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Abstract—Many interesting terrestrial and astrophysical sce-
narios involving magnetic fields can be approached in axial
geometry. Even though the Lagrangian smoothed particle hy-
drodynamics (SPH) technique has been successfully extended to
handle magneto-hydrodynamic (MHD) problems, a well-verified,
axisymmetric MHD scheme based on the SPH technique does not
exist. In this work, we propose and check a new axisymmetric
MHD hydrodynamic code that can be applied to astrophysical
and engineering problems which display an adequate geometry.
We show that a hydrodynamic code built on these axisymmetric
premises is able to produce similar results to standard 3D-
SPHMHD codes but with much lesser computational effort.

I. INTRODUCTION

In spite of the large success achieved by Cartesian SPH
hydrodynamic codes, there is a scarcity of SPH calculations
taking advantage of the axisymmetric approach in computa-
tional fluid dynamics. To cite a few of them: [19], [5], [8], [13],
[26]. But much more dramatic is the case of axisymmetric
MHD simulations with SPH (SPHMHD) because, as far as
we know, there is a manifest void of published material on
that topic.

Nevertheless, implementing a consistent, well verified, ax-
isymmetric SPHMHD code may broaden the spectra of ap-
plications of such a technique. In astrophysics, the magnetic
field around stellar objects can often be described with dipole
or toroid geometries, both consistent with axial geometry.
Relevant examples are the study of magnetized accretion disks
around pulsars and the gravitational collapse of an initially
spherical cloud of magnetized gas. Resolution issues add an
extra degree of difficulty when these studies are conducted in
three dimensions. In some cases, the axisymmetric approach
is the only plausible option to study these scenarios (see,
for example, [18] regarding simulations of the pulsar wind-
disk interaction with an Eulerian axisymmetric hydrodynamic
code). Additionally, MHD experiments in terrestrial labo-
ratories can be largely benefited from the joint virtues of
the well-established SPHMHD technique [21]–[23], [29] plus
the inherent better resolution of the axisymmetric approach.
A paradigmatic example is the Z-pinch devices which aim
to focus magnetically driven strong implosions towards the
symmetry axis [11]. Additionally, researchers can take ad-
vantage of hydrodynamic codes with axial geometry to carry
out convergence studies of the resolution of their own three-
dimensional hydrodynamic codes.

In this work, we develop and test, for the first time, a
novel axisymmetric magneto-hydrodynamic scheme, called
Axis-SPHYNX, consistent with the SPH formulation. Our
proposal extends the axisymmetric code developed by [8] to
the MHD realm by adding the magnetic-stress tensor to the
axisymmetric SPH equations. Furthermore, the induction and
dissipative equations are consistently written in such geometry.
We focus on the basic mathematical formulation of ideal
MHD, so that explicit currents terms do not appear in the
governing equations. We show that, given an axial symmetry,
our MHD code is able to produce results similar to those
obtained in 3D with SPHMHD codes, but with much lesser
computational effort. The numerical scheme has been verified
with a number of standard tests in ideal MHD, encompassing
explosions/implosions, hydrodynamic instabilities, and more
complex problems involving self-gravity.

II. SPH EQUATIONS OF AXISYMMETRIC IDEAL MHD

A. Integral approach to estimating gradients

Gradients and derivatives are calculated with the Integral
Approach (IA) [9] and adapted to the specificity of axial
geometry. The IA approach leads to an Integral SPH scheme
(ISPH), which was shown to enhance the accuracy in estimat-
ing gradients [6], [7], [24]. Additionally, the ISPH formalism
naturally incorporates corrective terms which are helpful in
removing the so-called magnetic tensile instability. In the IA,
the gradient of any scalar function f carried away by particle
a in the axisymmetric plane defined by coordinates s(r, z),
with r =

√
x2 + y2 is,[
∂f/∂x1

∂f/∂x2

]
a

=

[
τ11 τ12

τ21 τ22

]−1 [
I1

I2

]
, (1)

where, from now on we use the notation x1 ≡ r;x2 ≡
z;x3 ≡ φ (with φ being the azimuth angle) indistinctly.
Coordinate indexes i, j, k are notated superscripts to make
them compatible to the standard notation of the magnetic-
stress tensor. Coefficients τ ij (i, j = 1, 2), and Ii in Eq. (1)
are,

