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Abstract—In multitemporal SAR and Polarimetric SAR (Pol-
SAR) coherence is a capital parameter to exploit common
information between temporal acquisitions. Yet, its use is lim-
ited to high coherences. This article proposes the analysis of
low coherence scenarios by introducing a reinterpretation of
coherence. It is demonstrated that coherence results from the
product of two terms accounting for coherent and radiometric
changes, respectively. For low coherences, the first term presents
low values, preventing its exploitation for information retrieval.
The information provided by the second term can be used in
these circumstances to exploit common information. This second
term is proposed, as an alternative to coherence, for information
retrieval for low coherences. Besides, it is shown that polarimetry
allows the temporal optimization of its values. To prove the
benefits of this approach, multitemporal SAR and PolSAR data
classification is considered as a tool, showing that improvements
of the classification overall accuracy may range between 20%
and 50%, compared to classification based on coherence.

Index Terms—SAR, Coherence, Polarimetric SAR,
Change Detection, Classification, Crop Monitoring

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) technology is able to
provide Earth surface imagery almost independently of

weather conditions and the day–night cycle, as the atmosphere
is practically transparent at microwave frequencies. When
considering spaceborne platforms, SAR systems can provide
systematic global coverage with regular revisiting times. Com-
bined together, these capabilities make SAR systems an im-
portant and reliable technology to provide multitemporal data
series that can be employed to analyze and to characterize the
different dynamical processes occurring at the Earth surface,
but also to monitor human activities and their interaction with
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the environment. Thus, SAR systems are powerful tools to
monitor the climate change and to support adaptation actions.
There are many examples of current and future spaceborne
SAR systems: Sentinel-1a&b (C-band), BIOMASS (P-band),
NiSAR (L&S-band), ALOS (L-band), Radarsat-2 and RCM
(C-band), TerraSAR-X/TanDEM-X/PAZ (X-band), GF3 (C-
Band), LuTan-1a&b (L-band) or SAOCOM-1a&b. In many
cases, these systems form constellations to reduce revisit
times: 4-day for RCM, 6-day for Sentinel-1a&b or 8-day for
SAOCOM-1a&b.

In the case of SAR systems, the first source of temporal
information is the multitemporal series of the direct radar
observables. For single channel SAR systems, this corresponds
to the multitemporal SAR image’s intensities, whereas for
Polarimetric SAR (PolSAR) systems, this corresponds to the
mutitemporal series of coherency or covariance matrices. For
repeat pass configurations, and due to the interferometric
capabilities of SAR systems, additional and complementary
temporal information is captured by the complex interfero-
metric coherence, also referred to as temporal coherence, con-
structed from pairs of SAR images [1], exploiting the temporal
dependence between SAR images. In classical interferometry,
coherence is modelled as the product of several decorrelations
terms [2], in a way that these terms degrade the quality of the
information that can be extracted from coherence. A group of
these factors depends on the SAR system and the imaging pro-
cess, such as the thermal or the geometric decorrelation terms.
Ohter decorrelation terms, such as the volume decorrelation
[3], depend on the scatterer characteristics. For multitemporal
SAR acquisitions, coherence depends also on the temporal
decorrelation term, which accounts for changes in the scatterer
between acquisitions. Therefore, scenarios characterized by a
low temporal coherence, for instance, long temporal baseline
configurations or datasets affected by strong weather effects,
prevent the extraction of temporal information from coherence.
Consequently, the use of coherence is generally focused on
high temporal coherence scenarios, where Polarimetric SAR
Interferometry (PolInSAR) [3], [4] and Differential SAR In-
terferometry [5], [6] are good examples.

This paper analyzes the extraction of common temporal
information from multitemporal SAR and PolSAR datasets in
low temporal coherence scenarios, and establishes the relation
with the temporal information extracted from direct radar
observables. The basis of this study is on different previous
works on coherence and change detection analysis. On the one
hand, coherence has been proved to be helpful for land cover
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and vegetation mapping [7]–[10], where shorter temporal
baselines, leading to larger coherence values, have been shown
to perform better [1]. On the other hand, polarimetry has
been employed for optimized change detection [11] and crop
phenological monitoring based on the optimized polarimetric
contrast ratio [12]. We propose a reinterpretation of the tem-
poral coherence, linking the previous works under a common
theory, demonstrating that coherence can be separated into two
terms: a first symmetric term accounting for coherent changes
and a second asymmetric term accounting for radiometric
changes. For low temporal coherence scenarios, the symmetric
term presents low values, preventing the use of coherence.
Nevertheless, the information provided by the asymmetric
term can be used in these circumstances to exploit common
information between SAR acquisitions. We propose the use of
this information, as an alternative to coherence, for information
retrieval in low temporal coherence scenarios. To prove the
usefulness of this approach, we consider different classification
strategies in the field of Machine Learning (ML) and Deep
Learning (DL), with four different multitemporal SAR and
PolSAR datasets. Classification is focused on agricultural areas
as archetype of highly variable environment. As shown, the
use of the information provided by the asymmetric coher-
ence term, compared to coherence, improves the classification
overall accuracy (OA) between 20% and 50%. For reference,
classification results with intensities and PolSAR observables
are also provided. Classification is considered in the paper as a
mean to prove the benefits of the asymmetric coherence term
in the analysis of low coherence scenarios, but its use can be
extended to other applications.

II. TEMPORAL COHERENCE

A. Temporal SAR Coherence

Given two SAR acquisitions S1 and S2, their coherence is

ρ = |ρ|ejϕ =
E{S1S

∗
2}√

E{|S1|2}E{|S2|2}
(1)

where E{·} refers to the expectation, | · | is the absolute value
and ∗ is the complex conjugation. If both SAR images refer
to two temporal acquisitions, (1) is referred to as repeat pass
interferometric coherence or temporal coherence. In practice,
the coherence is obtained by estimating the expectation E{·}
by means of a speckle noise filter [13].

