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Abstract— Underwater target localization using range-only
and single-beacon (ROSB) techniques with autonomous vehicles
has been used recently to improve the limitations of more
complex methods, such as long baseline and ultra-short baseline
systems. Nonetheless, in ROSB target localization methods, the
trajectory of the tracking vehicle near the localized target
plays an important role in obtaining the best accuracy of the
predicted target position. Here, we investigate a Reinforcement
Learning (RL) approach to find the optimal path that an
autonomous vehicle should follow in order to increase and op-
timize the overall accuracy of the predicted target localization,
while reducing time and power consumption. To accomplish this
objective, different experimental tests have been designed using
state-of-the-art deep RL algorithms. Our study also compares
the results obtained with the analytical Fisher information
matrix approach used in previous studies. The results revealed
that the policy learned by the RL agent outperforms trajectories
based on these analytical solutions, e.g. the median predicted
error at the beginning of the target’s localisation is 17% less.
These findings suggest that using deep RL for localizing acoustic
targets can be successfully applied to in-water applications
that include tracking of acoustically tagged marine animals by
autonomous underwater vehicles. This is envisioned as a first
necessary step to validate the use of RL to tackle such problems,
which could be used later on in a more complex scenarios

I. INTRODUCTION

One of the main challenges in marine research lies in
underwater positioning of underwater features or assets (e.g.,
marine species [1] or underwater vehicles [2]). Due to the
large attenuation of radio waves in water [3], Global Posi-
tioning System (GPS) signals are not suitable for positioning
underwater targets. Nonetheless, acoustic signals can fill
the underwater communications gap left by radio waves.
Acoustic signals have much greater underwater propagation
capabilities [4], and therefore, a network of nodes or bea-
cons can be deployed and used to localize underwater tar-
gets, which may include Autonomous Underwater Vehicles
(AUV), benthic rovers, or acoustically tagged organisms.

Unfortunately, underwater acoustic deployments are often
complex and highly economically and logistically expensive
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[5]. To avoid these inherent issues, different strategies have
been developed for tracking underwater targets, moving from
the traditional, moored Long Baseline (LBL) systems [6], to
GPS Intelligent Buoy (GIB) systems [7], or most recently
range-only and single-beacon (ROSB) methods [8] where a
single AUV surveys a marine area to estimate the position
of an acoustically tagged target. Range-only methods have
different advantages over angle-related localization methods
(e.g., Ultra-Short Baseline (USBL) systems [9]) because
it (i) reduces the power consumption and the number of
required devices (e.g. an inertial measurement unit), and
subsequently the cost and size of the overall system, and (ii)
angle measurements are less robust in rough sea conditions
compared to range measurements [10], especially if they are
used in small platforms [11] such as an Autonomous Surface
Vehicle (ASV) Wave Glider (Liquid Robotics, USA).

The main drawback in ROSB localization techniques is
related to path optimization (i.e. what trajectory should fol-
low the ASV to increase the accuracy of the predicted target
position). The ultimate goal is to compute the optimal ASV
trajectory that will yield the best possible accuracy of the
estimated target positions, which will depend significantly
on the trajectories imparted with the ASV. While for static
targets the optimization solution is relatively straightforward,
in a dynamic environment with a mobile target, an analytical
solution is not trivial. In the present work, a deep Rein-
forcement Learning (RL) approach has been used to find the
optimal policy that an agent (e.g., ASV) should follow in
order to accurately localize underwater targets (Fig. 1). This
is envisioned as a first necessary step to validate the use
of RL to tackle such problems, which could be used later
on in a more complex scenarios. Here, we show that the
RL agent† can learn an optimal policy, with a performance
comparable to the analytically derived optimal trajectory
during the steady state. In addition, our method outperforms
the classical strategy of going direct to the last estimated
target position and start to conduct loops around it, with a
reduction in predicted error by 17% during the transient state.

