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Introduction
Increasing human and climatic pressures on coastal systems 

and  their infrastructure has resulted in cumulative loses for 
ecosystem services (e.g. Sanchez-Arcilla et al, 2022) and 
increasing degradation of coastal and harbour structures (e.g. 
Kong and Frangopol, 2004; Speijker et al 2000). The result has 
been a steady increase in risk levels, both for infrastructures 
(Al-Najjar, 2007) and coastal habitats (Coanda et al., 2020), 
compounded by a lack of bespoke predictive maintenance 
(Hermans et al., 2013). A predictive maintenance programme, 
linking observations and inspections with numerical and/or 
experimental analyses of water-sediment-structure-ecosystem 
interactions, specially under extreme conditions, would 
reduce coastal risks during the life cycle of coastal structures 
or habitats (Yang et al 2004; Yang et al 2006; Okasha and 
Frangopol, 2009).

By combining in-situ measurements with coupled modelling 
it should be feasible to assess structural and ecosystem 
performance before reaching tipping points or ultimate limit 
states (Sakib and Wuest, 2018). Locally tailored predictive 
maintenance programs result in monitoring/inspection plans 
(Orcesi et al, 210) that support a development of adaptation 
pathways based on objective data and the best level of available 
knowledge, aggregating past experiences, metocean forecasts 
(Sanchez-Arcilla et al, 2021) and climatic projections. The 
added value of these combined approaches should increase 
under future climate scenarios and extreme conditions 
(Strauss et al, 2008; Yuan et al., 2013). Moreover, predictive 
maintenance in other fields has increased socio-economic and 
natural system productivity, reducing breakdown times and in 
our case is expected to enhance coastal structural performance 
and ecosystem status. Predictive maintenance programmes 
should explicitely address the efect of extremes, both for 
drivers such as wave heights or storm surges or for responses, 
such as structural damages or peaks in the morphodynamic 
response. This is the approach followed in this work, based on 
extreme analyses for key drivers and responses in the coastal 
zone, such as incoming wind-waves or functional/resistant 
failures. From a comparative analysis of wave extremes along 

Cantabrian and Mediterranean coasts, we shall assess the 
sensitivity of extreme distributions to available data, invoked 
hypotheses and applied statistical techniques. The paper will 
next discuss how this uncertainty affects coastal risk levels 
and will conclude with some remarks to bound uncertaninty 
for improving coastal sustainability and the required proactive 
maintenance.

Materials and methods
Predictive maintenance, already a common approach in 

mechanical, electrical and some branches of civil engineering, 
is based on monetary costs formulated as a function of pre-
defined levels of functionality or safety losses (e.g. Chen 
and Toyoda, 1990; Dey, 2001; de Pater and Mitici, 2021). 
Depending on structural or ecosystem type and the dominant 
maritime climate, risk assessment will require different 
combinations of driving factors (e.g. incident significant 
wave height, meteorological or astronomic tides) and different 
limit states, either functional or resistant (e.g. erosion or 
overtopping). The same applies to ecosystem service delivery, 
depending on functionality and structure for each coastal 
habitat. Predictive maintenance is known to reduce costs and 
impacts under current and particularly future scenarios and 
where extreme events play a key role due to the non linear 
formulations that reproduce ecosystem or structural responses 
(Ran et al, 2019). Non-linearities and uncertainties require 
monitoring risk levels by a smart combination of observations, 
inspections and simulations, from which it should be possible 
to establish an optimal maintenance to mimimize risks and 
costs, while increasing the life time of the considered structure 
or habitat.

Recent advances in modelling and observations (e.g. 
Sánchez-Arcilla et al., 2019) have paved the way to 
increase structural and ecosystem sustainability by means 
of proactive decisions, particularly urgent under extreme 
events or the expected acceleration in climate change. This 
approach is illustrated in the paper by combining a data-
driven characterization of wave extremes with some non-
linear formulations for the considered structural or ecosystem 
responses. The data analysed correspond to more than 30 years 
of wave series from buoys deployed at the Basque, Cantabrian 
and Catalan coasts. Extremes have been characterized with a 
number of statistical techniques that present increasing error 
intervals with return period, showing how the more energetic 
events, represented by a smaller sample, feature a higher 
uncertainty level. The error also varies with storm threshold 
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and prevailing climates, with marked variations between 
Cantabrian and Mediterranean conditions

Coastal responses, such as structural damages, can be linked 
to operational or survival conditions, representing functional 
or resistant failure modes and their corresponding tipping 
points. Ecosystem responses can be linked to erosion, flooding 
or water quality degradation, associated to both operational 
(e.g. background erosion) and survival (e.g. impulsive beach 
breaching) conditions.

Results and discussion
The analysis of wave time series shows how uncertainty 

increases with storm energy level and depends on the selected 
variable. Nevertheless, this uncertainty can be decreased by 
propagation effects (Figure 1), raising the threshold to define 
wave storms or by applying conditional statistics, where 
Bayesian extreme wave height distributions present lower 
error bars for the upper distribution tail (Figure 2). These 
uncertainties also depend on the selected variable, illustrated 
in the figures by significant wave height and mean wave 
period (Figure 1), where the latter variable features a higher 
dispersion (Figure 2).

The resulting risks for coastal systems will increase due 
to the expected structural and ecosystem degradation, until 
a threshold is reached. This increase of risk levels can be 
bounded by a bespoke predictive maintenance (Figure 3) 
programme, where proactive action is taken whenever risk 
levels approach some co-designed threshold. Such a predictive 
maintenance will therefore result in shared benefits for coastal 
environments and the socio-economic activities they support. 
Predictive maintenance programmes should also address the 
interaction between coastal dynamics and infrastructures, 
with important savings in costs such as, for instance, when 
siltation closes harbour mouths during energetic storms. These 
events could be easily prevented by a validated early warning 
system (Lorente et al, 2021) accompanied by a monitoring and 
predictive maintenance programme.

Figure 2. Comparison of conventional and Bayesian extreme distributions 
showing the reduction of wave heights and uncertainty intervals.

Figure 3. Schematic representation of how a predictive maintenance 
program can bound time-evolving risk levels.

Conclusions
A smart combination of observations, modelling and 

maintenance can result in a significant reduction of coastal 
risks, both for infrastructures and natural habitats. Predictive 
maintenance, anticipating the expected degradation of 

Figure 1. Comparison of 95% confidence intervals for extreme significant wave heights at two depths (left) and for mean wave period (right).
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structures and habitats, should lead to a significant reduction 
of risks and undesired impacts, enhancing ecosystem service 
delivery, saving costs and reducing the carbon footprint to 
maintain assets and risk levels under increasing human and 
climatic pressures. This would, in turn, increase the funding 
and commitment to maintain these coastal structures and 
ecosystems in a good status.

The combination of a multi-disciplinary monitoring 
programme with a continuously validated early warning 
system that incorporates structural and ecosystem services, 
could efficiently support proactive decisions to reduce coastal 
hazards and vulnerabilities, while increasing coastal health. 
Such an approach, structured along time to tackle climatic 
variability and socioeconomic changes (e.g. new infrastructure, 
degradation of existing works or habitat losses), could 
produce a set of adaptation pathways with tipping points to 
maintain coastal ecosystems and infrastructures. The support 
of observations, together with harmonised metrics, to assess 
the performance of coastal systems, should increase the added 
value of monitoring and maintenance programmes, particularly 
urgent under present extremes (e.g. energetic storms) or the 
expected acceleration of climate change (e.g. for sea level rise).
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