For temporal SAR acquisitions, assuming the absence of
radiometric changes by considering the symmetrized intensity
value |S|2 = (|S1|2 + |S2|2)/2, (1) can be written as

ρ = ρsymρasym (2)

ρsym =
E{S1S

∗
2}

E{|S1|2+|S2|2}
2

(3)

ρasym =
E{|S1|2+|S2|2}

2√
E{|S1|2}E{|S2|2}

. (4)

Eq. (2) decomposes coherence into two terms. The term ρsym
accounts for the coherence under the symmetric assumption
of no radiometric changes between SAR images, i.e., |S1|2 =

|S2|2. Therefore, it can be decomposed into the multiplication
of the classical decorrelation terms [2]

ρsym = ρtempρSNRρrgρvolρother (5)

accounting respectively for the temporal, the signal-to-noise
ratio, the range, the volume and other decorrelation effects.
The second term of (2) ρasym accounts for the departure
from the symmetric assumption, i.e., |S1|2 ̸= |S2|2, therefore
accounting for non-coherent or radiometric changes between
both SAR images. This term corresponds also to the quotient
of the arithmetic mean versus the geometric mean of the
SAR images intensities, that according to the inequality of
the arithmetic mean and the geometric mean for real non-
negative |S1|2 and |S2|2, results into ρasym ∈ [1,∞) [14].
To understand the interpretation of ρasym, it is interesting to
derive the relation with the ratio of SAR images intensities,
which is often considered in change analysis of SAR data

τ12 =
E{|S1|2}
E{|S2|2}

(6)

where τ12 ∈ [0,∞). It can be shown that ρasym =
(1/2)(

√
τ12 +

√
τ12

−1), demonstrating that ρasym can be
defined in terms of τ12, but the opposite is not true. The term
ρasym has the advantage that its inverse follows ρ−1

asym ∈ [0, 1].
For ρ−1

asym = 1, there are no radiometric changes, i.e.,
|S1|2 = |S2|2, or equivalently, the mean and the geometric
mean, see (4), are equal, whereas for ρ−1

asym = 0 the ra-
diometric change is large. Hence, ρ−1

asym takes the role of a
temporal coherence-like parameter, accounting exclusively for
radiometric changes.

Eq. (2) decomposes temporal coherence into a term ρsym
collecting coherent changes, and a term ρasym collecting non-
coherent or radiometric changes, allowing to consider both
types of changes equally. Table I shows the values of ρ
considering this decomposition. The first two rows of Table I
correspond to classical cases that do not need further analysis.
The third and fourth rows offer an interesting point of view
crucial in this study. The third row corresponds to a general
case where we consider the presence of radiometric changes
and maybe the presence of coherent changes. In the limit of
the absence of coherent changes, which could be referred to
as high temporal coherence scenario, ρ would account for the
changes between the two SAR acquisitions. The fourth row
shows that for total decorrelation, which could be referred to as
low temporal coherence scenario, ρ is zero and it cancels the
information provided by ρasym. Therefore, in a multitemporal
SAR context, the common information of changes can be
extracted from ρasym, also from (6), despite the coherence
being low or even zero. This situation may appear, for instance,
whenever ρtemp is low or even zero, a common situation with
multitemporal acquisitions with large temporal baselines, or
when SAR acquisitions are affected by weather effects.

This analysis proposes a decomposition of the temporal co-
herence between two SAR acquisitions which unifies concepts
previously considered separately, in essence, the analysis of
radiometric changes in terms of temporal coherence. For low,
or even null temporal coherence, the common information
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TABLE I
ρ GIVEN THE PRESENCE OF COHERENT OR RADIOMETRIC CHANGES.

Coh. Ch. Rad. Ch. Coherence value
No No ρ = ρsymρasym = 1 · 1 = 1
Yes No ρ = ρsymρasym = ρsym · 1 = ρsym

No/Yes Yes ρ = ρsymρasym (General case)
Yes (ρsym = 0) Yes ρ = ρsymρasym = 0

between SAR acquisitions can still be obtained from ρasym
or the bounded coherence-like term ρ−1

asym.

B. Temporal Polarimetric SAR Coherence

Polarimetric diversity allows the synthetic exploration of
all possible polarization states. When combined with inter-
ferometric diversity, i.e., PolInSAR, polarimetry has been
extensively exploited for coherence optimization [3], [15].
Nevertheless, for multitemporal acquisitions, these approaches
are limited in low coherence scenarios. To overcome this
limitation, Section II-A is now extended to multitemporal
PolSAR data. Considering two temporal PolSAR acquisi-
tions characterized by the coherency matrices T11 and T22,
respectively, and the temporal PolInSAR matrix Ω12, the
polarimetric temporal coherence is

ρ =
ωH

1 Ω12ω2√
(ωH

1 T11ω1)(ωH
2 T22ω2)

(7)

where H is the transposed complex conjugation and ω1 and
ω2 are unitary vectors defining the polarization of the two
SAR images synthesized to obtain ρ [3], [15]. Following (2),
and defining the symmetric matrix T = (T11 +T22)/2 [11],
[16]–[19], (7) can be decomposed as

ρ =
ωH

1 Ω12ω2

ωH
1 Tω2

ωH
1 Tω2√

(ωH
1 T11ω1)(ωH

2 T22ω2)
= ρsymρasym.

(8)
Eq. (8) represents the extension of (3) and (4), respectively, to
multitemporal PolSAR data, with the possibility to optimize
or maximize their values as a function of ω1 and ω2 [11].
The interpretation of ρsym and ρasym follows Section II-A.
The term ρsym accounts, in terms of PolSAR data, for the
temporal coherence under the equal scattering mechanism
assumption, i.e., T11 = T22. The second term ρasym accounts
for non-coherent changes between both temporal acquisitions,
allowing the characterization of multitemporal PolSAR data
for low coherence scenarios.

The optimization of ρasym is obtained from the Lagrange
methodology

L = ωH
1 Tω2 − λ1(ω

H
1 T11ω1 − C1)− λ2(ω

H
2 T22ω2 − C2)

(9)
leading to the following real eigenvalue problems

T−1
11 TT−1

22 Tω1 = νρω1 ⇒ AUA = ΣAUA (10)

T−1
22 TT−1

11 Tω2 = νρω2 ⇒ BUB = ΣBUB . (11)

A and B are generally non-Hermitian matrices, so UA and
UB are not expected to contain orthogonal eigenvectors. ΣA

and ΣB are diagonal matrices containing the eigenvalues of A

and B, which take the form νρ = λ1λ
∗
2 [3], [15]. Therefore,

the optimum values of ρasym are |ρasym,opti | =
√
νρ,i for

i = 1, 2, 3. Considering (10) and (11), it can be shown that

A = B =
1

4
[T−1

11 T22 +T−1
22 T11 + 2I]. (12)

Therefore, (10) and (11) are equivalent, so A and B present
the same eigenvalues, and particularly ω1 = ω2. The vector
form of ρasym (8) needs to be interpreted in terms of ω1 and
ω2. When ω1 ̸= ω2, ρasym ∈ C as two different polarizations
are used to form ρasym, but also it contains polarimetric co-
herence information. Nevertheless, for ω1 = ω2, ρasym ∈ R.
In this case, the same polarization is used to form ρasym, thus
it contains only radiometric information. Besides, the optimum
value is obtained under this assumption, i.e., ω1 = ω2.