II. RELATED WORK

The relationship between the acoustic sensor location and
the accuracy that can be achieved in parameter estimation
under different measurement typologies has been widely
studied [12]. In general, the computation of the optimal

† Data and materials availability: The range-only target
localization algorithms with deep RL are available on GitHub:
github.com/imasmitja/RLforUTracking
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Fig. 1. What is the optimal path than an agent (yellow dot) should follow
in order to track accurately underwater targets (red triangle)? where q is the
target’s position, p is the agent’s position, dt is the slant range measured, dd
is the target depth, and dp is distance between the agent and the projected
target position into the 2D plane of the agent.

sensor configuration can be carried out analytically by ex-
amining the corresponding Cramer-Rao Bound (CRB) or its
Fisher Information Matrix (FIM) [13]. If a set of noisy obser-
vations are used to estimate a certain parameter of interest,
the CRB sets the lowest bound on the covariance matrix
that can asymptotically be achievable using any unbiased
estimation algorithm. For example, the CRB method was
used to find the optimal sensors’ locations of an underwater
sensor network to find a target using their ranges [14], and
to study the localization accuracy of a target using Time
Difference Of Arrivals (TDOA) measurements on different
sensor geometry scenarios [15]. This approach was adapted
to derive the optimal path shape that an ASV should take in
order to compute the position of an underwater target using
range-only and single-beacon techniques [16].

Nevertheless, such analytical studies can be computation-
ally intractable, and especially for multi-target, multi-tracker
missions, where a group of autonomous vehicles (trackers)
try to localize a set of acoustic-tagged targets. Approaches to
address these challenges include using a set of assumptions
(e.g., knowing the target maneuvers and knowing one of
the tracker’s trajectories), or using numerical optimization
methods given the complexity of the problem [17]. A set of
Monte Carlo simulations has also been used to study different
triangulation algorithms and derived the optimal path and
practices to track underwater moving targets [8]. However,
there are scenarios where the information needed to estimate
the target position is scarce. For example, in the area-only
method [18], the information used to infer the target position
is the area bounded by the maximum range that the pings
generated by an acoustic tag can be detected. In such case,
the FIM analysis cannot be used to find the optimal sensor
placement, and therefore, is even harder to find the path that
a tracker should conduct.

Within this framework, we propose the use of deep Re-
inforcement Learning (RL) techniques to find the optimal
trajectory for an Autonomous Surface Vehicle (ASV) to track
an underwater target. Deep RL uses the formal framework
of Markov Decision Process (MDP) to define the interaction
between a learning agent and its environment in terms of
states, actions, and rewards [19].

Whereas most of the attention in deep RL has focused on
game theory (e.g., to solve Atari games [20] or to mastering
the game of Go [21]), the same principles can be used to
solve path planning and trajectory optimization. Previous
studies have shown that gliders can navigate atmospheric
thermals autonomously using RL to provide an appropriate
framework that identifies an effective navigational strategy as
a sequence of decisions made in response to environmental
cues [22]. Or to station a stratospheric Loon superpressure
balloon at multiple locations using a RL controller [23].
In addition, a RL algorithm has been trained to efficiently
navigate in vortical flow fields [24]. Finally, an actor-critic
architecture has also been used to track a ground target by an
unmanned autonomous vehicle [25], where the RL network
is able to control an agent to avoid collisions and reach the
target using range and angle information by using Recurrent
Neural Networks (RNN).

In addition, autonomous navigation systems are typically
divided into three main layers, which are known as Guid-
ance, Navigation, and Control systems (GNC) [26], [27].
The Navigation and Control system strongly depends on
platform’s configuration and the instruments/sensors used.
Here we propose the development of a RL approach as a
path planning system (which establishes the points to cross
to accomplish the goal of the mission) for an adaptive ASV
which will be able to explore the area and locate the detected
targets. The algorithm will be designed detached to the lower
Control and Navigation layers in order to make it platform-
free and easily deployable in real environments.

III. PROBLEM FORMALIZATION AND NOTATION

In this paper, we consider the case of a single tracker (an
ASV) and a single target (a benthic instrument platform),
hereinafter the agent and the target, respectively. The final
goal of the agent is to localize and track the target. Two key
algorithms run simultaneously to achieve this goal: (i) agent
path planning, which is based on the policy learned using
the RL; and (ii) the target position estimation based on range
data acquired on-line, where we used a Least Square (LS)
approach for its simplicity and low runtime consumption [8].
Here, we focused on solving the common scenario where
the agent moves in a 2D environment (e.g. an ASV) and
the target’s depth is known by the agent. Used for example
in [16] and [28]. Both the agent and the target have an
acoustic modem, which can be used to measure the distance
between them. Finally, we also assume that the agent knows
its position by using their own navigation methods (e.g., GPS
or dead reckoning).

A. Environment

The environment is based on OpenAI particle [29], [30],
which is a multi-agent particle world with a continuous ob-
servation and action space. This environment has been mod-
ified to incorporate the target estimation algorithm (which
is based on a LS range-only triangulation technique) and
its visualization. The OpenAI particle action space has been



modified to fit the constraints of our scenario that is explained
in the following subsections.