τ ija =
∑
b

mb

ηb
(xi

b − xi
a)(x

j
b − xj

a)Wab(|sb − sa|, ha) , (2)
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I(ra) =
∑
b

mb

ηb
f(rb)(sb − sa) Wab(|sb − sa|, ha)

− f(ra)
∑
b

mb

ηb
(sb − sa)Wab(|sb − sa|, ha) ,

(3)

where ηb is the surface density of particle b and Wab is the
kernel function. The anti-symmetric properties of the kernel
gradient, guarantee that the second term in the RHS of Eq. (3)
is close to zero. Therefore, it is neglected. That assumption
gives rise to the standard ISPH scheme by [9]. An exception to
that procedure, which is connected with the magnetic tensile-
instability problem, is discussed in Sect. II-E.

From now on, Wab(ha) ≡ W (|sb−sa|, ha) with |sb−sa| =√
(rb − ra)2 + (zb − za)2 for the sake of clarity. According

to [6], the IA is related to the gradient of the kernel as,

∂Wab(ha)

∂xi
a

⇔ Ai
ab(ha) ; i = 1, 2 , (4)

with,

Ai
ab(ha,b) =

2∑
j=1

cija (ha)(x
j
b − xj

a)Wab(ha,b) , (5)

being cija the coefficients of the inverse matrix in Eq. (1). We
stress that although the main Axis-SPH equations are hence-
forth written within the ISPH formalism, translating them to
the standard SPH scheme with Eq. (4) is straightforward.

B. The axisymmetric SPHMHD equations

Adapting the axisymmetric ISPH equations to MHD is not
too complicated. Volumetric (ρ) and surface η densities are
connected with η = 2πrρ. Pressure terms in the momentum
equation are substituted by the magnetic stress tensor [21],

Sij
a = −

(
Pa +

1

2µ0
B2

a

)
δij +

1

µ0

(
Bi

aB
j
a

)
(6)

where letter subscripts (a, b) refer to particles and {i =
1, 3; j = 1, 3} are tensor components. Note that even though
the scheme is basically two-dimensional, with coordinates
s(r, z), a third coordinate, associated with the azimuth angle
φ is eventually necessary to describe the toroidal component
of the magnetic field, Bφ, and velocity, vφ. These momentum
equations must also include the magnetic contribution to the
hoop-stress terms, characteristic of the axisymmetric formu-
lation [5]. Following [21], the axisymmetric SPHMHD equa-
tions are built making use of the minimum action principle
and the details of the procedure will be reported elsewhere.

We write the axisymmetric SPHMHD scheme in the density
averaged variant [28] because it better handles the tensile
instability and allows a direct comparison with the tests cases
described in [29]. Considering inverted reflective ghost parti-
cles in the negative semi-plane, r < 0 (see below), guarantees
that η is correctly interpolated in the axis neighborhood.

Fig. 1. The use of inverted-reflected ghosts particles along with the IA
technique overcomes the numerical troubles when calculating the density η
and its gradient near the symmetry axis.

• Mass conservation

ηa =

N∑
b=1

εb mbWab(ha) , (7)

where εb = ±1 is a parameter which assigns a signature
to the neighbor particle. Real particles have εb = +1
whereas ghost particles across the axis have εb = −1.
According to Fig. 1, the use of such inverted-reflected
particles ensures that η behaves linearly when r → 0 and
is, therefore, correctly interpolated. The signature ε also
affects the momentum and energy equations.

• Momentum equations

ara = 2π

(
Pa +

B2
a

2µ0
− (Bφ

a )2

µ0

)
ηa

+

2π

N∑
b=1

mb

(
Sri
a |ra|
ηaηb

Ai
ab(ha) + εb

Sri
b |rb|
ηaηb

Ai
ab(hb)

)
.

(8)

aza = 2π

N∑
b=1

mb

(
Szi
a |ra|
ηaηb

Ai
ab(ha) + εb

Szi
b |rb|
ηaηb

Ai
ab(hb)

)
.

