the
isothermal assumption is usually a good approximation. However, despite
of the fact of being a convenient approach it may lead to significant compli-
cation when it comes to numerical solution techniques.

1.2. Phase Change Process 5

Along the next chapters, a more detailed description on existing techniques
that deal with such non-trivial phenomena will be given.

1.2.1 Water phase change

In a similar manner, the water phase change takes place. A complex in-
teraction of the molecular forces generate water to behave in a curious way
when it gets frozen into ice. The vast majority of substances, when they are
cooled down, become more dense in the frozen state than when liquid. How-
ever, when cooled under a specific temperature, water begins to expand and,
once it starts freezing, it becomes less dense than water.

1.2.2 Phase diagram of ice

When water begins to become ice, these ice crystals might undergo dif-
ferent kinds of structures. Called ice Ih, in the form of hexagonal ice and,
manifested in six cornered snow flakes, is the natural ice generally found in
earth. However, at lower pressures below 2 kbar, many other ice structures
may exist.

The ice phase diagram shown in Fig. 1.6, points out the conditions of stability
for all ice phases. As it is cleared out, the line between the water and ice Ih is
an equilibrium line with a negative slope, consequence of having, the solid,
lower density than the liquid. These equilibrium lines extend in the form
of metastable phase boundaries into the area of stability of other ice phases.
Although there are at least 11 crystalline ice shapes, the only which is found
in naturally on earth is the hexagonal form.

FIGURE 1.6: Phase diagram of ice.

As a remark, the implication that there is a rise on the pressure would not
propitiate ice formation at 0ºC, instead water would need to be cooled down.

6 Chapter 1. Introduction

1.2.3 Properties of ice

Ice, when subjected to visible light conditions, is transparent and has the
lowest index of refraction for the sodium spectrum of any known crystalline
material, as pointed out by Akyurt et al. [1].

Mechanically, ice behaves like a viscoelastic material with a non linear law.
Pollycrystalline ice subjected to stress, deforms elastically, followed by a tran-
sient creep and finally, a secondary creep in the form of steady viscous flow
is obtained.

As described in [1], the surface of ice Ih near the melting point has many
dangling broken bounds that boost the presence of a liquid-like layer and as
a consequence, low friction on such surface. Variation of density of ice with
phase at 110 K is described in the table shown below.

Phase of ice Density (Mg/cm3)

Ih 0.93
II 1.18
III 1.15
IV 1.27
V 1.24
VI 1.33
VII 1.56
VII 1.56
IX 1.16
X 2.51

TABLE 1.1: Variation of ice density for every phase at 110K.

1.2.4 Freezing phenomena

Time-temperature diagram for freezing of pure water (ABCDE) and aque-
ous solutions (AB’C’D’E’), Fig. 1.7, shows the physical process that occurs
during the solidification. The first stage, from A to B, belongs to undercool-
ing, also called supercooling, and it is arisen below the freezing point Tf ,
which is equal to the melting point, Tm. This point is referred to a non equi-
librium point and it is analogous to an activation energy necessary for the
nucleation process. Before nucleation process starts, pure water may need
to be cooled down several degrees. At point B, the system nucleates and re-
leases its latent heat faster than the heat which is being removed from itself.

From C to D, the horizontal axis shows the evolution of the crystal growth
in time. At C, there exists the nucleation point and, from there through D,
latent heat gets removed out of the system at constant temperature. In this
way, the mixture, which is in a partially frozen state, does not cool until all
the potentially freezable water has crystallized.

1.3. Mechanisms of Heat Transfer. Heat convection 7

FIGURE 1.7: Process of crystallization of water.

1.3 Mechanisms of Heat Transfer. Heat convection

In a more generalistic point of view, phase changes occur due to the action
of the heat transfer which may appear in the form of convection, conduction
or radiation.

Convective heat transfer usually occurs in fluids due to the microscopic mo-
tion of the particles commonly understood as the bulk fluid motion.

Depending on the force originating such motion, one can distinguish two
types of convection: natural convection and forced convection. Natural con-
vection, the phenomena presented in this thesis, is originated due to differ-
ences of temperature gradients. These gradients, in the presence of the gravi-
tational field, allow density to change within the fluid field. At the same time,
the fact that density changes, enhances the rise of the colder liquid in contrast
with the warmer which tends to sink thus, generating a motion in the fluid.
On the other hand, the forced convection is driven by external sources which
enforce the motion. In this case, buoyancy is not that relevant as it is for the
first kind of convection.

In order to model the convection heat transfer in an object, the Newton’s
cooling law is typically used. As presented in Equation 1.1:

dQ
dt

= hA (Ts(t)− T∞) (1.1)

where Q is the heat source (thermal energy), Ts is the temperature on the
surface of the object, T∞ the temperature far away from the object, h is the
heat transfer coefficient and A, the heat transfer surface area.

8 Chapter 1. Introduction

The equation 1.1 states that the rate of heat loss is proportional to the tem-
perature difference between the object itself and the medium by which it is
surrounded.

The process of water freezing in enclosures is common in engineering. When
there exist temperature gradients within the liquid phase in the process of
solidification, a natural buoyancy driven flow is initiated and such behavior
is determined to affect the shape of the liquid/solid interface as well as the
progress of solidification.

Indeed, these temperature differences in the liquid cause density variations
so that the natural motion occurs. Boussinesq approximation can be validly
used for fluids whose density varies linearly with temperature. However,
pure water exhibits a maximum in its density when it ranges between 0ºC
and 4ºC. Beyond the latter temperature, and known as density inversion
point, density decreases in a nonlinear manner as the temperature passes
through the freezing point. In convective heat transfer, surroundings of the
temperature where the aforementioned maximum happens to be, behave in
a complex manner leading to fully control the process of growth of the solid
phase.

1.4 Conjugate Heat Transfer. Heat conduction

The other heat transfer mechanism appearing in the thesis is heat conduc-
tion which usually happens at molecular level in where the energy is trans-
ferred from particles with high energetic levels to lower energetic particles.
The equation driving the conductive heat transfer is commonly known as the
Fourier’s law and it reads as:

q = −k∇T (1.2)

where q is the heat transfer per unit of area, κ is the thermal conductivity
of the material and ∇T is the gradient of temperatures within the studied
bodies.

Alongside, conjugate heat transfer, the phenomena studied in the last part of
this thesis, is referred to the heat transfer between solids and fluids. There-
fore, a combination of conduction and convection are the main heat transfer
mechanisms driving this part of the analysis.

9

Chapter 2

Numerical Methods for Phase
Change Phenomena

2.1 State of Art. Numerical Methods

Considering the PCM density as constant in the model might be thought
as a reasonable assumption in some cases, in others where thermo-mechanical
coupling between the fluid and its container is intended, it makes impossi-
ble to account for some physical behaviors which may result from expan-
sion or contraction during the phase change of the material. However, the
main goal of this thesis is not to present a method that represents thermo-
mechanical coupling but a technique that ensures volume expansion due to
density changes through the fluid domain. To reach this point, it is important
to summarize some of the numerous researches that have been conducted in
order to investigate the problem of solidification.

At the present, the main used numerical methods representing the treatment
of liquid-solid phase change are divided into these categories:

• Front tracking method,

Volume-of-fluid method,

Level set method,

• Enthalpy method,

• Phase field method.

2.1.1 Front tracking method

Several studies are carried out with this method. Juric et al. [12], pre-
sented a front-tracking method based on a finite difference approach of the
heat equation and an explicit tracking of the fluid-solid interface to simu-
late time dependent two-dimensional dendritic solidification of pure sub-
stances. In similar fields, Al-Rawahi et al. [18] underwent also simulations
of dendritic growth of pure substances by using front-tracking methods in
which the fluid-solid interface was tracked explicitly and the release of la-
tent heat during solidification was calculated with the normal temperature

10 Chapter 2. Numerical Methods for Phase Change Phenomena

gradient near the interface. Accordingly, Garimella et al. [15] proposed an
explicit interface-tracking scheme involving reconstruction and advection of
the moving interface in a fixed grid to solve moving-boundary problems as-
sociated with phase change phenomena. As they describe, the movement of
the interface is tackled first by advection and tracking of the interface, later
by the calculation of normal velocities near the interface region and finally,
by solving the governing equations for the existing phases.

Volume-of-fluid method

Initially introduced by Harlow et al. [8], a technique called the marker and
cell method tracked the interface by wightless particles which were trans-
ported convectively by the velocity of the fluid. Cells that were filled with
marked particles were considered occupied by the fluid while, contrarily,
these which were not filled with marked particles were not occupied by fluid.
Later in time, the idea was extended to track the interface based on phase
fractions in the volume-of-fluid method which is discussed in detail later in
this chapter.

Level set method

In the field of the current technique, Tan et al. [23] conducted a level set
method combining properties of both fixed domain and front-tracking meth-
ods to model the microstructure evolution in multi-component alloy solidifi-
cation. Phase interface is tracked by solving the multi-phase level set equa-
tions. From this tracked interface, a diffused one is constructed by means of
the level set functions. Volume-averaging methods are latter used to solve
energy, species and momentum equations. Rauschenberger et al. [17] pur-
sued a comparative assessment between a Level set approach and a volume-
of-fluid method to track interfaces in the context of dendritic ice growth in
supercooled water. The Level Set method is used as an implicit tracking of
the moving boundary.

2.1.2 Enthalpy method

In 2004, Esen et al. [7] worked out an enthalpy method based on finite
difference approximations applied to the Stefan problem. An enthalpy func-
tion is defined representing the total heat content per unit of mass of the
material. The need of tracking the interface between the fluid and the solid
phase is thereby removed when using such formulation. El Ganaoui et al.
[6] presented an enthalpy-porosity formulation on a fixed grid framework
for liquid-to-solid phase transition. The method is extended to solve time-
dependent solutal convection in the melt during directional solidification
that undergo the majority of alloys. Within the alloy research field, Voller
et al. [25] developed an enthalpy fixed grid method for dendritic growth
modeling in under-cooled binary alloys. This method is devoted to couple
explicit finite differences expressing the conservation of enthalpy and solute

2.2. Solidification methods 11

to an iterative scheme which enforces node-to-node consistency between so-
lute, liquid-fraction, enthalpy and under-cooling interface.

2.1.3 Phase field method

Emerged as an approach to model and predict mesoscale morphologi-
cal and microstructure evolution in materials, Chen et al. [4] review some
phase-field models used to describe various materials processes including
solidification, crack propagation and dislocation microstructures among oth-
ers. This paper describes the capability of phase-field methods to predict the
evolution of arbirtary morphologies and complex microstructures without
explicitly tracking the evolution of the interface.

2.2 Solidification methods

The challenge of a numerical investigation of a solidification process is
to capture the free surface for the flow of the phase change material and,
at the same time, account for the moving boundary induced by the phase
change within the PCM. The free surface may be handled by the volume-of-
fluid (VOF), originally introduced by Hirt and Nichols [9]. VOF relies on the
definition of a transport indicator function within the finite volume method’s
framework.

Simultaneously, and in order to account for the phase changes, some of the
used models are based on meso-scale. This is the phenomena occurring be-
tween microscopic and continuum length scales and, in the current context,
the complex micro structure generated during the solidification is approxi-
mated as liquid, mushy (intermediate state), and solid regions. Mushy region
is thereby described as an averaged value of the liquid and solid properties.

One of the most used methods is the enthalpy-porosity technique, originally
developed by Voller and Prakash [24], which uses the typical conservation
equations on a fixed Eulerian grid. The main concepts underlaying such
method are: on the one side, an additional source term to the energy con-
servation equation is applied to describe the release of latent heat. On the
other side, the solidification effects on the mass transport are modelled as a
porosity variable and this is introduced as a Darcy-type source term to the
momentum equation.

In the first aim of this thesis is the coupled use of the enthalpy-porosity tech-
nique with the VOF method. Some of the studies found on this topic, the
coupling of both VOF and enthalpy-porosity methods, are mainly related
to casting processes. Rösler and Brüggermann [21] introduced a numeri-
cal model for a solid-liquid phase change inside a latent heat thermal en-
ergy storage. Richter et al. [20], worked out a method for the simultaneous
mould filling and solidification process which settles the developing of free
surface flow and the liquid-solid phase transition under the volume-of-fluid
and enthalpy-porosity methods.

12 Chapter 2. Numerical Methods for Phase Change Phenomena

However, no adaptation of these methods to purely solidification processes
has been found. Therefore, the objectives of the first stage of the research are:

• To introduce a new solver based on the coupling of VOF and enthalpy-
porosity techniques which covers the relevant physical effects during
the process of solidification.

• To validate simulation results by using benchmark cases found in the
literature.

Numerical methods commented here are deeply described next.

2.2.1 Volume-of-Fluid Method: General Aspects

The Volume-of-fluid method (VOF) is a numerical method based on an
Eulerian approach to track the free surface in a two-phase flow. The VOF
method, developed by Hirt and Nichols in 1981, [9], takes relevance when
fluids coexist with other phases. An example could be the ice (solid phase)
advancing front within the liquid phase. The surface in between both phases
needs to be solved by means of the volume of fluid technique.

This is sometimes seen as the conservation of the mixture components along
the path of a fluid region. The equation which allows that is described as:

∂αphase

∂t
+

∂
(
αphase uj

)
∂xj

= 0 (2.1)

In which αphase corresponds to the phase fraction and it applies:

αphase =

0 = solid PCM
0 < αphase < 1 = cell contains the interface
1 = liquid PCM

(2.2)

2.2. Solidification methods 13

As Eq. 2.1 exposes, the principle that lies behind the method is the definition
of the phase field (α), Eq. 2.2, which has a value between ’0’ and ’1’. The
value of ’1’ corresponds to any point filled with fluid and zero, otherwise.
Thus, the average value of α in a cell indicates the fractional volume of that
cell occupied by the fluid. Consequently, if a cell has an average value of
α = 1 implies a fully filled cell of fluid and oppositely, a value of α = 0
means that the fluid is not present in the cell. However, a cell presenting an
average value between 0 and 1 would lead the presence of an interface in that
region as it is clearly seen in Fig. 2.1.

FIGURE 2.1: Volume-of-fluid approach.

Near the interface, it clearly exists a jump in the fluid properties that need to
be corrected by properly averaging phase properties in that region.

In the present study, this method is used in conjunction with other techniques
to carry out some cases undergoing phase-transition phenomena.

2.2.2 Enthalpy-Porosity Model. Governing Equations

The first technique implemented is the Enthalpy-porosity method. Here,
the energy equation takes center stage.

The energy equation based on the enthalpy formulation for convective-diffusive
heat transfer states that,

∂ρh
∂t

+
∂

∂xj

(
ρujh

)
= ∇ · (ki∇Ti) (2.3)

where u is the velocity component and κi is the thermal conductivity of the
fluid.

However, the enthalpy-porosity method describes the enthalpy h of the mix-
ture by its sensible part and the latent heat of solidification. The release of
the latent heat is dependent on the stage of the phase change, and must be
restricted to the phase change material.

h =
∫ T

Tr
cpdT + αℓL (2.4)

14 Chapter 2. Numerical Methods for Phase Change Phenomena

where the latent heat is is driven by the evolution of the liquid αl. The phase
transition is modelled by expressing the liquid volume fraction as a function
of the temperature,

αl =

1 T > Tliq

T−Tsol
Tliq −Tsol +ε Tsol < T < Tliq

0 T < Tsol

(2.5)

For seek of brevity on the following expressions, it is adapted the term αphase
to αl If expression 2.4 is replaced in 2.3,

∂
(
ρcpT + αl L

)
∂t

+
∂
(
ρujcpT + ujαl L

)
∂xj

= ∇ · (ki∇Ti)

(2.6)

Rearranging terms, it yields the complete energy equation with the sensible
and latent heat parts for the correct representation of solidification processes.

∂(ρCpT)
∂t

+∇ ·
(
ujρCpT

)
+ L

[
∂(ραl)

∂t
+

∂(ujραl)

∂xj

]
= ∇ · (ki∇Ti)

S = −L

[
∂(ραl)

∂t
+

∂(ujραl)

∂xj

] (2.7)

The momentum equation is discussed in detail in the sub-chapter Interphase
porosity models.

2.2.3 Lee model

The second technique implemented in this thesis is based on the Lee model.

The Lee model is based in the liquid-vapour mass transfer. Governed by
the vapour transport equation 2.8, this model is applicable during melting or
solidification of a fluid.

∂

∂t
(αiρi) +∇ (αiρiui) = Smi (2.8)

ρi and ui are the fluid density and fluid velocity of the ith phase. Moreover,
Smi is the mass source which takes on a zero value at the interface.

During melting, Tl > Tsat,

dmsl
dt

= C f ρsαs

(
Ts − Tsat

Tsat

)
(2.9)

2.2. Solidification methods 15

During solidification, Tl < Tsat

dmls
dt

= C f ρlαl

(
Tsat − Tl

Tsat

)
(2.10)

The coefficient C f might be interpreted as a time rate and must be empiri-
cally tunned. Its magnitude is expressed in 1

s . α represents the phase volume
fraction. dmi

dt are the mass transfer rates from one phase to another. The sub-
scripts "s", "l", refer to solid and liquid phases respectively. Tsat, is the phase
transition temperature which, in case of pure water would be 273.15 K. The
source term of 2.8 is then calculated as,

Smi =

{
dmsl

dt − dmls
dt , for water phase

dmls
dt − dmsl

dt , for ice phase
(2.11)

2.2.3.1 Momentum Equation

In the momentum equation, the flow is modelled as,

∂ (ρui)

∂t
+

∂
(
ρuiuj

)
∂xj

= −αi∇p +
∂

∂xj

(
µ

∂ui

∂xj

)
+ Fσi + Sui

(2.12)

The source term for the momentum equation can be written as,

Sui =

{
dmsl

dt ul − dmls
dt us, for water phase

dmls
dt us − dmsl

dt ul, for ice phase
(2.13)

where ul and us are the liquid and solid velocity components accordingly.

The source terms related to interphase porosity (2.29) may be added to the
momentum equation presented here for the Lee model 2.12.

2.2.3.2 Energy Equation

The energy equation for the Lee model can be described as,

∂(ρCpT)
∂t

+∇ ·
(
ujρCpT

)
= ∇ · (ki∇Ti) + SHi (2.14)

where the heat source term due to mass transfer in the energy equation is
calculated as,

Shi =

{
dmsl

dt HL, for water phase
dmls

dt HL for ice phase
(2.15)

where Hl is the latent heat induced by the phase transition and ki, the thermal
conductivity.

16 Chapter 2. Numerical Methods for Phase Change Phenomena

2.2.3.3 Classical nucleation theory. The coefficient C f .

The coefficient C f that appears on Equations 2.9 and 2.10 is computed ac-
cordingly to the work of Huang et al. [10]. In these work, the Lee model is
used and the nucleation rate is introduced for the calculation of mass transfer
rate between phases.

The concept behind the Classical Nucleation Theory, CNT, as described in [11]
resides in the idea of droplet freezing. This is initiated in the fluctuation of
molecules of a supercooled liquid due to thermal vibration which lead, at its
turn, to spontaneous formation of ordered solid molecule clusters (ice em-
bryos). The size of these embryos oscillates as individual water molecules
are crystallized or lost from the liquid phase. When the size of the embryo
reaches a critical value, it leads a faster and auspicious thermodynamic join-
ing of further water molecules to the crystal lattice. This means the criti-
cal embryo enhancing the "parent phase", supercooled liquid, to undergo a
macroscopic phase transition: droplet freezing.

And this is what CNT aims to describe; the freezing process in terms of
temperature-dependent nucleation rate by joining two components: thermo-
dynamic and kinetic. These components, briefly described in the following
chapters, are based on the theory found in Lai et al. [26] and Huang et al.
[10].

As a remark, in this thesis a brief introduction of this theory is given. How-
ever, for further details on the assumptions used refer to the literature.

Thermodynamic component

This thermodynamic component seeks for the number of critical embryos
formed per unit of volume at a specific temperature. A decrease in the en-
thalpy, and consequently a change in Gibbs free energy required to form an
ice embryo containing water molecules generates an energy barrier to nucle-
ation. However, for ice embryo formation, this barrier needs to be overcome.

∆Gc = ∆GV︸︷︷︸
volume term

+ ∆GS︸︷︷︸
surface term

(2.16)

where the volume and surface terms decomposed,

∆Gc = −4
3
· πr3

Ω
· ∆gv + 4πr2γs f (2.17)

where r is the radius of a simplified spherical embryo, γs f the interfacial
tension between phases Ω the volume of a single molecule (Ω = Vm,w/NA),
Vm,w is the molar volume and ∆gv represents the decrease in volume of the
Gibbs free energy of a molecule and is defined as:

∆gv =
∆mH1

NA

∆T
T∗ (2.18)

2.2. Solidification methods 17

where ∆mH1 is the molar latent heat of crystallization, NA is the Avogadro’s
number, T∗ is the freezing temperature and δT = T∗ − T, the degree of su-
percooling. The radius has an influence on the change in Gibbs free energy.
This is when:

• r < rcrit ⇒ ∆Gc > 0 || ∆Gc ↑ ⇒ r ↑ ⇐ endothermic process

• r > rcrit ⇒ ∆Gc < 0 || ∆Gc ↓ ⇒ r ↑ ⇐ exothermic process

The critical radius exists when the global enthalpy variation gets negative.

By differentiating Eq. 2.17 and setting d(∆Gc)
dr = 0, the critical radius is defined

as:

rcrit =
2γs f T∗Vm,w

∆mH1∆T
(2.19)

Then, if subsituting Eq. 2.18 and 2.19 in Eq. 2.17, it is obtained the energy
barrier:

∆Gcrit =
16π

3
·

γ3
s f V2

m,wT2

∆mH2
1∆T2

=
1
3

(
4πr2

critγs f

)
(2.20)

In Huang et al. [10], the expression concerning the variation of Gibbs func-
tion for the phase change does not include the molar volume of water but
a shape coefficient of nucleation. It involves the influence of the contact an-
gle when going from a uniform state to an inhomogeneous one. This shape
factor is defined as:

αey =
2 − 3 cos θ + cos θ3

4
(2.21)

Temperature and saturation dependent number of ice embryos per unit vol-
ume of water may be expressed in a Boltzmann distribution form using ∆G:

Nembryo

[
m−3

]
= Nl · exp

(
− ∆G

kBT

)
(2.22)

where N1 is a volume-based number density of water molecules in the liquid
phase.

Kinetic component

The kinetic part of the nucleation rate is introduced in the form of water
molecules flux. This is expressed as a Boltzmann distribution such that:

Φ =
kBT

h
· exp

(
− ∆g

kBT

)
(2.23)

where h is the Planck’s physical constant, and ∆g the activation energy for
the transfer of a water molecule across the phase boundary.

The rate at which the water molecules are transferred into an ince embryo is
defined as:

K = ns · 4πr2
embryo · Z · Φ (2.24)

18 Chapter 2. Numerical Methods for Phase Change Phenomena

where ns is the number of molecules and 4πr2
embryo is the surface area of

the critical embryo and Z a kinetic prefactor. For seek of simplification, the
authors of the theory suggest that the product of these terms are close to
unity. Thus, considering this change, the equation yields as:

K = Φ (2.25)

Nucleation rate

Combining the thermodynamic component Eq. 2.22 and the kinetic one
2.25, the formulation of the nucleation rate can be expressed as:

Jhom

[
m−3 · s−1

]
= K︸︷︷︸

Kinetics

· Nl · exp
(
− ∆G

kBT

)
︸ ︷︷ ︸

Number of embryos

(2.26)

As a final step, inserting Eq. 2.25, which at its turn is equal to Eq. 2.23, into
Eq. 2.26, the nucleation rate is expressed in the form of:

Jhom

[
m−3 · s−1

]
=

kBT
h

· exp
(
−∆g#

kBT

)
︸ ︷︷ ︸

diffusion of molecules effect

· N1 · exp
(
− ∆G

kBT

)
︸ ︷︷ ︸
nucleation effect

(2.27)

Fig. 2.2 characterizes the variation of the crystallization rate in function of the
temperature. In the image, the dotted line shows how the nucleation effect
is 0 close to the cooling, and as the temperature values decrease, this lines
tend to 1. Moreover, the dashed line shows how the effect of the diffusion of
the molecules increases as the temperature does. This prompts out the ease
of the embryo formation when at low temperatures since the molecules can-
not overcome the energy barrier to enter the embryo. However, the crystal
growth becomes harder. This may be seen as constant search of equilibrium
among the nucleation and the crystal growth.

2.2. Solidification methods 19

FIGURE 2.2: Crystallization rate in function of temperature.

Finally, the coefficient C f that appears on Equations 2.9 and 2.10 as com-
mented above, is defined for the Lee model as:

C f = Jhom · Vl (2.28)

where Vl is the volume of water in each cell.

2.2.4 Interphase porosity models

Interphase porosity models add an aritificial momentum source over the
interface between phases to compute the sink of velocity in the solidified
region. Therefore, influencing the behavior of the physics during the process
of solidification or melting.

The model implemented in OpenFOAM is Voller Prakash method [24], and it
defines the source terms, Sy and Sz such that when along the fluid domain
these terms take on a value of zero, the momentum equations are driven by
the actual values of the velocities. On the other side, when it comes to treat
the mushy region (i.e. porous region), the value of these source terms dom-
inate convective, diffusive and transient terms and the momentum equation
tends to approximate the Darcy’s law.

The two source terms as specified above,{
Sy = −Av
Sz = −Aw (2.29)

Then, to specify a term for the function A, it is used the Carman-Koseny equa-
tion, which is derived from the Darcy’s law. The former expresses the gradi-
ent for the pressure as a combination of the velocity, u, and the porosity, λ.
The coefficient C depends on the morphology of the medium.

gradP = −
(

C(1 − λ)2

λ3

)
u (2.30)

20 Chapter 2. Numerical Methods for Phase Change Phenomena

To avoid division by zero, q is added to the equations shown

A = −
(

C(1 − λ)2

λ3 + q

)
(2.31)

The source terms Sy and Sz in 2.29 are added in the Eq. 2.32 and 2.33. The
source term Sb corresponds to the body forces of the fluid and will be dis-
cussed later on this thesis.

∂(ρv)
∂t

+ div(ρuv) = div(µ grad v)− ∂P
∂y

+ Sy (2.32)

∂(ρw)

∂t
+ div(ρuw) = div(µ grad w)− ∂P

∂z
+ Sz + Sb (2.33)

2.2.4.1 Surface tension model

The surface tension is only specified on a phase pair basis. In this version
of OpenFOAM, it is present a constant model for a given σ.

21

Chapter 3

Numerical Simulation of
Solidification Process

3.1 OpenFOAM. General Aspects

OpenFOAM is a free open-source software written in C++ and mainly con-
ceived to perform computational fluid dynamics (CFD) simulations based on
a finite volume discretization (FVM).

3.1.1 The finite volume method

Fluid equations usually take the form of non-linear partial differential
equations and so, most of time, no analytical solution can be derived from
them. In that context, different numerical techniques are employed to reach
an approximation of the solution to these problems. These methods require
a discretization of the domain in which the solution is going to be calculated.
As aforementioned, OpenFOAM uses the finite volume method, which is,
indeed, one of the most widely techniques used in computational fluid dy-
namics, and the one used in this thesis.

This technique turns the partial differential equations, which at their turn
represent conservation laws over differential volumes, into discrete algebraic
equations over finite volumes. Similarly to the finite element method, the
FVM also needs a discretization of the geometric domain but in this numeri-
cal method, the elements used to integrate the algebraic equations represent-
ing the conservation partial differential equations are finite volumes.

Some of the terms in the conservation equation are converted into face fluxes
and evaluated in the discretized finite volumes. These face fluxes are strictly
conservative. This is that the flux entering the volume is equal to the flux
leaving the adjacent volume. This property makes the finite volume method
the preferred technique for CFD [16].

Geometric domain discretization

The intrinsic properties of the finite volume method need the computa-
tional domain to be discretized in volume cells, known as control volumes

22 Chapter 3. Numerical Simulation of Solidification Process

(CV). Each one of these volumes has a centroid or computational point in
which the solution is obtained.

Alongside with this idea, OpenFOAM follows a cell-centered approach in
which the unknowns are defined at the center of these volumes or cells. The
value of these are computed as an average value of the variable in that cell.

Moreover, the control volume is defined by the neighbours. This is, in the
case the volume has an adjacent neighbour, an internal face is delimiting the
separation of both. On the other hand, if the volume is not sharing a face
with a neighour volume, the face is considered to be a boundary.

Discretization of the fluid dynamic’s equations

The continuity equation, the Navier-Stokes equations and, the heat equa-
tion stated in section 2 can be stated in a more general form under the formu-
lation of the Reynolds transport theorem:∫

VP

∂ρϕ

∂t
dV︸ ︷︷ ︸

Temporal term

+
∫

VP

∇ · (ρu⃗ϕ)dV︸ ︷︷ ︸
Convective term

=
∫

VP

∇ ·
(
ρΓϕ∇ϕ

)
dV︸ ︷︷ ︸

Diffusive term

+
∫

VP

SϕdV︸ ︷︷ ︸
Source term

(3.1)

where VP is the control volume cell, ϕ may be any scalar or vectorial variable
of the continuum, Γϕ is the diffusivity of the variable and Sϕ is a source term.