B. Agent Model

In the absence of ocean currents the kinematics model of
an autonomous vehicle is given by{

ṗ(t) = v(t)
v̇(t) = F/m

, (1)

where t ∈ [0, t f ]; t f > 0, p ∈ R2 is the position vector of the
agent in a 2D plane, v ∈ R2 is the velocity vector, F ∈ R2

is a force vector, and m is the mas of the agent. In this
experiment, we have considered an agent with a constant
velocity v, and a single action space referred to the yaw angle
ψ . This is a common operational mode when it is applied
to torpedo-shape AUVs (e.g., the Tethys LRAUV (MBARI,
USA)), or vehicles that does not use thrusters (e.g., the
Wave Glider (Liquid Robotics, USA)). Consequently, using a
state space formulation, and defining the input action vector
∆ψ = u+w∈R1 related to the increment of the agent’s angle
ψ , with zero-mean additive Gaussian noise w ∼ N (0,σ2),
the simplified dynamic discrete model at time-step t can be
defined by pt+1

vt+1
ψt+1

=

pt
0
ψt

+

vg(ψt+1)∆t
vg(ψt+1)

∆ψt

 , (2)

where g(·) ≜ [cos(·),sin(·)], and ∆t is the sampling time-
interval. This equation will set the following way-point to be
reached by the agent given a defined time step and agent’s
velocity. As we stated before, we have designed a path
planing algorithm which is detached to the lower Control
and Navigation system layers [26], in order to make this
method platform free and useful for different autonomous
vehicles. Consequently, the action control provided by the
RL algorithm is the increment of the yaw angle which the
ASVs lower control system should follow using their own
internal close loop method.

C. Target Model

In this study, we assumed a static target scenario, and
therefore, after its initialization the target position is not
changed during all the episode. Thus, the target position
vector is defined as q ∈ R2.

D. Measurement Model

The agent is equipped with a sensor that measures dis-
tances to the targets at specified discrete intervals of time.
Therefore, the range measurement is naturally modeled in a
discrete-time setting as

d̄t = ||dt ||+wt , t ∈ {1,2, . . . ,m}, (3)

Where dt = pt − qt is the relative position vector of the
target with respect to the agent, m indicates the number of
measurements carried out, and wt ∼N (ε,σ2) is a non-zero
mean Gaussian measurement error where σ2 is the variance
and ε is the systematic error, mostly due to the sound

speed uncertainty under water [4], [31]. Finally, the projected
planar range measurement dp can be derived knowing the
target depth dd as d̄pt =

√
(d̄2

t −dd
2).

E. Target Position Prediction Model

Different methods can be used to obtain an estimation of
the target’s position q̂ using range-only and single-beacon
techniques [8]. Here, a simple unconstrained LS algorithm
is used. The main idea on LS algorithms lies in a linearisation
of the system by using the squared range measurements
to obtain a linear equation as a function of the unknown
target’s position. While this technique is suitable for static
target localization, its capability to track a moving target can
be compromised, falling compared to other algorithms (e.g.,
Particle Filter (PF)). However, the run-time performance of
the LS is orders of magnitudes below its competitors, which
is key in RL techniques to accelerate the training phase.

F. Observation and Action Space

The observations at each time-step t that we can get from
the environment include the position p and velocity v vectors
of the agent, the relative position vector of the estimated
target position (d̂t = pt − q̂t ), and the projected distance
measured by the sensor d̄pt :

ot = [pt ,vt , d̂t , d̄pt ]. (4)

On the other hand, the action space is determined by the
force applied to the yaw (ψ) angle of the agent, as at ≜ uψ .

G. Reward Function

In RL, the agent obtains rewards as a function of the state
and agent’s action. The agent aims to maximize the total
expected return R = ∑

T
t=0 γ trt , where γ is a discount factor

and T is the time horizon.
The design of a good reward function is a key aspect

in RL. In dense reward settings, the agent receives diverse
rewards in most states (e.g., a reward proportional to distance
to the goal), which allow the agent to quickly differentiate
good states from bad ones. However, such approach can
easily exploit badly designed rewards, and get stuck in local
optima and induce behavior that the designer did not intend.
In contrast, goal-based sparse rewards are appealing since
they do not suffer from the reward exploration problem [32].
In addition, this simple small set of rules have its similari-
ties with biological behaviours, and therefore, applicable to
animals with very limited level of information processing
[33].

