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Study of optimal shapes for lightweight material design

Abstract

The present end of studies project tries to assimilate the connections between the geometrical and

physical domain in order to design optimal microstructures with the desired properties in 2D. The

link between both domains is established by means of the crystallographic point groups, which relate

the topology of the minimum volume unit and its symmetries with the elastic tensor. Therefore,

there are two pre-processing variables that play a determining role on the way to the optimal

topology: the shape of the mesh and the symmetries of the material distribution inside it.

For this reason, in the present study a shape generator and unit cell meshing algorithm is implemented

and a topological optimizer code is used to distribute geometrically the material inside the unit cells

in order to obtain the desired elastic tensor (resolution of the inverse problem) while minimizing the

amount of material used. In order to obtain the desired material properties, the capacity of the

topological optimizer to generate the necessary geometric symmetries in the microstructure that

guarantee the physical symmetries required by the design target tensor is evaluated.

Therefore, during the course of the study there will be a theoretical review of topological optimization,

crystallography and geometric and tensor symmetries, the development of the structure and operation

of the mesh generator code and a practical study of the optimizer’s capacity to obtain the tensors

designed with the selected lattice topologies. At the same time, the essential organizational concepts

and main differences between the programming used in the meshing algorithm, that is object-oriented

programming, and modular or functional programming, are also reviewed.
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Resumen

El presente proyecto de fin de estudios trata de asimilar las conexiones entre el dominio geométrico

y el f́ısico para diseñar microestructuras óptimas con las propiedades deseadas en 2D. El v́ınculo

entre ambos dominios se establece mediante los grupos de puntos cristalográficos, que relacionan

la topoloǵıa de la unidad de volumen mı́nima y sus simetŕıas con el tensor elástico. Por lo tanto,

aparecen dos variables de pre-proceso que juegan un papel determinante en el camino hacia la

topoloǵıa óptima: la forma de la malla y las simetŕıas de la distribución del material en su interior.

Por este motivo, en el presente estudio se implementa un algoritmo generador de mallas con

las formas de las celdas unitarias y se utiliza un código optimizador topológico para distribuir

geométricamente el material dentro de las celdas unitarias con el fin de obtener el tensor elástico

deseado (resolución del problema inverso) minimizando la cantidad de material utilizado. Para

obtener las propiedades deseadas del material, se evalúa la capacidad del optimizador topológico

para generar las simetŕıas geométricas necesarias en la microestructura que garanticen las simetŕıas

f́ısicas requeridas por el tensor objetivo de diseño.

Por tanto, en el transcurso del estudio se realizará una revisión teórica de la optimización topológica, la

cristalograf́ıa y las simetŕıas geométricas y tensoriales, el desarrollo de la estructura y funcionamiento

del código generador de mallas y un estudio práctico de la capacidad del optimizador para obtener

los tensores diseñados con las topoloǵıas de red seleccionadas. Al mismo tiempo, también se revisan

los conceptos organizativos esenciales y las principales diferencias entre la programación utilizada en

el algoritmo de mallado, es decir, la programación orientada a objetos, y la programación modular

o funcional.
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Chapter 1

Introduction

1.1 Aim

The aim of the project is to develop a new material design methodology to achieve the required

material response by considering different shapes and symmetries in the periodic cell. It wills to

characterize the relation between the size and symmetry of the periodic cell, the optimal micro-

structure achieved and the overall elastic behaviour for the design of lightweight meta-materials.

1.2 Scope

The study to carry on in this project will include:

• Development of the code to implement different cell shapes. The objective is to code rectangular,

squared, hexagonal and oblique shaped meshes.

• Development of the code that ensures that the repetition of the pattern obtained in the

optimizer fits when trying to comply with the tessellation property (the pattern covers a 2D

surface without overlaps or gaps).

• Development of the code to force different symmetries inside the mesh. Code able to force the

appearance of different point and plane group symmetries.

• Study of the symmetries of the homogenized elasticity tensor when testing different shapes

and symmetries to the mesh introduced in the topology optimizer. The objective is to obtain

the set of characteristics of the mesh that ensure a particular homogenized elasticity tensor

symmetry, ensuring at the same time the isotropy, orthotropy or anisotropy of the properties

in the micro-structure obtained with the optimizer.