In order to recover the continuity, momentum and energy equations, the pa-
rameters shown in table 3.1 need to be shaped in the transport equation.

Equation ϕ Γϕ Sϕ

Continuity 1 0 0
Momentum u⃗u ν -∇p
Energy CpT κ 0

TABLE 3.1: Parameters to recover continuity, momentum and
energy equations.

The fluid variable is defined as a ratio of itself integrated along the volume
cell. Thus, it yelds the following form,

ϕ = ϕP =
1

Vp

∫
VP

ϕ(x)dV (3.2)

Therefore, a complete discretization of the previous terms is needed to solve
the physics regarding a general fluid dynamics problem.

3.1.2 OpenFOAM functioning

In this first section, a brief introduction on the structure and functioning
of the OpenFOAM software is given.

3.1. OpenFOAM. General Aspects 23

In the folder structure tree shown in Fig. 3.1, it is shown a typical case setup
for a phase change problem using icoReactingMultiphaseFoam solver.

phaseChangeCase

0*

alpha.liquid

alpha.solid

p

prgh

T

U

constant*

g

phaseProperties

thermophysicalProperties.liquid

thermophysicalProperties.solid

turbulenceProperties

polyMesh

system*

blockMeshDict

controlDict

decomposeParDict

fvSchemes

fvSolution

FIGURE 3.1: General structure of an OpenFOAM case.

3.1.2.1 Boundary Conditions Directory

The "0" directory gathers all the boundary conditions at time zero and the
initial conditions to set up the case. As the simulation starts running, the
information of these fields is saved in folders at every timestep.

3.1.2.2 Constant Properties Directory

The "constant" directory contains all the information typically regarding
the physical properties which are kept constant through the simulation. More-
over, once the dictionary blockMeshDict is run, OpenFOAM creates a folder
called polyMesh containing all the information relevant to the mesh (points,
faces,...).

24 Chapter 3. Numerical Simulation of Solidification Process

3.1.2.3 System Directory

This folder contains the files required by the control of the solver and the
solution itself. The most common files are:

• blockMeshDict: in this file the parameters required to build up the
computational domain, the mesh and the boundaries are found. The
command blockMesh executes this dictionary creating the polyMesh
folder commented above.

• controlDict: Time parameters associated to the computation are set in
this file.

• decomposeParDict: In the realization of this thesis, the help of paral-
lel computing is required. Thus, in this file, parameters regarding the
decomposition of the mesh are configured. It is executed by means of
the decomposePar appliation implicit in OF. The mesh is afterwards
reconstructed by using reconstructPar

• fvSchemes: Schemes selected for the discretization of the derivative
terms are defined. Among others, time schemes, gradient schemes,
laplacian schemes, divergent schemes, interpolation schemes can be de-
clared here.

• fvSolution: contains sub-dictionaries used to control the solvers and
the solution algorithms. It also allows the definition of the fields reso-
lution.

3.2. Solidification process. Methodology 25

3.2 Solidification process. Methodology

A convection solver is used to represent the flow behavior generated by
the density difference due to existing temperature gradients whithin the vol-
ume of control. A polynomic water density is implemented in the native
OpenFOAM solver and compared with the standard Boussinesq approxima-
tion. Besides, a proposed buoyancy term by Bourdillon [3] is added in the
computation of the momentum equation. The current model is validated
against numerical results from the literature. The solution of this convec-
tion solver is later used as initial conditions, before solidification phenomena
plays a role.

For the solidification phenomena representation, the aforementioned Enthalpy-
porosity technique and Lee model based on the Classical Nucleation theoy are
implemented within a multi-phase native solver. These methods are com-
pared against [3], Kowalesky et al. [13], whose simulations rely on the en-
thalpy method and, Chen et al. [5]. A final remark on the classic Stefan problem
is done.

26 Chapter 3. Numerical Simulation of Solidification Process

3.3 OpenFOAM: BuoyantBoussinesqPimpleFOAM.
Natural Convection solver

In a natural convection environment, the motion of the fluid is mainly
driven by the density difference within the fluid volume of control. At its
turn, the differences in the density, responsible for buoyancy forces, are gen-
erated by the existing temperature gradients. Within a physical context, the
fluid near a hot heat source gets warmed up and, as a result, it becomes less
dense moving up inside a domain. Consequently, the fluid in contact of the
cold heat source is pushed from its zone to replace the hot fluid location. At
this point, the cycle starts again repeating this phyisical phenomena.

3.3.1 Case Description

Within the context of natural convection, the current case aims to develop
a comprehensive state of the capabilities that OpenFoam solvers bring to
solve this phenomena. To reach the objective, and on purpose of control-
ling the physics generated on the simulation, a regular squared geometry of
0.038 mm side length is created:

FIGURE 3.2: Zoom of the computational mesh for the cavity.

A mesh sensitivity test is done with three different meshes of 553352,
982802 and 1971212 nodes giving same values and thus, one can consider re-
sults are independent for these eligible meshes. The chosen structured mesh
is the finest one and it consists of 1971212 nodes. Cell type is hexahedra.

3.3.2 Hypotheses And Assumptions

To carry out the current problem, a series of assumptions are taken into
account in order to simplify the solving of the fluid equations involved.

Laminar regime: The Reynolds number, computed from the maximum
velocity is not high enough to consider turbulent effects.

Convective heat transfer: To determine whether the heat transfer is as-
sumed to be convective, the Prandtl number and the Rayleigh number should
be assessed.

3.3. OpenFOAM: BuoyantBoussinesqPimpleFOAM. Natural Convection
solver 27

The Prandtl number, as the relation between the viscosity and the thermal
conductivity of a fluid or, in other words, the correlation between momentum
transport and thermal transport capacity is calculated as:

Pr =
v
α
=

µ

ρα
=

µcp

λ
=

momentum transport
heat transport

(3.3)

where µ is the dynamic viscosity, cp is the specific heat and λ is the thermal
conductivity.

Thus, a small Prandtl number are owned by free-flowing flows with high
thermal conductivitiy.

On the other hand, the Rayleigh number is referred to the time scale rela-
tion between the diffusive and the convective thermal transports. It is thus
used to determine wheter the buoyancy-driven natural convection plays an
important role in the heat transfer. The dimensionless number is assessed in
this context by this form:

Rax =
g · β

ν · α
· (Ts − Tinf) · x3 (3.4)

Being g, the gravity, β, the coefficient of thermal expansion, ν, the kinematic
viscosity, α, the thermal diffusivity, and Ts and Tinf, the temperature on the
wall surface and the temperature of the fluid far from the wall accordingly.

In the current case-scenario, a Prandtl close to 7 and a Rayleigh of 2517629 de-
termine a convective heat transfer. The values used to estimate the Rayleigh
number calculation are: β = 6.734e − 5K−1, ν = 1.003e − 6m2.s−1, α =
1.435e − 7m2.s−1, Ts = 283K, Tin f = 273K and x = 0.038m. The values used
for the laminar Prandtl number calculation are: µ = 0.001003Kg.m−1.s−1,
λ = 0.6W.m−1.K−1 and Cp = 4182J.Kg.K−1.

Newtonian fluid: The viscosity of the fluid is assumed to be constant.

Thermophysical properties: specific heat, Cp, the thermal expansion co-
efficient, β, thermal conductivity, κ, kinematic viscosity, ν are assumed to be
non-dependent of temperature. However, the density will be dependent of
temperature so as it plays an important role in the buoyancy effects through
the later explained in this section.

The conservative equations used to describe the motion of the fluid along
time and space are described next.

3.3.3 Governing Equations

In this section, the governing equations for the used solver are described
first.

28 Chapter 3. Numerical Simulation of Solidification Process

The conservation of mass states that the mass flowing into the volume of
control (CV) must be equal to the mass flowing out of such volume.

∂v
∂y

+
∂w
∂z

= 0 (3.5)

3.3.3.1 Momentum Equation

Throughout the CV the momentum of the fluid flow is preserved and here
below it is expressed for the y-direction and z-direction.

∂(ρv)
∂t

+ div(ρuv) = div(µ grad v)− ∂P
∂y

(3.6)

∂(ρw)

∂t
+ div(ρuw) = div(µ grad w)− ∂P

∂z
+ Sb (3.7)

where in the case of the Boussinesq approximation where the density variation
is linear:

Sb = g · ρr[1 − β(T − Tr)] (3.8)

in the case of the implemented polynomial density which accounts for the
inversion point as in [3]:

Sb = g · [ρr − ρ(T)] (3.9)

where the polynomial expression from ρ is:

ρ(T) = 999.840281167108 + 0.0673268037314653 × T

− 0.00894484552601798 × T2

+ 8.78462866500416.10−5 × T3 − 6.62139792627547.10−7 × T4

(3.10)

As it will be pointed out later, the native solver uses the Boussinesq approxi-
mation to account for the buoyancy effects. However, this linear assumption
is only valid as the density variations meet:

∆ρ

ρr
<< 1 (3.11)

Therefore, to account for the inversion points present during the freezing
process, a density variation like the described in Eq. 3.10 is implemented in
the solver.

3.3.3.2 Temperature Equation

The temperature equation representing the convection phenomena yields
as:

∂T
∂t

+
∂(ujT)

∂xj
=

∂

∂xj

(
γ

∂T
∂xj

)
(3.12)

3.3. OpenFOAM: BuoyantBoussinesqPimpleFOAM. Natural Convection
solver 29

where the thermal diffusivity, γ, is defined as:

γ =
λ

ρrcp
(3.13)

All these equations are regarded by the solver buoyantBoussinesqPimple-
Foam.

3.3.4 Solver descripton. Control Loop

The buoyantBoussinesqPimpleFoam is a solver used to solve non-steady buoy-
ancy driven fluids by using the Boussinesq approximation as a coupling
between density and temperature fields. It considers the fluid as incom-
pressible and uses the PIMPLE algorithm for the pressure-velocity coupling.
The flowchart of the integration procedure for the presented solvers buoy-
antBoussinesqPimpleFoam and icoReactingMultiphaseinterFoam is presented be-
low:

Velocity
predictor

Temperature
Equation

Pressure
Equation

Velocity
Corrector

PIMPLE
LOOP

PISO
LOOP

Residuals
satisfied?

stop

no

yes

FIGURE 3.3: Flowchart of integration procedure. buoyantBoussi-
nesqPimpleFoam

30 Chapter 3. Numerical Simulation of Solidification Process

3.3.5 Code implementations

As described in the Governing equations section, the need for a polynomial
density expression and a variation of the momentum source terms devoted
to reflect the buoyancy effects is derived.

To do so, a new equation of state is implemented within the OpenFoam
framework. Now and, in order to take into account this bouyancy forces, the
pressure equation is studied. This is beacause in the context of a pressure-
velocity corrector scheme, and in the case of ensuring stability and simplify-
ing the boundary conditions definition, the modified pressure, prgh, within
the pressure equation implementation, is the term that accounts for the grav-
ity terms.

Here, it is presented a general form of a momentum equation with the conti-
nuity equation corresponding to a incompressible flow.{

∂(ρv)
∂t +∇ · (ρv ⊗ v) = −∇p +∇ · (µ(∇v +∇vT))

∇ · v = 0
(3.14)

From this general equation, it will be given the term H(u), as later on will be
needed for the pressure equation calculation.

Therefore, this term comes from considering the linearization of the advec-
tive term under the assumption of small Courant numbers (Co < 1). Leading
the term v0 ∼= v. ∫

Ω
∇ ·

(
v ⊗ v0

)
dΩ ∼= ∑

f
v f v0

f · S f

= ∑
f

F0v f

= aPv + ∑
f

aNvN

(3.15)

aPvP = H(v)−∇p (3.16)

H(v) = −∑
f

aNvN︸ ︷︷ ︸
Diagonal term

+
v0

∆t︸︷︷︸
Off-diagonal term

(3.17)

where v0 is the velocity at previous time-step and F0 is the face flux at the
previous time-step.

In addition, by discretizing the continuity equation, it is possible to get the
final form of the pressure equation.

So as to give stability to the solution and to simplify the boundary conditions
definition as described in Berberovic et al. [2], a modified pressure is defined

3.3. OpenFOAM: BuoyantBoussinesqPimpleFOAM. Natural Convection
solver 31

as,
prgh = p − ρrg · x + ρ(T)g · x (3.18)

being, the pressure gradient the next expression,

−∇p + ρrg = −∇prgh − g · x∇ρr + g · x∇ρ(T) + ρ(T)g (3.19)

and rearranging terms,

−∇p + ρrg + g · x∇ρr − g · x∇ρ(T)− ρ(T)g = −∇prgh (3.20)

If one tries to describe the discretized pressure equation in buoyantBoussi-
nesqPimpleFoam, there is a first term called phig, which is,

Φν+1
f = Φν+1

u −
[
(g · x) f

(
∇ρr

n+1
)

f
+ (g · x) f

(
∇ρ(T)n+1

)
f

] ∣∣S f
∣∣

(aP) f
(3.21)

This term is edited in the code so as it handles the new expression for the
buoyancy effects as regarded by Bourdillon, [3].

A face flux calculated by the term H(v), appearing in equation 3.17

Φν+1
u = Φν+1

f +

(
H (vν)

aP

)
f
· S f +

(
1
aP

)
f

ddt PhiCorr (vν, Φν) (3.22)

where ddt PhiCorr is a flux adjustment due to the time-step. This is resolved
by applying a Rhie-Chow interpolation [19], the next term in the pressure equa-
tion, phiHbyA, reads as,

Φν+1
f = Φν+1

f −
[(

1
aP

)
f

(
∇prgh

)
f

]
· S f (3.23)

The prgh term is thus assembled as,

∑
f

[(
1
aP

)
f

(
∇pν+1

rgh

)
f

]
· S f = ∑

f
Φν+1 (3.24)

The flux, ϕ, is adjusted by the prgh term yielding the following expression,

Φν+1
f = Φν+1

f −
[(

1
aP

)
f

(
∇prgh

)
f

]
· S f (3.25)

Φν+1
f =Φν+1

f +

[(
1
aP

)
f

[
(−∇p) f + (g · x) f

(
∇ρr

n+1
)

f
− (g · x) f

(
∇ρ(T)n+1

)
f

+ (ρr
n+1g) f − (ρ(T)n+1g) f

]]
· S f

(3.26)

32 Chapter 3. Numerical Simulation of Solidification Process

Finally, the velocity calculated at the center of the volume reads as,

vν+1 = vν+1 +
1
aP

R
[(

Φν+1 f − Φν+1
u f

)
(aP) f

]
(3.27)

where R is an operator used to recover cell-centered fields from fields given
as fluxes at faces. Then, the static pressure, p, is reconstructed from prgh,
leading the expression,

p = prgh + (ρr − ρ(T))g · x (3.28)

3.3.6 Case Setup

Once the implementation is done, a first case is studied with the existing
solver, buoyantBoussinesqPimpleFoam. Later, the same case is settled with the
new implementations. The boundary conditions, thermophysical properties
and some other solver parameters are described along the following subsec-
tions.
As commented before, all studies are calculated on a computational domain
of 38mm x 38mm.

FIGURE 3.4: Setting of cavity computational domain.

Boundary conditions

Five boundaries are defined in the current case:
Left: is considered a wall with a fixed value of temperature. This is the hot
wall. No velocity is prescribed.
Right: considered to be the cold wall with a fixed temperature. No velocity
is prescribed.
Top: this is considered the top wall and it is adiabatic, thus, no heat transfer
is assumed and zero gradient is applied. No velocity is applied.
Bottom: This shares similar conditions as the top wall.
frontAndBack: this uses a symmetry plane condition in the z direction since
the problem is considered to be 2-dimensional. For such boundary type, no

3.3. OpenFOAM: BuoyantBoussinesqPimpleFOAM. Natural Convection
solver 33

more conditions need to be prescribed.

Boundary Conditions

Left Tl = 283, vl = 0
Right Tr = 273, vr = 0
Top ∂Tu

∂n = 0, vu = 0
Bottom ∂Tb

∂n = 0, vb = 0

TABLE 3.2: Boundary conditions for natural convection case.

Thermophysical properties

The thermophysical properties for the natural convection calculation are
described in table 3.3.

Water properties Symbol Values Units

Density ρr 999.8 kg.m−3

Dynamic viscosity µ 0.001003 kg.m−1.s−1

Thermal conductivity λ 0.6 W.m−1.K−1

Heat capacity Cp 4182 J.kg.K−1

Gravitational acceleration g 9.81 m.s−2

Thermal diffusivity γ 1.435e-7 m2.s−1

Thermal expansion coefficient β 6.734e-5 K−1

Laminar Prandtl number Pr 6.99 -
Reference temperature Tr 6.734e-5 K

TABLE 3.3: Water properties for natural convection.

Here below are presented the discretization schemes used for the terms ap-
pearing on the equations involved in the calculation.

Modeling Term Keyword Scheme Remarks

Time derivatives ddtSchemes Euler First order, bounded, implicit
Divergence term divSchemes Second order, unbounded
Gradient term gradSchemes Gauss linear Second order, unbounded
Laplacian term laplacianSchemes Gauss linear orthogonal Second order
Grad. normal to cell face snGradSchemes orthogonal Second order
Point to point interpolation interpolationSchemes linear Central differencing

TABLE 3.4: Discretization schemes.

34 Chapter 3. Numerical Simulation of Solidification Process

The equation solvers are shown in table 3.5.

Equation Linear Solver Smoother/Preconditioner Tolerance

Pressure correction equation PCG DIC 1e-8
Momentum equation PBiCGStab DILU 1e-6
Temperature equation PBiCGStab DILU 1e-6

TABLE 3.5: Solvers for the discretised equations.

Table 3.6 presents the parameters used for the inner (nCorrectors) and outter
(nOutterCorrectors) loops performed within the calculation.

Parameter Value

momentumPredictor no
nOutterCorrectors 1
nNonOrthogonalCorrectors 0
nCorrectors 2

TABLE 3.6: Parameters for the discretised equations.

3.3. OpenFOAM: BuoyantBoussinesqPimpleFOAM. Natural Convection
solver 35

3.3.7 Validation of Results and Conclusions

For comparison purposes and so as to know the state of the art in the natu-
ral convection phenomena, a first analysis is performed using the convection
solver provided by OpenFOAM. This solver is BuoyantBoussinesqPimple-
Foam and it covers both laminar and turbulent unsteady heat transfer for sin-
gle phase fluids using the Boussinesq approximation. Afterwards, the case is
calculated with the new implementations described.

(A) Temperature magnitude comparison at t = 1500s. Left: BBPF. Right: mBBPF.

(B) Velocity magnitude comparison at t = 1500s. Left: BBPF. Right: mBBPF

FIGURE 3.5: Comparison between BBPF* and mBBPF**

BBPF*: BuoyantBoussinesqPimpleFoam solver. mBBPF**: myBuoyantBoussi-
nesqPimpleFoam, natural convection modified solver.

The gravity terms of the temperature and velocity magnitude distributions
shown in Fig. 3.5 (left) are as expressed in Equation 3.8, (Sb = g · ρr[1− β(T −
Tr)]). In addition, the equation of state used to describe the behavior of the
liquid density variation is linear. On the other hand, the proposed gravity
terms proposed by [3] and described in Equation 3.9, (Sb = g · [ρr − ρ(T)]),
besides of the polynomial density variation have depicted a non-linear pat-
tern for the temperature and velocity magnitude distibutions, right images in
3.5. It is seen that small changes in the density, 0.171925kg.m−3 in this case,
Fig. 3.6, may induce different patterns within the flow.

36 Chapter 3. Numerical Simulation of Solidification Process

FIGURE 3.6: Density differences between linear and polyno-
mial expressions.

The fact of achieving the description of the inversion point in the tempera-
ture distribution due to the density variation of the density will influence the
growth of the ice layer in the phase change simulations.

Therefore, in order to compare consistently the obtained results with those of
the literature, the following dimensionless values are pointed out:

Dimensionless values of temperature are described as:

T̃ =
T − Tcold

Thot − Tcold
=

T − 273
10

(3.29)

Horizontal and vertical dimensionless positions along the x and y mid-planes:

x̃ =
x
ℓ
=

x
38 × 10−3 (3.30)

ỹ =
y
ℓ
=

y
38 × 10−3 (3.31)

Transversal and axial dimensionless velocities:

ṽ =
vℓ
γ

=
v38 × 10−3

1.435 × 10−7 (3.32)

ũ =
uℓ
γ

=
u38 × 10−3

1.435 × 10−7 (3.33)

3.3. OpenFOAM: BuoyantBoussinesqPimpleFOAM. Natural Convection
solver 37

The presented dimensionless quantities obtained with the gravity related
terms implemented in the convection solver are compared against the lit-
erature. Bourdillon et al. [3] used as a reference and guideline, worked out
a solution using OpenFOAM and Kowalewski et al. [13] who in 1999 per-
formed similar calculations using Fluent.

The results obtained with myBuoyantBoussinesqPimpleFoam, the natural
convection modified solver, show acceptable agreement with the results found
in the literature. The highest local differences are found in the V-velocity
along the vertical direction, Fig. 3.7f. The relative error of the proposed nu-
merical solution with respect to the one shown in Kowaleswki et al. remains
below 16%. Moreover, as it is observable, the temperature dimensionless,
Fig. 3.7b, distribution and the U-velocity, Fig. 3.7d, plotted along the vertical
mid-plane seem to be in short disaccordance with respect to the literature’s
solutions. This differences might be due to a small shift of the dimension-
less magnitudes along that direction. However, in overall, the results nearly
overlap the ones found in the bibliography.

38 Chapter 3. Numerical Simulation of Solidification Process

(A) Temperature along horizontal line. (B) Temperature along vertical line.

(C) U-velocity along horizontal line. (D) U-velocity along vertical line.

(E) V-velocity along horizontal line. (F) V-velocity along vertical line.

FIGURE 3.7: Adimensional magnitudes comparison.

In the table 3.7, there are shown the temperature, velocity magnitude and
density distributions at different time steps. From these images, it can be
understood the physical phenomena arising in the natural convection of the
problem proposed. At time 100s, the left wall, initiallized at 283K, induces
the propagation of the hottest flow through the volume of control and to-
wards the right wall which is initially at 273K. Through time, it is observable
how the coldest flow and thereby the less dense, is driven to the bottom re-
gion of the cavity while the denser one is redirected over the top. Another
remarkable fact is that two flows are originated due to this density inversion
point. One emerged near the left wall which moves clockwise and the other

3.3. OpenFOAM: BuoyantBoussinesqPimpleFOAM. Natural Convection
solver 39

one arisen in the mid-bottom part of the right wall which moves on the oppo-
site direction, thus, counter clockwise. This phenomena exhibits by the fact
that the density variation is characterized by a polynomial function and it is
of importance since this behavior has an impact in the ice layer formation.

t = 100s t = 250s t = 1500s

TABLE 3.7: Numerical results of natural convection modified
solver between t = 100s and 1500s.

40 Chapter 3. Numerical Simulation of Solidification Process

In the table shown below, tab. 3.8, are compared the temperature, velocity
magnitudes and density distributions for t = 750s and 1500s. As it is observ-
able, between these time steps, the magnitudes do not change substantially
and, therefore, one could say that a quasy-steady state is obtained. The so-
lution at 1500s is used as initial condition for the process of solidification. In
the next chapter is commented the concept behind this assumption.

t = 750s t = 1500s

TABLE 3.8: Numerical results of Natural convection modified
solver between t = 750s and 1500s.

3.4. OpenFOAM: IcoReactingMultiphaseInterFOAM. Phase-Change
Process 41

3.4 OpenFOAM: IcoReactingMultiphaseInterFOAM.
Phase-Change Process

The solidification process is assessed in this section with two elaborated
models. Both of the models are implemented within a multi-phase solver
based on the volume of fluid technique. This technique aims to capture in-
terface and enhances contact angle and surface tension for each phase. Thus,
the first model is based on the coupling of the VOF and the enthalpy-porosity
method. To accomplish the inclusion of the enthalpy-porosity method, a li-
brary in which the latent heat is implemented as an explicit source term for
the energy equation in the solver.

On the other hand, the second model uses the VOF method combined with
a semi-empirical model based on the work of Lee. The empirical constant is
adapted here to be used in conjunction with the use of the Classical Nucleation
Theory.

3.5 Case Description.

Two regular geomtries are created: a squared cavity, used in the pure con-
vection case and a cylindrical plane geometry. Both geometries test both so-
lidification models.

FIGURE 3.8: Geometric characteristics for cylinder.

The computed structured mesh consists of 572404 nodes. Cell type is hex-
ahedra.

42 Chapter 3. Numerical Simulation of Solidification Process

3.5.1 Hypotheses And Assumptions

To carry out the phase-transition process, some assumptions are taken into
account so as to simplify the multiphysics ocurring during such arising phe-
nomena.

Laminar regime: The Reynolds number, computed from the maximum
velocity is not high enough to consider turbulent effects.

In the current case-scenario, a Prandtl close to 7.

Newtonian fluid: The viscosity of the fluid is assumed to be constant. The
thermophysical properties treatment is described below.

Quasy-steady state: Bourdillon [3] used the hypothesis of quasy-steady
solution of the natural convective solver as initial condition in the solidifica-
tion process. As many researchers as Yan et al. [27] suggest, water presents
a high latent heat of solidification when the heat released during freezing
plays a greater role than the transient process of heat accumulation in the
layer of the phase being developed. In other words, when the latent heat of
the phase change material is larger than its sensible heat, the latter is having
little influence on the temperature distribution of the PCM. In such case, the
interface is moving slowly and the temperature distribution, at a given time
step, keeps constant. Therefore, for comparison purposes against literature
results, the solidification process in a cavity is tested using a quasy-steady
solution obtained in the pure convection case.

Two phase properties

Within a multiphase framework, a model reflects a jump in properties
through the interphase. Thus, a smooth transition between phase properties
must be achieved.

λ = λℓαℓ + λs fs (3.34)

Cp = Cpℓαℓ + Cps fs (3.35)

µ = µℓαℓ + µs fs (3.36)

In the current case-scenario, Cps = Cpl .

In the case of polynomial density variation it is settled in a similar manner.
The polynomial is not thought to suit negative temperatures, and when the
problem is within this range, the density should take ice’s density.

ρ(T)′ = ρ(T)αℓ + ρsαs (3.37)

where αl and αs are liquid and solid volume fractions, respectively.

3.5.2 Governing Equations

This section is devoted to describe the governing equations that the solid-
ification process requires. Beside the presented conservation equation for the

3.5. Case Description. 43

volume of fraction needed for the VOF method, Eq. 3.38,

∂αphase

∂t
+

∂
(
αphase uj

)
∂xj

= 0 (3.38)

in the next sections, momentum and energy equations are revisited.

3.5.2.1 Momentum Equation

The momentum equation has the same terms as per each one of the mod-
els. Here it is the equation recalled from previous section:

∂ (ρui)

∂t
+

∂
(
ρuiuj

)
∂xj

= −αi∇p +
∂

∂xj

(
µ

∂ui

∂xj

)
+ Fσi + Sui

(3.39)

3.5.2.2 Energy Equation

On the other side, the energy equation slightly differs from one model to
the other. As pointed out before, here there are recalled both energy equa-
tions. The energy equation for the Enthalpy-porosity model:

∂(ρCpT)
∂t

+∇ ·
(
ujρCpT

)
+ L

[
∂(ραlγl)

∂t
+

∂(ujραlγl)

∂xj

]
= ∇ · (ki∇Ti)

(3.40)
The energy equation for the Lee model in conjunction with the nucleation
theory:

∂(ρCpT)
∂t

+∇ ·
(
ujρCpT

)
= ∇ · (ki∇Ti) + SHi (3.41)

3.5.3 Solver description. Control Loop

IcoReactingMultiphaseInterFoam solver is a multiphase, multicomponent
incompressible solver based on volume of fluid method. The solver captures
the interfaces and includes contact angle and surface tension effects for each
phase. Moreover, this solver supports mass and heat transfer across phases.

3.5.4 Mass transfer models

For each pair of phases, two mass transfer models might be used:

• Lee model: Used for solid melting and liquid solidification.

• KineticGasEvaporation: Used for condensation and evaporation.

In this thesis, only the Lee model will be considered for further explanation.

44 Chapter 3. Numerical Simulation of Solidification Process

3.5.5 Code implementations

Within the entalphy-porosity model, the source term belonging to the cal-
culation of the latent heat is added within the OpenFOAM framework. The
energy equation of the solver shown in Eq. 3.41 is thereby implemented in
Fig. 3.9 In the term belonging to the RHS of the equation, the solver calls the

FIGURE 3.9: Energy equation of IcoReactingMultiphaseInter-
Foam.

implemented library mySolidificationMeltingSource that calculates the latent
heat source term as it appears in the figure 3.10:

FIGURE 3.10: Latent heat source term present in mySolidifica-
tionMeltingSource library.

Here, the alpha variable showing up in the calculation is obtained through a
linear expression that gives the amount of energy contained in the fluid cell
above the melting point. This is divided by the latent heat to obtain the liquid
fraction. Then, this fraction is constained between 0 and 1. Further details on
the code can be found in A.1. The liquid fraction is calculated instead of being
obtained through the transport equation worked out within the VOF method
so it can be used in other solvers. This is explained later in this thesis.

The rhoCpPhiVoF term, which is called in this library, is created in create-
Fields.H as a variable field so that it can be called from everywhere within the
code.