The optimization of ρasym leads to ω1 = ω2, a condition
that does not need to be imposed. Thus, we consider the
following vector form of ρasym to analyze its optimum values

ρasym =
ωHTω√

(ωHT11ω)(ωHT22ω)
(13)

where ρasym ∈ R. The maximization of (13) is reduced to find
the eigenvalues of any of the three equivalent matrices in (12),
that is (1/4)[T−1

11 T22 + T−1
22 T11 + 2I] = UρΣρU

H
ρ , where

Uρ is a unitary matrix containing the eigenvectors and Σρ is
a diagonal matrix containing the real eigenvalues. A simple
manipulation leads to

Σρ =
1

4
[UH

ρ T−1
11 T22Uρ +UH

ρ T−1
22 T11Uρ + 2I]. (14)

Eq. (14) depends on T−1
11 T22 and T−1

22 T11. These are related
with the polarization ratio optimization problem for two tem-
poral PolSAR acquisitions [12], [20]

τ12 =
ωHT11ω

ωHT22ω
(15)

and its inverse. The maximization of (15), or its inverse,
through the Lagrange methodology

L = ωHT11ω − λ(ωHT22ω − C). (16)

results in the following real eigenvalue problems

T−1
11 T22ω = ντω ⇒ T−1

11 T22Uτ = ΣτUτ (17)

T−1
22 T11ω = ν−1

τ ω ⇒ T−1
22 T11Uτ = Σ−1

τ Uτ . (18)

That is, the eigenvectors in Uτ diagonalize T−1
11 T22 and

T−1
22 T11 and both forms present inverse eigenvalues. Hence,

Στ and Uτ contain also the generalized eigenvalues and
eigenvectors, respectively, of T11 and T22. As the diagonal-
ization operation is unique up to a permutation, Σρ and Στ ,
following (14), are related by

Σρ =
1

4
[Στ +Σ−1

τ + 2I] (19)

that after some calculations, for a particular eigenvalue is

ρasym,i =
1

2
(ντ,i + ν−1

τ,i ), i = 1, 2, 3 (20)

showing that the individual terms ρasym,i can be defined in
terms of ντ,i, but the opposite is not true. The first consequence
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of Eqs. (19) and (20) is that ρasym,i ∈ [1,∞) or ρ−1
asym,i ∈

[0, 1].
These results generalize the previous section. Thus, the

optimum values of ρasym, or the temporal coherence-like
terms ρ−1

asym, as well as the temporal eigenvalues ντ , are
proposed to characterize and to analyse multitemporal PolSAR
data in terms of the temporal coherence, which is specially
useful for low temporal coherence scenarios. This analysis
can also be considered for dual PolSAR data as it will be
shown in Section IV. Due to (20), as well as for simplicity, we
will mainly assume the use of ντ instead of ρasym. In what
it follows, we will show the usefulness of these parameters
in terms of information extraction in multitemporal SAR and
PolSAR data classification. We have considered the analysis
of a pair of coherency matrices, so when facing the analysis
of a multitemporal series of SAR acquisitions the analysis is
simply extended to all possible pairs of SAR images. Finally,
and with the aim of readability, ρasym and ντ will refer to the
set of the three optimum values.

C. Generalizations

Previously, we analyzed radiometric changes in terms of
the temporal coherence, in the scalar and vector forms, and we
proposed the temporal eigenvalues ντ to analyse multitemporal
PolSAR data series, specially in the case of low temporal
coherence scenarios. We have shown that the optimization of
ρasym is essentially equivalent to the classical polarimetric
optimization problem, resulting into the temporal eigenvalues
ντ . It is interesting to observe that these approaches extend
the concept of matrix distance by decomposing it in different
components. Thus, they are equivalent to:

• Geometric distance: In the cone of Hermitian positive
semi-definite matrices, the geodesic distance between two
matrices T11 and T22 is defined as [21], [22]

δg(T11,T22) =

(
3∑

i=1

log2λT−1
11 T22,i

)1/2

(21)

where λT−1
11 T22,i

are the eigenvalues of T−1
11 T22. Hence,

when analysing the polarimetric ratio (15) or the vector
form of ρasym (13), the geometric distance information
is being considered.

• Symmetric revised Wishart dissimilarity: This dissimilar-
ity measure assumes that T11 and T22 follow a Wishart
distribution and it performs a statistical hypothesis test to
evaluate if they follow the same distribution [23]

dsw(T11,T22) =
(
tr(T−1

11 T22) + tr(T−1
22 T11)

)
(n1+n2)

(22)
where n1 and n2 are the number of pixels in the regions
to calculate T11 and T22, respectively and tr(·) is the
matrix trace. As the trace corresponds to the sum of
eigenvalues, again one can see that the polarimetric ratio
(15) or the vector form of ρasym (13), particularly con-
sidering (12), a distance information is being considered.

Fig. 1. UAVSAR Yucatan lake data. Pauli images on (a) July 1st, (b) July
15th and (c) Ground Truth.

• Likelihood-ratio test statistic: The statistical test if T11

and T22 belong to the same distribution is defined as
[12], [24]

Q = 26n
|T11|n|T22|n

|T11 +T22|2n
(23)

where | · | is the matrix determinant. As shown, the
term ρ−1

asym represents the quotient between the geometric
and the arithmetic means and as observed, despite the
dependence on the number of averaged pixels n, ρ−1

asym

contains the likelihood-ratio test statistic information.

III. TEMPORAL SAR AND POLSAR DATA

To prove the usefulness of the optimum values of ρasym
and the temporal eigenvalues ντ for multitemporal analysis,
characterization of SAR and PolSAR data, as well a for
information extraction, four datasets are selected with differ-
ent systems, operating frequencies, temporal spans, temporal
baselines and spatial resolutions.

A. UAVSAR Yucatan lake

This is an airborne L-band multitemporal fully polarimetric
dataset obtained with the UAVSAR system over Yucatan
Lake wetlands site (US). It is an oxbow lake fed by the
lower Mississippi river that experiences significant seasonal
variability in water extent and depth, and it is a wetland of sig-
nificant relevance due to its ecological importance. The dataset
contains five PolSAR acquisitions collected from July 1st to
September 23th, 2019, at intervals of 15, 9, 18 and 42 days,
respectively. The spatial resolution is 1.67m × 0.6m (Range
× Azimuth) and the size of the acquisitions is 15000× 9900
pixels. In this case, 9047044 pixels were manually labeled into
16 crop classes due to the absence of an external ground truth,
see Table II. A total of 0.5% of the pixels are considered for
training. Fig. 1 presents the Pauli images on July 1st and July
15th, together with the selected ground truth.