• Unification of the code in MATLAB classes to perform the object-oriented pattern of pro-

gramming.

1



CHAPTER 1. INTRODUCTION 1.3. REQUIREMENTS

The study to carry on in this project will NOT include:

• Development of the topology optimization code. The optimization code used is the one

provided by Alex Ferrer (Swan-master).

1.3 Requirements

The requirements of the project are divided in two groups. The first one is related with the restrictions

for the final solution and the other with the procedure requirements for good understanding, storage

and post-process of the code developed.

• Group 1 Restrictions for the final solution:

– FR1: Determine the relationship between the shape and symmetry of the mesh with the

properties of the 2D constitutive tensor obtained with the topology optimizer.

– FR2: Ensure that all the results satisfy the tessellation principle (the pattern obtained

must cover a surface guaranteeing that there are no overlaps or gaps).

• Group 2 Procedure requirements:

– PR1: The code must be developed using the MATLAB software.

– PR2: The changes in the code must be committed to an online repository called GitHub.

This process enables the programmer or programmers to have an easy access to the code

and its different versions.

– PR3: The code must be developed using the object-oriented pattern of programming.

This allows users to follow an ordered code, easier to understand.

– PR4: The results of the optimizer must be post-processed with GiD.

– PR5: Ensure the continuous proper performance of the code testing critical classes,

functions and results.

2



CHAPTER 1. INTRODUCTION 1.4. JUSTIFICATION

1.4 Justification

As materials science has advanced, new methods have appeared that have allowed humans to create

materials with the desired properties. One of these is topological optimization, which tries to

minimize the cost function, being conditioned by certain imposed constraints [1][2]. This project

tries to move in the same direction, focusing on one of the most elementary parts of a material, the

micro-structure, playing with it to establish a connection between the shape of the micro-structure

and its symmetry with the elastic behavior of the topologically optimized material and the symmetry

of the elasticity tensor [3]. This would show that the restrictions imposed in the minimization

of the cost can be combined with the shape of the cell for obtaining the desired properties when

optimizing, thus giving the user great control over the material properties to be obtained [4] [5]. In

addition, the project not only seeks to generate the code that allows the creation of the meshes,

but it should also have the programming pattern dedicated to objects, thus making the code more

orderly, understandable and easily editable for future programmers who work with it.

3
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Chapter 2

State of the art

Topological optimization is a structural analysis process that, by solving multiple finite element

problems, leads to structural solutions that generally seek to reduce the amount of material used

without compromising any of its capabilities. Therefore, it is a tool of high importance for those

industries where weight plays a determining role (orthopedic industry, automotive, aerospace...)

and also allows the development of additive manufacturing technologies (SLA, SLS, SLM...), by

the need of generating highly complex shapes. For this reason, some CAD software such as Altair,

SolidWorks and Ansys incorporate this technology.

Figure 2.1: Topological optimization using Ansys interface

These programs focus on the optimization of macro-structures, while this project focuses on the

optimization of structures at the microscopic level, hence, at the most elementary level of matter

distribution in materials. There is no commercial software for this case specialized in the optimization

of micro-structures and that is why, the state of the art is dominated by algorithms and investigations

carried on by researchers. During the last few years, the research has been focused on studying

those parameters of the elastic constitutive tensor that are controllable by the user of the topological

optimization algorithm. Among these studies, the one performed by Amstutz [2010] [2] shows that

4



CHAPTER 2. STATE OF THE ART

by knowing the parametric composition of the inverse of the orthotropic compliance tensor C−1,

they manage to optimize positions of the constitutive tensor to obtain a micro-architecture with

maximum horizontal stiffness or optimum Poisson’s ratio, among others.

C−1 =


1
E1

−ν12
E1

0

−ν21
E2

1
E2

0

0 0 1
G

 (2.1)

In this matrix appear material design parameters, such as Young’s modulus in the ê1 and ê2

directions of orthotropy E1 and E2, shear modulus G and Poisson’s ratios ν12 and ν21.