3.5. Case Description. 45

FIGURE 3.11: rhoCpPhi field in createFields.H

The implemented library can be found in the Appendix A, section A.1.

On the core of the other model, the basis of the Lee model is already im-
plemented in OpenFOAM. However, there is a parameter, C, devoted to act
as a condensation rate. This is referred as an empirical coefficient used to
speed-up or slow down the mass and heat transfer. The physics behind are
unknown for this solver, therefore, in favor of tunning this parameter in ac-
cordance with the characteristic behavior of the water when it freezes, the
Classical Nucleation theory is followed.

FIGURE 3.12: Library function in LeeCNT.

In the function shown above, all of the parameters concerning the formulas
required to calculate the nucleation rate of the water are user-defined param-
eters except for the cellVolume which is an implicit function that calculates
the volume per each cell. In the Appendix A, the code related with the Lee
model using this theory can be found.

46 Chapter 3. Numerical Simulation of Solidification Process

3.5.6 Case Setup

Boundary conditions

For the squared cavity: The initial conditions for the internal field of the
cavity regarding the velocity, temperature and pressure magnitudes are in-
herited from the last timestep of the natural convection case under the as-
sumption of quasi-steady state. The temperature of the right wall is suddenly
decreased to 263K.

Boundary Conditions

Left Tl = 283, vl = 0, ∂αl
∂n = 0, ∂αs

∂n = 0
Right Tr = 263, vr = 0, αl = 1, αs = 0
Upper ∂Tu

∂n = 0, vu = 0, ∂αl
∂n = 0, ∂αs

∂n = 0
Bottom ∂Tb

∂n = 0, vb = 0, ∂αl
∂n = 0, ∂αs

∂n = 0

TABLE 3.9: Boundary conditions for natural convection case.
Cavity case.

frontAndBack boundary is set to empty to define a 2-dimensional case-scenario.

For the cylinder:

Boundary Conditions

Walls T = 255, v = 0, ∂αl
∂n = 0, ∂αs

∂n = 0
Internal field T = 294, v = 0, αl = 1, αs = 0

TABLE 3.10: Boundary conditions for natural convection case.
Cylinder case.

As in the previous geometry, there is an empty boundary called frontAnd-
Back to define a planar case.

The thermophysical properties and solver parameters defined below are set-
ted up for both geometries.

3.5. Case Description. 47

Thermophysical properties

Water properties Symbol Values Units

Water density ρl 999.8 kg.m−3

Ice density ρs 916.8 kg.m−3

Water kinematic viscosity νl 1.79e-6 m2.s−1

Ice kinematic viscosity νs 2.0e-6 m2.s−1

Water thermal conductivity λl 0.56 W.m−1.K−1

Ice thermal conductivity λs 2.26 W.m−1.K−1

Heat capacity Cpl = Cps 4202 J.kg.K−1

Gravitational acceleration g 9.81 m.s−2

Thermal diffusivity γ 1.435e-7 m2.s−1

Thermal expansion coefficient β 6.734e-5 K−1

Latent heat L 335000 J.K−1

Laminar Prandtl number Pr 6.99 -
Reference temperature Tr 6.734e-5 K
Darcy’s constant Dc 10e8 -

TABLE 3.11: Water properties for natural convection.

In table 3.12 are detailed the parameters used in the implemented nucle-
ation library for the Lee model. The solver parameters used for the discretiza-

Water nucleation properties Symbol Values Units

Planck constant h 6.63e-34 J.s
Boltzmann constant kB 1.38e-23 J.K−1

Gibbs free energy ∆gv 4e-20 J
Interfacial tension γyw 2.91e-2 J.m−2

Latent heat per volume Hlv 3.10e8 J.m−3

Shape coefficient of nucleation αey 0.0001 -
Water molecule per volume nL 5.5e4 m3

TABLE 3.12: Water properties for solidification.

tion of the different terms in the equations are pointed out next.

Solver parameters

So as to obtain a minimum expected accuracy during the calculation, in
table 3.13 are the chosen parameters for the equation solvers.

48 Chapter 3. Numerical Simulation of Solidification Process

Equation Linear Solver Smoother/Preconditioner Tolerance

Pressure correction equation (P) PCG DIC 1e-5
Momentum equation (U) smoothSolver symGaussSeidel 1e-06
Volume fraction equation (alpha) smoothSolver symGaussSeidel 1e-8
Species equation (Y) smoothSolver symGaussSeidel 1e-09
Energy equation (T) PBiCG DILU 1e-08

TABLE 3.13: Solvers for the discretised equations.

3.5. Case Description. 49

3.5.7 Validation of Results and Conclusions

The validation of the phase change problem is achieved by different method-
ologies. First, the enthalpy-porosity and Lee-CNT models are compared with
available data found in the doctoral thesis of Borudillon [3] and the experi-
mental data of Kowalewski et al. [13]. And later, the Lee-CNT model is tested
against the classical Stefan problem.

So as to understand the physical phenomena underlaying these plots, a first
general explanation is given.

In figure 3.13a, temperature distribution along x mid-plane shows a first sud-
den decrease whithin the initial position and x < 0.2 due to the existing tem-
perature gradient between the left wall and the internal field temperature ob-
tained from the quasi-steady solution in the natural convection solver. After
that, nearly 0.1 ≤ x ≤ 0.2, and induced by the upper clockwise recirculation,
the temperature along this mid-plane and until x ≈ 0.6, is submitted to an
increase. From there on, the existence of two colliding and opposite recircu-
lating flows induce a second decrease of the temperature which lasts until
x ≈ 0.9. Then, the influence of the proximity with the cold wall makes the
temperature dimensionless to undergo a fast decrease.

If one recalls now in the temperature distribution along the vertical mid-
plane, Fig. 3.13b, it is depicted how the temperature increases slowly at the
bottom of the cavity 0 ≤ y ≤ 0.2. This is mainly due to the gravity related
terms which determine the buoyancy effects within the domain. Thereafter,
when in the range of 0.2 ≤ y ≤ 0.4 there is an increase speed-up by the
effects of the recirculating flows colliding with each other. From y ≈ 0.4 to-
wards the top of the cavity, the recirculating flow induces a slowly increase
in the temperature.

Moving along the U-velocity dimensionless component, Fig. 3.13c, a first os-
cillation is observed near the left wall at x ≈ 0.1. Then, at 0.6 ≤ x ≤ 0.8,
it shows up a sudden decrease in the velocity magnitude due the clockwise
direction that the upper flow exhibits as long as the ice layer formation ad-
vances in time. From 0.7 ≤ x ≤ 1 the velocity component increases rapidly
until it reaches a 0 constant value due to the appearence of the solid ice layer.

Describing the U-velocity profile along the vertical line, Fig. 3.13d, one sees
how the first negative peak in 0.2 ≤ y ≤ 0.3 is highly influenced by the ef-
fect of the counter clockwise lower recirculating flow generated by the upper
flow (rotating clockwise) when interacts with the ice layer advancing front.
Moving up along the vertical line, the behavior of the velocity component
tends to increase since it starts being influenced by the upper recirculating
flow, in 0.3 ≤ y ≤ 0.9, and until it reaches a 0 value induced by the adiabatic
and the zero gradient velocity condition applied in top and bottom walls.

Similarly, the V-velocity along the x mid-plane, Fig. 3.13e, displays a peak
near the left wall where the direction of the upper flow is clockwise. As one
moves farther from the left wall, the velocity components are not constituted

50 Chapter 3. Numerical Simulation of Solidification Process

yet. Comparatively as with the U-velocity along the x mid-plane, the influ-
ence of the lower recirculating flow brings negative dimensionless velocity
vectors in the vertical magnitudes. This is in the region where 0.6 ≤ x ≤ 0.7.
At 0.75 ≤ x ≤ 0.8 the recirculating flows in this region slightly influences
the increase of the velocity. From there on, the velocity gets reduced until it
reaches a zero constant value due to the sink of velocity magnitude in the ice
layer zone.

Finally, the V-velocity plotted along the y mid-plane, Fig. 3.13f, depicts a
negative peak at y ≈ 0.3. This is mainly influenced by the negative dimen-
sionless velocity values arising from the recirculating flow taking place from
the collision of the upper flow and the ice layer.

Lee model-CNT

Temperature

U-velocity

V-velocity

TABLE 3.14: Numerical results of dimensionless magnitudes
for Lee-CNT model at t = 100s.

3.5. Case Description. 51

(A) Temperature along horizontal line. (B) Temperature along vertical line.

(C) U-velocity along horizontal line. (D) U-velocity along vertical line.

(E) V-velocity along horizontal line. (F) V-velocity along vertical line.

FIGURE 3.13: Adimensional magnitudes comparison at t =
100s.

52 Chapter 3. Numerical Simulation of Solidification Process

Dimensionless quantities presented in the section 3.5.7 are here discussed for
solidification comparison purposes. Temperature dimensionless results for
the Enthalpy-porosity and Lee-CNT models are in a good agreement with
Fluent and IcingFoam results. However, large discrepancies arise in the evo-
lution of the velocity magnitudes. With special mention to U-velocity along x
mid-plane, 3.13c and V-velocity along y mid-plane, 3.13f. Comparatively, the
Enthalpy-porosity model tends to overpredict the velocity magnitude with
respect to the Lee-CNT model and therefore it predicts a faster formation of
a well-developed shape front. The results also show a minimal shift between
numerical solutions due to the advancing front which tends to slightly infer
in the evolution of the physical magnitudes.

Enthalpy-porosity Lee model-CNT

T=100s

T=200s

T=300s

TABLE 3.15: Numerical results of temperature distributions for
Enthalpy-porosity and Lee-CNT models at t = 100, 200, 300s.

3.5. Case Description. 53

Enthalpy-porosity Lee model-CNT

T=100s

T=200s

T=300s

TABLE 3.16: Numerical results of velocity distributions for
Enthalpy-porosity and Lee-CNT models at t = 100, 200, 300s.

In the figures shown in the tables 3.15, 3.16, and 3.17 are depicted the main
physical phenomena of the solidification process. Temperature fields, veloc-
ity magnitudes and liquid volume fraction are chosen in order to visually
detect the minimum local differences as the phase change gets more devel-
oped. As commented above, and shown in table 3.16, the Enthalpy-porosity
model overpredicts the velocity magnitude until the extent of exhibiting a
well-developed "belly" shape front. Contrarily, the evolution of the veloc-
ity magnitude in the Lee-model is under-predicted in comparison with the
Enthalpy-porosity model, fact that leads to a more planar shape of the ad-
vancing ice layer.

54 Chapter 3. Numerical Simulation of Solidification Process

Enthalpy-porosity Lee model-CNT

T=100s

T=200s

T=300s

TABLE 3.17: Numerical results of fluid fraction distributions for
Enthalpy-porosity and Lee-CNT models at t = 100, 200, 300s.

In the next figures, simulations have been carried out with a cylindrical ge-
ometry for a physical time of 5000s. Initially good agreement between Lee-
CNT and Enthalpy-porosity models compared with Fluent and IcingFoam.
As results in table 3.18 show, the evolution of temperature, velocity and liq-
uid fraction magnitudes are quite similar, however, one might appreciate
slight differences in the velocity magnitudes from t = 100s to 300s. This will
be further commented below.

3.5. Case Description. 55

Enthalpy-porosity Lee model-CNT

T=100s

T=300s

T=100s

T=300s

T=100s

T=300s

TABLE 3.18: Numerical results of Enthalpy-porosity and Lee-
CNT models at t = 100s and 300s in a cylinder.

56 Chapter 3. Numerical Simulation of Solidification Process

Here in Fig. 3.14 it is shown the description of the interface. There it can
be checked the mushy region where the liquid fraction is 0 < αl < 1.

FIGURE 3.14: Gradient of the interface between liquid and solid
phases for Lee-CNT model.

In the figure 3.15, temperature magnitude is in the center of the cylinder
along time. Here, it can be appreciated three different zones: for 0s < t <
400s, it belongs to the convection heat transfer period, then, for 400s < t <
4000s there exists a mushy zone, the water is loosing heat by this time. For
t > 4000s solidification begins. As it might be observed in 3.15, but also in
the temperature distribution at t=300s in table 3.18, near 300s < t < 600s
the effect of the density inversion begins to be visible at T ≈ 5 deg C. As
it happened for the cavity case, the fact of characterizing the density with a
polynomial function allows the solver to see a phenomena which appears in
the experimental data of Chen et al. [5].

Large discrepancies arise as the simulation evolves in time in the Enthalpy-
model compared with IcingFoam, Lee-CNT model and the experimental data
of Chen et al. For this model, solidification takes longer in the center part of
the cylinder. Initially, for 0s < t < 300s, the evolution of the temperature,
velocity and liquid fraction seem to match. However, from this point on, con-
vection tends to decrease, and so it does the rest of variables involved. This
clearifies that the enthalpy-porosity model developed in conjunction with the
VOF technique does not fit the numerical results found in the literature and
the fact that does not match with the experimental data may lead to inaccura-
cies when representing the physical phenomena of solidification in transient
simulations. This difference in the numerical solution is due to the use of
an unaccurate expression for the volume of fluid implicitly calculated within
the library A.1.

For the Lee model based on the Classical Nucleation Theory, the results are
compared in the next section against the analytical solution given by the Neu-
mann solutions of the Stefan problem.

3.5. Case Description. 57

FIGURE 3.15: Numerical results of temperature profiles in cen-
ter position of cylindrical geometry.

58 Chapter 3. Numerical Simulation of Solidification Process

3.5.7.1 Stefan Problem

The Stefan problem, is an initial boundary value problem of a parabolic
differential equation with discontinuous coefficients on the phase transitions
interfaces. The analytical solution to the classical Stefan problem exists in a
limited range of idealized situations.

The governing equations for a general solid-liquid phase change problem
are:

The heat equation for the solid phase,

ρscs
∂Ts

∂t
= ∇ · (ks∇Ts) on Ωs (3.42)

for the liquid phase, advective term is also considered:

ρlcl

(
∂Tl
∂t

+ u · ∇Tl

)
= ∇ · (kl∇Tl) on Ωl (3.43)

At the interface, the Stefan condition is satisfied and then,

ρsL(t)Vn = ks∇T|Γ − kl∇T|Γ on Γ (3.44)

where Vn is the normal velocity at the interface.

T = Tm on Γ (3.45)

One-dimensional problem

In seek of simplification, and recalling the 1D problem as shown in the
figure:

FIGURE 3.16: Schematic diagram of Stefan problem.

the initial conditions are expressed as [28]:

u0(x) = u0, t = 0, x ∈ [0, L], (3.46)

while the boundary conditions are the shown below:

u(0, t) = −20◦C,
∂u
∂x

(L, t) = 0, t > 0 (3.47)

3.5. Case Description. 59

In table 3.19, there are summarized the boundary conditions applied in the
cavity geometry of previous cases.

Boundary Conditions

Left Tl = 253.15, αl = 1, αs = 0
Right ∂Tr

∂n = 0, ∂αl
∂n = 0, ∂αs

∂n = 0
Upper ∂Tt

∂n = 0, ∂αl
∂n = 0, ∂αs

∂n = 0
Bottom ∂Tb

∂n = 0, ∂αl
∂n = 0, ∂αs

∂n = 0

TABLE 3.19: Boundary conditions for Stefan problem.

The internal field is initiallized at 283.15 K. The used thermophysical proper-
ties as well as the solver parameters are similar to the previous solidification
cases.
The discontinuous exact solutions for the Stefan problem are:

Tl(x, t) =
erfc

(
x

2
√

a1t

)
erfc

(
λ
√

as
a1

) (Tm − T0) + T0, x > ξ(t),

Ts(x, t) =
erf
(

x
2
√

ast

)
erf˘ (Tm − Tb) + Tb, x ≤ ξ(t).

(3.48)

By using a phase change interface condition, a solution to the trascendental
equation may be found:

e−λ2

erf(λ)
+

kl

ks

√
as

a1

Tm − T0

Tm − Tb

e−
as
a1

λ2

erfc
(

λ
√

as
a1

) =
λL

√
π

cps (Tm − Tb)
(3.49)

where erf(x) is the complementary error function expressed as 1 − erf(x).

The secant method is used as the iterative scheme to find the root of the given
function with tol < 1e − 12. The root of λ is 0.2299545377262345.

In the following figures, the method is tested against the exact solutions of
the Stefan problem.

3.5.7.2 Interface height

The theoretical solution for the evolution of the interface is:

X(t) = 2λ
√

ast (3.50)

Alongside, a post-process function to calculate the tracking of position of the
interface is done. To do so, the values of the liquid fraction per timestep are
first obtained. Thus, these values for each time are read to find the position
in which alpha is 0.5. The python code is attached in Appendix A, section
A.4.

60 Chapter 3. Numerical Simulation of Solidification Process

(A) Neumann solution vs numerical solution
at t = 9s.

(B) Relative error of the numerical solution at
t = 9s.

FIGURE 3.17: Numerical solutions of the Lee model-CNT vs
Neumann analytical solutions at t = 9s.

αl T

TABLE 3.20: Numerical results of temperature and interface
evolution for Lee-CNT model at t = 9s.

(A) Interface position in time. (B) Relative error of interface position in time.

FIGURE 3.18: Numerical solutions of the Lee model-CNT vs
Neumann analytical solutions for interface position for t=0-9s.

3.5. Case Description. 61

3.5.7.3 Conclusions on the Stefan problem

From the figures 3.18a and 3.17a it is clearly visible that the Neumann
solutions of the Stefan problem for the temperature distribution and the in-
terface position do not match the numerical solution obtained with the Lee
model undergoing nucleation characteristics. As depicted, the behavior of
the analytical solution is faster than the numerical one.

The explanation resides behind the theory that macroscale models for phase-
change generally take the assumptions of constant thermophysical proper-
ties, constant latent heat, L(t) = Lm and constant melting/solidification tem-
peratures within phases.

Alternatively, in this thesis it is proposed a model (Lee model) in which the
latent heat term is not constant but coupled to the mass transfer. Therefore,
dependent of the product of the net mass transfer and the difference of en-
thalpy of fusion between phases as indicated in Eq. 3.51. It is also remarkable
that density is not constant for the fluid phase due to the implementation of
the new equation of state in the solver. Thus, it adds more variability to the
latent heat source term calculation.

Therefore, as the evolution of the latent heat balances the temperature distri-
bution (it is implicit in the energy equation), so it does the development of
the interface position.

L[J.s−1.m−3] =
dmls

dt
∆H f = C f ρlαl

(
Tsat − Tl

Tsat

)
(Hl − Hs) (3.51)

In the nanoscale, the surface tension in the interface would affect the solution
as well. The melting temperature could not be constant anymore since at the
interface the condition that T = Tm is not achieved. Leaving, at the interface
Γ:

s (T − Tm) = −σ (κ + αVn) on Γ (3.52)

as pointed out by Zhao et al. [28]. Where κ is the interface curvature, α is a
kinetic coefficient, a proportional constant of the velocity of the interface and
the kinetic undercooling, S, the entropy density difference between phases
and σ the surface tension. Being, the kinetic undercooling, the state of equi-
librium of the liquid submitted to temperatures under melting point without
undergoing phase transition.

This means that as the undercooling velocity (velocity of nuclei formation)
increases, so it does this coefficient. Therefore, the kinetic coefficient jointly
with the surface tensions are also the parameters to account for when mod-
eling phase-changes in a nanoscale.

63

Chapter 4

Numerical Simulation of Heat
Transfer

4.1 OpenFOAM: chtMultiphaseInterFOAM. Con-
jugate Heat Transfer

The last objective of this thesis is to extend the multiphase solver of the
previous section so it can account for multiregion purposes. To do so, a new
solver derived from the concept of an existing multiregion solver is imple-
mented.

The existing solver, chtMultiRegionFoam is developed on the basis that the
fluid it solves undergoes the compressible Navier-Stokes equations. The gov-
erning equations for this solver are pointed out here below.

Continuity Equation

The continuity equation reads as:

∂ρ

∂t
+∇ · (ρu) = 0 (4.1)

Momentum Equation

The momentum conservation equation yields as:

∂ρu
∂t

+∇ · (ρu ⊗ u) =

−∇prgh +∇ ·
[
µ
{
∇⊗ u + (∇⊗ u)T

}]
−∇

(
2
3

µ∇ · u
)
− g · x∇ρ

(4.2)

Energy Equation

The energy equation as listed in the native solver is:

∂ρh
∂t

+∇ · (ρuh) +∇ · (ρuK) = ∇ ·
(

λ

cp
∇h
)
+ ρu · g (4.3)

64 Chapter 4. Numerical Simulation of Heat Transfer

where u is the velocity vector, h is the enthalpy, K = 0.5*u · u is the kinetic
energy per unit mass, prgh = p − ρg · x the modified pressure so that the
momentum equation accounts for the buoyancy terms, and the remaining
thermophysical properties, µ, λ, Cp being the kinematic viscosity, the thermal
conductivity and the specific heat accordingly. The energy equation does not
include radiation, heat generation term and chemical reaction.

Therefore, the challenge of this part is to couple the multiphase solver (IcoRe-
actingMultiPhaseInterFoam) that allows for the solving of a fluid undergoing
phase-change with a solid region.

4.1.1 Case description

Within this new case, a mesh for the solid region is required. To do so,
a second structured mesh region is implemented within the framework of
a provided script which builds cylindrical computational meshes in Open-
FOAM format. The script is attached in Appendix B.

FIGURE 4.1: Computational mesh for the conjugate heat trans-
fer case.

In the image shown above, a structured mesh of 731734 nodes is generated.

4.1.2 Hypotheses And Assumptions

Heat transfer: Conductive heat transfer is transferred throughout an isotropic
material and convective heat transfer is arisen within the fluid region.

Laminar regime: The Reynolds number, computed from the maximum
velocity is not high enough to consider turbulent effects.

In the current case-scenario, a Prandtl close to 7.

4.1. OpenFOAM: chtMultiphaseInterFOAM. Conjugate Heat Transfer 65

Newtonian fluid: The viscosity of the fluid is assumed to be constant. As
per the solidification cases, the treatment of the thermophysical properties is
performed in a similar manner.

4.1.3 Governing Equations of the Fluid Region

The governing equations for the fluid region are obtained from the solidi-
fication solver.

Momentum equation

The momentum equation is recalled here in terms of viscous stress tensor.
The surface tension forces as the body forces and the Darcy term is added in
the momentum equation as shown below.

∂ (ρui)

∂t
+

∂
(
ρuiuj

)
∂xj

= −αi∇p +∇ · τ + Fσi + Sui + Sb

(4.4)

Energy equation

The energy equation is also described here in terms of temperature and
specific heat. Moreover, as for in the energy equation in the multiphase
solver, the latent term here is also added, SHi but also the aforementioned
terms concerning the buoyancy, the pressure and the viscous dissipation.

∂(ρCpT)
∂t

+∇ ·
(
ujρCpT

)
+∇ · (up) = ∇ · (ki∇Ti) +∇ · (τ · u) + ρg · u+ SHi

(4.5)

4.1.4 Governing Equations of the Solid Region

4.1.4.1 Energy Equation

The heat transfer in solids is mainly governed by the heat conduction
equation:

∂(ρh)
∂t

−∇ ·
(

λ

ρcp
∇h
)
= 0 (4.6)

66 Chapter 4. Numerical Simulation of Heat Transfer

4.1.5 Solver description. Control Loop

chtMultiphaseInterFoam is a new solver derived from the existing solver cht-
MultiRegionFoam. It is implemented to cope with transient fluid flow and
solid heat conduction with conjugate heat transfer between regions.

The solution follows a sequential strategy: equations of the fluid are first
solved using the temperatures of the solid of the preceding loop to set the
boundary conditions for the fluid part.Then, the equation for the solid is
solved with the temperatures of the fluid to define lately the boundary con-
ditions of the solid. This process is iteratively executed until convergence is
reached.

FIGURE 4.2: Flowchart of the conjugate heat transfer solver
[22].

4.1.6 Code implementations

As remarked in the previous section, in the context of multiregion solvers,
OpenFOAM offers the possibility of solving a fluid representing the com-
pressible Navier-Stokes equations. However, the purpose of this final part
is to enhance the capability of this solver so it can handle multiphase fluids
submitted to conjugate heat transfer conditions.

To do so, and in favour of using the majority of possibilities that the solver
brings, the energy equation in the solid part is kept without change. On
the other side, the fluid part of the solver is implemented by integrating the
multiphase solver used in the solidification section of this thesis.

4.1. OpenFOAM: chtMultiphaseInterFOAM. Conjugate Heat Transfer 67

The implemented solver can be found in Appendix B but here are presented
the main changes.

The first change is the way in which the fluid is solved. In Fig. 4.3 the loop
in the fluid is corrected in such a way it incorporates the IcoReactingMultipha-
seInterFoam solver.

FIGURE 4.3: Control loop for the fluid region in CHT.

On the other side, the energy equation is adapted so it can cope with multi-
phase fluids in the scope of multi region solvers. In the way of building up
the equation, some of the terms that are newly introduced are the buoyancy
energy, ρ(U&g), and the pressure terms ∇ · (up) and the viscous dissipation
term, ∇ · (τ · u), where τ, the viscous stress tensor is calculated in the upper
part of the code as the product of 2 by both the dynamic viscosity and the
strain rate tensor.

τ = 2µD (4.7)

Where D is the strain rate tensor:

D = −1
2

[
∇u +∇u⊤

]
= −1

2

2∂ux

∂x
∂uy
∂x + ∂ux

∂y
∂uz
∂x + ∂ux

∂z
∂ux
∂y +

∂uy
∂x 2∂uy

∂y
∂uz
∂y +

∂uy
∂z

∂ux
∂z + ∂uz

∂x
∂uy
∂z + ∂uz

∂y 2∂uz
∂z

 (4.8)

68 Chapter 4. Numerical Simulation of Heat Transfer

If substituting terms, it yields:

τ = −µ
[
∇u +∇u⊤

]
(4.9)

FIGURE 4.4: Energy equation for the fluid in CHT.

4.1.7 Case Setup

The case geometry is a plane cylinder, taking profit form the fluid mesh
generated for the solidification case presented in the previous section. How-
ever, in this section, symmetry conditions are applied on the vertical axis
(axis Y) so as to reduce the computational cost.

4.1. OpenFOAM: chtMultiphaseInterFOAM. Conjugate Heat Transfer 69

FIGURE 4.5: Scheme of the geometry used in CHT.

4.1.7.1 Boundary conditions

The boundary conditions are, in this case, setted up for both solid and
fluid regions. Here it is shown a table summarizing the used ones.
For the fluid region: For the solid region:

Boundary Conditions

Internal field T = 298, u = 0, αl = 1, αs = 0
fluidFrontAndBack empty
fluidSymmetryBC symmetryPlane

TABLE 4.1: Boundary conditions for the fluid region in CHT
problem.

Boundary Conditions

Internal field T = 298
solidWalls T = 258
solidSymmetryBC symmetryPlane
solidFrontAndBack empty

TABLE 4.2: Boundary conditions for the solid region in CHT
problem.

At the interface between solid and liquid regions, it is required to set an ap-
propriate boundary condition which couples the energy equations in these
areas.

Considering two cells at each side of an interface in where Tc and Tp is the
temperature at the cell center and on the patch (2D boundary) accordingly.
q1 is the heat flux going out of the cell1 and q2 the heat flux entering the
cell2. The energy conservation in this zone constrains the temperature and

70 Chapter 4. Numerical Simulation of Heat Transfer

heat fluxes to be equal at both sides of the interface. Then, temperature, in
magnitude yields as

Tp,1 = Tp,2 = Tp, (4.10)

and as well, for the fluxes
q′′1 = q′′2 = q′′ (4.11)

while the magnitude for the heat fluxes is derived from the one-dimensional
expression for the Fourier’s law and it gives

− k1
∂T
∂n

∣∣∣∣
side 1

= − k2
∂T
∂n

∣∣∣∣
side 2

(4.12)

where κ is the termal conductivity and n the direction normal to the patch.

Discretizing linearly the temperature gradient of the previous equation, the
differential equation that yields as

k1
(
Tc,1 − Tp

)
∆1n

=
k2
(
Tp − Tc,2

)
∆2n

(4.13)

where the temperatures and fluxes at the center of the patches are described
as

Tp =
k1∆1nTc,1 + k2∆2nTc,2

k1∆1n + k2∆2n

q′′ =
k1
(
Tc,1 − Tp

)
∆1n

=
k2
(
Tp − Tc,2

)
∆2n

.
(4.14)

This boundary condition is given in OpenFOAM under the name turbulent-
TemperatureCoupledBaffleMixed. The required input is the temperature at the
patch. Therefore, that temperature for the interface between the liquid and
the solid regions is initially setted at 298 K.

4.1.7.2 Thermophysical properties

The thermo physical properties for the fluid are similarly applied as in pre-
vious solidification cases. For the solid region, the thermophysical properties
are chosen as for the polyethylene.

Polyethylene properties Symbol Values Units

Density ρ 940 kg.m−3

Thermal conductivity λ 0.56 W.m−1.K−1

Heat capacity Cp 1330 J.kg.K−1

Latent heat L 178600 J.K−1

TABLE 4.3: Polyethylene properties for solid region definition.