(9)

aφa = 2π

(
Br

aB
φ
a

µ0ηa

)
+

2π

N∑
b=1

mb

(
Sφi
a |ra|
ηaηb

Ai
ab(ha) + εb

Sφi
b |rb|
ηaηb

Ai
ab(hb)

)
,

(10)
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where {ara, aza, aφa} are the acceleration components in
cylindrical coordinates and repeated indexes, i(= r, z)
are summed. Equation (10) is only relevant in those ap-
plications involving both, {vφ, Bφ ̸= 0}, as is the case of
scenarios combining rotation and toroidal magnetic fields.
Its impact in the simulations is discussed in Sect. III-D.

• Energy equation

dua

dt
= −2π

Pa

ηa
vra + 2π

Pa|ra|
ηa

N∑
b=1

mb

ηb

(
viab Ai

ab(ha)
)
.

(11)

C. The induction equation

The induction equation is first written similarly to [21],

dB

dt
= −B(∇ · v) + (B · ∇)v , (12)

where the non-ideal term associated with the current density
J has been taken out from the expression. Writing B(∇ · v)
and the material derivative (B ·∇)v in cylindrical coordinates,
taking ∂

∂φ = 0, and manipulating, we have,

d

dt

Br

Bz

Bφ

 =

−
(
∂vz

∂z + vr
r

)
∂vr

∂z −vφ
r

∂vz

∂r −
(
∂vr
∂r + vr

r

)
0

∂vφ

∂r
∂vφ
∂z −

(
∂vr

∂r + ∂vz

∂z

)
Br

Bz

Bφ

 .

(13)

Thus, the induction equation is written as a linear equation,

dBi
a

dt
=

3∑
j=1

rijBj
a , (14)

where the coefficients rij only depend on the velocity field
around the particle.

D. Dissipation

As in Cartesian SPH, the axisymmetric approach needs
some amount of dissipation to handle shock waves. As usual in
SPH, this is done with the artificial viscosity (AV) formulation.
There are two main sources of dissipation in MHD: those from
the AV and those arising from the induced currents in plasma
sheets during collisions. The former is purely hydrodynamical
and is the same as that implemented in SPHYNX [7], [10]
with the third coordinate removed. Only the Balsara limiters
[1] to AV have been included in the present version of the
code. For the latter, we use the scheme described in [29],(

dB

dt

)diss

= ξB∇2B , (15)

with ξB = αB vsig,B h, mimicking a magnetic resistivity
parameter, vsig,B being the characteristic signal velocity, and

αB ≃ 1. The numerical analog of Eq. (15) has a Cartesian-like
contribution (but with coordinates r, z),

(
dB

dt

)diss,C

a

=

nb∑
b=1

mb

ηb

ξB,a + ξB,b

|sab|
Bab

(
ŝiabÃ

i
ab

)
, (16)

where Bab = Ba − Bb, ŝab is the unit vector joining
the particles a, b in the axisymmetric plane and Ãi

ab =
0.5[Ai

ab(ha) +Ai
ab(hb)].

In cylindrical geometry there are other contributions to be
added to the Cartesian part (Eq. 16). The complete expression
to compute each component of the magnetic dissipation is,

(
dBi

dt

)diss

a

=

(
dBi

dt

)diss,C

a

+

(
ξB
r

∂Bi

∂r

)
a

− (1− δiz)

(
ξB
r2

Bi

)
a

,

(17)

where δiz (i = r, z, φ) is the Kronecker-delta function. The
contribution of such ‘non-Cartesian’ terms in the test cases
below was, however, subdominant and was neglected.1

According to [29], the magnetic dissipation contributes to
the rate of change of internal energy, Eq. (11) as,

(
du

dt

)diss

a

= − πra
µ0ηa

nb∑
b=1

mb

ηb

ξB,a + ξB,b

|sab|
B2

ab

(
ŝiabÃi

ab

)
,

(18)
In the tests below, the adopted value of ξB is,

ξB =
1

2
αB vsig,B |sab| . (19)

For the signal velocity we take the expression by [22],

vsig,B = |vab × ŝab| (20)

E. Removing the magnetic tensile instability

Calculations where magnetic pressure largely exceeds the
kinetic gas pressure are prone to undergo the tensile in-
stability [20]. Such instability concerns the harmful effect
of the off-diagonal elements of the magnetic-stress tensor,
Sij = BiBj/µ0, when they become dominant. The tensile
instability manifests in the artificial clumping of particles and
is often the source of numerical troubles. One of the first
solutions to getting rid of this instability was suggested by
[16], who subtracted the off-diagonal part in Eq. (6) from the
acceleration equation, Eqs. (8,9). Other expressions of such
corrective term to the acceleration can be found in [3], [21].