Here, we propose a combination of both reward methods:
(i) a non-sparse reward to guide the agent towards the goal
when its performance is poor, and (ii) a sparse reward when
the performance of the agent reaches a predefined threshold.
In addition, we have defined two different goals to optimize
the agent’s trajectory, which influence the reward obtained
by the agent: (i) a reward function based on the distance
between the agent and the target, and (ii) a reward function
based on the estimated target position error.



The reward as a function of the distance between the agent
and the target is designed as

rd =

{
λ (0.5− d̂) i f d̂ > dth

1 else
, (5)

where λ is a positive constant, d̂ is the distance between
the agent and the estimated target position, and dth is the
predefined distance threshold to be reached by the agent.
The smaller the distance d̂ is, the closer the agent is to
the estimated target, and therefore, this reward is the most
important reward to guide the agent navigate to the target.

The reward as a function of the predicted target error is
designed as

re =

{
λ (0.5− eq) i f eq > eth

1 else , (6)

where eq = ||q̂t −qt || is the error between the predicted target
position and the real target position at time-step t, and eth
is the predefined error threshold to be reached by the agent.
This reward is the most important to optimize the agent’s
trajectory toward the goal of finding the optimal path which
leads to the greatest accuracy of the estimated target position.

Finally, a terminal reward related to the success of the
mission, has been designed as

rterminal =

 −100 i f d̂ > d̂max

−1 i f d̂ < d̂min
0 else

, (7)

where d̂max is the maximum distance where the agent can
go related to the target, and d̂min is a threshold set to avoid
collisions between the target and the agent. Consequently,
this sparse reward gives a higher penalty if the distance
between the target and the agent is bigger than a maximum
or less than a minimum threshold.

Then, the final reward is given by r = rd + re + rterminal .

IV. ALGORITHM

Three different actor-critic algorithms have been imple-
mented and tested to compare their performance:

• Deep Deterministic Policy Gradient (DDPG): This deep
Q-learning algorithm is an actor-critic, model-free algo-
rithm based on the deterministic policy gradient that can
operate over continuous action spaces [34].

• Twin Delayed Deep Deterministic Policy Gradient
(TD3): The TD3 [35] is a variant of the DDPG,
which address the overestimation problem in Actor-
Critic methods. Specifically, TD3 employs two critics
Q1 and Q2 (with a policy update delay equal to 2),
and uses the minimum of the predicted optimal future
return in observation ot+1 to bootstrap the Q-value of
the current observation ot and action at .

• Soft Actor-Critic (SAC): Model-free deep reinforcement
learning algorithms typically suffer from two major
challenges, very high sample complexity and brittle con-
vergence properties, which necessitate meticulous hy-
perparameter tuning. However, in this off-policy actor-
critic deep RL algorithm, the actor aims to maximize

expected reward while also maximizing entropy [36].
That is, to succeed at the task while acting as randomly
as possible.

V. RESULTS

A set of trials has been conducted to evaluate deep RL
algorithms as a guidance system for an ASV. The results
showed the performance obtained with the learned policy to
localise a static target using ROSB triangulation techniques.
In addition, it has been compared against the optimal trajec-
tory derived analytically [16], which is a set of measurements
equally distributed on a circumference centred on top of the
target (hereinafter referred to as predefined path). With a
circumference’s radius at least equal to

√
2 multiplied by

the depth of the target, or greater.

A. Experiment Settings

The following hyperparameters and environment settings
have been used during the training (Table I). The agent’s
constant velocity was set to v = 1 m/s and the sampling time
interval to ∆t = 30 s. In addition, all the distances were scaled
to 1, which represented an horizon of 1 km. The reward was
initialized with a λ = 0.01, which was empirically found
as an optimal value, and the dth in (5) to 300 m. The
measurement noise wt was set with a σ of 1 m and ε of
1% of the distance, which is a value close to real conditions.
Finally the number of steps per episode was set to 200.

TABLE I
HYPERPARAMETERS FOR ALGORITHMS

Hyperparameter Algorithms
DDPG TD3 SAC

Replay buffer size (D) 500000
Batch size (N) 32∗

Discount factor (γ) 0.99
Target NN update rate (τ) 0.01
Actor learning rate (la) 1e-3
Critic learning rate (lc) 1e-4
Optimizer Adam
Random start episode number 10000
Update every 30
Update times 20
Parallel envs 8
Actor NN structure [64,32]
Critic NN structure [64,32]
Actor exploration noise 0.5 -
Noise reduction per episode 0.9999 -
Policy update delay - 2 -
Entropy regulation coefficient (α) - - 0.005♯

∗ increases by 2 every 200000 episodes, up to 2048, as in [37].
♯ SAC is also configured with an automatic entropy regulation using

Adam optimizer.