4.1. OpenFOAM: chtMultiphaseInterFOAM. Conjugate Heat Transfer 71

4.1.8 Results and Conclusions

Within this section, the coupling of a multiregion solver with a multiphase
solver is intended. However, results cannot be validated against the native
solver. For the native solver, the library of solidification is used so as to rep-
resent the evolution of the liquid fraction. Besides, the use of the polyno-
mial density variation is included. Whereas for the new solver, the Lee-CNT
model is used so as to represent the phase change phenomena. The same
mesh is used for both calculations.

In the chtMultiRegionFoam the temperature distribution is as one could ex-
pect. The evolution is very similar to the one found in the previous solidifi-
cation section. However, as it is observable, it is generated slower due to the
influence of the solid region which surrounds the inner fluid field. The con-
duction enables a temperature gradient in the shared patches between solid
and fluid regions. And from there, the convection in the liquid is enabled.

In the chtMultiPhaseInterFoam the temperature, velocity magnitude and liq-
uid fraction (ice layer evolution) display a radial distribution. This exhibits
the ausence of the gravity related terms.

For incompressible fluids, the density is assumed to be constant and there-
fore, the energy becomes decoupled from the momentum equation. Typi-
cally, this is corrected by solving first the continuity and momentum equa-
tions and then, the temperature distribution is obtained by inserting the ve-
locity and pressure values in the energy equation. As it is described in equa-
tion 4.5, the pressure and velocity related terms are pugged-in the energy
equation. Moreover, the density variation is defined by means of the imple-
mented 4th order polynomial function.

It is also observed continuity in the heat flux and temperature at solid-fluid
interface and heat transfer by conduction in the solid region. However, the
gradients of temperature are not the expected ones. This leads to this higher
orders of magnitude of difference in the velocity map. Due to time restric-
tions, the proposal is to extend the boundary condition presented above to a
two-phase flow. Here it is explained how: On one hand, there are the condi-
tions affecting the liquid-phase:{

Ts1 = Tl on Γ1

−ks
∂Ts1
∂ns1

= kl
∂Tl
∂nl

on Γ1
(4.15)

being, Ts1, the temperature of the solid region in contact with the first phase
at the interface (wall), Tl, temperature of the liquid-phase at the wall and ks, kl
the thermal condutivities of the solid region and liquid-phases respectively.
Γ1 belongs to the interface between solid region and liquid-phase.

Then. the conditions affecting the solid-phase:{
Tice = Ts2 on Γ2

−kice
∂Tice
∂nice

= ks
∂Ts2
∂ns2

on Γ2
(4.16)

72 Chapter 4. Numerical Simulation of Heat Transfer

being, Ts2, the temperature of the solid region in contact with the second
phase at the interface (wall), Tice, temperature of the solid-phase (ice) at the
wall and kice the thermal condutivity of the solid-phase. Γ2 belongs to the
interface between solid region and solid-phase.

Again, discretizing linearly the temperature gradients and weighting accord-
ingly with the liquid/solid fraction, the balance at both sides of the interfaces
yields as:

− αlkl
∆nice

(Tw2 − Tl)−
αlkl

∆nice
(Tw2 − Tl) =

ks

∆ns2
(Ts2 − Tw2) (4.17)

Leaving a temperature distribution at the interface Γ2 equal to:

Tw2 =
∆niceksTs2 + ∆ns1αlklTl + ∆ns1αicekiceTice

∆niceks + ∆ns2αlkl + ∆ns2αicekice
(4.18)

where αl and αice are the liquid-phase volume fraction and the solid-phase
volume fraction.

And recalling for a single phase fluid, the expression for the temperature,
at the interface, between solid region and liquid-phase would be something
similar to the equation 4.14:

Tw1 =
∆nlksTs1 + ∆ns1klTl

∆ns1kl + ∆nlks
(4.19)

4.1. OpenFOAM: chtMultiphaseInterFOAM. Conjugate Heat Transfer 73

T U αl

TABLE 4.4: Numerical results of chtMultiRegionFoam (first
row) and chtMultiPhaseInterFoam (second row) at t = 2100s in

a cylinder.

74 Chapter 4. Numerical Simulation of Heat Transfer

In figures 4.6 and 4.7 it is shown the evolution of the residuals of the hy-
drostatic pressure for both used solvers. The tolerance for solving the hydro-
static pressure is set to 1− 03 and both solvers reach the solution beyond this
value. This control is used so as to avoid non-physical solutions.

FIGURE 4.6: Initial residual of hydrostatic pressure in chtMulti-
RegionFoam.

FIGURE 4.7: Initial and final residuals of hydrostatic pressure
in chtMultiPhaseInterFoam.

75

Chapter 5

Conclusions

The aim of this master’s thesis was to investigate the solidification phe-
nomena through different numerical models. The enthalpy-porosity model is
widely used for phase transition processes and the Lee model using a newly
proposed way of calculating the nucleation rate so it can shape the physi-
cal phenomena accounting in such processes. On the last part of this the-
sis, it is proposed a multiregion solver which permits conjugate heat transfer
between solid and liquid zones. The main difference with respect to the al-
ready offered capabilities on OpenFOAM is the possibility of allowing a fluid
region that can hande with phase-changes.

In the former part of this master’s thesis, the natural convection heat trans-
fer mechanism is studied. To do so, a first analysis using BuoyantBoussi-
nesqPimpleFoam, a native pure convection solver which deals with both
laminar and turbulent unsteady heat transfer using the Boussinesq approx-
imation is used. Results on this solver depict a quasi-linear pattern on the
temperature distribution and only one convection current is observed in the
middle of the computational domain. A polynomial density variation for the
water equation of state and a new expression regarding the gravity terms of
the momentum equation are implemented on the basis of the native solver.
The results obtained on this solver showed a completely different pattern.
The density inversion point, which is tipically observed in experimental works
due to the own phenomena’s behavior, is similarly observed in the simula-
tions. Two convection currents can be appreciated in the cavity. These flows
recirculate oppositely, they counteract with each other, being the upper flow,
the more dense. A small change in density, in this case 0.17 kg.m−3, evidences
this change in the flow pattern’s behavior. Numerical results are, in overall,
in good agreement with the results found in the literature. All the evaluated
magnitudes nearly overlapped the data of the bibliography. Maximum dif-
ferences with respect to Fluent numerical results are found to be below 16%
for the V-velocity component along the vertical mid-plane. At time equal to
1500s, the solution reached a quasi-steady solution which is used as initial
solution in the solidification process. The fact of finding the propper behav-
ior of the convective fluid is of crucial importance in the way of which the ice
layer on the phase transition process will evolve.

76 Chapter 5. Conclusions

In the second part of the thesis, water solidification process is investigated by
means of a theoretical model, enthalpy-porosity and a semi-empirical one,
Lee model. Within a multiphase, incompressible solver based on the volume
of fluid technique, both models are implemented in the following way: for
the enthalpy-porosity, the latent heat term is appended in the energy equa-
tion which calls a function-library. The Lee model is included in the Open-
FOAM framework. However, as an objective within the completion of this
thesis, it is included the Lee formulation with the newly proposed term cal-
culated through the Classical Nucleation Theory. Both models present interface
porosity models based on the Darcy’s law. Results on the enthalpy-porosity
model showed a trend in overpredicting the velocity magnitude and thereby,
predicting a faster formation of a well-developed shape ice-front. Compar-
atively, Lee model with the nucleation parameters tend to underpredict the
development of the ice front leading local maximal discrepancies below 33%
of error in the axial velocity displayed in the horizontal mid-plane. How-
ever, the results obtained seem to be 0.1 mm shifted when compared with the
Fluent results and so, the error might be slightly affected by this. Based on
the experimental data found, a new geometry consisting on a plane cylin-
der is developed so as to see the transient evolution of the temperature,
velocity magnitude and liquid fraction distributions. The results found at
5000s showed large differences in the Enthalpy-porosity model when com-
pared with the experimental works. The evolution of the temperature for
that model is telling that as with the other models, the solidification by that
time is not achieved yet at an specific part of the computational domain. Ini-
tially, at lower time steps, the evolution of phyisics on this model seems to
match with Lee-CNT model and with bibliographic data. However, as the
solution evolves, the velocity gets reduced leading a lower ice formation.

On this part, the proposed solution for the Lee model computed through
the nucleation theory is compared with the Neumann solutions of the clas-
sic Stefan problem. Initially, the numerical solution does not match with the
analytical solution. This discrepancy mainly arises from the fact that the an-
alytical solution of the classical Stefan problem exists within a limited range
of idealized situations. The principal assumptions in the Stefan problem are
considering constant thermophysical properties, constant solidification tem-
peratures within phases and assuming constant the latent heat. In the work
of Lee, the evolution of the latent heat term in the energy equation is cou-
pled to the mass transfer and thus, time dependent. This energy term is
obtained from enthalpies of fusion between phases, temperature differences
and net mass transfer, which is remarkable to say that it is mainly calculated
by means of density differences and the nucleation term. And this latter term
is, indeed, time dependent as well. As the last jarring term, the density is
implemented so as it is function of the temperature and therefore, time de-
pendent.

On the third part of the thesis, a proposed new solver which couples both
the conduction heat transfer in the basis of a multiphase solver with the Lee-
CNT and enthalpy-porosity models carried out on previous sections. The

Chapter 5. Conclusions 77

native solver is adapted so it can handle the calculation of the latent heat by
means of the proposed library and it can use the proposed new equation of
state. This is done as a way of comparing the obtained solutions by means
of the new solver with the solutions of a native solver. The results are not
the expected ones as the buoyancy effects are not reflected. The temperature,
velocity magnitude and liquid fraction (ice layer evolution) seem to behave
radially. The observed phenomena is due to a wrong boundary condition
at the interface. As proposed in the chapter 4, the new boundary condition
should account for two-phase flow instead. Stability and control of residuals
per equation are established so as to prevent unphysical behavior in the so-
lution. Polynomial density variation is used for both solvers. Contrarily, the
solution of the native solver showed similar results as with the solidification
case. The slowness on the ice layer evolution now is stongly influenced by
the conduction heat transfer.

79

Chapter 6

Future Works

The completed work in this master’s thesis has allowed to identify some
models which can be used to accuratedly represent solidification phenom-
ena.

It has been identified thorugh the analysis of the enthalpy-porosity model
some differences in the evolution of the temperature along time. The pro-
posed library for the latent heat term uses a liquid fraction function instead
of the one calculated by the phase transport equation already implemented
on the solver. This is done so it could be used in the chtMultiRegionFoam na-
tive solver for comparison purposes. The author encourages to use the liquid
fraction calculated by the VOF technique instead.

It has also been shown that the proposed formulation for the implementa-
tion of the multiregion solver which accounts for multiphase fluids has not
achieved the expected results. As a future work a new boundary condition
regarding the coupling of two-phase flow as described in the chapter could
be implemented.

81

Bibliography

[1] M. Akyurt, G. Zaki, and B. Habeebullah. “Freezing phenomena in ice-
water systems”. In: Energy Conversion and Management 43.14 (2002),
pp. 1773–1789. DOI: 10.1016/s0196-8904(01)00129-7.

[2] Edin Berberovic et al. “Drop impact onto a liquid layer of finite thick-
ness: Dynamics of the cavity evolution”. In: Physical Review E 79.3 (2009).
DOI: 10.1103/physreve.79.036306.

[3] Arnaud Bourdillon. “Investigation towards a coupling between pop-
ulation balance and solidification models”. PhD thesis. Cranfield Uni-
versity, 2016.

[4] Long-Qing Chen. “Phase-Field Models for Microstructure Evolution”.
In: Annual Review of Materials Research 32.1 (2002), pp. 113–140. DOI:
10.1146/annurev.matsci.32.112001.132041.

[5] Sih-Li Chen and Tzong-Shing Lee. “A study of supercooling phenomenon
and freezing probability of water inside horizontal cylinders”. In: Inter-
national Journal of Heat and Mass Transfer 41.4-5 (1998), pp. 769–783. DOI:
10.1016/s0017-9310(97)00134-8.

[6] M El Ganaoui et al. “Computational solution for fluid flow under solid/liq-
uid phase change conditions”. In: Computers and Fluids 31.4-7 (2002),
pp. 539–556. DOI: 10.1016/s0045-7930(01)00067-6.

[7] A Esen and S Kutluay. “A numerical solution of the Stefan problem
with a Neumann-type boundary condition by enthalpy method”. In:
Applied Mathematics and Computation 148.2 (2004), pp. 321–329. DOI: 10.
1016/s0096-3003(02)00846-9.

[8] H. Harlow and J. Welch. “Numerical Calculation of Time-Dependent
Viscous Incompressible Flow of Fluid with Free Surface”. In: Physics of
Fluids 8.12 (1965), p. 2182. DOI: 10.1063/1.1761178.

[9] C.W Hirt and B.D Nichols. “Volume of fluid (VOF) method for the
dynamics of free boundaries”. In: Journal of Computational Physics 39.1
(1981), pp. 201–225. DOI: 10.1016/0021-9991(81)90145-5.

[10] C. Huang, W. Wang, and W. Li. “A Novel 2D Model for Freezing Phase
Change Simulation during Cryogenic Fracturing Considering Nucle-
ation Characteristics”. In: Applied Sciences 10.9 (2020), p. 3308. DOI: 10.
3390/app10093308.

[11] Luisa Ickes et al. “Classical nucleation theory of homogeneous freezing
of water: thermodynamic and kinetic parameters”. In: Physical Chem-
istry Chemical Physics 17.8 (2015), pp. 5514–5537. DOI: 10.1039/c4cp04184d.

[12] Damir Juric and Gretar Tryggvason. “A Front-Tracking Method for Den-
dritic Solidification”. In: Journal of Computational Physics 123.1 (1996),
pp. 127–148. DOI: 10.1006/jcph.1996.0011.

https://doi.org/10.1016/s0196-8904(01)00129-7
https://doi.org/10.1103/physreve.79.036306
https://doi.org/10.1146/annurev.matsci.32.112001.132041
https://doi.org/10.1016/s0017-9310(97)00134-8
https://doi.org/10.1016/s0045-7930(01)00067-6
https://doi.org/10.1016/s0096-3003(02)00846-9
https://doi.org/10.1016/s0096-3003(02)00846-9
https://doi.org/10.1063/1.1761178
https://doi.org/10.1016/0021-9991(81)90145-5
https://doi.org/10.3390/app10093308
https://doi.org/10.3390/app10093308
https://doi.org/10.1039/c4cp04184d
https://doi.org/10.1006/jcph.1996.0011

82 Bibliography

[13] T. A. Kowalewski and M. Rebow. “Freezing of Water in a Differentially
Heated Cubic Cavity”. In: International Journal of Computational Fluid
Dynamics 11.3-4 (1999), pp. 193–210. DOI: 10.1080/10618569908940874.

[14] K. Krabbenhoft, L. Damkilde, and M. Nazem. “An implicit mixed enthalpy-
temperature method for phase-change problems”. In: Heat and Mass
Transfer 43.3 (2006), pp. 233–241. DOI: 10.1007/s00231-006-0090-1.

[15] Chin Li, Suresh Garimella, and James Simpson. “Fixed-grid front-tracking
algorithm for solidification problems, part I: method and validation”.
In: Numerical Heat Transfer, Part B: Fundamentals 43.2 (2003), pp. 117–
141. DOI: 10.1080/713836172.

[16] Fadl Hassan Moukalled, L Mangani, and M Darwish. The finite volume
method in computational fluid dynamics. Springer, 2016, pp. 4–5.

[17] P. Rauschenberger et al. “Comparative assessment of Volume-of-Fluid
and Level-Set methods by relevance to dendritic ice growth in super-
cooled water”. In: Computers and Fluids 79 (2013), pp. 44–52. DOI: 10.
1016/j.compfluid.2013.03.010.

[18] Nabeel Al-Rawahi and Gretar Tryggvason. “Numerical Simulation of
Dendritic Solidification with Convection: Two-Dimensional Geometry”.
In: Journal of Computational Physics 180.2 (2002), pp. 471–496. DOI: 10.
1006/jcph.2002.7092.

[19] C. M. Rhie and W. L. Chow. “Numerical study of the turbulent flow
past an airfoil with trailing edge separation”. In: AIAA Journal 21.11
(1983), pp. 1525–1532. DOI: 10.2514/3.8284.

[20] Ole Richter et al. “Numerical simulation of casting processes: coupled
mould filling and solidification using VOF and enthalpy-porosity method”.
In: Heat and Mass Transfer 53.6 (2016), pp. 1957–1969. DOI: 10.1007/
s00231-016-1954-7.

[21] Fabian Rösler and Dieter Brüggemann. “Shell-and-tube type latent heat
thermal energy storage: numerical analysis and comparison with ex-
periments”. In: Heat and Mass Transfer 47.8 (2011), pp. 1027–1033. DOI:
10.1007/s00231-011-0866-9.

[22] T. Sugimoto et al. “Thermal Fluid Coupled Analysis of Hydrothermal
Destruction Reactor”. In: 14th WCCM-ECCOMAS Congress (2021). DOI:
10.23967/wccm-eccomas.2020.342.

[23] Lijian Tan and Nicholas Zabaras. “A level set simulation of dendritic
solidification of multi-component alloys”. In: Journal of Computational
Physics 221.1 (2007), pp. 9–40. DOI: 10.1016/j.jcp.2006.06.003.

[24] V. R. Voller and C. Prakash. “A fixed grid numerical modelling method-
ology for convection-diffusion mushy region phase-change problems”.
In: International Journal of Heat and Mass Transfer 30.8 (1987), pp. 1709–
1719. DOI: 10.1016/0017-9310(87)90317-6.

[25] V.R. Voller. “An enthalpy method for modeling dendritic growth in a
binary alloy”. In: International Journal of Heat and Mass Transfer 51.3-4
(2008), pp. 823–834. DOI: 10.1016/j.ijheatmasstransfer.2007.04.
025.

https://doi.org/10.1080/10618569908940874
https://doi.org/10.1007/s00231-006-0090-1
https://doi.org/10.1080/713836172
https://doi.org/10.1016/j.compfluid.2013.03.010
https://doi.org/10.1016/j.compfluid.2013.03.010
https://doi.org/10.1006/jcph.2002.7092
https://doi.org/10.1006/jcph.2002.7092
https://doi.org/10.2514/3.8284
https://doi.org/10.1007/s00231-016-1954-7
https://doi.org/10.1007/s00231-016-1954-7
https://doi.org/10.1007/s00231-011-0866-9
https://doi.org/10.23967/wccm-eccomas.2020.342
https://doi.org/10.1016/j.jcp.2006.06.003
https://doi.org/10.1016/0017-9310(87)90317-6
https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.025
https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.025

Bibliography 83

[26] Daoyong Wu, Yuanming Lai, and Mingyi Zhang. “Heat and mass trans-
fer effects of ice growth mechanisms in a fully saturated soil”. In: Inter-
national Journal of Heat and Mass Transfer 86 (2015), pp. 699–709. DOI:
10.1016/j.ijheatmasstransfer.2015.03.044.

[27] Tian Yan et al. “A Quasi-Steady-State Simplified Model for Pipe-encapsulated
PCM”. In: Procedia Engineering 205 (2017), pp. 3243–3250. DOI: 10.1016/
j.proeng.2017.10.309.

[28] Y. Zhao, C.Y. Zhao, and Z.G. Xu. “Numerical study of solid-liquid phase
change by phase field method”. In: Computers and Fluids 164 (2018),
pp. 94–101. DOI: 10.1016/j.compfluid.2017.05.032.

https://doi.org/10.1016/j.ijheatmasstransfer.2015.03.044
https://doi.org/10.1016/j.proeng.2017.10.309
https://doi.org/10.1016/j.proeng.2017.10.309
https://doi.org/10.1016/j.compfluid.2017.05.032

85

Appendix A

Appendix A: Solidification models

A.1 Enthalpy-porosity library

A.1.1 mySolidificationMeltingSource.H
/*--

------------ -*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD

Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

--

Copyright (C) 2014 -2017 OpenFOAM Foundation
Copyright (C) 2018 -2020 OpenCFD Ltd.

--

License
This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or
modify it

under the terms of the GNU General Public License as
published by

the Free Software Foundation , either version 3 of the
License , or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful ,
but WITHOUT

ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License

for more details.

You should have received a copy of the GNU General Public
License

along with OpenFOAM. If not , see <http :// www.gnu.org/
licenses/>.

86 Appendix A. Appendix A: Solidification models

Class
Foam::fv:: mySolidificationMeltingSource

*--
-------------*/

#ifndef mySolidificationMeltingSource_H
#define mySolidificationMeltingSource_H

#include "fvMesh.H"
#include "volFields.H"
#include "cellSetOption.H"
#include "Enum.H"

// *
* * * * * * //

namespace Foam
{
namespace fv
{

/*--
------------ -*\

Class mySolidificationMeltingSource Declaration
*--

-------------*/

class mySolidificationMeltingSource
:

public cellSetOption
{

// Private Data

//- Temperature at which melting occurs [K]
scalar Tmelt_;

//- Latent heat of fusion [J/kg]
scalar L_;

//- Phase fraction under -relaxation coefficient
scalar relax_;

//- Name of operand temperature field
word TName_;

//- Name of specific heat capacity field
word CpName_;

//- Name of operand velocity field
word UName_;

//- Name of operand flux field
word rhoCpPhiName_;

//- Phase fraction indicator field for VOF

A.1. Enthalpy-porosity library 87

volScalarField alpha_;

//- Current time index (used for updating)
label curTimeIndex_;

void update ();

//- Helper function to apply to the energy equation
template <class RhoFieldType >
void apply(const RhoFieldType& rho , fvMatrix <scalar >&

eqn);

public:

//- Runtime type information
TypeName("mySolidificationMeltingSource");

// Constructors

//- Construct from explicit source name and mesh
mySolidificationMeltingSource
(

const word& sourceName ,
const word& modelType ,
const dictionary& dict ,
const fvMesh& mesh

);

//- No copy construct
mySolidificationMeltingSource
(

const mySolidificationMeltingSource&
) = delete;

//- No copy assignment
void operator =(const mySolidificationMeltingSource &) =

delete;

//- Destructor
~mySolidificationMeltingSource () = default;

// Member Functions

//- Add explicit contribution to enthalpy equation
virtual void addSup(fvMatrix <scalar >& eqn , const label

fieldi);

//- Add explicit contribution to compressible enthalpy
equation

virtual void addSup
(

const volScalarField& rho ,
fvMatrix <scalar >& eqn ,

88 Appendix A. Appendix A: Solidification models

const label fieldi
);

//- Read source dictionary
virtual bool read(const dictionary& dict);

};

// *
* * * * * * //

} // End namespace fv
} // End namespace Foam

// *
* * * * * * //

#ifdef NoRepository
#include "mySolidificationMeltingSourceTemplates.C"

#endif

// *
* * * * * * //

#endif

// **
************* //

A.1.2 mySolidificationMeltingSource.C
/*--

------------ -*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD

Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

--

Copyright (C) 2014 -2017 OpenFOAM Foundation
Copyright (C) 2018 -2020 OpenCFD Ltd.

--

License
This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or
modify it

under the terms of the GNU General Public License as
published by

the Free Software Foundation , either version 3 of the
License , or

(at your option) any later version.

A.1. Enthalpy-porosity library 89

OpenFOAM is distributed in the hope that it will be useful ,
but WITHOUT

ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License

for more details.

You should have received a copy of the GNU General Public
License

along with OpenFOAM. If not , see <http :// www.gnu.org/
licenses/>.

*--
-------------*/

#include "mySolidificationMeltingSource.H"
#include "fvMatrices.H"
#include "basicThermo.H"
#include "gravityMeshObject.H"
#include "zeroGradientFvPatchFields.H"
#include "extrapolatedCalculatedFvPatchFields.H"
#include "addToRunTimeSelectionTable.H"
#include "geometricOneField.H"
#include <cmath >
// * * * * * * * * * * * * * Static Member Functions * * * * * *

* * * * * * //

namespace Foam
{
namespace fv
{

defineTypeNameAndDebug(mySolidificationMeltingSource , 0);
addToRunTimeSelectionTable(option ,

mySolidificationMeltingSource , dictionary);
}
}

// * * * * * * * * * * * * * Private Member Functions * * * * *
* * * * * * //

void Foam::fv:: mySolidificationMeltingSource :: update ()
{

if (curTimeIndex_ == mesh_.time().timeIndex ())
{

return;
}

if (debug)
{

Info << type() << ":␣" << "alpha.liquid" << "␣-␣updating␣
phase␣indicator" << endl;

}

// update old time alpha1 field
alpha_.oldTime ();

90 Appendix A. Appendix A: Solidification models

const auto& CpVoF = mesh_.lookupObject <volScalarField >(
CpName_);

const auto& T = mesh_.lookupObject <volScalarField >(TName_);
scalar Tsol = Tmelt_ -0.25;
scalar Tliq = Tmelt_ +0.75;
scalar eps = 0.0001;
forAll(cells_ , i)
{

label celli = cells_[i];

scalar Tc = T[celli];
scalar Cpc = CpVoF[celli];
scalar alpha1New = alpha_[celli] + relax_*Cpc*(Tc -

Tmelt_)/L_;
// scalar alpha1New = 0.5 + 0.5* std::erf(4 * ((Tc - (

Tliq + Tsol)/2)/(Tliq - Tsol + eps)));
alpha_[celli] = max(0, min(alpha1New , 1));

}

alpha1_.correctBoundaryConditions ();

curTimeIndex_ = mesh_.time().timeIndex ();
}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * *
* * * * * * //

Foam::fv:: mySolidificationMeltingSource ::
mySolidificationMeltingSource

(
const word& sourceName ,
const word& modelType ,
const dictionary& dict ,
const fvMesh& mesh

)
:

cellSetOption(sourceName , modelType , dict , mesh),
Tmelt_(coeffs_.get <scalar >("Tmelt")),
L_(coeffs_.get <scalar >("L")),
relax_(coeffs_.getOrDefault <scalar >("relax", 0.9)),
TName_(coeffs_.getOrDefault <word >("T", "T")),
CpName_(coeffs_.getOrDefault <word >("Cp", "Cp")),
UName_(coeffs_.getOrDefault <word >("U", "U")),
rhoCpPhiName_(coeffs_.getOrDefault <word >("rhoCpPhi", "

rhoCpPhi")),
alpha_
(

IOobject
(

"alpha.liquid",
mesh.time().timeName (),
mesh ,
IOobject :: READ_IF_PRESENT ,
IOobject :: AUTO_WRITE

),

A.1. Enthalpy-porosity library 91

mesh ,
dimensionedScalar(dimless , Zero),
zeroGradientFvPatchScalarField :: typeName

),
curTimeIndex_ (-1)

{
fieldNames_.resize (2);
fieldNames_ [0] = UName_;
fieldNames_ [1] = TName_;

fv:: option :: resetApplied ();
}

// * * * * * * * * * * * * * * * Member Functions * * * * * * *
* * * * * * //

void Foam::fv:: mySolidificationMeltingSource :: addSup
(

fvMatrix <scalar >& eqn ,
const label fieldi

)
{

apply(geometricOneField (), eqn);
}

void Foam::fv:: mySolidificationMeltingSource :: addSup
(

const volScalarField& rho ,
fvMatrix <scalar >& eqn ,
const label fieldi

)
{

apply(rho , eqn);
}

bool Foam::fv:: mySolidificationMeltingSource ::read(const
dictionary& dict)

{
if (cellSetOption ::read(dict))
{

coeffs_.readEntry("Tmelt", Tmelt_);
coeffs_.readEntry("L", L_);

coeffs_.readIfPresent("relax", relax_);
coeffs_.readIfPresent("T", TName_);
coeffs_.readIfPresent("U", UName_);
coeffs_.readIfPresent("Cp", CpName_);
coeffs_.readIfPresent("rhoCpPhi", rhoCpPhiName_);

return true;
}

return false;
}

92 Appendix A. Appendix A: Solidification models

// **
************* //

A.1.3 mySolidificationMeltingSourceTemplates.C
/*--

------------ -*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD

Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

--

Copyright (C) 2014 -2015 OpenFOAM Foundation

--

License
This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or
modify it

under the terms of the GNU General Public License as
published by

the Free Software Foundation , either version 3 of the
License , or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful ,
but WITHOUT

ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License

for more details.

You should have received a copy of the GNU General Public
License

along with OpenFOAM. If not , see <http :// www.gnu.org/
licenses/>.

*--
-------------*/

#include "fvMatrices.H"
#include "fvcDdt.H"
#include "fvcDiv.H"
#include "basicThermo.H"

// * * * * * * * * * * * * * Private Member Functions * * * * *
* * * * * * //

template <class RhoFieldType >
void Foam::fv:: mySolidificationMeltingSource ::apply

A.2. Lee-Nucleation library 93

(
const RhoFieldType& rho ,
fvMatrix <scalar >& eqn

)
{

if (debug)
{

Info << type() << ":␣applying␣source␣to␣" << eqn.psi().
name() << endl;

}

update ();
const auto& CpVoF = mesh_.lookupObject <volScalarField >(

CpName_);
const auto& rhoCpPhiVoF = mesh_.lookupObject <

surfaceScalarField >(rhoCpPhiName_);
dimensionedScalar L("L", dimEnergy/dimMass , L_);

// contributions added to rhs of solver equation
if (eqn.psi().dimensions () == dimTemperature)
{

eqn -= L/CpVoF*(fvc::ddt(rho , alpha_) + fvc::div(
rhoCpPhiVoF , alpha_));

}
else
{

//This option is not activated since fvOptions in TEqn
does not enable this condition

eqn -= L*(fvc::ddt(rho , alpha_));
}

}

// **
************* //

A.2 Lee-Nucleation library

A.2.1 LeeCNT.H
/*--

------------ -*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD

Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

--

Copyright (C) 2017 -2020 OpenCFD Ltd.