It is worth noting that the ISPH scheme provides a similar
corrective term to that by [16]. The idea is to take into account
the last term in the RHS of Eq. (3) to build a suitable corrective
term involving the off-diagonal part of the magnetic stress
tensor. According to [9] such term, f i

∇B,a is,

1Additionally, it is not evident how to build a suitable contribution of these
terms to the energy equation, Eq. (18).
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TABLE I
DEFAULT VALUE OF RELEVANT SIMULATION PARAMETERS WITH

AXIS-SPHYNX. COLUMNS ARE: NUMBER OF NEIGHBORS nb , AV
COEFFICIENTS, HEAT DIFFUSION COEFFICIENT (αu) IN AV, MAGNETIC

DISSIPATION COEFFICIENT (αB ) AND CLEANING PARAMETERS.

nb αAV βAV αu αB fclean σclean

60 1 2 0.05 0.5 1 1

f i
∇B,a = −2

∑
b

mb
Sij
a

ρaρb
∇j

aW ab(ha) , (21)

where Sij
a =

Bi
aB

j
a

µ0
; i ̸= j, is the off-diagonal part in Eq. (6).

The corrective term is steered by the parameter βa = 2µ0Pa

B2
a

,
and to smooth the transition between the weak and strong field
regimes we use the interpolating function by [29],

Ha =

 +2 βa < 1
2(2− βa) 1 ≤ βa ≤ 2

0 Otherwise,
(22)

Equation (21), is easily adapted to axial geometry as,

f i
∇B,a = −2πHa

∑
b

mb
Sij
a |ra|
ηaηb

Aj
ab(ha) . (23)

The magnitude f i
∇B,a in Eq. (23) is added to Eqs. (8,9) to

obtain the acceleration of the SPH-particle.

F. Cleaning the divergence of B

A challenge of numerical MHD is to permanently fulfill
the condition ∇ · B = 0. In most existing SPH codes this is
achieved with divergence cleaning techniques. Here we use
the hyperbolic/parabolic cleaning scheme by [27] which has
proven very satisfactory to keep ∇ · B at negligible levels.
Adapting this cleaning scheme to the axisymmetric geometry
is straightforward. According to [29], the cleaning parameters
are set to fclean = 1, σc = 1.

III. TESTS

We describe the implementation and results of four tests
encompassing a variety of physical phenomena such as explo-
sions, implosion, instabilities, and gravitational collapse. On
the whole, we found a good match between the axisymmetric
code Axis-SPHYNX and the results obtained with the 3D-
hydrodynamic code GDSPH by [29].

The equation of state (EOS) was that of an ideal gas
with γ = 5/3, except in the last test where a barotropic
EOS was used. To build initial models with homogeneous
density in cylindric geometry we spread the SPH particles
with mass m0

a in a uniform squared grid and re-normalize the
value of their mass according to ma = m0

a r. While such
a simple recipe was enough for the purposes of this work,
more elaborated initial models could be necessary for other
applications. The magnetic permittivity was taken µ0 = 1.
Information regarding the chosen value of several parameters
in Axis-SPHYNX is shown in Table I.