Fig. 2 presents the different temporal features, in logarithmic
scale, characterizing the pair of PolSAR acquisitions in Fig.
1. Figs. 2-(a) to (c) detail the temporal coherences for the
three polarimetric channels HH, HV and VV, where H and
V indicate horizontal and vertical polarizations, respectively.
In general, temporal coherences present large values as a
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TABLE II
UAVSAR YUCATAN LAKE GROUND TRUTH DETAILS

Class Type # px. Class Type # px.
1 Crop1 409499 9 Crop9 448618
2 Crop2 1441225 10 Crop10 191185
3 Crop3 977934 11 Crop11 1014105
4 Crop4 556679 12 Crop12 222613
5 Crop5 163345 13 Crop13 554334
6 Crop6 224236 14 Crop14 992410
7 Crop7 1199912 15 Crop15 422616
8 Crop8 94620 16 Crop16 133713

Fig. 2. Multitemporal UAVSAR Yucatan lake dataset parameters July 1st
- July 15th: (a)-(c) ρHH , ρHV , ρV V ; (g)-(i) ρasym,1 > ρasym,2 >
ρasym,3 > 1 (log scale dB); (g)-(i) ντ,1 > ντ,2 > ντ,3 > 0 (log scale
dB).

consequence of being L-band, except on water bodies. As a
consequence, this dataset will be considered a high temporal
coherence scenario. Figs. 2-(d) to (f) present the optimum
values of ρasym whereas, Figs. 2-(g) to (i) show the tem-
poral eigenvalues ντ . As observed, ρasym ∈ [1,∞), or
ρasym ∈ [0,∞) in logarithmic scale, and ντ ∈ [0,∞), or
ντ ∈ (−∞,∞) in logarithmic scale. The first observation of
Fig. 2 shows the complementary information provided by all
the parameters, and in particular the values of both ρasym and
ντ show the variation of the radiometric changes between both
PolSAR acquisitions. The bottom-left area, that corresponds
to the lake and the wetlands area, presents low temporal
coherences, but radiometric changes can be inferred for the
other two sets of parameters.

TABLE III
RADARSAT-2 FLEVOLAND GROUND TRUTH DETAILS

Class Type # px. Class Type # px.
1 Flower bulb 156855 7 Pea 85962
2 Fruit 161879 8 Potato 1025700
3 Grass 748886 9 Spring-Wheat 71536
4 Maize 268156 10 Sugar-bee 661697
5 Miscellanea 350675 11 Winter-Wheat 1116549
6 Onion 542516 - - -

The temporal behavior for all the classes in Table II is
detailed in Fig. 3. The first rows detail the temporal coherence
values for all the temporal combinations, whereas the last
rows represent the temporal eigenvalues ντ in logarithmic
scale. Most of the classes present temporal coherence values
below 0.6, indicating that the scattering features of different
crops vary significantly between dates. Nevertheless, classes
Crop2, Crop5, Crop11, Crop12 and Crop16 present very low
coherence values for all the temporal combinations, whereas
more variability is observed in ντ . Hence, the radiometric
change information provided by ντ is very valuable to analyse
the temporal behavior in these classes, as they are almost non
distinguishable from the variation of temporal coherences.

B. Radarsat-2 Flevoland

This is a C-band multitemporal fully polarimetric dataset
obtained with the spaceborne Radarsat-2 system in Flevoland
(The Netherlands). This areas corresponds to a large agricul-
tural area covered with different crops, water, and homoge-
neous soils. The dataset contains eight PolSAR acquisitions
collected from April 14th to September 29th, 2009 in the
framework of AgriSAR 2009 project. Each image is collected
at an interval of 24 days. The spatial resolution is 4.73m ×
4.73m and the size of the acquisitions is 5300× 3100 pixels.
In this particular case, an external ground truth was provided
comprising 5190411 pixels labelled into eleven different crops,
see Table III. A total of 1% of the pixels are considered for
training. Fig. 4 presents the Pauli images on April 14th and
May 8th, together with the ground truth.

Temporal coherences, ρasym and the temporal eignevalues
ντ are shown in Fig. 5. Given the 24-day temporal baseline
between the PolSAR acquisitions, the temporal coherences in
Figs. 5-(a) to (c) present low values, except on urban areas
in the top and the bottom of the image. Thus, the different
agricultural areas are almost not distinguishable in terms of
temporal coherences. Thus, this dataset represents a clear low
temporal coherence scenario. Nevertheless, a close look to the
values of ρasym and ντ in Figs. 5-(d) to (f) and Figs. 5-(g)
to (i), respectively, show an enhanced capability to distinguish
the different crop areas and image details.

This enhanced capability to distinguish the different crops
in terms of their temporal behavior is clearly visible in the
temporal analysis of the different parameters in Fig. 6. Most of
the values in the temporal coherences are centered around 0.2,
therefore temporal coherence could not support the classifica-
tion of different crops. By contrast, the temporal eigenvalues
ντ show much more variability and details, making possible
the differentiation of different crops, e.g., flower bulb, maize,
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Fig. 3. Multitemporal matrices of ρ and ντ (log scale dB) for the UAVSAR Yucatan lake dataset.

Fig. 4. Radarsat-2 Flevoland data. Pauli images on (a) April 15th, (b) May
8th and (c) Ground Truth.

miscellaneous, onion, pea, or spring-wheat, in terms of the
temporal behavior of the polarimetric radiometric information.

C. Radarsat-2 Barcelona

This is a C-band fully polarimeric dataset obtained with the
spaceborne Radarsat-2 system in Barcelona (Spain). This area
contains the metropolitan area of the Barcelona city together
with its southern region comprising a large agricultural area
in the riverbanks of the Llobregat river. The dataset contains
eleven PolSAR acquisitions collected from May 20th, 2010,
to October 6st, 2011. The intervals of the eleven PolSAR
images are 48, 24, 96, 24, 72, 48, 72, 48, 48 and 24 days.
The spatial resolution is 4.73m × 4.82m and the size of the
acquisitions is 5726×2391 pixels. In this case, we considered
a high resolution ground truth of the agricultural comprising
590890 pixels labeled into 8 crop classes, provided by the
Institut Cartogràfic i Geològic de Catalunya (ICGC), see Table

IV. Unlike the previous two datasets, the classes provided by
ICGC comprise general land covers, or agricultural classes,
and not individual types of crops, see Fig. 9. A total of 1%
of the pixels are considered for training. Fig. 7 presents the
Pauli images of the master acquisition and the ground truth.

TABLE IV
RADARSAT-2 BARCELONA GROUND TRUTH DETAILS

Class Type # px.
1 Herbaceous crops 167359
2 Orchards and cross crops 17990
3 Vineyard 3049
4 Olive 4483
5 Other woody crops 106935
6 Rotation Crops 3095
7 Coniferous forest 156529
8 Bush 131450

The multitemporal matrices of the eight land cover classes
in the eleven PolSAR acquisitions are presented in Fig. 8. As
observed, all temporal coherences present values below 0.6,
but concentrated between 0.2 and 0.3. Some subtle seasonal
effects may be inferred for some land covers, where only
the cover Bush present remarkable coherence values. Never-
theless, observing the radiometric changes provided by the
temporal eigenvalues ντ one can observe a more remarkable
temporal variability. Hence, in this particular case, which could
be also considered as a low temporal coherence scenario,
coherence does not provide a real temporal behavior of the
different land covers, whereas ντ is much more sensitive
to changes, despite the low coherence values. But despite
this clear difference between coherent and non-coherent or
radiometric changes, it can be observed that all the land
covers present very similar temporal behavior, making difficult
to distinguish among them. This limitation is due to the
constraints that result form the nature of the ground truth data,
as it does not reflect accurate classes, but general land covers.
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Fig. 5. Multitemporal Radarsat-2 Flevoland dataset parameters April 14th
- May 8th: (a)-(c) ρHH , ρHV , ρV V ; (g)-(i) ρasym,1 > ρasym,2 >
ρasym,3 > 1 (log scale dB); (g)-(i) ντ,1 > ντ,2 > ντ,3 > 0 (log scale
dB).