--

License

94 Appendix A. Appendix A: Solidification models

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or
modify it

under the terms of the GNU General Public License as
published by

the Free Software Foundation , either version 3 of the
License , or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful ,
but WITHOUT

ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License

for more details.

You should have received a copy of the GNU General Public
License

along with OpenFOAM. If not , see <http :// www.gnu.org/
licenses/>.

Class
Foam:: meltingEvaporationModels :: LeeCNT

Description
Mass transfer LeeCNT model. Simple model driven by field

value difference as:

\f[
\dot{m} = C \rho \alpha (T - T_{activate })/T_{activate}

\f]

where C is a model constant.

if C > 0:
\f[

\dot{m} = C \rho \alpha (T - T_{activate })/T_{activate}
\f]

for \f[T > T_{activate} \f]

and

\f[mDot = 0.0 \f] for \f[T < T_{activate} \f]

if C < 0:
\f[

\dot{m} = -C \rho \alpha (T_{activate} - T)/T_{activate}
\f]

for \f[T < T_{activate} \f]

and
\f[\dot{m} = 0.0 \f] for \f[T > T_{activate} \f]

Based on the reference:

A.2. Lee-Nucleation library 95

-# W. H. LeeCNT. "A Pressure Iteration Scheme for Two -Phase
Modeling ".

Technical Report LA -UR 79 -975. Los Alamos Scientific
Laboratory ,

Los Alamos , New Mexico. 1979.

Usage
Example usage:
\verbatim

massTransferModel
(

(solid to liquid)
{

type LeeCNT;
C 40;
Tactivate 302.78;

}
);

\endverbatim

Where:

\table
Property | Description | Required |

Default value
Tactivate | Activation temperature | yes
C | Model constant | yes
includeVolChange | Volumen change | no |

yes
species | Specie name on the other phase | no |

none
\endtable

SourceFiles
LeeCNT.C

*--
-------------*/

#ifndef meltingEvaporationModels_LeeCNT_H
#define meltingEvaporationModels_LeeCNT_H

#include "InterfaceCompositionModel.H"

// *
* * * * * * *//

namespace Foam
{
namespace meltingEvaporationModels
{

/*--
------------ -*\

Class LeeCNT Declaration
*--

-------------*/

96 Appendix A. Appendix A: Solidification models

template <class Thermo , class OtherThermo >
class LeeCNT
:

public InterfaceCompositionModel <Thermo , OtherThermo >
{

// Private Data

//- Condensation coefficient [1/s]
dimensionedScalar C_;

volScalarField interfaceVolume_;
//- Phase transition temperature
const dimensionedScalar Tactivate_;

//- Phase minimum value for activation
scalar alphaMin_;

//- Planck constant [J.s]
const dimensionedScalar planck_;

//- Boltzmann constant [J/K]
const dimensionedScalar boltzmann_;

//- Activation energy of water molecules passing through
water -ice interface [J]

const dimensionedScalar deltag_;

//- Number of water molecule in a water volume [m3]
const dimensionedScalar nL_;

//- Superficial free energy of the water -ice interface [
J/m2]

const dimensionedScalar gammaYW_;

//- Latent heat per volume [J/m3]
const dimensionedScalar hLV_;

//- Shape coefficient of nucleation
const dimensionedScalar alphaEY_;

public:

//- Runtime type information
TypeName("LeeCNT");

// Constructors

//- Construct from components
LeeCNT
(

const dictionary& dict ,
const phasePair& pair

);

A.2. Lee-Nucleation library 97

//- Destructor
virtual ~LeeCNT () = default;

// Member Functions

//- Explicit total mass transfer coefficient
virtual tmp <volScalarField > Kexp
(

const volScalarField& field
);

//- Implicit mass transfer coefficient
virtual tmp <volScalarField > KSp
(

label modelVariable ,
const volScalarField& field

);

//- Explicit mass transfer coefficient
virtual tmp <volScalarField > KSu
(

label modelVariable ,
const volScalarField& field

);

//- Return T transition between phases
virtual const dimensionedScalar& Tactivate () const;

//- Add/subtract alpha*div(U) as a source term
//- for alpha , substituting div(U) = mDot (1/ rho1 - 1/

rho2)
virtual bool includeDivU ();

virtual const dimensionedScalar& planck () const;

virtual const dimensionedScalar& boltzmann () const;

virtual const dimensionedScalar& deltag () const;

virtual const dimensionedScalar& nL() const;

virtual const dimensionedScalar& gammaYW () const;

virtual const dimensionedScalar& hLV() const;

virtual const dimensionedScalar& alphaEY () const;

};

// *
* * * * * * //

} // End namespace meltingEvaporationModels

98 Appendix A. Appendix A: Solidification models

} // End namespace Foam

// *
* * * * * * //

#ifdef NoRepository
include "LeeCNT.C"
#endif

// *
* * * * * * //

#endif

// **
************* //

A.2.2 LeeCNT.C
/*--

------------ -*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD

Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

--

Copyright (C) 2017 -2020 OpenCFD Ltd.

--

License
This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or
modify it

under the terms of the GNU General Public License as
published by

the Free Software Foundation , either version 3 of the
License , or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful ,
but WITHOUT

ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License

for more details.

You should have received a copy of the GNU General Public
License

along with OpenFOAM. If not , see <http :// www.gnu.org/
licenses/>.

A.2. Lee-Nucleation library 99

*--
-------------*/

#include "LeeCNT.H"
#include "addToRunTimeSelectionTable.H"
#include "mathematicalConstants.H"

// * * * * * * * * * * * * * * * * Constructors * * * * * * * *
* * * * * * //

template <class Thermo , class OtherThermo >
Foam:: meltingEvaporationModels ::LeeCNT <Thermo , OtherThermo >::

LeeCNT
(

const dictionary& dict ,
const phasePair& pair

)
:

InterfaceCompositionModel <Thermo , OtherThermo >(dict , pair),
C_("C", inv(dimTime), dict),
Tactivate_("Tactivate", dimTemperature , dict),
planck_("planck", dimEnergy*dimTime , dict),
boltzmann_("boltzmann", dimEnergy/dimTemperature , dict),
deltag_("deltag", dimEnergy , dict),
nL_("nL", inv(dimVolume), dict),
gammaYW_("gammaYW", dimEnergy/dimArea , dict),
hLV_("hLV", dimEnergy/dimVolume , dict),
alphaEY_("alphaEY", dict),
alphaMin_(dict.getOrDefault <scalar >("alphaMin", 0)),
interfaceVolume_
(

IOobject
(

"cellVolume",
this ->mesh_.time().timeName (),
this ->mesh_ ,
IOobject ::NO_READ ,
IOobject :: NO_WRITE

),
this ->mesh_ ,
dimensionedScalar(dimVolume , Zero)

)
{}

// * * * * * * * * * * * * * * Member Functions * * * * * * * *
* * * * * * //

template <class Thermo , class OtherThermo >
Foam::tmp <Foam:: volScalarField >
Foam:: meltingEvaporationModels ::LeeCNT <Thermo , OtherThermo >::

Kexp
(

const volScalarField& refValue
)

100 Appendix A. Appendix A: Solidification models

{

{
const fvMesh& mesh = this ->mesh_;
const volScalarField deltaG
(

(16.0 * (constant :: mathematical ::pi) * pow(gammaYW_
,3.0) * pow(Tactivate_ ,2.0) * alphaEY_)/(3.0 *
pow(hLV_ ,2.0) * pow((Tactivate_ - refValue) ,2.0)
)

);

const volScalarField J
(

(boltzmann_*refValue)/(planck_) * (exp(-deltag_ /(
boltzmann_*refValue)) * nL_ * exp(-deltaG /(
boltzmann_*refValue)))

);

forAll(interfaceVolume_ , celli)
{

interfaceVolume_[celli] = mesh.V()[celli];
}

const volScalarField lambda
(

J*interfaceVolume_
);

const volScalarField from
(

min(max(this ->pair().from(), scalar (0)), scalar (1))
);

const volScalarField coeff
(

C_*from*this ->pair().from().rho()*pos(from -
alphaMin_)

*(refValue - Tactivate_)
/Tactivate_

);

const volScalarField coeff1
(

-lambda*from*this ->pair().from().rho()*pos(from -
alphaMin_)

*(refValue - Tactivate_)
/Tactivate_

);

if (sign(C_.value()) > 0)
{

return
(

coeff*pos(refValue - Tactivate_)
);

}

A.2. Lee-Nucleation library 101

else
{

return
(

coeff1*pos(Tactivate_ - refValue)
);

}
}

}

template <class Thermo , class OtherThermo >
Foam::tmp <Foam:: volScalarField >
Foam:: meltingEvaporationModels ::LeeCNT <Thermo , OtherThermo >:: KSp
(

label variable ,
const volScalarField& refValue

)
{

if (this ->modelVariable_ == variable)
{

const fvMesh& mesh = this ->mesh_;

const volScalarField deltaG
(

(16.0 * (constant :: mathematical ::pi) * pow(gammaYW_
,3.0) * pow(Tactivate_ ,2.0) * alphaEY_)

/(3.0 * pow(hLV_ ,2.0) * pow((Tactivate_ - refValue)
,2.0))

);

const volScalarField J
(

(boltzmann_*refValue)/(planck_) * (exp(-deltag_ /(
boltzmann_*refValue)) * nL_ * exp(-deltaG /(
boltzmann_*refValue)))

);

forAll(interfaceVolume_ , celli)
{

interfaceVolume_[celli] = mesh.V()[celli];
}
const volScalarField lambda
(

J*interfaceVolume_
);

volScalarField from
(

min(max(this ->pair().from(), scalar (0)), scalar (1))
);

const volScalarField coeff
(

C_*from*this ->pair().from().rho()*pos(from -
alphaMin_)

102 Appendix A. Appendix A: Solidification models

/Tactivate_
);

const volScalarField coeff1
(

-lambda*from*this ->pair().from().rho()*pos(from -
alphaMin_)

/Tactivate_
);

if (sign(C_.value()) > 0)
{

return
(

coeff*pos(refValue - Tactivate_)
);

}
else
{

return
(

coeff1*pos(Tactivate_ - refValue)
);

}
}
else
{

return tmp <volScalarField > ();
}

}

template <class Thermo , class OtherThermo >
Foam::tmp <Foam:: volScalarField >
Foam:: meltingEvaporationModels ::LeeCNT <Thermo , OtherThermo >:: KSu
(

label variable ,
const volScalarField& refValue

)
{

if (this ->modelVariable_ == variable)
{

const fvMesh& mesh = this ->mesh_;

const volScalarField deltaG
(

(16.0 * (constant :: mathematical ::pi) * pow(gammaYW_
,3.0) * pow(Tactivate_ ,2.0) * alphaEY_)

/(3.0 * pow(hLV_ ,2.0) * pow((Tactivate_ - refValue)
,2.0))

);

const volScalarField J
(

A.2. Lee-Nucleation library 103

(boltzmann_*refValue)/(planck_) * (exp(-deltag_ /(
boltzmann_*refValue)) * nL_ * exp(-deltaG /(
boltzmann_*refValue)))

);

forAll(interfaceVolume_ , celli)
{

interfaceVolume_[celli] = mesh.V()[celli];
}
const volScalarField lambda
(

J*interfaceVolume_
);

volScalarField from
(

min(max(this ->pair().from(), scalar (0)), scalar (1))
);

const volScalarField coeff
(

C_*from*this ->pair().from().rho()*pos(from -
alphaMin_)

);

const volScalarField coeff1
(

-lambda*from*this ->pair().from().rho()*pos(from -
alphaMin_)

);

if (sign(C_.value()) > 0)
{

return
(

-coeff*pos(refValue - Tactivate_)
);

}
else
{

return
(

-coeff1*pos(Tactivate_ - refValue)
);

}
}
else
{

return tmp <volScalarField > ();
}

}

template <class Thermo , class OtherThermo >
const Foam:: dimensionedScalar&
Foam:: meltingEvaporationModels ::LeeCNT <Thermo , OtherThermo >::

Tactivate () const

104 Appendix A. Appendix A: Solidification models

{
return Tactivate_;

}

template <class Thermo , class OtherThermo >
const Foam:: dimensionedScalar&
Foam:: meltingEvaporationModels ::LeeCNT <Thermo , OtherThermo >::

planck () const
{

return planck_;
}

template <class Thermo , class OtherThermo >
const Foam:: dimensionedScalar&
Foam:: meltingEvaporationModels ::LeeCNT <Thermo , OtherThermo >::

boltzmann () const
{

return boltzmann_;
}

template <class Thermo , class OtherThermo >
const Foam:: dimensionedScalar&
Foam:: meltingEvaporationModels ::LeeCNT <Thermo , OtherThermo >::

deltag () const
{

return deltag_;
}

template <class Thermo , class OtherThermo >
const Foam:: dimensionedScalar&
Foam:: meltingEvaporationModels ::LeeCNT <Thermo , OtherThermo >::nL

() const
{

return nL_;
}

template <class Thermo , class OtherThermo >
const Foam:: dimensionedScalar&
Foam:: meltingEvaporationModels ::LeeCNT <Thermo , OtherThermo >::

gammaYW () const
{

return gammaYW_;
}

template <class Thermo , class OtherThermo >
const Foam:: dimensionedScalar&
Foam:: meltingEvaporationModels ::LeeCNT <Thermo , OtherThermo >:: hLV

() const
{

return hLV_;
}

template <class Thermo , class OtherThermo >
const Foam:: dimensionedScalar&
Foam:: meltingEvaporationModels ::LeeCNT <Thermo , OtherThermo >::

alphaEY () const
{

A.2. Lee-Nucleation library 105

return alphaEY_;
}

template <class Thermo , class OtherThermo >
bool
Foam:: meltingEvaporationModels ::LeeCNT <Thermo , OtherThermo >::

includeDivU ()
{

return true;
}

// **
************* //

A.2.3 Library header files
/*--

------------ -*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD

Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

--

Copyright (C) 2017 OpenCFD Ltd.

--

License
This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or
modify it

under the terms of the GNU General Public License as
published by

the Free Software Foundation , either version 3 of the
License , or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful ,
but WITHOUT

ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License

for more details.

You should have received a copy of the GNU General Public
License

along with OpenFOAM. If not , see <http :// www.gnu.org/
licenses/>.

*--
-------------*/

106 Appendix A. Appendix A: Solidification models

#include "addToRunTimeSelectionTable.H"

// *
* * * * * * //

#include "interfaceCompositionModel.H"
#include "InterfaceCompositionModel.H"
//#include "thermoPhysicsTypes.H"
#include "myThermoPhysicsTypes.H"

#include "bPolynomial.H"

#include "pureMixture.H"

#include "rhoThermo.H"

#include "heRhoThermo.H"

#include "solidThermo.H"
#include "heSolidThermo.H"
#include "solidThermoPhysicsTypes.H"

#include "Lee.H"
#include "LeeCNT.H"

// *
* * * * * * //

#define makeInterfacePureType(Type , Thermo , Comp , Mix , Phys ,
OtherThermo , OtherComp , OtherMix , OtherPhys)\

\

typedef Thermo <Comp , Mix <Phys >>
\

Type## Thermo ##Comp##Mix##Phys;
\

\

typedef OtherThermo <OtherComp , OtherMix <OtherPhys >>
\

Type##Other ## OtherThermo ## OtherComp ## OtherMix ## OtherPhys
; \

\

addInterfaceCompositionToRunTimeSelectionTable
\

(

\
Type ,

\
Type## Thermo ##Comp##Mix##Phys ,

\
Type##Other ## OtherThermo ## OtherComp ## OtherMix ## OtherPhys

\
)

A.2. Lee-Nucleation library 107

// Addition to the run -time selection table
#define addInterfaceCompositionToRunTimeSelectionTable(Type ,

Thermo , OtherThermo)\
\

typedef Type <Thermo , OtherThermo >
\

Type## Thermo ## OtherThermo;
\

\

defineTemplateTypeNameAndDebugWithName
\

(

\
Type## Thermo ## OtherThermo ,

\
(

\
word(Type## Thermo ## OtherThermo :: typeName_ ()) + "<"

\
+ word(Thermo :: typeName) + ","

\
+ word(OtherThermo :: typeName) + ">"

\
).c_str(),

\
0

\
);

\
\

addToRunTimeSelectionTable
\

(

\
interfaceCompositionModel ,

\
Type## Thermo ## OtherThermo ,

\
dictionary

\
)

// *
* * * * * * //

namespace Foam
{

108 Appendix A. Appendix A: Solidification models

using namespace meltingEvaporationModels;

//NOTE: First thermo (from) and second otherThermo (to)

// Lee model definitions

// From pure phase (poly) to phase (solidThermo)
makeInterfacePureType
(

Lee ,
heRhoThermo ,
rhoThermo ,
pureMixture ,
constbPolFluidHThermoPhysics ,
heSolidThermo ,
solidThermo ,
pureMixture ,
hConstSolidThermoPhysics

);

makeInterfacePureType
(

LeeCNT ,
heRhoThermo ,
rhoThermo ,
pureMixture ,
constbPolFluidHThermoPhysics ,
heSolidThermo ,
solidThermo ,
pureMixture ,
hConstSolidThermoPhysics

);

makeInterfacePureType
(

Lee ,
heRhoThermo ,
rhoThermo ,
pureMixture ,
polybPolFluidHThermoPhysics ,
heSolidThermo ,
solidThermo ,
pureMixture ,
hConstSolidThermoPhysics

);

makeInterfacePureType
(

LeeCNT ,
heRhoThermo ,
rhoThermo ,
pureMixture ,
polybPolFluidHThermoPhysics ,
heSolidThermo ,
solidThermo ,
pureMixture ,

A.2. Lee-Nucleation library 109

hConstSolidThermoPhysics
);
// interfaceHeatResistance model definitions

// From pure phase (poly) to phase (solidThermo)
// makeInterfacePureType
// (
// interfaceHeatResistance ,
// heRhoThermo ,
// rhoThermo ,
// pureMixture ,
// constbPolFluidHThermoPhysics ,
// heSolidThermo ,
// solidThermo ,
// pureMixture ,
// hConstSolidThermoPhysics
//);

}

// **
************* //

/*--
------------ -*\

========= |
\\ / F ield | OpenFOAM: The Open Source CFD

Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

--

Copyright (C) 2011 -2017 OpenFOAM Foundation
Copyright (C) 2020 -2021 OpenCFD Ltd.

--

License
This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or
modify it

under the terms of the GNU General Public License as
published by

the Free Software Foundation , either version 3 of the
License , or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful ,
but WITHOUT

ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License

for more details.

110 Appendix A. Appendix A: Solidification models

You should have received a copy of the GNU General Public
License

along with OpenFOAM. If not , see <http :// www.gnu.org/
licenses/>.

*--
-------------*/

#include "rhoThermo.H"
#include "makeThermo.H"

#include "specie.H"
#include "bPolynomial.H"

#include "hConstThermo.H"
#include "sensibleEnthalpy.H"
#include "thermo.H"

#include "constTransport.H"
#include "polynomialTransport.H"
#include "heRhoThermo.H"
#include "pureMixture.H"

// *
* * * * * * //

namespace Foam
{

/* * * * * * * * * * * * * * * Private Static Data * * * * * * *
* * * * * * */

makeThermos
(

rhoThermo ,
heRhoThermo ,
pureMixture ,
constTransport ,
sensibleEnthalpy ,
hConstThermo ,
bPolynomial ,
specie

);
makeThermos
(

rhoThermo ,
heRhoThermo ,
pureMixture ,
polynomialTransport ,
sensibleEnthalpy ,
hConstThermo ,
bPolynomial ,
specie

);

A.2. Lee-Nucleation library 111

// *
* * * * * * //

} // End namespace Foam

// **
************* //

/*--
------------ -*\

========= |
\\ / F ield | OpenFOAM: The Open Source CFD

Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

--

Copyright (C) 2012 -2017 OpenFOAM Foundation
Copyright (C) 2018 OpenCFD Ltd.

--

License
This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or
modify it

under the terms of the GNU General Public License as
published by

the Free Software Foundation , either version 3 of the
License , or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful ,
but WITHOUT

ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License

for more details.

You should have received a copy of the GNU General Public
License

along with OpenFOAM. If not , see <http :// www.gnu.org/
licenses/>.

*--
-------------*/

#include "makeReactionThermo.H"

#include "rhoReactionThermo.H"
#include "heRhoThermo.H"

#include "specie.H"
// #include "perfectGas.H"
// #include "incompressiblePerfectGas.H"

112 Appendix A. Appendix A: Solidification models

#include "hConstThermo.H"
// #include "janafThermo.H"
#include "sensibleEnthalpy.H"
#include "thermo.H"
// #include "rhoConst.H"
// #include "rPolynomial.H"
// #include "perfectFluid.H"
// #include "adiabaticPerfectFluid.H"
// #include "Boussinesq.H"

#include "constTransport.H"
#include "polynomialTransport.H"
// #include "homogeneousMixture.H"
// #include "inhomogeneousMixture.H"
// #include "veryInhomogeneousMixture.H"
// #include "multiComponentMixture.H"
// #include "reactingMixture.H"
// #include "singleStepReactingMixture.H"
#include "singleComponentMixture.H"

#include "myThermoPhysicsTypes.H"

// *
* * * * * * //

namespace Foam
{

// *
* * * * * * //

makeReactionThermo
(

rhoReactionThermo ,
heRhoThermo ,
singleComponentMixture ,
constTransport ,
sensibleEnthalpy ,
hConstThermo ,
bPolynomial ,
specie

);

makeReactionThermo
(

rhoReactionThermo ,
heRhoThermo ,
singleComponentMixture ,
polynomialTransport ,
sensibleEnthalpy ,
hConstThermo ,
bPolynomial ,
specie

);

A.3. equationOfState 113

// *
* * * * * * //

} // End namespace Foam

// **
************* //

A.3 equationOfState

equationOfState

/*--
------------ -*\

========= |
\\ / F ield | OpenFOAM: The Open Source CFD

Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

--

Copyright (C) 2011 -2017 OpenFOAM Foundation

--

License
This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or
modify it

under the terms of the GNU General Public License as
published by

the Free Software Foundation , either version 3 of the
License , or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful ,
but WITHOUT

ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License

for more details.

You should have received a copy of the GNU General Public
License

along with OpenFOAM. If not , see <http :// www.gnu.org/
licenses/>.

*--
-------------*/

#include "bPolynomial.H"
#include "IOstreams.H"

114 Appendix A. Appendix A: Solidification models

// *
* * * * * * //

namespace Foam
{

// * * * * * * * * * * * * * * * * Constructors * * * * * * * *
* * * * * * //

template <class Specie , int PolySize >
bPolynomial <Specie , PolySize >:: bPolynomial(const dictionary&

dict)
:

Specie(dict),
rhoRef_(dict.subDict("equationOfState").get <scalar >("rhoRef"

)),
Tref_(dict.subDict("equationOfState").get <scalar >("Tref")),
rhoCoeffs_(dict.subDict("equationOfState").lookup(coeffsName

("rho")))
{}

// * * * * * * * * * * * * * * * Member Functions * * * * * * *
* * * * * * //

template <class Specie , int PolySize >
void bPolynomial <Specie , PolySize >:: write(Ostream& os) const
{

Specie ::write(os);

// Entries in dictionary format
{

os.beginBlock("equationOfState");
os.writeEntry("rhoRef", rhoRef_);
os.writeEntry("Tref", Tref_);
os.writeEntry(coeffsName("rho"), rhoCoeffs_);
os.endBlock ();

}
}

// * * * * * * * * * * * * * * * Ostream Operator * * * * * * *
* * * * * * //

template <class Specie , int PolySize >
Ostream& operator <<(Ostream& os, const bPolynomial <Specie ,

PolySize >& ip)
{

ip.write(os);
return os;

}

// *
* * * * * * //

} // End namespace Foam

A.3. equationOfState 115

// **
************* //

/*--
------------ -*\

========= |
\\ / F ield | OpenFOAM: The Open Source CFD

Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

--

Copyright (C) 2011 -2017 OpenFOAM Foundation
Copyright (C) 2020 OpenCFD Ltd.

--

License
This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or
modify it

under the terms of the GNU General Public License as
published by

the Free Software Foundation , either version 3 of the
License , or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful ,
but WITHOUT

ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License

for more details.

You should have received a copy of the GNU General Public
License

along with OpenFOAM. If not , see <http :// www.gnu.org/
licenses/>.

Class
Foam:: bPolynomial

*--
-------------*/

#ifndef bPolynomial_H
#define bPolynomial_H

#include "autoPtr.H"
#include "Polynomial.H"

// *
* * * * * * //

116 Appendix A. Appendix A: Solidification models

namespace Foam
{

// Forward Declarations

template <class Specie , int PolySize >
class bPolynomial;

template <class Specie , int PolySize >
bPolynomial <Specie , PolySize > operator+
(

const bPolynomial <Specie , PolySize >&,
const bPolynomial <Specie , PolySize >&

);

template <class Specie , int PolySize >
bPolynomial <Specie , PolySize > operator*
(

const scalar ,
const bPolynomial <Specie , PolySize >&

);

template <class Specie , int PolySize >
bPolynomial <Specie , PolySize > operator ==
(

const bPolynomial <Specie , PolySize >&,
const bPolynomial <Specie , PolySize >&

);

template <class Specie , int PolySize >
Ostream& operator <<
(

Ostream&,
const bPolynomial <Specie , PolySize >&

);

/*--
------------ -*\

Class bPolynomial Declaration
*--

-------------*/

template <class Specie , int PolySize=8>
class bPolynomial
:

public Specie
{

// Private Data

//- Reference density
scalar rhoRef_;

//- Reference temperature
scalar Tref_;

A.3. equationOfState 117

//- Density polynomial coefficients
Polynomial <PolySize > rhoCoeffs_;

// Private Member Functions

//- Coeffs name. Eg, "rhoCoeffs <10>"
inline static word coeffsName(const char* name)
{

return word(name + ("Coeffs <" + std:: to_string(
PolySize) + ’>’));

}

public:

// Generated Methods: copy construct , copy assignment

// Constructors

//- Construct from components
inline bPolynomial
(

const Specie& sp,
const scalar rhoRef ,
const scalar Tref ,
const Polynomial <PolySize >& rhoPoly

);

//- Construct from dictionary
explicit bPolynomial(const dictionary& dict);

//- Construct as named copy
inline bPolynomial(const word& name , const bPolynomial &)

;

//- Construct and return a clone
inline autoPtr <bPolynomial > clone() const;

// Selector from dictionary
inline static autoPtr <bPolynomial > New(const dictionary&

dict);

// Member Functions

//- Return the instantiated type name
static word typeName ()
{

return "bPolynomial <" + word(Specie :: typeName_ ()) +
’>’;

}

// Fundamental properties

//- Is the equation of state is incompressible i.e.
rho != f(p)

118 Appendix A. Appendix A: Solidification models

static const bool incompressible = true;

//- Is the equation of state is isochoric i.e. rho =
const

static const bool isochoric = false;

//- Return density [kg/m^3]
inline scalar rho(scalar p, scalar T) const;

//- Return enthalpy departure [J/kg]
inline scalar H(const scalar p, const scalar T)

const;

//- Return Cp departure [J/(kg K]
inline scalar Cp(scalar p, scalar T) const;

//- Return internal energy departure [J/kg]
inline scalar E(const scalar p, const scalar T)

const;

//- Return Cv departure [J/(kg K]
inline scalar Cv(scalar p, scalar T) const;

//- Return entropy [J/(kg K)]
inline scalar S(const scalar p, const scalar T)

const;

//- Return compressibility rho/p [s^2/m^2]
inline scalar psi(scalar p, scalar T) const;

//- Return compression factor []
inline scalar Z(scalar p, scalar T) const;

//- Return (Cp - Cv) [J/(kg K]
inline scalar CpMCv(scalar p, scalar T) const;

// IO

//- Write to Ostream
void write(Ostream& os) const;

// Member Operators

inline void operator +=(const bPolynomial &);
inline void operator *=(const scalar);

// Friend Operators

friend bPolynomial operator+ <Specie , PolySize >
(

const bPolynomial&,
const bPolynomial&

);

A.3. equationOfState 119

friend bPolynomial operator* <Specie , PolySize >
(

const scalar s,
const bPolynomial&

);

friend bPolynomial operator == <Specie , PolySize >
(

const bPolynomial&,
const bPolynomial&

);

// IOstream Operators

friend Ostream& operator << <Specie , PolySize >
(

Ostream&,
const bPolynomial&

);
};

// *
* * * * * * //

} // End namespace Foam

// *
* * * * * * //

#define makebPolynomial(PolySize)
\

\

defineTemplateTypeNameAndDebugWithName
\

(

\
bPolynomial <Specie , PolySize >,

\
"bPolynomial <"#PolySize">",

\
0

\
);

// *
* * * * * * //

#include "bPolynomialI.H"

// *
* * * * * * //

120 Appendix A. Appendix A: Solidification models

#ifdef NoRepository
#include "bPolynomial.C"

#endif

// *
* * * * * * //

#endif

// **
************* //

/*--
------------ -*\

========= |
\\ / F ield | OpenFOAM: The Open Source CFD

Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

--

Copyright (C) 2011 -2017 OpenFOAM Foundation

--

License
This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or
modify it

under the terms of the GNU General Public License as
published by

the Free Software Foundation , either version 3 of the
License , or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful ,
but WITHOUT

ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License

for more details.