Fig. 2. Point-like explosion in a magnetized medium calculated with Axis-
SPHYNX at time t = 0.048

A. The magnetic Sedov test

The axisymmetric version of the MHD Sedov test is easily
set by considering an initially spherically symmetric explosion
amidst a uniform magnetic field B(r, z) = Bz ẑ. We compare
the evolution computed with Axis-SPHYNX to that obtained
with GDSPH for the same initial conditions, but in 3D. To
seed the explosion a Gaussian initial profile of internal energy
was assumed:

u(s) = u0 exp[−(s/δ)2] + ub , (24)

with s =
√
r2 + z2 and,

u0 =
Etot

(π3/2 ρ0 δ3)
, (25)

where Etot = 5 is the total initial energy of the explosion, δ =
0.1, and B = 10 ẑ. The medium was initially homogeneous
with ρ0 = 1 and a background internal energy ub = 1. Periodic
boundary conditions were implemented in the 3D calculation
and a mix of reflective, (left and right planes), and periodic (up
and down planes), in the axisymmetric approach. The number
of particles was N = 3622 (average smoothing length, h ≃ 8 ·
10−3), in the Axis-SPHYNX calculation and N = 1253 (h ≃
22 · 10−3), in the GDSPH run.

The results of the calculations are summarized in Figs. 2 and
3. The color maps, depicting density, pressure, and modulus
of velocity and magnetic field at t = 0.048, do not reveal
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Fig. 3. Point-like explosion in a magnetized medium calculated with GDSPH.
There are shown the same magnitudes as in Fig. 2 but in a cut in the plane
Z with thickness h.

significant differences between the simulations performed by
Axis-SPHYNX (Fig. 2), and GDSPH (Fig. 3). They also look
qualitatively similar to the results published by other authors
[23]. As shown in the first panel in Figs. 2 and 3, the shock
front is slightly ahead in the axisymmetric calculation, which
is due to the higher resolution in that calculation. The color
maps of velocity (bottom-left panels) show extended regions
with low velocity (blue regions) in both cases. Close to the
symmetry axis the distribution of particles is, however, less
ordered in the axisymmetric calculation, where the velocity
fluctuates more. The total energy, E, is well conserved,
∆E
E0

≃ 10−2 % at all times. The value of the estimator

ϵdiv =
〈

h∇·B
|B|

〉
, measuring the averaged relative error of the

constraint ∇ ·B = 0 was always ϵdiv ≤ 0.2%.

B. Z-pinch like implosion

Z-pinch devices were among the first to explore the fea-
sibility of having controlled nuclear fusion in terrestrial lab-
oratories (see [11], [25] for a review). They have also been
applied to conduct laboratory astrophysics experiments [2]. In
the Z-pinch machines a strong toroidal magnetic field, Bφ is
created by a mega-ampère electric current pulse moving along
the Z-axis. The Lorentz force exerted by Bφ on the plasma,
which initially moves in the Z-direction, impels it towards
the Z-axis, provoking the implosion. Provided that the initial

conditions are axisymmetric, the compression of the plasma
at the symmetry axis can be strong.

To arrange a Z-pinch magnetic implosion in a simple
numerical experiment, we consider an initially homogeneous
plasma with ρ = 1, P = 1 in a cylinder with radius R = 1, and
height Z = 2. The plasma is initially moving with vz = −1.
We set a toroidal magnetic field, Bφ, with maximum strength
Bφ

0 = 3 and with a gaussian profile,

Bφ = Bφ
0 exp

[
−(r − r0)

2/δ
]
, (26)

with a characteristic width δ = 0.01. The boundary conditions
are periodic on the top and bottom of the cylinder and
reflective on the lateral surfaces. As in the Sedov-test, we aim
to compare the results of Axis-SPHYNX to those obtained
with the three-dimensional code GDSPH, and identical initial
conditions. In this test, both hydrodynamic codes have a
similar initial resolution, h ≃ 8 · 10−3, but with N2D = 3622

and N3D = 5122 × 24 particles in the axisymmetric and full
3D calculations, respectively.

The main results of this numerical experiment are shown
in Fig. 4. That figure depicts the profiles of r−averaged
magnitudes, ρ, vr, and Bφ, at different elapsed times. The first
and second rows correspond to the axisymmetric calculation
whereas the lower two resulted from the full three-dimensional
calculation with GDSPH. As we can see, the match between
the results obtained with both codes is excellent. The density
peak around the point of maximum compression at t = 0.18 is
a bit larger in the axisymmetric calculation. The radial velocity
profile at the supersonic shock front is sharp and well captured
in both calculations. The ⟨vr⟩ profiles obtained with Axis-
SPHYNX are a bit noisier than those with GDSPH, probably
due to the lower number of neighbors, nb ≃ 60, used to carry
out the interpolations. The toroidal component of the magnetic
field evolves very similarly in both calculations. The total
energy was preserved up to ∆E

E0
≤ 0.4% and the constraint

∇ ·B = 0 was fulfilled to machine precision.