Most of these land covers correspond to vegetation, therefore
they present a very similar temporal behaviour.

D. Sentinel-1 Barcelona

This is a C-band multitemporal dual-polarimetric dataset ob-
tained with the spaceborne Sentinel-1a&b system in Barcelona
(Spain). This dataset covers almost the same region as the
previous datset. Nevertheless, this dataset contains 32 dual-
PolSAR images collected from April 2nd to October 5th, 2018.
Each image is collected at an interval of 6 days. The spatial
resolution is 2.33m×13.95m and the size of the acquisitions is
2331×11061 pixels. In this case, we employed the same land
cover ground truth employed in the previous dataset, but now
comprising 1387587 pixels labeled into 10 classes covering
crops and artificial areas, see Table V. A total of 1% of the
pixels are considered for training. Fig. 10 presents the Pauli
images of the master acquisition and the ground truth.

The analysis in Section II-B considered full-PolSAR data
for optimization. Nevertheless, a multitemporal analysis of
SAR data does not necessarily need full-PolSAR data, as the
temporal eigenvalues ντ can be obtained form any matrix
of the type A−1B, independently of the matrix dimensions.

Therefore, the temporal analysis in Section II-B can be ex-
tended to dual PolSAR Sentinel-1 data.

TABLE V
SENTINEL-1 BARCELONA GROUND TRUTH DETAILS

Class Type # px.
1 Herbaceous crops 471500
2 Orchards and cross crops 27619
3 Vineyard 20712
4 Olive 5078
5 Other woody crops 171360
6 Rotation Crops 2843
7 Bush 435313
8 Grass 82642
9 Port 143120

10 River 27400

To represent the variation of the different multitemporal
features in the Sentinel-1 dataset, Fig. 11 shows the plots of
the temporal coherence and the temporal eigenvalues ντ for
the ten selected land-cover classes. As in the previous dataset,
coherence is quite constant and similar among all the covers.
Only the Bush and Port classes present a distinctive behavior.
The former showing a seasonal effects and the later showing
high coherence. The largest temporal coherence values are
seen for the shortest temporal baselines, close to the diagonal.
In the case of the parameters ντ , more radiometric changes can
be observed, In herbaceous crops, the temporal features from
May to July are negative, and the temporal features from July
to September are positive. In Vineyard, the temporal features
have obvious changes from April to May and from June to
July. Finally, The temporal features in Bush have obvious
changes from May to July and from August to September.

IV. EXPERIMENTAL RESULTS

A. Classification Methods

To show the usefulness and benefits of ντ to analyze and
to characterize multitemporal SAR and PolSAR data, nine
pixel-based classification methods, including two ensemble
learning classifiers with two criteria and five DL networks,
are implemented. In this section, classification is considered
as a mean to prove the benefits of the asymmetric coherence
term in the analysis of low coherence scenarios, but its use
can be extended to other applications.

1) Ensemble Learning Classification Methods: Random
Forest (RF) [25] and Extremely Randomized Trees (ERT)
[26] have been developed for multitemporal SAR and PolSAR
data classification. They are constructed with decision trees
[27], and the difference among them is in the construction
process. The former builds different decision trees based on
the randomness of training samples, while the latter builds
different decision trees based on the randomness of the input
features. In the two classifiers, 500 trees are considered, and
the criteria of “gini” for the Gini impurity [28] and “entropy”
for the information gain [29] are employed in both classifiers,
resulting into the four approaches: RF-En, RF-Gi, ERT-En,
and ERT-Gi. Finally, the decision rule is the average of the
classification probabilities obtained by all decision trees.
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Fig. 6. Multitemporal matrices of ρ and ντ (log scale dB) for the Radarsat-2 Flevoland dataset.

Fig. 7. Radarsat-2 Barcelona dataset.

2) Deep Learning Classification Methods: Deep neural
networks (DNN) seems to be an ideal approach to perform
classification due to their precise classification and indepen-
dence of complex models. First, the fully connected neural
network, namely FCNN, is designed to connect all features.
Second, to construct the classification models from the time
dimension and the feature dimension respectively, two kinds
of classical deep neural networks, namely convolutional neural
network (CNN) and recurrent neural network (RNN), are

employed in the multi-temporal PolSAR image classification.
The pixel-based time-series classifiers are designed to compare
the performance of different features. All structures of these
DL methods are shown in Fig. 12.

Ten dense layers, a batch Normalization (BN) layer and a
dropout layer are used to construct a conventional FCNN, as
shown in Fig. 12-(a). In the input layer, t is the length of time
of the dataset and f is the number of polarimetric features.
In the hidden layers, N is the number of hidden layer nodes
in each dense layer, D is the dropout rate, and “Relu” [30] is
employed for the activation function in the activation layer. In
the output layer, “Softmax” is used for the classification.

In CNN, 1D-CNN [31] is designed to extract temporal fea-
tures and polarimetric features respectively, as shown in Fig.
12-(b). In each convolution layer, the size of the convolution
kernel K is set to 2, the stride is set to 1, and the number of the
convolution kernels N is set to 512, 256, 256, 256, 256, 256,
and 128. “Relu” is employed for the activation function in the
activation layer after each one-dimension convolution layer.
Since the polarimetric features at different times are analyzed
independently in 1D-CNN, the output features extracted by
one-dimension convolution layer at different times need to be
expanded into one-dimensional feature vectors by Flatten.

To consider the relation between the time and the polar-
ization dimensions in feature extraction, the deep RNN is
beneficial to both time-series and polarization classification
method, as shown in Fig. 12-(c). For the polarization vector
of each time, there is a recursive cell corresponding to it, and
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Fig. 8. Multitemporal matrices of ρ and ντ (log scale dB) for the Radarsat-2 Barcelona dataset.

Fig. 9. Barcelona ground truth detail.

in the time dimension, the cells in the same layer at different
times establish a recursive relationship, thus forming a RNN.
According to the difference of information transmission form
between different cells in one layer, a variety of recursive
neural network units are constructed, among which the most
important structures include simple RNN [32], long short term
memory (LSTM) [33], and gated recurrent unit (GRU) [34].
In this paper, simple RNN, LSTM, and GRU are designed
for the temporal PolSAR image classification, and they have

Fig. 10. Sentinel-1 Barcelona dataset. (a) The Pauli Image on May 20th, (b)
Ground Truth.

similar network structures as shown in Figure 12-(c). Two
recursive layers are used to extract time-series and polarization
features. The nodes in the two recursive layers are set to 512
and 256, respectively. Due to the wights of different cells in
one recursive layer being shared, the features from the last unit
of the last layer are the output of RNN, and they are input into
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Fig. 11. Multitemporal matrices of ρ and ντ (log scale dB) for the Sentinel-1 Barcelona dataset.