You should have received a copy of the GNU General Public
License

along with OpenFOAM. If not , see <http :// www.gnu.org/
licenses/>.

*--
-------------*/

#include "bPolynomial.H"

// * * * * * * * * * * * * * Private Member Functions * * * * *
* * * * * * //

A.3. equationOfState 121

template <class Specie , int PolySize >
inline Foam:: bPolynomial <Specie , PolySize >:: bPolynomial
(

const Specie& sp,
const scalar rhoRef ,
const scalar Tref ,
const Polynomial <PolySize >& rhoCoeffs

)
:

Specie(sp),
rhoRef_(rhoRef),
Tref_(Tref),
rhoCoeffs_(rhoCoeffs)

{}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * *
* * * * * * //

template <class Specie , int PolySize >
inline Foam:: bPolynomial <Specie , PolySize >:: bPolynomial
(

const word& name ,
const bPolynomial <Specie , PolySize >& ip

)
:

Specie(name , ip),
rhoRef_(ip.rhoRef_),
Tref_(ip.Tref_),
rhoCoeffs_(ip.rhoCoeffs_)

{}

template <class Specie , int PolySize >
inline Foam::autoPtr <Foam:: bPolynomial <Specie , PolySize >>
Foam:: bPolynomial <Specie , PolySize >:: clone() const
{

return autoPtr <bPolynomial <Specie , PolySize >>::New(*this);
}

template <class Specie , int PolySize >
inline Foam::autoPtr <Foam:: bPolynomial <Specie , PolySize >>
Foam:: bPolynomial <Specie , PolySize >::New(const dictionary& dict)
{

return autoPtr <bPolynomial <Specie , PolySize >>::New(dict);
}

// * * * * * * * * * * * * * * * Member Functions * * * * * * *
* * * * * * //

template <class Specie , int PolySize >
inline Foam:: scalar Foam:: bPolynomial <Specie , PolySize >:: rho
(

scalar p,
scalar T

122 Appendix A. Appendix A: Solidification models

) const
{

return rhoCoeffs_.value(T-Tref_);
}

template <class Specie , int PolySize >
inline Foam:: scalar Foam:: bPolynomial <Specie , PolySize >::H
(

scalar p,
scalar T

) const
{

return 0;
}

template <class Specie , int PolySize >
inline Foam:: scalar Foam:: bPolynomial <Specie , PolySize >::Cp
(

scalar p,
scalar T

) const
{

return 0;
}

template <class Specie , int PolySize >
inline Foam:: scalar Foam:: bPolynomial <Specie , PolySize >::E
(

scalar p,
scalar T

) const
{

return 0;
}

template <class Specie , int PolySize >
inline Foam:: scalar Foam:: bPolynomial <Specie , PolySize >::Cv
(

scalar p,
scalar T

) const
{

return 0;
}

template <class Specie , int PolySize >
inline Foam:: scalar Foam:: bPolynomial <Specie , PolySize >::S
(

scalar p,
scalar T

) const
{

A.3. equationOfState 123

return 0;
}

template <class Specie , int PolySize >
inline Foam:: scalar Foam:: bPolynomial <Specie , PolySize >:: psi
(

scalar p,
scalar T

) const
{

return 0;
}

template <class Specie , int PolySize >
inline Foam:: scalar Foam:: bPolynomial <Specie , PolySize >::Z
(

scalar p,
scalar T

) const
{

return 0;
}

template <class Specie , int PolySize >
inline Foam:: scalar Foam:: bPolynomial <Specie , PolySize >:: CpMCv
(

scalar p,
scalar T

) const
{

return 0;
}

// * * * * * * * * * * * * * * * Member Operators * * * * * * *
* * * * * * //

template <class Specie , int PolySize >
inline void Foam:: bPolynomial <Specie , PolySize >:: operator +=
(

const bPolynomial <Specie , PolySize >& ip
)
{

scalar Y1 = this ->Y();
Specie :: operator +=(ip);

if (mag(this ->Y()) > SMALL)
{

Y1 /= this ->Y();
const scalar Y2 = ip.Y()/this ->Y();
rhoRef_ = Y1*rhoRef_ + Y2*ip.rhoRef_;
Tref_ = Y1*Tref_ + Y2*ip.Tref_;
rhoCoeffs_ = Y1*rhoCoeffs_ + Y2*ip.rhoCoeffs_;

}

124 Appendix A. Appendix A: Solidification models

}

template <class Specie , int PolySize >
inline void Foam:: bPolynomial <Specie , PolySize >:: operator *=(

const scalar s)
{

Specie :: operator *=(s);
}

// * * * * * * * * * * * * * * * Friend Operators * * * * * * *
* * * * * * //

template <class Specie , int PolySize >
Foam:: bPolynomial <Specie , PolySize > Foam:: operator+
(

const bPolynomial <Specie , PolySize >& ip1 ,
const bPolynomial <Specie , PolySize >& ip2

)
{

Specie sp
(

static_cast <const Specie&>(ip1)
+ static_cast <const Specie&>(ip2)

);

if (mag(sp.Y()) < SMALL)
{

return bPolynomial <Specie , PolySize >
(

sp,
ip1.rhoRef_ ,
ip1.Tref_ ,
ip1.rhoCoeffs_

);
}
else
{

const scalar Y1 = ip1.Y()/sp.Y();
const scalar Y2 = ip2.Y()/sp.Y();

return bPolynomial <Specie , PolySize >
(

sp,
Y1*ip1.rhoRef_ + Y2*ip2.rhoRef_ ,
Y1*ip1.Tref_ + Y2*ip2.Tref_ ,
Y1*ip1.rhoCoeffs_ + Y2*ip2.rhoCoeffs_

);
}

}

template <class Specie , int PolySize >
Foam:: bPolynomial <Specie , PolySize > Foam:: operator*
(

const scalar s,

A.4. Python code for Stefan Problem 125

const bPolynomial <Specie , PolySize >& ip
)
{

return bPolynomial <Specie , PolySize >
(

s*static_cast <const Specie&>(ip),
ip.rhoRef_ ,
ip.Tref_ ,
ip.rhoCoeffs_

);
}

template <class Specie , int PolySize >
Foam:: bPolynomial <Specie , PolySize > Foam:: operator ==
(

const bPolynomial <Specie , PolySize >& ip1 ,
const bPolynomial <Specie , PolySize >& ip2

)
{

Specie sp
(

static_cast <const Specie&>(ip1)
== static_cast <const Specie&>(ip2)

);

const scalar Y1 = ip1.Y()/sp.Y();
const scalar Y2 = ip2.Y()/sp.Y();

return bPolynomial <Specie , PolySize >
(

sp ,
Y2*ip2.rhoRef_ - Y1*ip1.rhoRef_ ,
Y2*ip2.Tref_ - Y1*ip1.Tref_ ,
Y2*ip2.rhoCoeffs_ - Y1*ip1.rhoCoeffs_

);
}

// **
************* //

A.4 Python code for Stefan Problem
1 import os
2 import re
3 from t k i n t e r import Tk
4 from t k i n t e r . f i l e d i a l o g import a s k d i r e c t o r y
5 import csv
6 import m a t p l o t l i b . pyplot as p l t
7 import numpy as np
8 from glob import i g l o b
9 from cmath import pi , sqr t , exp

10

11 path = a s k d i r e c t o r y (t i t l e = ’ S e l e c t Folder ’)
12 f o r root , dirs , f i l e s in os . walk (path) :

126 Appendix A. Appendix A: Solidification models

13 numL2 = []
14 denL2 = []
15 L2 = []
16 numL2_sol2 = []
17 denL2_sol2 = []
18 L2_sol2 = []
19 d i r = []
20 n = 0
21 f o r i in f i l e s :
22 with os . scandir (root) as i t :
23 alphaFie ld = []
24 posFie ld = []
25 t = []
26

27 j = 0
28 f o r entry in i t :
29 i f entry . name . endswith (" . csv ") and entry . i s _ f i l e () :
30

31 t = np . append (t , i n t (re . search (r ’\d+ ’ , entry .
name) . group ()))

32 with open (entry . path , ’ r ’) as f :
33 f i e l d s = []
34 alpha = []
35 x = []
36 csvreader = csv . reader (f)
37 f i e l d s = next (csvreader)
38 f o r row in csvreader :
39 alpha = np . append (alpha , f l o a t (row [0]))
40 x = np . append (x , f l o a t (row [1]))
41 idx = (np . abs (alpha − 0 . 5)) . argmin ()
42 alp = alpha [idx]
43 l o c = x [idx]
44 # i f alp == 1 :
45 # l o c = 0 . 0
46 # alp = 1
47

48 posFie ld = np . append (posField , l o c)
49 alphaFie ld = np . append (alphaField , alp)
50

51 j = j + 1
52 m = t . a r g s o r t ()
53 alphaFie ld = alphaFie ld [m]
54 posFie ld = posFie ld [m]
55 # A n a l y t i c a l I n t e r f a c e p o s i t i o n
56 cps = 2050
57 k1 = 2 . 2 2
58 rho1 = 916 .2
59 a1 = k1 /(rho1 * cps)
60 lambd = 0.00032622525325939834
61 lambd1 = 0.2299545377262345
62 ps i = []
63 psi2 = []
64 t = np . s o r t (t)
65 f o r x in range (0 , len (t)) :
66 ps i = np . append (psi , lambd * s q r t (t [x]))
67 psi2 = np . append (psi2 , 2* lambd1 * s q r t (a1 * t [x]))
68

A.4. Python code for Stefan Problem 127

69 numL2 = []
70 denL2 = []
71 L2 = []
72 f o r k in range (0 , len (t)) :
73 numL2 = np . append (numL2, np . sum(np . power ((posFie ld [k] −

psi2 [k]) , 2)))
74 L2 = numL2
75

76 f1 = p l t . f i g u r e ()
77 f2 = p l t . f i g u r e ()
78

79 ax1 = f1 . add_subplot (1 1 1)
80 ax1 . p l o t (t , ps i2 . rea l , ’ r −− ’ , l a b e l = ’Neumann s o l u t i o n ’)
81 ax1 . p l o t (t , posField , ’g−− ’ , l a b e l = ’ Numerical s o l u t i o n ’)
82 ax1 . s e t (x l a b e l = ’ t [s] ’ , y l a b e l = ’ I n t e r f a c e p o s i t i o n [m] ’)
83 ax1 . gr id (True)
84 ax1 . legend ()
85 L2 = L2 . r e a l
86 ax2 = f2 . add_subplot (1 1 1)
87 ax2 . p l o t (t , L2 , ’ r −− ’ , l a b e l = ’ R e l a t i v e e r r o r ’)
88 ax2 . s e t (x l a b e l = ’ t [s] ’ , y l a b e l = ’ R e l a t i v e e r r o r ’)
89 ax2 . gr id (True)
90

91 ax2 . legend ()
92 p l t . show ()

1 from scipy import optimize
2 from scipy . s p e c i a l import e r f c
3 from scipy . s p e c i a l import e r f
4 from cmath import pi , sqr t , exp
5

6 # Roots of "An Accurate Approximation of the Two−Phase Ste fan
Problem with C o e f f i c i e n t Smoothing "

7 g = −20
8 u0 = 10
9 k1 = 2 . 2 6

10 k2 = 0 . 5 9
11 c1 = 4 .182 E6
12 c2 = 4 .182 E6
13 D = 3 . 3 5 E8
14 a1 = s q r t (k1/c1)
15 a2 = s q r t (k2/c2)
16

17 def func (x) :
18 re turn ((((k1/a1) * g * exp (−(x /(2* a1)) * * 2)) / e r f (x /(2* a1))) +

((k2/a2) * u0 * (exp (−(x /(2* a2)) * * 2)) / (1 .0 − e r f (x /(2* a2)))) +
((x * D * s q r t (pi)) / 2))

19

20 s o l = optimize . r o o t _ s c a l a r (func , r t o l =1E−12 , method= ’ secant ’ , x0
= −0.1 , x1 =0 .0005)

21 lambd = s o l . root . r e a l
22 p r i n t ("An Accurate Approximation of the Two−Phase Ste fan Problem

with C o e f f i c i e n t Smoothing : " , lambd)
23

24

25 tm = 0 . 1 5
26 t 0 = 10

128 Appendix A. Appendix A: Solidification models

27 tb = −20
28 L = 335000
29 cps = 4182
30 k1 = 2 . 2 6
31 k2 = 0 . 5 9
32 rho1 = 916 .8
33 rho2 = 999 .8
34 a1 = k1 /(rho1 * cps)
35 a2 = k2 /(rho2 * cps)
36

37 def f (x) :
38 re turn ((exp (−(x * * 2)) / e r f (x)) + (k2/k1) * s q r t (a1/a2) * ((tm−t0

) /(tm−tb)) * (exp (−(a1/a2) * (x * * 2)) / e r f c (x * s q r t (a1/a2))) − (x *L*
s q r t (pi)) /(cps * (tm−tb)))

39

40 s o l 1 = optimize . r o o t _ s c a l a r (f , r t o l =1E−12 , method= ’ secant ’ , x0 = 0 . 1 ,
x1 = 0 . 5)

41 lambd1 = s o l 1 . root . r e a l
42

43 import os
44 import re
45 from t k i n t e r import Tk
46 from t k i n t e r . f i l e d i a l o g import a s k d i r e c t o r y
47 import csv
48 import m a t p l o t l i b . pyplot as p l t
49 import pandas as pd
50 import numpy as np
51 path = a s k d i r e c t o r y (t i t l e = ’ S e l e c t Folder ’)
52

53 f o r root , dirs , f i l e s in os . walk (path) :
54 f o r i in f i l e s :
55 i f i == ’ mesh1_TX_950s . x l s x ’ :
56 dfs1 = pd . read_exce l (root+ ’/ ’+ i)
57 T = []
58 x = []
59 idx1 = np . where (dfs1 . columns == "T") [0] [0]
60 T = dfs1 . values [: , idx1]
61 T = T − 273 .15
62 idx2 = np . where (dfs1 . columns == "X") [0] [0]
63 x = dfs1 . values [: , idx2]
64

65 t = np . l i n s p a c e (0 , 5 0 , len (x))
66 g = −20
67 u0 = 10
68 k1 = 2 . 2 6
69 k2 = 0 . 5 9
70 c1 = 4 .182 E6
71 c2 = 4 .182 E6
72 D = 3 . 3 3 E8
73 a1 = (s q r t (k1/c1))
74 a2 = (s q r t (k2/c2))
75 f x t = []
76 den = []
77 ps i = []
78 f y t = []
79

80 j = 0

A.4. Python code for Stefan Problem 129

81 f o r i in x :
82 ps i = np . append (psi , lambd * s q r t (t [j]))
83 i f i <= ps i [j] :
84 den = np . append (den , 2* a1 * s q r t (t [j]))
85 i f (t [j] = = 0 . 0) :
86 f x t = g
87 e l s e :
88 f x t = np . append (fx t , (g * (e r f (ps i [j]/den [j

]) − e r f (x [j]/den [j]))) /(e r f (ps i [j]/den [j])))
89

90 e l s e :
91 den = np . append (den , 2* a2 * s q r t (t [j]))
92 i f (t [j] = = 0 . 0) :
93 f x t = 0 . 0
94 e l s e :
95 f x t = np . append (fx t , (u0 * (e r f (x [j]/den [j

]) − e r f (ps i [j]/den [j]))) /(1− e r f (ps i [j]/den [j])))
96

97 j = j + 1
98

99

100 tm = 0 . 1 5
101 t 0 = 10
102 tb = −20
103 L = 335000
104 cps = 4182
105 k1 = 2 . 2 6
106 k2 = 0 . 5 9
107 rho1 = 916 .8
108 rho2 = 999 .8
109 a1 = k1 /(rho1 * cps)
110 a2 = k2 /(rho2 * cps)
111

112 j = 0
113 f o r i in x :
114 ps i = np . append (psi , 2* lambd1 * s q r t (a1 * x [j]))
115 i f i <= ps i [j] :
116 i f (t [j] = = 0 . 0) :
117 f y t = tb
118 e l s e :
119 f y t = np . append (fyt , (e r f (x [j] / (2 * s q r t (a1 * t

[j]))) / e r f (lambd1)) * (tm−tb) + tb)
120 e l s e :
121 i f (t [j] = = 0 . 0) :
122 f y t = 0 . 0
123 e l s e :
124 f y t = np . append (fyt , (e r f c (x [j] / (2 * s q r t (a2 *

t [j]))) / e r f c (lambd1 * s q r t (a1/a2))) * (tm−t0) + t0)
125

126 j = j + 1
127

128 e l s e :
129 continue
130

131 num_solution = T
132 ana_solut ion1 = f x t
133 ana_solut ion2 = f y t

130 Appendix A. Appendix A: Solidification models

134 numL2 = []
135 denL2 = []
136 L2 = []
137 f o r k in range (0 , len (T)) :
138 numL2 = np . append (numL2, abs (num_solution [k] −

ana_solut ion2 [k]) /ana_solut ion2 [k])
139 L2 = numL2
140

141 dydx = np . gradient (f y t . rea l , x)
142 dydxT = np . gradient (T , x)
143

144 f1 = p l t . f i g u r e ()
145 f2 = p l t . f i g u r e ()
146 f3 = p l t . f i g u r e ()
147

148 ax1 = f1 . add_subplot (1 1 1)
149 ax1 . p l o t (x , f y t . rea l , ’ r −− ’ , l a b e l = ’Neumann s o l u t i o n ’)
150 ax1 . p l o t (x , T , ’g−− ’ , l a b e l = ’ Numerical s o l u t i o n ’)
151 ax1 . s e t (x l a b e l = ’ x [m] ’ , y l a b e l = ’T [C] ’)
152 ax1 . gr id (True)
153 ax1 . legend ()
154 L2 = L2 . r e a l /len (T)
155 ax2 = f2 . add_subplot (1 1 1)
156 ax2 . p l o t (x [1 :] , L2 [1 :] , ’ r −− ’ , l a b e l = ’ R e l a t i v e e r r o r ’)
157 ax2 . s e t (x l a b e l = ’ x [m] ’ , y l a b e l = ’ R e l a t i v e e r r o r ’)
158 ax2 . gr id (True)
159 ax2 . legend ()
160

161 ax3 = f3 . add_subplot (1 1 1)
162 ax3 . p l o t (x , dydx , ’ r −− ’ , l a b e l = ’Neumann s o l u t i o n ’)
163 ax3 . p l o t (x , dydxT , ’g−− ’ , l a b e l = ’ Numerical s o l u t i o n ’)
164 ax3 . s e t (x l a b e l = ’ x [m] ’ , y l a b e l = ’dy/dx ’)
165 ax3 . gr id (True)
166 ax3 . legend ()
167

168 p l t . show ()

131

Appendix B

Appendix B: Solver
implementations

B.1 Computational Mesh script
1 from ofblockmeshdicthelper import BlockMeshDict , Vertex , Point ,

SimpleGrading
2 import numpy as np
3 import os
4

5 from t k i n t e r import Tk
6 from t k i n t e r . f i l e d i a l o g import a s k d i r e c t o r y
7 path = a s k d i r e c t o r y (t i t l e = ’ S e l e c t Folder ’)
8

9 bmd = BlockMeshDict ()
10 r = 4 1 . 4
11 Hp = 1
12 Nx_pipe = 300
13 Ny_pipe = 300
14 Nz_pipe = 1
15 r2 = r + 10
16 r a t i = r/r2
17

18

19 bmd. add_vertex (− r /2 ,− r /2 ,−Hp, ’ v0 ’)
20 bmd. add_vertex (0 , − r /2 ,−Hp, ’ v1 ’)
21 bmd. add_vertex (0 , r /2 ,−Hp, ’ v2 ’)
22 bmd. add_vertex (− r /2 , r /2 ,−Hp, ’ v3 ’)
23 bmd. add_vertex (− r /2 ,− r /2 ,0 , ’ v4 ’)
24 bmd. add_vertex (0 , − r /2 ,0 , ’ v5 ’)
25 bmd. add_vertex (0 , r /2 ,0 , ’ v6 ’)
26 bmd. add_vertex (− r /2 , r /2 ,0 , ’ v7 ’)
27 bmd. add_vertex (− r *np . s i n (np . pi /4) , − r *np . cos (np . pi /4) , −Hp, ’ v8 ’)
28 bmd. add_vertex (0 , − r , −Hp, ’ v9 ’)
29 bmd. add_vertex (− r *np . s i n (np . pi /4) , r *np . cos (np . pi /4) , −Hp, ’ v10 ’)
30 bmd. add_vertex (0 , r , −Hp, ’ v11 ’)
31 bmd. add_vertex (− r *np . s i n (np . pi /4) , − r *np . cos (np . pi /4) , 0 , ’ v12 ’)
32 bmd. add_vertex (0 , − r , 0 , ’ v13 ’)
33 bmd. add_vertex (− r *np . s i n (np . pi /4) , r *np . cos (np . pi /4) , 0 , ’ v14 ’)
34 bmd. add_vertex (0 , r , 0 , ’ v15 ’)
35

36

37

132 Appendix B. Appendix B: Solver implementations

38 bmd. add_vertex (− r2 *np . s i n (np . pi /4) , − r2 *np . cos (np . pi /4) , −Hp, ’ v16 ’)
39 bmd. add_vertex (0 , − r2 , −Hp, ’ v17 ’)
40 bmd. add_vertex (− r2 *np . s i n (np . pi /4) , r2 *np . cos (np . pi /4) , −Hp, ’ v18 ’)
41 bmd. add_vertex (0 , r2 , −Hp, ’ v19 ’)
42 bmd. add_vertex (− r2 *np . s i n (np . pi /4) , − r2 *np . cos (np . pi /4) , 0 , ’ v20 ’)
43 bmd. add_vertex (0 , − r2 , 0 , ’ v21 ’)
44 bmd. add_vertex (− r2 *np . s i n (np . pi /4) , r2 *np . cos (np . pi /4) , 0 , ’ v22 ’)
45 bmd. add_vertex (0 , r2 , 0 , ’ v23 ’)
46 bmd. add_arcedge ((’ v8 ’ , ’ v9 ’) , ’ arc1 ’ , Vertex (− r *np . s i n (np . pi /8) , − r *np .

cos (np . pi /8) , −Hp, ’ v_arc1 ’))
47 bmd. add_arcedge ((’ v12 ’ , ’ v13 ’) , ’ arc2 ’ , Vertex (− r *np . s i n (np . pi /8) , − r *

np . cos (np . pi /8) , 0 , ’ v_arc2 ’))
48 bmd. add_arcedge ((’ v8 ’ , ’ v10 ’) , ’ arc3 ’ , Vertex (− r ,0 , −Hp, ’ v_arc3 ’))
49 bmd. add_arcedge ((’ v12 ’ , ’ v14 ’) , ’ arc4 ’ , Vertex (− r , 0 , 0 , ’ v_arc4 ’))
50 bmd. add_arcedge ((’ v10 ’ , ’ v11 ’) , ’ arc5 ’ , Vertex (− r *np . s i n (np . pi /8) , r *np

. cos (np . pi /8) , −Hp, ’ v_arc5 ’))
51 bmd. add_arcedge ((’ v14 ’ , ’ v15 ’) , ’ arc6 ’ , Vertex (− r *np . s i n (np . pi /8) , r *np

. cos (np . pi /8) , 0 , ’ v_arc6 ’))
52 bmd. add_arcedge ((’ v16 ’ , ’ v17 ’) , ’ arc7 ’ , Vertex (− r2 *np . s i n (np . pi /8) , − r2

*np . cos (np . pi /8) , −Hp, ’ v_arc7 ’))
53 bmd. add_arcedge ((’ v20 ’ , ’ v21 ’) , ’ arc8 ’ , Vertex (− r2 *np . s i n (np . pi /8) , − r2

*np . cos (np . pi /8) , 0 , ’ v_arc8 ’))
54 bmd. add_arcedge ((’ v16 ’ , ’ v18 ’) , ’ arc9 ’ , Vertex (− r2 ,0 , −Hp, ’ v_arc9 ’))
55 bmd. add_arcedge ((’ v20 ’ , ’ v22 ’) , ’ arc10 ’ , Vertex (− r2 , 0 , 0 , ’ v_arc10 ’))
56 bmd. add_arcedge ((’ v18 ’ , ’ v19 ’) , ’ arc11 ’ , Vertex (− r2 *np . s i n (np . pi /8) , r2

*np . cos (np . pi /8) , −Hp, ’ v_arc11 ’))
57 bmd. add_arcedge ((’ v22 ’ , ’ v23 ’) , ’ arc12 ’ , Vertex (− r2 *np . s i n (np . pi /8) , r2

*np . cos (np . pi /8) , 0 , ’ v_arc12 ’))
58

59

60 prism_pipe = bmd. add_hexblock ((’ v0 ’ , ’ v1 ’ , ’ v2 ’ , ’ v3 ’ , ’ v4 ’ , ’ v5 ’ , ’ v6 ’ , ’
v7 ’) , (i n t (Nx_pipe /2) , i n t (Ny_pipe /2) , Nz_pipe) , ’ prims_pipe ’ ,

61 grading=SimpleGrading (1 , 1 , 1))
62 south_pipe = bmd. add_hexblock ((’ v8 ’ , ’ v9 ’ , ’ v1 ’ , ’ v0 ’ , ’ v12 ’ , ’ v13 ’ , ’ v5 ’

, ’ v4 ’) , (i n t (Nx_pipe /2) , i n t (Ny_pipe /4) , Nz_pipe) , ’ south_pipe ’ ,
63 grading=SimpleGrading (1 , 1 , 1))
64 eas t_pipe = bmd. add_hexblock ((’ v8 ’ , ’ v0 ’ , ’ v3 ’ , ’ v10 ’ , ’ v12 ’ , ’ v4 ’ , ’ v7 ’ ,

’ v14 ’) , (i n t (Ny_pipe /4) , i n t (Ny_pipe /2) , Nz_pipe) , ’ eas t_pipe ’ ,
65 grading=SimpleGrading (1 , 1 , 1))
66 north_pipe = bmd. add_hexblock ((’ v3 ’ , ’ v2 ’ , ’ v11 ’ , ’ v10 ’ , ’ v7 ’ , ’ v6 ’ , ’ v15

’ , ’ v14 ’) , (i n t (Nx_pipe /2) , i n t (Ny_pipe /4) , Nz_pipe) , ’ north_pipe ’ ,
67 grading=SimpleGrading (1 , 1 , 1))
68

69 #Region #2
70 south_pipe_region2 = bmd. add_hexblock ((’ v16 ’ , ’ v17 ’ , ’ v9 ’ , ’ v8 ’ , ’ v20 ’ ,

’ v21 ’ , ’ v13 ’ , ’ v12 ’) , (i n t (Nx_pipe /2) , i n t (Ny_pipe /4) , Nz_pipe) , ’
south_pipe_region2 ’ ,

71 grading=SimpleGrading (1 , 1 , 1))
72 eas t_pipe_region2 = bmd. add_hexblock ((’ v16 ’ , ’ v8 ’ , ’ v10 ’ , ’ v18 ’ , ’ v20 ’ ,

’ v12 ’ , ’ v14 ’ , ’ v22 ’) , (i n t (Ny_pipe /4) , i n t (Ny_pipe /2) , Nz_pipe) , ’
eas t_pipe_region2 ’ ,

73 grading=SimpleGrading (1 , 1 , 1))
74 north_pipe_region2 = bmd. add_hexblock ((’ v10 ’ , ’ v11 ’ , ’ v19 ’ , ’ v18 ’ , ’ v14

’ , ’ v15 ’ , ’ v23 ’ , ’ v22 ’) , (i n t (Nx_pipe /2) , i n t (Ny_pipe /4) , Nz_pipe) , ’
north_pipe_region2 ’ ,

75 grading=SimpleGrading (1 , 1 , 1))
76

B.2. myBuoyantBoussinesqPimpleFoam solver 133

77 bmd. add_boundary (’ wall ’ , ’ so l idWal l ’ , [south_pipe_region2 . f a c e (’ s ’) ,
eas t_pipe_region2 . f a c e (’w’) , north_pipe_region2 . f a c e (’n ’)])

78 bmd. add_boundary (’ empty ’ , ’ fluidFrontAndBack ’ , [prism_pipe . f a c e (’ b ’) ,
south_pipe . f a c e (’ b ’) , eas t_pipe . f a c e (’ b ’) , north_pipe . f a c e (’ b ’) ,
prism_pipe . f a c e (’ t ’) , south_pipe . f a c e (’ t ’) , eas t_pipe . f a c e (’ t ’) ,
north_pipe . f a c e (’ t ’)])

79 bmd. add_boundary (’ empty ’ , ’ solidFrontAndBack ’ , [south_pipe_region2 .
f a c e (’ b ’) , eas t_pipe_region2 . f a c e (’ b ’) , north_pipe_region2 . f a c e (’ b
’) , south_pipe_region2 . f a c e (’ t ’) , eas t_pipe_region2 . f a c e (’ t ’) ,
north_pipe_region2 . f a c e (’ t ’)])

80 bmd. add_boundary (’ symmetryPlane ’ , ’ fluidSymmetryBC ’ , [prism_pipe . f a c e
(’ e ’) , south_pipe . f a c e (’ e ’) , north_pipe . f a c e (’ e ’)])

81 bmd. add_boundary (’ symmetryPlane ’ , ’ solidSymmetryBC ’ , [
south_pipe_region2 . f a c e (’ e ’) , north_pipe_region2 . f a c e (’ e ’)])

82

83

84 bmd. s e t _ m e t r i c (’mm’)
85 bmd. a s s i g n _ v e r t e x i d ()
86 p r i n t (bmd. format ())
87

88 p r i n t (bmd. format ())
89

90 f i l e t x t = bmd. format ()
91 nameOfFile = ’ blockMeshDict ’
92 completeName = os . path . j o i n (path , nameOfFile)
93 with open (completeName , ’w’) as f :
94 f . w r i t e l i n e s (f i l e t x t)
95

96 f . c l o s e ()

B.2 myBuoyantBoussinesqPimpleFoam solver
/*--

------------ -*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD

Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

--

Copyright (C) 2011 -2017 OpenFOAM Foundation

--

License
This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or
modify it

under the terms of the GNU General Public License as
published by

the Free Software Foundation , either version 3 of the
License , or

(at your option) any later version.