B. Experimental Results for Static Targets

One of the key questions is to see if an agent can find
the optimal policy to localise an underwater target using the
range-only method. We tested 3 different reward function
configurations based on the predicted target error eq (6) :

• Test 1: eth = 0 m (Non-sparse reward)
• Test 2a: eth = 1 m (Non-sparse + Sparse reward)
• Test 2b: eth = 0.3 m (Non-sparse + Sparse reward)



We found the average reward and Standard Deviation
(SD) per episode obtained during the training (Fig. 2). The
three algorithms implemented (DDPG, TD3, and SAC) have
been tested using the different reward function configurations
explained above. The average reward and SD per episode has
been obtained using a rolling window of the latest 100000
episodes. We can see that the SAC(a) out-performed the rest
of the algorithms in all the different reward functions.

While the average reward has information related to the
accuracy of the predicted target position, it is difficult to
compare the results and have an idea of which reward func-
tion configuration gives the greatest performance. Therefore,
we computed the average predicted target error per episode
(using a rolling window of the latest 10000 episodes; Fig
3), which gives us a clear metric for what configuration
can achieve the greatest accuracy on estimating the target
position. We found a small variation in the average reward
per episode obtained between SAC and TD3 algorithms on
Test 1 (Fig 3A), and the highest accuracy was obtained using
the SAC(c) under the reward function of Test 2b, whereas
the more stable one was the SAC(a).

We can see the trajectories conducted by the agents trained
under the three configurations of the reward function in Fig.
4. Here we used the agent trained with the TD3 algorithm in
the first two reward functions and the SAC(c) algorithm in
the last one. This was done because the TD3 has greater
variability among the reward functions designed, and the
SAC is the one that presents the greatest performance. In
summary, these plots reveal interesting behaviours learned
by the agents:

• TD3 with reward equal to Test 1 (Fig. 4A): The agent
learns to go close to the target, but it conducts loops
outside the position of the target (i.e. the distance
between the center of the loops, conducted by the agent,
and the target is greater than the radius of the loops
themselves). This type of behaviour is known to perform
poorest related to the accuracy of the estimated target
positions [8]. Nonetheless, the agent is always inside
the 300 m boundary delimited by dth, and therefore, the
reward rd obtained is maximized. In addition, because
the reward re is much less compared to rd , the agent
can not learn its exploitation.

• TD3 with reward equal to Test 2a (Fig. 4B): In this
case, the agent has learned to conduct loops centered on
top of the agent but with some offset (i.e. the distance
between the center of the loops conducted by the agent
and the target is less than the loops radius, but greater
than 0). This behaviour increases the accuracy of the
estimated target positions. While this behaviour was
learned by increasing the reward re when the agent
reached a certain accuracy threshold eth, the agent will
not reduce the target localisation error further because
the accuracy is below the eth.

• SAC(c) with reward equal to Test 2b (Fig. 4C): In this
more restricted reward configuration (i.e. a lower eth),
the TD3 cannot exploit correctly the reward function
and it reached a sub-optimal policy. Nonetheless, the

agent trained with a SAC(c) algorithm, has learned the
predefined path, which is to conduct loops centered on
top of the target with nearly a zero offset.

We also see that the agent has learned a sinusoidal
trajectory when it approaches the target (i.e. transient state).
Interestingly, co-lineal points have a deficient performance
when estimating the position of the target using range-only
triangulation techniques [38], [39]. Therefore, this behaviour
helps the agent to obtain a greater estimation of the target
position at the beginning of the experiment.

C. Policy learning is dependent on target depth

The target depth has an influence on sensor placement
for range-only target localization in a planar 2D scenario
due to the measurement noise wt and the projection of the
slant range into the plane where these measurements where
conducted [40]. Typically, the location of the measurements
have to increase proportional with the target depth in order
to maintain or increase the predicted accuracy (i.e. the ideal
radius of the circumferential path or loop has to be typically
as large as possible). This behaviour can be observed on Fig.
5, where the target’s depth was set to 200 m. Limitations
to this method include: (i) the time/power required for the
ASV to conduct such large maneuvers, which is even critical
for tracking moving targets; or (ii) the number of range
measurements required to complete the loop. For example, if
the ASV conducts a range measurement every 30 m, and we
only use the latest 30 points to estimate the target position
using LS. In this case, if the loop’s radius is too large, those
30 measurement points will laid only in one side of the circle,
which will yield in a bad target prediction (Fig. 5 with an
agent’s radius > 200 m).