Fig. 12. Structure of the DL methods.

Fig. 13. Classification maps of GRU method considering ρ (Coh.) and ντ
(Eig.), UAVSAR Yucatan dataset.

the fully connected layers to realize classification.

B. Input Features for Classification

To demonstrate the usefulness of the temporal eigenvalues
ντ , referred to as Eig., to characterize multitemporal SAR
and PolSAR data, these are considered as input features for
all the classification methods. The classification performance
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TABLE VI
CLASSIFICATION RESULTS SUMMARY FOR THE EVALUATION PERFORMED WITH THE DIFFERENT METHODOLOGIES AND FEATURES SETUP

Method No Features
UAVSAR - Yucatan RST-2 - Flevoland RST-2 - Barcelona Sentinel-1 - Barcelona

OA AA κ OA AA κ OA AA κ OA AA κ
(%) (%) (%) (%) (%) (%) (%) (%)

RF-En

1 Coh. 58.39 45.98 0.5323 32.86 17.53 0.1764 61.13 31.61 0.4783 68.38 26.8 0.5428
2 Eig. 79.12 79.29 0.7685 81.08 67.26 0.7765 70.33 36.42 0.6056 70.57 28.56 0.5794
3 Int. 89.61 89.74 0.885 87.78 80.15 0.8569 77.98 41.37 0.7078 75.41 37.5 0.6574
4 T3/C2 92.67 92.9 0.9189 88.44 80.8 0.8645 77.96 41.07 0.7067 74.7 36.13 0.6451

RF-Gi

5 Coh. 58.56 45.95 0.5342 33.02 17.72 0.1792 61.3 31.79 0.4811 68.65 27.14 0.5479
6 Eig. 79.14 79.3 0.7687 81.44 67.75 0.7808 70.46 36.51 0.6073 70.57 28.56 0.5794
7 Int. 89.7 89.86 0.886 87.91 80.14 0.8583 77.92 41.26 0.707 75.55 37.7 0.6598
8 T3/C2 92.67 92.81 0.9188 88.57 80.87 0.866 77.97 41.12 0.7068 74.92 36.45 0.6491

ERT-En

9 Coh. 58.2 44.47 0.5289 32.65 17.09 0.1697 60.02 30.85 0.4612 67.81 27.07 0.5332
10 Eig. 79.18 79.21 0.7691 80.38 64.15 0.7675 70.68 36.78 0.6099 70.48 28.78 0.5756
11 Int. 89.75 89.8 0.8866 87.84 79.09 0.8574 78.57 42.32 0.7154 75.59 37.76 0.6582
12 T3/C2 92.46 92.55 0.9166 87.67 76.79 0.8551 77.23 41.38 0.6958 74.32 35.94 0.6372

ERT-Gi

13 Coh. 58.34 44.69 0.5307 33.06 17.4 0.1756 60.86 31.32 0.4732 68.41 27.57 0.5432
14 Eig. 79.31 79.35 0.7705 80.62 64.57 0.7705 70.82 36.86 0.612 71.17 29.44 0.5874
15 Int. 89.83 89.87 0.8874 87.88 79.1 0.8579 78.68 42.32 0.7168 75.92 38.14 0.6637
16 T3/C2 92.53 92.57 0.9173 87.75 76.93 0.8561 77.71 41.62 0.7025 74.81 36.37 0.6451

FCNN

17 Coh. 57.3 47.49 0.5222 32.84 18.25 0.1839 56.71 29.44 0.4242 72.59 37.45 0.6226
18 Eig. 78.63 79.42 0.7634 83.6 77.23 0.8083 70.13 37.24 0.6035 73.59 41.82 0.6419
19 Int. 90.35 90.58 0.8933 89.14 84.78 0.8733 78.82 49.76 0.7215 81.45 55.16 0.7512
20 T3/C2 84.23 84.66 0.8255 87.28 80.13 0.8513 52.8 24.08 0.3496 71.27 33.25 0.6002

CNN

21 Coh. 57.98 50.16 0.5317 33.18 18.82 0.1917 60.56 33.58 0.4794 77.49 46.52 0.6948
22 Eig. 79.69 80.59 0.7752 82.87 75.68 0.7996 68.47 36.36 0.5827 72.77 40.93 0.6313
23 Int. 90.65 91.8 0.8967 88.64 83.36 0.8672 76.81 44.54 0.6935 77.26 47.51 0.6951
24 T3/C2 87.15 88.31 0.8579 88.65 83.7 0.8676 72.77 37.88 0.6389 68 31.69 0.5509

RNN

25 Coh. 58.67 48.76 0.5374 32.88 17.89 0.1794 58.62 31.27 0.4472 75.19 45.3 0.6659
26 Eig. 80.01 80.44 0.7784 83.45 74.52 0.8059 67.97 36.32 0.5769 73.37 42.62 0.6387
27 Int. 90.33 91.2 0.893 88.81 83.24 0.8692 78.36 47.53 0.7156 78.94 50.26 0.7173
28 T3/C2 82.73 83.57 0.8088 89.25 85.5 0.8745 28.32 12.5 NA 36.31 12.26 0.0434

GRU

29 Coh. 59.08 49.68 0.5425 35.23 19.43 0.2106 59.34 31.07 0.4565 72.17 37.82 0.6195
30 Eig. 79.88 80.62 0.7772 84.18 76.56 0.8148 69.09 37.54 0.591 73.98 43.45 0.6505
31 Int. 89.84 90.46 0.8876 88.7 82.23 0.8678 77.47 45.45 0.7027 78.21 49.09 0.709
32 T3/C2 83.88 85 0.8217 88.71 83.99 0.8683 74.37 43.98 0.6636 74.14 43.94 0.6503

LSTM

33 Coh. 58.25 49.84 0.5341 29.58 15.59 0.1352 58.1 30.36 0.4405 72.57 39.49 0.6266
34 Eig. 79.55 80.15 0.7734 83.77 75.19 0.8099 68.27 36.83 0.5792 74.06 43.34 0.6505
35 Int. 90.49 91.4 0.8949 88.49 83.04 0.8656 76.5 47.63 0.691 76.45 47.09 0.6831
36 T3/C2 82.98 84.62 0.8118 87.75 76.93 0.8561 73.65 45.75 0.6531 73.45 43.32 0.6411

is compared against the one obtained by considering tem-
poral coherences as input features too, refereed to as Coh.
For completeness, the classification in terms of the intensity
information of the polarimetric channels, referred to as Int.,
and the complete polarimetric information, in terms of the
full-pol 3× 3 T matrices for the UAVSAR and the Radarsat-
2 datasets and the dual-pol 2 × 2 C covariance matrices,
referred to as T3/C2, are considered as input features. When
comparing the performances using the four sets of parameters
it is important to highlight that the temporal eigenvalues ντ
and the temporal coherences consider common information
among pairs of SAR acquisitions, whereas the intensities and
the polarimetric parameters are considering the multitemporal
series of direct radar observables.