134 Appendix B. Appendix B: Solver implementations

OpenFOAM is distributed in the hope that it will be useful ,
but WITHOUT

ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License

for more details.

You should have received a copy of the GNU General Public
License

along with OpenFOAM. If not , see <http :// www.gnu.org/
licenses/>.

Application
buoyantBoussinesqPimpleFoam

Group
grpHeatTransferSolvers

Description
Transient solver for buoyant , turbulent flow of

incompressible fluids.

Uses the Boussinesq approximation:
\f[

rho_{k} = 1 - beta(T - T_{ref})
\f]

where:
\f$ rho_{k} \f$ = the effective (driving) kinematic

density
beta = thermal expansion coefficient [1/K]
T = temperature [K]
\f$ T_{ref} \f$ = reference temperature [K]

Valid when:
\f[

\frac{beta(T - T_{ref})}{rho_{ref}} << 1
\f]

*--
-------------*/

#include "fvCFD.H"
#include "singlePhaseTransportModel.H"
#include "turbulentTransportModel.H"
#include "radiationModel.H"
#include "fvOptions.H"
#include "pimpleControl.H"

// *
* * * * * * //

int main(int argc , char *argv [])
{

argList :: addNote
(

B.2. myBuoyantBoussinesqPimpleFoam solver 135

"Transient␣solver␣for␣buoyant ,␣turbulent␣flow"
"␣of␣incompressible␣fluids .\n"
"Uses␣the␣Boussinesq␣approximation."

);

#include "postProcess.H"

#include "addCheckCaseOptions.H"
#include "setRootCaseLists.H"
#include "createTime.H"
#include "createMesh.H"
#include "createControl.H"
#include "createFields.H"
#include "createTimeControls.H"
#include "CourantNo.H"
#include "setInitialDeltaT.H"
#include "initContinuityErrs.H"

turbulence ->validate ();

// *
* * * * * * //

Info << "\nStarting␣time␣loop\n" << endl;

while (runTime.run())
{

#include "readTimeControls.H"
#include "CourantNo.H"
#include "setDeltaT.H"

++ runTime;

Info << "Time␣=␣" << runTime.timeName () << nl << endl;

// --- Pressure -velocity PIMPLE corrector loop
while (pimple.loop())
{

#include "UEqn.H"
#include "TEqn.H"

// --- Pressure corrector loop
while (pimple.correct ())
{

#include "pEqn.H"
}

if (pimple.turbCorr ())
{

laminarTransport.correct ();
turbulence ->correct ();

}
}

runTime.write ();

runTime.printExecutionTime(Info);

136 Appendix B. Appendix B: Solver implementations

}

Info << "End\n" << endl;

return 0;
}

// **
************* //

createFields

Info << "Reading␣thermophysical␣properties\n" << endl;

Info << "Reading␣field␣T\n" << endl;
volScalarField T
(

IOobject
(

"T",
runTime.timeName (),
mesh ,
IOobject ::MUST_READ ,
IOobject :: AUTO_WRITE

),
mesh

);

Info << "Reading␣field␣p_rgh\n" << endl;
volScalarField p_rgh
(

IOobject
(

"p_rgh",
runTime.timeName (),
mesh ,
IOobject ::MUST_READ ,
IOobject :: AUTO_WRITE

),
mesh

);

Info << "Reading␣field␣U\n" << endl;
volVectorField U
(

IOobject
(

"U",
runTime.timeName (),
mesh ,
IOobject ::MUST_READ ,
IOobject :: AUTO_WRITE

),
mesh

);

B.2. myBuoyantBoussinesqPimpleFoam solver 137

#include "createPhi.H"

#include "readTransportProperties.H"

Info << "Creating␣turbulence␣model\n" << endl;
autoPtr <incompressible :: turbulenceModel > turbulence
(

incompressible :: turbulenceModel ::New(U, phi ,
laminarTransport)

);

dimensionedScalar a("a", dimensionSet (0,0,0,0,0,0,0),
999.840281167108);

dimensionedScalar b("b", dimensionSet (0,0,0,-1,0,0,0),
0.0673268037314653);

dimensionedScalar c("c", dimensionSet (0,0,0,-2,0,0,0),
0.00894484552601798);

dimensionedScalar d("d", dimensionSet (0,0,0,-3,0,0,0),
8.78462866500416e-5);

dimensionedScalar e("e", dimensionSet (0,0,0,-4,0,0,0),
6.62139792627547e-7);

dimensionedScalar temp("temp", dimensionSet (0,0,0,1,0,0,0),
273.15);

volScalarField rhok
(

IOobject
(

"rhok",
runTime.timeName (),
mesh

),
((a + b*(T-TRef) - c*pow(T-TRef ,2) + d*pow(T-TRef ,3) - e*pow

(T-TRef , 4)) - 999.8) *(1/999.8)
);
// kinematic turbulent thermal thermal conductivity m2/s
Info << "Reading␣field␣alphat\n" << endl;
volScalarField alphat
(

IOobject
(

"alphat",
runTime.timeName (),
mesh ,
IOobject ::MUST_READ ,
IOobject :: AUTO_WRITE

),
mesh

);

#include "readGravitationalAcceleration.H"
#include "readhRef.H"
#include "gh.H"

138 Appendix B. Appendix B: Solver implementations

volScalarField p
(

IOobject
(

"p",
runTime.timeName (),
mesh ,
IOobject ::NO_READ ,
IOobject :: AUTO_WRITE

),
p_rgh + rhok*gh

);

label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell
(

p,
p_rgh ,
pimple.dict(),
pRefCell ,
pRefValue

);

if (p_rgh.needReference ())
{

p += dimensionedScalar
(

"p",
p.dimensions (),
pRefValue - getRefCellValue(p, pRefCell)

);
}

mesh.setFluxRequired(p_rgh.name());

#include "createMRF.H"
#include "createIncompressibleRadiationModel.H"
#include "createFvOptions.H"

pEqn

{
volScalarField rAU("rAU", 1.0/ UEqn.A());
surfaceScalarField rAUf("rAUf", fvc:: interpolate(rAU));
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p_rgh));

surfaceScalarField phig(-rAUf*ghf*fvc:: snGrad(rhok)*mesh.
magSf());

surfaceScalarField phiHbyA
(

"phiHbyA",
fvc::flux(HbyA)

+ MRF.zeroFilter(rAUf*fvc:: ddtCorr(U, phi))
+ phig

B.2. myBuoyantBoussinesqPimpleFoam solver 139

);

MRF.makeRelative(phiHbyA);

// Update the pressure BCs to ensure flux consistency
constrainPressure(p_rgh , U, phiHbyA , rAUf , MRF);

while (pimple.correctNonOrthogonal ())
{

fvScalarMatrix p_rghEqn
(

fvm:: laplacian(rAUf , p_rgh) == fvc::div(phiHbyA)
);

p_rghEqn.setReference(pRefCell , getRefCellValue(p_rgh ,
pRefCell));

p_rghEqn.solve(mesh.solver(p_rgh.select(pimple.
finalInnerIter ())));

if (pimple.finalNonOrthogonalIter ())
{

// Calculate the conservative fluxes
phi = phiHbyA - p_rghEqn.flux();

// Explicitly relax pressure for momentum corrector
p_rgh.relax();

// Correct the momentum source with the pressure
gradient flux

// calculated from the relaxed pressure
U = HbyA + rAU*fvc:: reconstruct ((phig - p_rghEqn.

flux())/rAUf);
U.correctBoundaryConditions ();
fvOptions.correct(U);

}
}

#include "continuityErrs.H"

p = p_rgh + rhok*gh;

if (p_rgh.needReference ())
{

p += dimensionedScalar
(

"p",
p.dimensions (),
pRefValue - getRefCellValue(p, pRefCell)

);
p_rgh = p - rhok*gh;

}
}

TEqn

{

140 Appendix B. Appendix B: Solver implementations

alphat = turbulence ->nut()/Prt;
alphat.correctBoundaryConditions ();

volScalarField alphaEff("alphaEff", turbulence ->nu()/Pr +
alphat);

fvScalarMatrix TEqn
(

fvm::ddt(T)
+ fvm::div(phi , T)
- fvm:: laplacian(alphaEff , T)

==
radiation ->ST(rhoCpRef , T)

+ fvOptions(T)
);

TEqn.relax ();

fvOptions.constrain(TEqn);

TEqn.solve ();

radiation ->correct ();

fvOptions.correct(T);

rhok = ((a + b*(T-TRef) - c*pow(T-TRef ,2) + d*pow(T-TRef
,3) - e*pow(T-TRef , 4)) - 999.8) *(1/999.8) ;

}

UEqn

// Solve the momentum equation

MRF.correctBoundaryVelocity(U);

fvVectorMatrix UEqn
(

fvm::ddt(U) + fvm::div(phi , U)
+ MRF.DDt(U)
+ turbulence ->divDevReff(U)

==
fvOptions(U)

);

UEqn.relax ();

fvOptions.constrain(UEqn);

if (pimple.momentumPredictor ())
{

solve
(

UEqn
==

fvc:: reconstruct
(

B.3. chtMultiphaseInterFoam solver 141

(
- ghf*fvc:: snGrad(rhok)
- fvc:: snGrad(p_rgh)

)*mesh.magSf()
)

);

fvOptions.correct(U);
}

B.3 chtMultiphaseInterFoam solver

createFields

#include "createFluidFields.H"
#include "createSolidFields.H"

createMeshes

regionProperties rp(runTime);

#include "createFluidMeshes.H"
#include "createSolidMeshes.H"

createMeshesPostProcess

#include "createMeshes.H"

if (! fluidRegions.size() && !solidRegions.size())
{

FatalErrorIn(args.executable ())
<< "No␣region␣meshes␣present" << exit(FatalError);

}

fvMesh& mesh = fluidRegions.size() ? fluidRegions [0] :
solidRegions [0];

readPIMPLEControls

// We do not have a top -level mesh. Construct the fvSolution
for

// the runTime instead.
fvSolution solutionDict(runTime);

const dictionary& pimpleCHT = solutionDict.subDict("PIMPLE")
;

const int nOuterCorr =
pimpleCHT.getOrDefault <int >("nOuterCorrectors", 1);

B.3.1 Fluid region

createFluidMeshes

const wordList fluidNames(rp["fluid"]);

PtrList <fvMesh > fluidRegions(fluidNames.size());

142 Appendix B. Appendix B: Solver implementations

// PtrList <dynamicFvMesh > fluidRegions(fluidNames.size());
forAll(fluidNames , i)
{

Info << "Create␣fluid␣mesh␣for␣region␣" << fluidNames[i]
<< "␣for␣time␣=␣" << runTime.timeName () << nl <<

endl;

fluidRegions.set
(

i,
new fvMesh
// dynamicFvMesh ::New
(

IOobject
(

fluidNames[i],
runTime.timeName (),
runTime ,
IOobject :: MUST_READ

)
)

);
}

alphaCourantNo

/*--
------------ -*\

========= |
\\ / F ield | OpenFOAM: The Open Source CFD

Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

--

Copyright (C) 2011 -2014 OpenFOAM Foundation
Copyright (C) 2020 OpenCFD Ltd.

--

License
This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or
modify it

under the terms of the GNU General Public License as
published by

the Free Software Foundation , either version 3 of the
License , or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful ,
but WITHOUT

ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License

B.3. chtMultiphaseInterFoam solver 143

for more details.

You should have received a copy of the GNU General Public
License

along with OpenFOAM. If not , see <http :// www.gnu.org/
licenses/>.

Global
alphaCourantNo

Description
Calculates and outputs the mean and maximum alpha Courant

Numbers.

*--
-------------*/

#ifndef alphaCourantNo_H
#define alphaCourantNo_H

#include "fvMesh.H"
#include "multiphaseSystem.H"

namespace Foam
{

scalar alphaCourantNo
(

const fvMesh& mesh ,
const Time& runTime ,
const multiphaseSystem& thermol ,
const surfaceScalarField& phi

);
}

#endif

// **
************* //

ddtAlphaNo.H

/*--
------------ -*\

========= |
\\ / F ield | OpenFOAM: The Open Source CFD

Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

--

Copyright (C) 2011 -2014 OpenFOAM Foundation
Copyright (C) 2020 OpenCFD Ltd.

--

License
This file is part of OpenFOAM.

144 Appendix B. Appendix B: Solver implementations

OpenFOAM is free software: you can redistribute it and/or
modify it

under the terms of the GNU General Public License as
published by

the Free Software Foundation , either version 3 of the
License , or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful ,
but WITHOUT

ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License

for more details.

You should have received a copy of the GNU General Public
License

along with OpenFOAM. If not , see <http :// www.gnu.org/
licenses/>.

Global
alphaCourantNo

Description
Calculates and outputs the mean and maximum alpha Courant

Numbers.

*--
-------------*/

#ifndef ddtAlphaNo_H
#define ddtAlphaNo_H

#include "fvMesh.H"
#include "multiphaseSystem.H"

namespace Foam
{

scalar ddtAlphaNo
(

const fvMesh& mesh ,
const Time& runTime ,
const multiphaseSystem& thermol ,
const surfaceScalarField& phi

);
}

#endif

ddtAlphaNo.C

/*--
------------ -*\

========= |

B.3. chtMultiphaseInterFoam solver 145

\\ / F ield | OpenFOAM: The Open Source CFD
Toolbox

\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

--

Copyright (C) 2011 -2016 OpenFOAM Foundation

--

License
This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or
modify it

under the terms of the GNU General Public License as
published by

the Free Software Foundation , either version 3 of the
License , or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful ,
but WITHOUT

ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License

for more details.

You should have received a copy of the GNU General Public
License

along with OpenFOAM. If not , see <http :// www.gnu.org/
licenses/>.

*--
-------------*/

#include "ddtAlphaNo.H"
#include "fvc.H"

Foam:: scalar Foam:: ddtAlphaNo
(

const fvMesh& mesh ,
const Time& runTime ,
const multiphaseSystem& thermol ,
const surfaceScalarField& phi

)
{

scalar maxAlphaDdt
(

runTime.controlDict ().getOrDefault("maxAlphaDdt", GREAT)
);
scalar ddtAlphaNum = 0.0;
if (mesh.nInternalFaces ())
{

ddtAlphaNum = thermol.ddtAlphaMax ().value ()*runTime.
deltaTValue ();

}

146 Appendix B. Appendix B: Solver implementations

return ddtAlphaNum;
}

compressibleCourantNo.H

/*--
------------ -*\

========= |
\\ / F ield | OpenFOAM: The Open Source CFD

Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

--

Copyright (C) 2011 OpenFOAM Foundation

--

License
This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or
modify it

under the terms of the GNU General Public License as
published by

the Free Software Foundation , either version 3 of the
License , or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful ,
but WITHOUT

ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License

for more details.

You should have received a copy of the GNU General Public
License

along with OpenFOAM. If not , see <http :// www.gnu.org/
licenses/>.

Description
Calculates and outputs the mean and maximum Courant Numbers

for the fluid
regions

*--
-------------*/

#ifndef compressibleCourantNo_H
#define compressibleCourantNo_H

#include "fvMesh.H"

namespace Foam
{

B.3. chtMultiphaseInterFoam solver 147

scalar compressibleCourantNo
(

const fvMesh& mesh ,
const Time& runTime ,
const volScalarField& rho ,
const surfaceScalarField& phi

);
}

#endif

// **
************* //

compressibleCourantNo.C

/*--
------------ -*\

========= |
\\ / F ield | OpenFOAM: The Open Source CFD

Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

--

Copyright (C) 2011 -2016 OpenFOAM Foundation

--

License
This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or
modify it

under the terms of the GNU General Public License as
published by

the Free Software Foundation , either version 3 of the
License , or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful ,
but WITHOUT

ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License

for more details.

You should have received a copy of the GNU General Public
License

along with OpenFOAM. If not , see <http :// www.gnu.org/
licenses/>.

*--
-------------*/

#include "compressibleCourantNo.H"

148 Appendix B. Appendix B: Solver implementations

#include "fvc.H"

Foam:: scalar Foam:: compressibleCourantNo
(

const fvMesh& mesh ,
const Time& runTime ,
const volScalarField& rho ,
const surfaceScalarField& phi

)
{

scalar CoNum = 0.0;
scalar meanCoNum = 0.0;

{
scalarField sumPhi
(

fvc:: surfaceSum(mag(phi))().primitiveField ()
);

CoNum = 0.5* gMax(sumPhi/mesh.V().field ())*runTime.
deltaTValue ();

meanCoNum =
0.5*(gSum(sumPhi)/gSum(mesh.V().field ()))*runTime.

deltaTValue ();
}

Info << "Region:␣" << mesh.name() << "␣Courant␣Number␣mean:␣"
<< meanCoNum
<< "␣max:␣" << CoNum << endl;

return CoNum;
}

// **
************* //

correctPhi
CorrectPhi
(

U,
phi ,
p_rgh ,
surfaceScalarField("rAUf", fvc:: interpolate(rAU())),
geometricZeroField (),
pimple

);

// #include "continuityErrs.H"

createFluidFields
// Initialise fluid field pointer lists

PtrList <multiphaseSystem > thermoFluid(fluidRegions.size());

B.3. chtMultiphaseInterFoam solver 149

PtrList <volScalarField > rhoFluid(fluidRegions.size());
PtrList <volScalarField > TFluid(fluidRegions.size());
PtrList <volVectorField > UFluid(fluidRegions.size());
PtrList <uniformDimensionedScalarField > hRefFluid(fluidRegions.

size());
PtrList <volScalarField > ghFluid(fluidRegions.size());
PtrList <surfaceScalarField > ghfFluid(fluidRegions.size());
PtrList <volScalarField > kappaLK(fluidRegions.size());
PtrList <CompressibleTurbulenceModel <multiphaseSystem >>

turbulenceFluid(fluidRegions.size());
PtrList <volScalarField > p_rghFluid(fluidRegions.size());
PtrList <volScalarField > KFluid(fluidRegions.size());
PtrList <volScalarField > dpdtFluid(fluidRegions.size());
PtrList <multivariateSurfaceInterpolationScheme <scalar >::

fieldTable >
fieldsFluid(fluidRegions.size());

List <scalar > initialMassFluid(fluidRegions.size());
List <bool > frozenFlowFluid(fluidRegions.size(), false);
List <bool > correctPhiFluid(fluidRegions.size(), true);
List <bool > ddtCorrFluid(fluidRegions.size(), true);
PtrList <fv::options > fluidFvOptions(fluidRegions.size());
List <label > pRefCellFluid(fluidRegions.size());
List <scalar > pRefValueFluid(fluidRegions.size());
PtrList <dimensionedScalar > rhoMinFluid(fluidRegions.size());
PtrList <dimensionedScalar > rhoMaxFluid(fluidRegions.size());
PtrList <dimensionedScalar > rhoRFluid(fluidRegions.size());
PtrList <volScalarField > rhokFluid(fluidRegions.size());
PtrList <volScalarField > CpFluid(fluidRegions.size());
PtrList <volScalarField > rhoCpFluid(fluidRegions.size());
PtrList <volScalarField > pFluid(fluidRegions.size());
PtrList <surfaceScalarField > rhoPhiFluid(fluidRegions.size());
PtrList <pimpleControl > pimpleFluid(fluidRegions.size());

PtrList <pressureControl > pressureControls(fluidRegions.size());

const uniformDimensionedVectorField& g = meshObjects :: gravity ::
New(runTime);

// Populate fluid field pointer lists
forAll(fluidRegions , i)
{

Info << "***␣Reading␣fluid␣mesh␣thermophysical␣properties␣for
␣region␣"
<< fluidRegions[i].name() << nl << endl;

pimpleFluid.set
(

i,
new pimpleControl(fluidRegions[i])

);

p_rghFluid.set
(

i,
new volScalarField
(

IOobject
(

150 Appendix B. Appendix B: Solver implementations

"p_rgh",
runTime.timeName (),
fluidRegions[i],
IOobject ::MUST_READ ,
IOobject :: AUTO_WRITE

),
fluidRegions[i]

)
);
Info << "␣␣␣␣Adding␣to␣UFluid\n" << endl;
UFluid.set
(

i,
new volVectorField
(

IOobject
(

"U",
runTime.timeName (),
fluidRegions[i],
IOobject ::MUST_READ ,
IOobject :: AUTO_WRITE

),
fluidRegions[i]

)
);
Info << "␣␣␣␣Adding␣to␣TFluid\n" << endl;
TFluid.set
(

i,
new volScalarField
(

IOobject
(

"T",
runTime.timeName (),
fluidRegions[i],
IOobject ::MUST_READ ,
IOobject :: AUTO_WRITE

),
fluidRegions[i]

)
);

Info << "␣␣␣␣Adding␣to␣hRefFluid\n" << endl;
hRefFluid.set
(

i,
new uniformDimensionedScalarField
(

IOobject
(

"hRef",
runTime.constant (),
fluidRegions[i],
IOobject :: READ_IF_PRESENT ,

B.3. chtMultiphaseInterFoam solver 151

IOobject :: NO_WRITE
),
dimensionedScalar("hRef", dimLength , Zero)

)
);

Info << "Calculating␣field␣g.h\n" << endl;
#include "readGravitationalAcceleration.H"

dimensionedScalar ghRef
(

mag(g.value ()) > SMALL
? g & (cmptMag(g.value())/mag(g.value ()))*hRefFluid[i]
: dimensionedScalar("ghRef", g.dimensions ()*dimLength , 0)

);

Info << "␣␣␣␣Adding␣to␣ghFluid\n" << endl;
ghFluid.set
(

i,
new volScalarField
(

"gh",
(g & fluidRegions[i].C()) - ghRef

)
);

Info << "␣␣␣␣Adding␣to␣ghfFluid\n" << endl;
ghfFluid.set
(

i,
new surfaceScalarField
(

"ghf",
(g & fluidRegions[i].Cf()) - ghRef

)
);

pFluid.set
(

i,
new volScalarField
(

IOobject
(

"p",
runTime.timeName (),
fluidRegions[i],
IOobject ::NO_READ ,
IOobject :: AUTO_WRITE

),
p_rghFluid[i]

)
);
Info << "␣␣␣␣Adding␣to␣thermoFluid\n" << endl;
thermoFluid.set(i, multiphaseSystem ::New(fluidRegions[i]).

ptr());

152 Appendix B. Appendix B: Solver implementations

Info << "␣␣␣␣Adding␣to␣rhoFluid\n" << endl;
rhoFluid.set
(

i,
new volScalarField
(

IOobject
(

"rho",
runTime.timeName (),
fluidRegions[i],
IOobject ::NO_READ ,
IOobject :: AUTO_WRITE

),
thermoFluid[i].rho()

)
);
rhoFluid[i]. oldTime ();

const dictionary& thermophysicalPropertiesFluid =
fluidRegions[i]. lookupObject <IOdictionary >("

thermophysicalProperties.liquid");

rhoRFluid.set
(

i,
new dimensionedScalar
(
"rhoRef",
dimDensity ,
thermophysicalPropertiesFluid.subDict("mixture").subDict

("equationOfState")
)

);

Info << "␣␣␣␣Calculating␣rhok\n" << endl;
rhokFluid.set
(

i,
new volScalarField
(

IOobject
(

"rhok",
runTime.timeName (),
fluidRegions[i],
IOobject ::NO_READ ,
IOobject :: AUTO_WRITE

),
thermoFluid[i].rho() - rhoRFluid[i]

)
);
rhokFluid[i]. oldTime ();

Info << "␣␣␣␣Adding␣to␣rhoPhiFluid\n" << endl;
rhoPhiFluid.set

B.3. chtMultiphaseInterFoam solver 153

(
i,
new surfaceScalarField
(

IOobject
(

"rhoPhi",
runTime.timeName (),
fluidRegions[i],
IOobject ::NO_READ ,
IOobject :: NO_WRITE

),
thermoFluid[i]. rhoPhi ()

)
);

Info << "␣␣␣␣Adding␣to␣CpFluid\n" << endl;
CpFluid.set
(

i,
new volScalarField
(

IOobject
(

"Cp",
runTime.timeName (),
fluidRegions[i],
IOobject ::NO_READ ,
IOobject :: AUTO_WRITE

),
thermoFluid[i].Cp()

)
);

Info << "␣␣␣␣Adding␣to␣Kappa␣Lookup\n" << endl;
kappaLK.set
(

i,
new volScalarField
(

IOobject
(

"kappa",
runTime.timeName (),
fluidRegions[i],
IOobject ::NO_READ ,
IOobject :: AUTO_WRITE

),
thermoFluid[i]. kappa ()

)
);

Info << "␣␣␣␣Adding␣to␣rhoCpFluid\n" << endl;
rhoCpFluid.set
(

i,
new volScalarField

154 Appendix B. Appendix B: Solver implementations

(
IOobject
(

"rhoCp",
runTime.timeName (),
fluidRegions[i],
IOobject ::NO_READ ,
IOobject :: NO_WRITE

),
thermoFluid[i].rho()*thermoFluid[i].Cp()

)
);
rhoCpFluid[i]. oldTime ();

Info << "␣␣␣␣Adding␣to␣turbulenceFluid\n" << endl;
turbulenceFluid.set
(

i,
CompressibleTurbulenceModel <multiphaseSystem >:: New
(

rhoFluid[i],
UFluid[i],
rhoPhiFluid[i],
thermoFluid[i]

)
);

pFluid[i] = p_rghFluid[i] + rhokFluid[i]* ghFluid[i];

Info << "␣␣␣␣Adding␣to␣KFluid\n" << endl;
KFluid.set
(

i,
new volScalarField
(

"K",
0.5* magSqr(UFluid[i])

)
);

Info << "␣␣␣␣Adding␣to␣dpdtFluid\n" << endl;
dpdtFluid.set
(

i,
new volScalarField
(

IOobject
(

"dpdt",
runTime.timeName (),
fluidRegions[i]

),
fluidRegions[i],
dimensionedScalar(thermoFluid[i].p().dimensions ()/

dimTime , Zero)
)

);

B.3. chtMultiphaseInterFoam solver 155

pimpleFluid[i].dict().readIfPresent("correctPhi",
correctPhiFluid[i]);

pimpleFluid[i].dict().readIfPresent("ddtCorr", ddtCorrFluid[
i]);

const dictionary& pimpleDict =
fluidRegions[i]. solutionDict ().subDict("PIMPLE");

pimpleDict.readIfPresent("frozenFlow", frozenFlowFluid[i]);

rhoMaxFluid.set
(

i,
new dimensionedScalar("rhoMax", dimDensity , GREAT ,

pimpleDict)
);

rhoMinFluid.set
(

i,
new dimensionedScalar("rhoMin", dimDensity , Zero ,

pimpleDict)
);

pressureControls.set
(

i,
new pressureControl(thermoFluid[i].p(), rhoFluid[i],

pimpleDict , false)
);

Info << "␣␣␣␣Adding␣fvOptions\n" << endl;
fluidFvOptions.set
(

i,
new fv:: options(fluidRegions[i])

);

pRefCellFluid[i] = 0;
pRefValueFluid[i] = 0.0;

setRefCell
(

pFluid[i],
p_rghFluid[i],
pimpleDict ,
pRefCellFluid[i],
pRefValueFluid[i]

);

if (p_rghFluid[i]. needReference ())
{

pFluid[i] += dimensionedScalar
(
"p",
pFluid[i]. dimensions (),

156 Appendix B. Appendix B: Solver implementations

pRefValueFluid[i] - getRefCellValue(pFluid[i],
pRefCellFluid[i])

);
p_rghFluid[i] = pFluid[i] - rhokFluid[i]* ghFluid[i];

}

}

createFieldRefs
PtrList <surfaceScalarField > phiFluid(fluidRegions.size());

forAll(fluidRegions , i)
{

Info << "␣␣␣␣Adding␣to␣phiFluid\n" << endl;
phiFluid.set
(

i,
new surfaceScalarField
(

IOobject
(

"phi",
runTime.timeName (),
fluidRegions[i],
IOobject :: READ_IF_PRESENT ,
IOobject :: AUTO_WRITE

),
thermoFluid[i].phi()

)
);

}

initContinuityErrs
PtrList <uniformDimensionedScalarField > cumulativeContErrIO(

fluidRegions.size());
forAll(cumulativeContErrIO , i)
{

const fvMesh& mesh = fluidRegions[i];

cumulativeContErrIO.set
(

i,
new uniformDimensionedScalarField
(

IOobject
(

"cumulativeContErr",
runTime.timeName (),
"uniform",
mesh ,
IOobject :: READ_IF_PRESENT ,
IOobject :: AUTO_WRITE

),
dimensionedScalar(dimless , Zero)

)
);

B.3. chtMultiphaseInterFoam solver 157

}

UPtrList <scalar > cumulativeContErr(cumulativeContErrIO.size());
forAll(cumulativeContErrIO , i)
{

cumulativeContErr.set(i, &cumulativeContErrIO[i].value());
}

ddtAlphaMultiRegionNo

scalar ddtAlphaNum = -GREAT;
forAll(fluidRegions , regioni)
{

ddtAlphaNum = max
(

ddtAlphaNo
(

fluidRegions[regioni],
runTime ,
thermoFluid[regioni],
phiFluid[regioni]

),
ddtAlphaNum

);
}

compressibleMultiRegionCourantNo

scalar CoNum = -GREAT;

forAll(fluidRegions , regioni)
{

CoNum = max
(

compressibleCourantNo
(

fluidRegions[regioni],
runTime ,
rhoFluid[regioni],
phiFluid[regioni]

),
CoNum

);
}

validateTurbulenceModel

forAll(fluidRegions , i)
{

turbulenceFluid[i]. validate ();
}

readFluidTimeControls

/*--
------------ -*\

========= |

158 Appendix B. Appendix B: Solver implementations

\\ / F ield | OpenFOAM: The Open Source CFD
Toolbox

\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

--

Copyright (C) 2011 -2015 OpenFOAM Foundation
Copyright (C) 2020 OpenCFD Ltd.