C. Magnetic Kelvin-Helmholtz instability

The growth of the Kelvin-Helmholtz instability across the
contact layer between fluids with different densities is a
challenging test for hydrodynamic codes. Resolution issues
limit the growth rate of the instability during the initial linear
stage which, later on, hinders the development of small wave
lengths in the non-linear phase [15]. Modern SPH codes are
able to cope with the KH instability but only if the number
of particles is high, several millions as a minimum (in 3D),
and the density contrast is usually not very large. Adding a
magnetic field to the plasma turns this test into an interesting,
albeit more complex, MHD problem. SPH 3D simulations of
the growth of the KH instability in a weakly magnetized media
have been reported by [12], [29], among others. The main
effect of the magnetic field is to uncoil and stretch the vortex
during the non-linear stage so that the instability looks rather
different from that of non-magnetized systems. The axisym-
metric realization of these 3D-MHD experiments consists of



2022 International SPHERIC Workshop Catania, June 6–9, 2022

Fig. 4. Z-pinch-like implosion in a magnetized medium calculated with Axis-SPHYNX (first and second rows of panels) and with GDSPH (third and fourth
rows of panels). The figure shows the shell-averaged values of density ρ, radial velocity vr and toroidal component, Bφ of the magnetic field.

two interacting fluids moving along two concentric cylindrical
pipes, but in opposite directions. A uniform magnetic field,
Bz , pointing along the axis of the pipe, is added so that it
interacts with the radial component of the velocity vr in the
unstable layer, via the Lorentz force.

We consider a cylinder with radius R = 1 and length L = 2.
A fluid with density ρin = 2 moving with vz = +0.5 fills the
inner half, r ≤ R/2, of the cylinder. The outer part of the
cylinder is filled with a lighter fluid, ρout = 1, moving with
vz = −0.5. Both fluids share the same pressure, P = 2.5 and
are immersed in a magnetic field Bz = 0.1. The fluid interface
is altered by adding a small radial perturbation to vr,

vr = ∆vr exp

(
−|r − 0.5|

0.1

)
sin (4πz) (27)

with ∆vr = 0.05. The number of particles in the Axis-

SPHYNX and GDSPH runs was N = 4222 and N = 2563,
respectively. Figure 5 depicts the density color-map at two
times, t = 1.5 and t = 2.8, being the former representative
of the hydrodynamic stage and the latter of the time when
MHD effects take over (the characteristic growth time-scale is
τKH ≃ 1.06). The match between both codes at t = 1.5 is
good, with qualitatively similar development of the structures
and sub-structures. In the long run, the magnetic field manages
to distort the morphology of the billows and vortexes. At
t = 2.8 the morphology of the billows (second and fourth
snapshots in Fig. 5) is qualitatively similar. In both cases,
the MHD effects stretch the vortex, but the flow loses the
symmetry faster in the axisymmetric calculation. Energy is
conserved to ∆E/E0 ≤ 0.1% whereas the divergence con-
straint is satisfied up to ϵdiv ≤ 2%.
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Fig. 5. Particles distribution at two elapsed times, t = 1.5 and t = 2.8, for models calculated with Axis-SPHYNX (first two panels) and calculated with
GDSPH (XZ slices in the two rightmost panels).

D. Collapse of a rotating-magnetized cloud

The collapse of a rotating and magnetized dense cloud of
gas embedded in a more dilute medium has become a standard
test to verify MHD hydrodynamic codes [12]. This test in-
volves many physical ingredients of astrophysical interest such
as gravity, rotation, and magnetic fields. Because the collapse
of the cloud basically proceeds with axial geometry (except
in those cases where there is fragmentation) this scenario can
be approached with axisymmetric MHD codes.