In the full-PolSAR UAVSAR and Radarsat-2 datasets, a
7× 7 multi-look is considered for speckle filtering. The tem-
poral eigenvalues ντ are considered in logarithmic scale, that
is, 10log10(ντ ). Temporal coherences, i.e., ρHH , ρHV , and
ρV V are also estimated with a 7× 7 multi-look speckle noise
filter. Therefore, for each of these two sets of parameters, if
we consider n acquisitions, there are 3×n×(n−1)/2 features.
The intensity channels are considered in logarithmic scale,
i.e., 10log10(|SHH |), 10log10(|SHV |) and 10log10(|SV V |).
Finally, the polarimetric information of T, estimated also

with a 7 × 7 multi-look window, is considered in terms of
the following nine features: Tii, i = 1, 2, 3 for the diagonal
elements and R{Tij}, I{Tij}, i, j = 1, 2, 3, i ̸= j, for the off-
diagonal elements. The Sentinel-1 dataset is considered in the
same way as the full-PolSAR datasets, except that speckle is
removed by means of a 4× 19 multi-look window. Therefore,
for n acquisitions, the set of parameters ντ and the temporal
coherences have 2× n× (n− 1)/2 input features.

C. Classification Results

The classification methods are evaluated by means of the
four multitemporal datasets with the four sets of inputs fea-
tures, see Table VI. It is worth to note that these classification
results must be considered relative, specially when comparing
results based on coherences and on temporal eigenvalues.
To systematically assess the classification performances, the
following parameters are being considered:

• Overall Accuracy (OA): It measures the overall classifi-
cation accuracy.

• Kappa coefficient (κ): This coefficient is a quantitative
evaluation of the consistency of the confusion matrix and
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Fig. 14. Confusion matrices of the RF-Gi and GRU methods considering ρ (Coh.) and ντ (Eig.), UAVSAR Yucatan dataset.

it is calculated by

κ =
2(TP × TN − FN × FP )

(TP + FP )(FP + TN) + (TP + FN)(FN + TN)
(24)

where TP are the true positives in the confusion matrix,
FP are the false positives, TN are the true negatives,
and FN are the false negatives.

• Average Accuracy (AA): It evaluates the average accu-
racy of each class to prevent accuracy judgment errors

caused by sample imbalance, and it is calculated by

AA =
1

C

C∑
i=1

recall, (25)

where recall = TP
TP+FN is the recall rate of each class,

and C is the number of classes.
A global analysis of the classification results presented in

Table VI demonstrate that when considering the common
information, the proposed temporal eigenvalues ντ result in
better classification performances that when considering coher-
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Fig. 15. Classification maps of GRU method considering ρ (Coh.) and ντ
(Eig.), Radarsat-2 Flevoland dataset.

Fig. 16. Confusion matrices of the RF-Gi and GRU methods considering ρ
(Coh.) and ντ (Eig.), Radarsat-2 Flevoland dataset.

ence information. This result is independent of the dataset or
the classification methodology, proving the robustness of these
parameters to exploit common multitemporal information.
Classification based on the intensity parameters or the full
PolSAR data result in improved classification performances.
One must notice that coherences and temporal eigenvalues
contain different information than intensities or full PolSAR
data, and that all parameters must be seen as complementary.
In the following we perform an in-depth analysis of the results
in Table VI. In particular, we will present the classification
maps of the GRU methodology and the confusion matrices of
the RF-Gi and GRU methodologies.

In Section II, we demonstrated the relation between the

optimum values of ρasym and the temporal eigenvalues ντ
(19) and (20). Table VI shows the classification in terms of
ντ . To compare, the OA classification results of the RF-Gi
methodology based on the optimum values of ρasym is 76.5%
(79.14% with ντ ) on the UAVSAR Yucatan dataset, and 81%
(81.44% with ντ ) on the Radarsat-2 Flevoland dataset, proving
the similarity of ρasym and ντ in classification terms.

1) UAVSAR Yucatan lake: As indicated, this dataset corre-
sponds to a high coherence scenario. Therefore, the classifi-
cation results must be analysed from this point of view. When
considering the common information between acquisitions, in
terms of temporal coherence, the OA, independently of the
classification methodology, reaches a level of 60%. When
considering the temporal eigenvalues ντ , the OA increases
up to 80%. As indicated, these approaches only consider the
common information between acquisitions. When considering
only the acquisition themselves, in terms of intensity values
or the complete full-PolSAR information, the OA reaches an
average values of 85% to 90%. These results show that the
temporal eigenvalues ντ capture better than coherence the
temporal behavior of the different classes, even if these present
high temporal coherence values. The classification map of
GRU, extended to the whole dataset, is shown in Fig. 13, and
the detailed classification information, in terms of confusion
matrices of RF-Gi and GRU, is shown in Fig. 14.

In the classification results, temporal coherences of Crop2
are confused with those of Crop5, Crop6, Crop8, Crop12, and
Crop16, resulting in the low classification accuracy in those
categories. As observed in Fig. 3 these could be considered
as low temporal coherence classes. Similarly, the temporal co-
herence of Crop7 is mixed with those of Crop-15, resulting in
the low classification accuracy of Crop15. In the classification
results of ντ,, each class is correctly classified, even if the
classification accuracy of Crop9 and Crop15 are lower, and
one can observe that the classification results are not signifi-
cantly biased towards any other categories. Thus, the temporal
eigenvalues ντ reflect, better than temporal coherences, the
temporal information of the targets being observed.

2) Radarsat-2 Flevoland: As shown, this dataset corre-
sponds to a low temporal coherence scenario. Again, the
classification results must be analyzed assuming this aspect.
Considering the common information, the OA considering
temporal coherences reaches a level about 30%, whereas the
OA reaches a level of 80% when considering the proposed
temporal eigenvalues ντ . This result reflects the analysis
presented in Section II where ντ were proposed to analyze
the temporal behaviour of SAR images based on radiometric
changes analysis, specially for low temporal coherence sce-
narios. From Fig. 6, the values of the temporal coherences
for the different classes are concentrated between 0.2 and 0.3,
resulting in a low OA classification performance, see Table VI.
The classification maps obtained with the GRU methodology,
extended to the whole dataset, are seen in Fig. 15. It must
be noted that training considered only agricultural areas with
available ground truth. The classification information can be
observed in the confusion matrices of the RF-Gi and the GRU
methodologies, see Fig. 16.