--

License
This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or
modify it

under the terms of the GNU General Public License as
published by

the Free Software Foundation , either version 3 of the
License , or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful ,
but WITHOUT

ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License

for more details.

You should have received a copy of the GNU General Public
License

along with OpenFOAM. If not , see <http :// www.gnu.org/
licenses/>.

Global
readTimeControls

Description
Read the control parameters used by setDeltaT

*--
-------------*/

scalar maxAlphaCo =
runTime.controlDict ().get <scalar >("maxAlphaCo");

scalar maxAlphaDdt =
runTime.controlDict ().getOrDefault <scalar >("maxAlphaDdt",

GREAT);

// **
************* //

setRegionFluidFields

fvMesh& mesh = fluidRegions[i];

B.3. chtMultiphaseInterFoam solver 159

multiphaseSystem& thermol = thermoFluid[i];
volScalarField& kappa = kappaLK[i];
volScalarField& rho = rhoFluid[i];
volVectorField& U = UFluid[i];
volScalarField& T = TFluid[i];
surfaceScalarField& phi = phiFluid[i];
volScalarField& Cp = CpFluid[i];
volScalarField& rhoCp = rhoCpFluid[i];
surfaceScalarField& rhoPhi = rhoPhiFluid[i];
volScalarField& rhok = rhokFluid[i];
dimensionedScalar& rhoR = rhoRFluid[i];
CompressibleTurbulenceModel <multiphaseSystem >& turbulence =

turbulenceFluid[i];
volScalarField& K = KFluid[i];
volScalarField& dpdt = dpdtFluid[i];
volScalarField& p = pFluid[i];
volScalarField& p_rgh = p_rghFluid[i];

const volScalarField& gh = ghFluid[i];
const surfaceScalarField& ghf = ghfFluid[i];

fv:: options& fvOptions = fluidFvOptions[i];

bool frozenFlow = frozenFlowFluid[i];

const label pRefCell = pRefCellFluid[i];
const scalar pRefValue = pRefValueFluid[i];

const dimensionedScalar rhoMax = rhoMaxFluid[i];
const dimensionedScalar rhoMin = rhoMinFluid[i];

const pressureControl& pressureControl = pressureControls[i
];

pimpleControl& pimple = pimpleFluid[i];

bool correctPhi = correctPhiFluid[i];
bool ddtCorr = ddtCorrFluid[i];

readFluidMultiRegionPIMPLEControls

const dictionary& pimpleCHT = mesh.solutionDict ().subDict("
PIMPLE");

const int nCorr =
pimpleCHT.getOrDefault <int >("nCorrectors", 1);

const int nNonOrthCorr =
pimpleCHT.getOrDefault <int >("nNonOrthogonalCorrectors",

0);

const bool momentumPredictor =
pimpleCHT.getOrDefault("momentumPredictor", false);

// correctPhi = pimple.getOrDefault (" correctPhi", true);

160 Appendix B. Appendix B: Solver implementations

// ddtCorr = pimple.getOrDefault (" ddtCorr", true);

solveFluid
if (finalIter)
{

mesh.data::add("finalIteration", true);
}

#include "initCorrectPhi.H"

if (firstIter)
{

thermol.correctMassSources(T);
thermol.solve ();
rho = thermol.rho();

}

if (frozenFlow)
{

#include "TEqnFluidPhase.H"
}
else
{

#include "UEqnFluidPhase.H"
#include "YEqnFluidPhase.H"
#include "TEqnFluidPhase.H"

// --- PISO loop

for (int corr =0; corr <nCorr; corr ++)
{

#include "pEqnFluidPhase.H"
}
if (pimple.turbCorr ())
{

turbulence.correct ();
}

}

if (finalIter)
{

rho = thermol.rho();
mesh.data:: remove("finalIteration");

}

initCorrectPhi
tmp <volScalarField > rAU;

if (correctPhi)
{

rAU = new volScalarField
(

IOobject
(

B.3. chtMultiphaseInterFoam solver 161

"rAU",
runTime.timeName (),
mesh ,
IOobject :: READ_IF_PRESENT ,
IOobject :: AUTO_WRITE

),
mesh ,
dimensionedScalar("rAU", dimTime/dimDensity , 1)

);

#include "correctPhi.H"
}
else
{

CorrectPhi
(

U,
phi ,
p_rgh ,
dimensionedScalar("rAUf", dimTime/rho.dimensions (), 1),
geometricZeroField (),
pimple

);

}

createFluidMeshes

{
rhoCp = rho*thermol.Cp();

rhok = rho - rhoR;
const surfaceScalarField rhoCpPhi(fvc:: interpolate(thermol.

Cp())*rhoPhi);
volTensorField gradU = fvc::grad(U);
volTensorField tau = turbulence.muEff() * (gradU + gradU.T()

);
const volScalarField kappaEff
(

"kappaEff",
thermol.kappa () + thermol.Cp()*turbulence.mut()/thermol.

Prt()
);

fvScalarMatrix TEqn
(

fvm::ddt(rhoCp , T)
+ fvm::div(rhoCpPhi , T, "div(phi ,T)")
+ fvc::div(rhoPhi/fvc:: interpolate(rho),p,"div(phiv ,p)")
+ fvc::ddt(rho , K) + fvc::div(rhoPhi , K)
- fvm:: laplacian(kappaEff , T, "laplacian(kappa ,T)")
==

thermol.heatTransfer(T)
+ fvc::div(tau & U, "div(tau ,U)")
+ rho*(U&g)
+ fvOptions(rhoCp , T)

162 Appendix B. Appendix B: Solver implementations

);
TEqn.relax ();

fvOptions.constrain(TEqn);

TEqn.solve(mesh.solver(T.select(finalIter)));

fvOptions.correct(T);
thermol.correct ();

Info << "min/max(T)␣=␣" << min(T).value() << ",␣" << max(T).
value() << endl;

}

UEqnFluidPhase

rhok = rho - rhoR;

fvVectorMatrix UEqn
(

fvm::ddt(rho , U)
+ fvm::div(rhoPhi , U)
+ turbulence.divDevRhoReff(U)
==

fvOptions(rho , U)
);

UEqn.relax ();

thermol.addInterfacePorosity(UEqn);

if (momentumPredictor)
{

solve
(

UEqn
==

fvc:: reconstruct
(

(
thermol.surfaceTensionForce ()
- ghf*fvc:: snGrad(rhok)
- fvc:: snGrad(p_rgh)

) * mesh.magSf ()
),
mesh.solver(U.select(finalIter))

);

fvOptions.correct(U);
K = 0.5* magSqr(U);

}

YEqnFluidPhase
{

for (phaseModel& phase : thermol.phases ())

B.3. chtMultiphaseInterFoam solver 163

{
PtrList <volScalarField >& Y = phase.Y();

if (!Y.empty())
{

//- Su phase source terms
PtrList <volScalarField ::Internal > Sus(Y.size());
//- Sp phase source terms
PtrList <volScalarField ::Internal > Sps(Y.size());

forAll(Sus , i)
{

Sus.set
(

i,
new volScalarField :: Internal
(

IOobject
(

"Su" + phase.name(),
mesh.time().timeName (),
mesh

),
mesh ,
dimensionedScalar(dimless/dimTime , Zero)

)
);
Sps.set
(

i,
new volScalarField :: Internal
(

IOobject
(

"Sp" + phase.name(),
mesh.time().timeName (),
mesh

),
mesh ,
dimensionedScalar(dimless/dimTime , Zero)

)
);

}

forAll(Y, i)
{

// Calculate mass exchange for species
consistent with

// alpha ’s source terms.
thermol.massSpeciesTransfer(phase , Sus[i], Sps[i

], Y[i].name());
}
phase.solveYi(Sus , Sps);

}
}

}

164 Appendix B. Appendix B: Solver implementations

TEqnFluidPhase

{
rhoCp = rho*thermol.Cp();

rhok = rho - rhoR;
const surfaceScalarField rhoCpPhi(fvc:: interpolate(thermol.

Cp())*rhoPhi);
volTensorField gradU = fvc::grad(U);
volTensorField tau = turbulence.muEff() * (gradU + gradU.T()

);
const volScalarField kappaEff
(

"kappaEff",
thermol.kappa () + thermol.Cp()*turbulence.mut()/thermol.

Prt()
);

fvScalarMatrix TEqn
(

fvm::ddt(rhoCp , T)
+ fvm::div(rhoCpPhi , T, "div(phi ,T)")
+ fvc::div(rhoPhi/fvc:: interpolate(rho),p,"div(phiv ,p)")
+ fvc::ddt(rho , K) + fvc::div(rhoPhi , K)
- fvm:: laplacian(kappaEff , T, "laplacian(kappa ,T)")
==

thermol.heatTransfer(T)
+ fvc::div(tau & U, "div(tau ,U)")
+ rho*(U&g)
+ fvOptions(rhoCp , T)

);
TEqn.relax ();

fvOptions.constrain(TEqn);

TEqn.solve(mesh.solver(T.select(finalIter)));

fvOptions.correct(T);
thermol.correct ();

Info << "min/max(T)␣=␣" << min(T).value() << ",␣" << max(T).
value() << endl;

}

pEqnFluidPhase

{
bool closedVolume = p_rgh.needReference ();
rho = thermol.rho();

rhok = rho - rhoR;

if (correctPhi)
{

rAU.ref() = 1.0/ UEqn.A();
}

B.3. chtMultiphaseInterFoam solver 165

else
{

rAU = 1.0/ UEqn.A();
}

surfaceScalarField rAUf("rAUf", fvc:: interpolate(rAU()));

volVectorField HbyA("HbyA", U);

HbyA = rAU()*UEqn.H();

surfaceScalarField phiHbyA
(

"phiHbyA",
(fvc:: interpolate(HbyA) & mesh.Sf())
+ fvc:: interpolate(rho*rAU())*fvc:: ddtCorr(U, phi)

);

if (p_rgh.needReference ())
{

fvc:: makeRelative(phiHbyA , U);
adjustPhi(phiHbyA , U, p_rgh);
fvc:: makeAbsolute(phiHbyA , U);

}

surfaceScalarField phig
(

(
thermol.surfaceTensionForce ()
- ghf*fvc:: snGrad(rhok)

)*rAUf*mesh.magSf ()
);

phiHbyA += phig;

// Update the fixedFluxPressure BCs to ensure flux
consistency

constrainPressure(p_rgh , U, phiHbyA , rAUf);

for (int nonOrth =0; nonOrth <= nNonOrthCorr; nonOrth ++)
{

fvScalarMatrix p_rghEqn
(

fvc::div(phiHbyA)
- fvm:: laplacian(rAUf , p_rgh)

);

if (thermol.includeVolChange ())
{

p_rghEqn += thermol.volTransfer(p_rgh);
}

p_rghEqn.setReference(pRefCell , pRefValue);

166 Appendix B. Appendix B: Solver implementations

p_rghEqn.solve
(

mesh.solver
(

p_rgh.select
(

(
oCorr == nOuterCorr -1
&& corr == nCorr -1
&& nonOrth == nNonOrthCorr

)
)

)
);

if (nonOrth == nNonOrthCorr)
{

phi = phiHbyA + p_rghEqn.flux();

p_rgh.relax();

U = HbyA + rAU()*fvc:: reconstruct ((phig + p_rghEqn.
flux())/rAUf);

U.correctBoundaryConditions ();

fvOptions.correct(U);

K = 0.5* magSqr(U);

}

}

#include "incompressibleContinuityErrors.H"

fvc:: makeRelative(phi , U);
p == p_rgh + rhok*gh;

// For closed -volume cases adjust the pressure and density
levels

// to obey overall mass continuity
if (p_rgh.needReference ())
{

p += dimensionedScalar
(

"p",
p.dimensions (),
pRefValue - getRefCellValue(p, pRefCell)

);
p_rgh = p - rhok*gh;

}

if (! correctPhi)
{

B.3. chtMultiphaseInterFoam solver 167

rAU.clear ();
}
rho = thermol.rho();

// Update pressure time derivative if needed
if (thermol.dpdt())
{

dpdt = fvc::ddt(p);
}

}

B.3.2 Solid region

createSolidMeshes

const wordList solidNames(rp["solid"]);

PtrList <fvMesh > solidRegions(solidNames.size());

forAll(solidNames , i)
{

Info << "Create␣solid␣mesh␣for␣region␣" << solidNames[i]
<< "␣for␣time␣=␣" << runTime.timeName () << nl <<

endl;

solidRegions.set
(

i,
new fvMesh
(

IOobject
(

solidNames[i],
runTime.timeName (),
runTime ,
IOobject :: MUST_READ

)
)

);

// Force calculation of geometric properties to prevent
it being done

// later in e.g. some boundary evaluation
//(void)solidRegions[i]. weights ();
//(void)solidRegions[i]. deltaCoeffs ();

}

createSolidFields

// Initialise solid field pointer lists
PtrList <coordinateSystem > coordinates(solidRegions.size());
PtrList <solidThermo > thermos(solidRegions.size());
PtrList <radiation :: radiationModel > radiations(solidRegions.

size());
PtrList <fv::options > solidHeatSources(solidRegions.size());
// PtrList <volScalarField > rhos(solidRegions.size());
// PtrList <volScalarField > cps(solidRegions.size());

168 Appendix B. Appendix B: Solver implementations

// PtrList <volScalarField > rhoCpSolid(solidRegions.size());
// PtrList <volScalarField > Ks(solidRegions.size());
// PtrList <volScalarField > Ts(solidRegions.size());
PtrList <volScalarField > betavSolid(solidRegions.size());
PtrList <volSymmTensorField > aniAlphas(solidRegions.size());

// Populate solid field pointer lists
forAll(solidRegions , i)
{

Info << "***␣Reading␣solid␣mesh␣thermophysical␣properties
␣for␣region␣"
<< solidRegions[i].name() << nl << endl;

// Info << " Adding to Ts\n" << endl;
// Ts.set
// (
// i,
// new volScalarField
// (
// IOobject
// (
// "T",
// runTime.timeName (),
// solidRegions[i],
// IOobject ::MUST_READ ,
// IOobject :: AUTO_WRITE
//),
// solidRegions[i]
//)
//);
Info << "␣␣␣␣Adding␣to␣thermos\n" << endl;
thermos.set(i, solidThermo ::New(solidRegions[i]));

Info << "␣␣␣␣Adding␣to␣radiations\n" << endl;
radiations.set(i, radiation :: radiationModel ::New(thermos

[i].T()));

Info << "␣␣␣␣Adding␣fvOptions\n" << endl;
solidHeatSources.set
(

i,
new fv:: options(solidRegions[i])

);

if (! thermos[i]. isotropic ())
{

Info << "␣␣␣␣Adding␣coordinateSystems\n" << endl;
coordinates.set
(

i,
coordinateSystem ::New
(

solidRegions[i],
thermos[i],
coordinateSystem :: typeName_ ()

)
);

B.3. chtMultiphaseInterFoam solver 169

tmp <volVectorField > tkappaByCp =
thermos[i].Kappa()/thermos[i].Cp();

aniAlphas.set
(

i,
new volSymmTensorField
(

IOobject
(

"Anialpha",
runTime.timeName (),
solidRegions[i],
IOobject ::NO_READ ,
IOobject :: NO_WRITE

),
solidRegions[i],
dimensionedSymmTensor(tkappaByCp ().

dimensions (), Zero),
zeroGradientFvPatchSymmTensorField :: typeName

)
);

aniAlphas[i]. primitiveFieldRef () =
coordinates[i]. transformPrincipal
(

solidRegions[i]. cellCentres (),
tkappaByCp ()

);
aniAlphas[i]. correctBoundaryConditions ();

}

IOobject betavSolidIO
(

"betavSolid",
runTime.timeName (),
solidRegions[i],
IOobject ::MUST_READ ,
IOobject :: AUTO_WRITE

);

if (betavSolidIO.typeHeaderOk <volScalarField >(true))
{

betavSolid.set
(

i,
new volScalarField(betavSolidIO , solidRegions[i

])
);

}
else
{

betavSolid.set
(

i,

170 Appendix B. Appendix B: Solver implementations

new volScalarField
(

IOobject
(

"betavSolid",
runTime.timeName (),
solidRegions[i],
IOobject ::NO_READ ,
IOobject :: NO_WRITE

),
solidRegions[i],
dimensionedScalar("1", dimless , scalar (1))

)
);

}
// Info << " Adding to rhos\n" << endl;
// rhos.set
// (
// i,
// new volScalarField
// (
// IOobject
// (
// "rho",
// runTime.timeName (),
// solidRegions[i],
// IOobject ::NO_READ ,
// IOobject :: AUTO_WRITE
//),
// thermos[i].rho()
//)
//);

// Info << " Adding to Cps\n" << endl;
// cps.set
// (
// i,
// new volScalarField
// (
// IOobject
// (
// "cp",
// runTime.timeName (),
// solidRegions[i],
// IOobject ::NO_READ ,
// IOobject :: AUTO_WRITE
//),
// thermos[i].Cp()
//)
//);

// Info << "Calculating field rhoCps\n" << endl;
// rhoCpSolid.set
// (
// i,
// new volScalarField
// (

B.3. chtMultiphaseInterFoam solver 171

// IOobject
// (
// "rhoCp",
// runTime.timeName (),
// solidRegions[i],
// IOobject ::NO_READ ,
// IOobject :: NO_WRITE
//),
// thermos[i].rho()*thermos[i].Cp()
//)
//);

// Info << " Adding to Ks\n" << endl;
// Ks.set
// (
// i,
// new volScalarField
// (
// IOobject
// (
// "K",
// runTime.timeName (),
// solidRegions[i],
// IOobject ::NO_READ ,
// IOobject :: AUTO_WRITE
//),
// thermos[i]. kappa ()
//)
//);

}

solidRegionDiffusionNo

scalar DiNum = -GREAT;

forAll(solidRegions , i)
{

//- Note: do not use setRegionSolidFields.H to avoid double
registering Cp

//#include "setRegionSolidFields.H"
const solidThermo& therms = thermos[i];

tmp <volScalarField > magKappa;
if (therms.isotropic ())
{

magKappa = therms.kappa();
}
else
{

magKappa = mag(therms.Kappa());
}

tmp <volScalarField > tcp = therms.Cp();

172 Appendix B. Appendix B: Solver implementations

const volScalarField& cp = tcp();

tmp <volScalarField > trho = therms.rho();
const volScalarField& rho = trho();

DiNum = max
(

solidRegionDiffNo
(

solidRegions[i],
runTime ,
rho*cp,
magKappa ()

),
DiNum

);

}

solidRegionDiffNo.H

/*--
------------ -*\

========= |
\\ / F ield | OpenFOAM: The Open Source CFD

Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

--

Copyright (C) 2011 -2013 OpenFOAM Foundation

--

License
This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or
modify it

under the terms of the GNU General Public License as
published by

the Free Software Foundation , either version 3 of the
License , or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful ,
but WITHOUT

ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License

for more details.

You should have received a copy of the GNU General Public
License

along with OpenFOAM. If not , see <http :// www.gnu.org/
licenses/>.

B.3. chtMultiphaseInterFoam solver 173

Description
Calculates and outputs the mean and maximum Diffusion

Numbers for the solid
regions

*--
-------------*/

#ifndef solidRegionDiffNo_H
#define solidRegionDiffNo_H

#include "fvMesh.H"

namespace Foam
{

scalar solidRegionDiffNo
(

const fvMesh& mesh ,
const Time& runTime ,
const volScalarField& Cprho ,
const volScalarField& kappa

);
}

#endif

// **
************* //

solidRegionDiffNo.C

/*--
------------ -*\

========= |
\\ / F ield | OpenFOAM: The Open Source CFD

Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

--

Copyright (C) 2011 -2017 OpenFOAM Foundation

--

License
This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or
modify it

under the terms of the GNU General Public License as
published by

the Free Software Foundation , either version 3 of the
License , or

(at your option) any later version.

174 Appendix B. Appendix B: Solver implementations

OpenFOAM is distributed in the hope that it will be useful ,
but WITHOUT

ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License

for more details.

You should have received a copy of the GNU General Public
License

along with OpenFOAM. If not , see <http :// www.gnu.org/
licenses/>.

*--
-------------*/

#include "solidRegionDiffNo.H"
#include "surfaceInterpolate.H"

// *
* * * * * * //

Foam:: scalar Foam:: solidRegionDiffNo
(

const fvMesh& mesh ,
const Time& runTime ,
const volScalarField& Cprho ,
const volScalarField& kappa

)
{

surfaceScalarField kapparhoCpbyDelta
(

sqr(mesh.surfaceInterpolation :: deltaCoeffs ())
*fvc:: interpolate(kappa)
/fvc:: interpolate(Cprho)

);

const scalar DiNum = max(kapparhoCpbyDelta).value ()*runTime.
deltaTValue ();

const scalar meanDiNum =
average(kapparhoCpbyDelta).value ()*runTime.deltaTValue ()

;

Info << "Region:␣" << mesh.name() << "␣Diffusion␣Number␣mean:
␣" << meanDiNum
<< "␣max:␣" << DiNum << endl;

return DiNum;
}

// **
************* //

setRegionSolidFields

fvMesh& mesh = solidRegions[i];
solidThermo& therms = thermos[i];

B.3. chtMultiphaseInterFoam solver 175

// volScalarField& rho = rhos[i];
// volScalarField& cp = cps[i];
// volScalarField& rhoCps = rhoCpSolid[i];
// volScalarField& K = Ks[i];
// volScalarField& T = Ts[i];

tmp <volScalarField > trho = therms.rho();
const volScalarField& rhosol = trho();

tmp <volScalarField > tcp = therms.Cp();
const volScalarField& cpsol = tcp();

// tmp <volScalarField > tkappa = thermo.kappa ();
// const volScalarField& kappa = tkappa ();

// volScalarField& Tsol = Ts[i];

tmp <volSymmTensorField > taniAlpha;
if (! therms.isotropic ())
{

volSymmTensorField& aniAlpha = aniAlphas[i];
tmp <volVectorField > tkappaByCp = therms.Kappa ()/cpsol;
const coordinateSystem& coodSys = coordinates[i];

aniAlpha.primitiveFieldRef () =
coodSys.transformPrincipal
(

mesh.cellCentres (),
tkappaByCp ()

);

aniAlpha.correctBoundaryConditions ();

taniAlpha = tmp <volSymmTensorField >
(

new volSymmTensorField(aniAlpha)
);

}

const volScalarField& betav = betavSolid[i];

fv:: options& fvOptions = solidHeatSources[i];
volScalarField& h = therms.he();

readSolidMultiRegionPIMPLEControls
const dictionary& pimpleCHT = mesh.solutionDict ().subDict("

PIMPLE");

int nNonOrthCorr =
pimpleCHT.getOrDefault <int >("nNonOrthogonalCorrectors", 0);

solveSolid
if (finalIter)
{

mesh.data::add("finalIteration", true);

176 Appendix B. Appendix B: Solver implementations

}

{
for (int nonOrth =0; nonOrth <= nNonOrthCorr; ++ nonOrth)
{

fvScalarMatrix hEqn
(

fvm::ddt(betav*rhosol , h)
- (

therms.isotropic ()
? fvm:: laplacian(betav*therms.alpha (), h, "

laplacian(alpha ,h)")
: fvm:: laplacian(betav*taniAlpha (), h, "laplacian(

alpha ,h)")
)

==
fvOptions(rhosol , h)

);

hEqn.relax ();

fvOptions.constrain(hEqn);

hEqn.solve(mesh.solver(h.select(finalIter)));

fvOptions.correct(h);
}

therms.correct ();

Info << "Min/max␣T:" << min(therms.T()).value () << ’␣’
<< max(therms.T()).value () << endl;

}

if (finalIter)
{

mesh.data:: remove("finalIteration");
}

readSolidTimeControls

/*--
------------ -*\

========= |
\\ / F ield | OpenFOAM: The Open Source CFD

Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

--

Copyright (C) 2011 OpenFOAM Foundation
Copyright (C) 2020 OpenCFD Ltd.

--

License
This file is part of OpenFOAM.

B.3. chtMultiphaseInterFoam solver 177

OpenFOAM is free software: you can redistribute it and/or
modify it

under the terms of the GNU General Public License as
published by

the Free Software Foundation , either version 3 of the
License , or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful ,
but WITHOUT

ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License

for more details.

You should have received a copy of the GNU General Public
License

along with OpenFOAM. If not , see <http :// www.gnu.org/
licenses/>.

Global
readSolidTimeControls

Description
Read the control parameters used in the solid

*--
-------------*/

scalar maxDi = runTime.controlDict ().getOrDefault <scalar >("maxDi
", 10);

// **
************* //

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Thesis Statement. Background and motivation
	Phase Change Process
	Water phase change
	Phase diagram of ice
	Properties of ice
	Freezing phenomena

	Mechanisms of Heat Transfer. Heat convection
	Conjugate Heat Transfer. Heat conduction

	Numerical Methods for Phase Change Phenomena
	State of Art. Numerical Methods
	Front tracking method
	Enthalpy method
	Phase field method

	Solidification methods
	Volume-of-Fluid Method: General Aspects
	Enthalpy-Porosity Model. Governing Equations
	Lee model
	Momentum Equation
	Energy Equation
	Classical nucleation theory. The coefficient Cf.

	Interphase porosity models
	Surface tension model

	Numerical Simulation of Solidification Process
	OpenFOAM. General Aspects
	The finite volume method
	OpenFOAM functioning
	Boundary Conditions Directory
	Constant Properties Directory
	System Directory

	Solidification process. Methodology
	OpenFOAM: BuoyantBoussinesqPimpleFOAM. Natural Convection solver
	Case Description
	Hypotheses And Assumptions
	Governing Equations
	Momentum Equation
	Temperature Equation

	Solver descripton. Control Loop
	Code implementations
	Case Setup
	Validation of Results and Conclusions

	OpenFOAM: IcoReactingMultiphaseInterFOAM. Phase-Change Process
	Case Description.
	Hypotheses And Assumptions
	Governing Equations
	Momentum Equation
	Energy Equation

	Solver description. Control Loop
	Mass transfer models
	Code implementations
	Case Setup
	Validation of Results and Conclusions
	Stefan Problem
	Interface height
	Conclusions on the Stefan problem

	Numerical Simulation of Heat Transfer
	OpenFOAM: chtMultiphaseInterFOAM. Conjugate Heat Transfer
	Case description
	Hypotheses And Assumptions
	Governing Equations of the Fluid Region
	Governing Equations of the Solid Region
	Energy Equation

	Solver description. Control Loop
	Code implementations
	Case Setup
	Boundary conditions
	Thermophysical properties

	Results and Conclusions

	Conclusions
	Future Works
	Bibliography
	Bibliography
	Appendix A: Solidification models
	Enthalpy-porosity library
	mySolidificationMeltingSource.H
	mySolidificationMeltingSource.C
	mySolidificationMeltingSourceTemplates.C

	Lee-Nucleation library
	LeeCNT.H
	LeeCNT.C
	Library header files

	equationOfState
	Python code for Stefan Problem

	Appendix B: Solver implementations
	Computational Mesh script
	myBuoyantBoussinesqPimpleFoam solver
	chtMultiphaseInterFoam solver
	Fluid region
	Solid region