A cloud with mass M = 1 M⊙ and density ρ0 =
4.8 · 10−18 g·cm−3 rotates around the Z-axis with ω0 =
4.24 · 10−13 s−1. The cloud is surrounded by a rarefied
medium, with a radius ten times larger than that of the cloud
and density ρM = ρ0/300. The whole system is inside a
magnetic field B = 610

µ ẑ µG aligned with the rotation axis
of the cloud. Three-dimensional simulations of the collapse,
with a barotropic EOS, have shown that the implosion of the
cloud would produce a narrow jet only if the parameter µ is
neither too large (µ ≤ 75), nor too small (µ ≥ 2) [12], [29].

This test is extremely challenging to an axisymmetric SPH
code because the collapse is fierce and impels the particles
towards the singularity axis. The central density increases
five orders of magnitude and the Courant criterion enforces
the time-step to be really small. We have carried out three
simulations of this scenario with µ = ∞, µ = 20, µ = 10,
from the initially spherically symmetric conditions until the
formation of the disk and beginning of the jet launching at
t ≃ 1.1 · 1012 s, which is close to the characteristic free-fall
time of the cloud.

The gravity force (g) is calculated using the scheme de-
scribed in [8] and is added to the acceleration. For this problem
it is better to seek for the angular velocity, ω(s, t) rather than
for vφ. The momentum equations, Eqs. (8,9,10), become,

dvra
dt

= ara + gra + ω2
ara . (28)

dvza
dt

= aza + gza . (29)

dωa

dt
=

1

ra
aφa − 2

vra ωa

ra
. (30)

Fig. 6. Density color-maps of the core of the collapsing cloud at t =
1.1 · 1012 s. Upper panels show the results with Axis-SPHYNX for three
values of the magnetic field, Bz = 610/µ. The same is shown in the lower
panels, but calculated with the code GDSPH.

The case with aφa = 0 is equivalent to the conservation of
angular momentum. Figure 6 shows the density color-map of
the innermost region of the cloud at t = 1.1 ·1012 s, when the
jets, if any, are born. The upper panels depict the calculation
with Axis-SPHYNX2 and the lower ones are for the GDSPH
calculation. Both look similar, although the axisymmetric
calculation is a little less evolved. At t = 1.1 · 1012 s the
cloud has collapsed into a disk with similar central density,
ρ ≃ 10−12 g·cm−3, in both cases. Both codes indicate
the same qualitative trend with decreasing values of the µ

2Because, for now, gravity is calculated computing direct particle-particle
interactions [8] the number of particles used in this simulation was lower than
those in previous tests, N = 1802 particles.
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parameter. A high value, µ → ∞ (i.e. Bz ≃ 0) there is no jet
at all, whereas the incipient jet is more developed for µ = 10,
which is encouraging. Following the evolution of the cloud
and the jet at longer times is out of the scope of the present
work.

IV. CONCLUSION

In this work, we present a novel SPH formulation of ideal
magneto-hydrodynamics with axial geometry. The main goal is
to tackle problems with higher resolution and lower compu-
tational effort than standard SPHMHD codes. The proposed
scheme and concomitant hydrodynamic code, called Axis-
SPHYNX, have been verified by direct comparison with the
results of the three-dimensional SPHMHD code GDSPH, by
[29]. On the whole, there is a good match between both
hydrodynamic codes in the performed tests. The agreement
is excellent in the case of simulating explosions and implo-
sions in magnetized systems, which could be of interest to
understanding the physics of plasma compression in terrestrial
laboratories. The axisymmetric code is also able to simulate
the growth of instabilities such as the Kelvin-Helmholtz insta-
bility, which involves longer time-scales than explosions.

Axis-SPHYNX can handle more complex scenarios such as
those involving gravity and rotation of indisputable interest to
astrophysics. As shown in Sect. III-D, with the collapse of a
magnetized cloud, the proposed scheme is able to successfully
cope with that scenario. Nevertheless, the agreement between
both codes is here basically qualitative and work has to be
done to enhance the calculations. Immediate prospects are to
incorporate grad-h effects, AV switches, as well as to improve
the initial model generation and to refine the treatment of
particles that move close to the singularity axis.
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