The direct observation of the confusion matrices in Fig.
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Fig. 17. Classification maps of GRU method considering ρ (Coh.) and ντ
(Eig.), Radarsat-2 Barcelona dataset.

16 clearly demonstrates the poor classification performance
offered by the temporal coherence parameters, whereas the
temporal eigenvalues ντ are able to capture all the classes.
In essence, when considering the temporal coherence, the
classification methodologies are only able to recognise class
8, class 10 and class 11. This limitation could be explained by
the fact that almost all the classes present very low coherence
values, so the classifiers map them in a limited number of
classes. Nevertheless, despite the low temporal coherence
values, the common temporal information exploited in terms
of ντ is able to capture all the classes differently. Besides the
κ values are large, about 0.8, indicating a high consistency of
the confusion matrices. However, there are some confusions
between class 2 and class 3, and between class 9 and class 11.

As indicated in Section II, we proposed the exploitation of
the common temporal information in terms ντ for low tem-
poral coherence scenarios. These parameters are much more
sensitive than coherence to the target’s temporal dynamics. But
this better performance, as shown with the UAVSAR dataset,
is kept also on high temporal coherence scenarios.

3) Radarsat-2 Barcelona: The previous datasets have
demonstrated the capability of ντ, to capture accurately the
temporal dynamics of different types of targets, improving
the classification performances with respect to use coherences
as input features. One key aspect is the availability of an
accurate ground truth to train the classification methodologies.
As shown in Section III-C, for this dataset we considered
general land cover classes. For example, the scattering features
of herbaceous crops can be complex and may include different
types of crops or plants. Under these circumstances, the
ensemble learning classification methods are more robust than
the DL methods. Therefore, the classification performance of
RF-En, RF-Gi, ERT-En, and ERT-Gi is better than that of DL
methods. The classification maps with GRU can be shown
in Fig. 17. In this case, the classification is not extended to
the whole dataset as the training considered only agricultural

Fig. 18. Confusion matrices of the RF-Gi and GRU methods considering ρ
(Coh.) and ντ (Eig.), Radarsat-2 Barcelona dataset.

areas. The detailed classification information of confusion
matrices with RF-En and GRU are shown in Fig. 18.

Even, under these difficult conditions, the use of ντ to
capture the temporal behavior of the different classes, out-
performs coherence by an average of 10%. This improvement
is reflected in the confusion matrices of Fig. 18.

Fig. 19. Classification maps of GRU method considering ρ (Coh.) and ντ
(Eig.), Sentinel-1 Barcelona dataset.

4) Sentinel-1 Barcelona: Compared with the previous
datasets, the multitemporal dataset from Sentinel-1a&b has
shorter revisit time (6 days), so the coherence of each category
in Fig. 11 is larger, which can reach more than 0.7. Thus, OA
of the classifiers with eigenvalue and coherence can get differ-
ent classification accuracy, and overall, temporal eigenvalues
perform better than coherence. In addition, insufficiently fine-
grained labels, offered by ICGC, interfere with the classifi-
cation performance of the classifier. The classification maps
with GRU can be shown in Fig. 19. The detailed classification
information of confusion matrices with RF-En and GRU is
shown in Fig. 20. As in the previous dataset, the classification



15

Fig. 20. TConfusion matrices of the RF-Gi and GRU methods considering
ρ (Coh.) and ντ (Eig.), Sentinel-1 - Barcelona dataset.

is not extended to the whole dataset. Classification results
based on coherence are in line with [1].

In terms of classification performance, the DL classifiers
with coherence can extract more features to improve it, and
OA of each DL method can be improved by more than
4%. However, eigenvalues show superior classification perfor-
mance in DL methods and integrated learning methods, and
OA can reach more than 70%. In each category, the temporal
features of class 1 and other classes are confused, so that the
classifiers cannot distinguish other categories well. Compared
to coherence, eigenvalues have an advantage in distinguishing
class 1 versus class 5, class 7 and class 9.

V. CONCLUSIONS

A new interpretation of the temporal coherence for multi-
temporal SAR and PolSAR data is proposed. It is shown that
the temporal coherence can be decomposed into two terms.
The first symmetric coherence term accounts for coherent
changes under the symmetric assumption of no radiometric
changes. The second coherence asymmetric term considers
non-coherent or radiometric changes. This decomposition is
useful as it relates both types of changes, showing that
common information between SAR acquisitions can still be
extracted in low temporal coherence scenarios. First, the
study is performed for single-channel multitemporal SAR data,
showing that the asymmetric coherence term is related to the
intensity ratio. It is important to indicate that this analysis
is also valid and can be generalized for any type of SAR
diversity, leading to pairs of correlated SAR images. Second,
the study is extended to multitemporal PolSAR data, where po-
larimetric diversity allows the optimization of the asymmetric
coherence term, extending the ideas of PolInSAR coherence
optimization to multitemporal data. It is demonstrated that the

optimum asymmetric coherence parameters are related to the
optimum values of the polarimetric ratio. In addition, we show
that the optimum values of the asymmetric coherence term
or the polarimetric ratio are closely related to the ideas of
matrix distance. As a consequence, we propose the use of
the optimum values of the asymmetric coherence term or the
equivalent optimum values of the polarimetric ratio to extract
information for multitemporal SAR or PolSAR data, specially
in low temporal coherence scenarios.

The usefulness of these parameters for multitemporal SAR
or PolSAR data exploitation and interpretation is demonstrated
on four different datasets by means of machine and DL
classification techniques. The four datasets cover airborne
versus spaceborne, L-band versus C-band, different temporal
spans and different temporal baselines and spatial resolutions.
The classification methodologies cover nine different tech-
niques. In all the cases, the use of the optimum values of the
asymmetric coherence term or the equivalent optimum values
of the polarimetric ratio outperforms classification accuracy if
compared to the use of temporal coherence as input features.
In low temporal coherence scenarios improvements of 50%
in the classification overall accuracy are achieved, whereas
for high coherence scenarios, the improvement is about 20%.
These results demonstrate the robustness of the proposed
optimum values of the asymmetric coherence term or the
equivalent optimum values of the polarimetric ratio to exploit
multitemporal SAR and PolSAR data. Hence, we consider
that the use of these parameters can be beneficial in other
applications of multitemporal SAR and PolSAR data.

When considering ML or DL for remote sensing, it is
argued that physical knowledge must be incorporated to reduce
the need for large amounts of data, to constrain solutions
to physical solutions or uncertainty reduction. As we show,
one way to introduce this physical knowledge, specially in
terms of remote sensing systems, is to produce physically
and system relevant parameters, as the ones we proposed
here. The optimum use of the information provided by the
remote sensing systems is not possible without their in-depth
knowledge. Therefore, we vindicate the role of remote sensing
scientists and systems engineers in the era of big Earth data.
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