We tested our deep RL algorithms under different discrete
target depth configurations to determine whether the agents
could learn this behaviour and adapt the radius of the loop
trajectory with respect to the target’s depth. We observed that
the SAC(a) agent was able to adapt its trajectory (Fig. 6).
With this policy, the error of the predicted target position can
be maintained below the 0.16 m threshold.

D. Comparison with a predefined path

Finally, the performance of the trained agent has been
compered with the predefined path (aka a loop with a con-
stant radius around the predicted target position) following
the reliable evaluation procedures reported in [41]. This trial
has been conducted 100 times in the simulation environment
for each algorithm: SAC(c), SAC(a), and predefined path.
Both RL agents has been trained using the reward of Test
2b. The environment used a random seed for each execution,
and the range measurement noise wt was set with a σ of 1
m and ε of 1% of the distance as during the agent’s training.
The result shows the evolution of the target estimation over
200 steps, where its Interquartile Mean (IQM) and the SD of
the Root Mean Square Error (RMSE) are presented (Fig. 7).
At the start of tracking (transient state), the SAC algorithm
is able to more accurately localise the target. In this case,
the average IQM error of SAC(a) at the beginning of the



Fig. 2. Average reward and SD per episode obtained using the DDPG, TD3, and SAC algorithms, where SAC(c) indicates a constant entropy regularization
parameter, and SAC(a) indicates an automatic entropy regulation using the Adam optimizer. Average obtained using a rolling window of the latest 100000
episodes. A single agent has been trained using three different reward functions: (A) Test 1, a non-sparse reward; (B) Test 2a, a non-sparse + sparse reward;
and (C) Test 2b, a non-sparse + sparse reward with a more constrained error threshold.

Fig. 3. Average target error per episode obtained using the DDPG, TD3, and SAC algorithms. Average obtained using a rolling window of the latest
10000 episodes. A single agent has been trained using three different reward functions: (A) Test 1, a non-sparse reward; (B) Test 2a, a non-sparse + sparse
reward; and (C) Test 2b, a non-sparse + sparse reward with a more constrained error threshold.

Fig. 4. A single trajectory of a trained agent. Blue dots are the trajectory of the agent, where each dot indicates where a new update was conducted (i.e.
a new range measured, an update of the estimated target position, and a new action chosen). Red squares are the estimated target position. (A) TD3 with
reward equal to Test 1, (B) TD3 with reward equal to Test 2a, and (C) SAC(c) with reward equal to Test 2b.



Fig. 5. Target prediction error as a function of the loop radius conducted by
the agent. Trial conducted with a target’s depth equal to 200 m. Using both
30 and 300 points to estimate its position by a LS triangulation method.

Fig. 6. Two agents trained at different target depths. The agent has learned
to increase the radius of the path as the depth of the target increases from
(A) 15 m to (B) 200 m.

trial is 17% less than the predefined path, which indicates a
probability of improvement equal to 0.61. Finally, at the end
of the trial (steady state), SAC(a) has a similar performance
to the predefined path, which means that the RL agent
has learned a policy close to the optimum one derived
analytically [16].

Fig. 7. Comparison between SAC algorithms and a predefined path. Target
RMSE prediction error evolution from the first 200 steps and 100 random
iterations. Using the Interquartile Mean (IQM) as suggested by [41].

VI. CONCLUSIONS

We demonstrate how deep reinforcement learning can
learn optimal trajectories to guide an autonomous vehicle to
localize underwater targets. It is worth noticing that this is
envisioned as a first necessary step to validate the use of deep
RL to tackle such problems, which could be used later on
in a more complex scenarios. In the future, the architecture
developed here could also be used to train an agent to follow
moving underwater assets, and also to train multi-agent and
multi-target scenarios, where a group of coordinated agents
can navigate to find and track a series of underwater assets
at previously unknown positions. This kind of capability
opens a new way to deploy adaptive underwater vehicles
in a coordinated fashion that are capable of adapting their
behaviour to more effectively localize underwater targets.
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