But the development not only has advanced in the direction of optimizing some positions of the

constitutive tensor. Some authors such as Ferrer et al. [2021] [1] try to obtain the optimal topology

of a structure with an homogenized constitutive tensor Ch forcing it to be as similar as possible

to a pre-established tensor C*. This procedure is called the inverse problem, and in this case the

parameters that make up the desired solution are known, and it is the micro-architecture that is

unknown.

The work done by Podestá et al. [2019] [4] goes further, not only conditioning the optimizer to

obtain a target tensor (inverse topological optimization problem) but also facilitating its convergence

by choosing the appropriate shape and symmetries in the unit cell. In this way, it is shown that

during the pre-processing phase, some design variables are chosen to make it easier or harder to

reach certain symmetries in the 2D constitutive tensor (isotropy, orthotropy, tetragonal).

Other authors such as Barbarosie et al. [2017] [6] and Rossi et al. [2021][5] try to solve the inverse

problem by focusing instead of optimizing the micro-structure of the whole unit cell, the minimum

unit cell symmetry is optimized, thus exploiting the symmetry to simplify the number of variables

to work with.

5
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Chapter 3

Theoretical development

Over the years, nature has tended towards simplicity and effectiveness in its geometry and function-

ality. Therefore, it evolves and optimizes towards symmetrical geometries. The reflection of this, for

example, is the honeycomb structure, which offers a great rigidity in comparison with its weight,

obtaining an optimal geometry that requires a fair amount of material generating translations of

hexagons in a predefined space. Through this theoretical analysis, we try to analyze the relationships

between the symmetries of the constitutive tensor and the shapes and symmetries of the unit cells

for 2D micro-structure problems, as well as the pre-processing factors that condition the optimizer

(mesh shape, symmetries of the initial topology...). Once these relationships are understood, the

goal is to emulate the evolution of nature in artificially developed micro-structures, optimizing

materials for the desired functions.

The tool that will allow the optimization of the micro-structure will be the topological optimizer,

which will distribute the material inside the unit cell in such a way that the shape functions involved

in the problem are optimized and the constraints imposed on the resolution of the problem are

respected. The problem to be solved is of the inverse problem type, therefore, the main objective

of the optimizer is to try to adapt the distribution of the material to the maximum so that the

tensor of the micro-structure obtained is equal to the tensor imposed by the user. But, it is not

only possible to condition the optimizer with the shape functions and constraints, it is possible

to condition its capacity with the choice of the shape and dimensions of the unit cell, that is, the

optimization domain and the symmetries of the micro-structure generated inside. This means that

some domains to be optimized will have the capacity to generate symmetries in the elasticity tensors

that others will not be able to, thus making the pre-processing phase of great importance for the

success of the design.

Since we are trying to optimize the periodic micro-structures of the materials, during the theoretical

development, crystallographic arguments related to point groups and Bravais lattices are taken into

account.

6



CHAPTER 3. THEORETICAL DEVELOPMENT 3.1. INTRODUCTION TO TOPOLOGY OPTIMIZATION

3.1 Introduction to topology optimization

As an optimization tool, topology optimization allows, by means of a part concept (mesh shape and

boundary conditions), to obtain the optimal structure for a specific application, thus saving the

need to constantly redesign and test the created models. The attached diagrams show the savings

that a topological optimizer offers:

Figure 3.1: Logical steps order comparison between traditional design and topology optimization.

Therefore, it is a technique that provides a solution to one of the most common engineering problems:

the design of the geometric configuration of a body that allows optimizing a function while ensuring

that the constraints and boundary conditions are satisfied. The technique seeks for the optimal

design.

Every optimization problem is based on the minimization of a function or set of shape functions

(functions that provide a unique numerical value) called cost, while trying to satisfy certain equality,

inequality or box constraints.

A =



min x J(x) (cost)

s.t. a(x) = 0 (equality constraints)

b(x) < 1 (inequality constraints)

0 ≤ x ≤ 1 (box constraints)

(3.1)

We assume any microscopic domain D, whose inner material is a periodic composite consisting of

two isotropic and elastic phases. The state of each of these phases is governed by the following

characteristic function:

χ(x̄) =

1 x̄ ∈ Ω

0 x̄ /∈ Ω
(3.2)

7



CHAPTER 3. THEORETICAL DEVELOPMENT 3.1. INTRODUCTION TO TOPOLOGY OPTIMIZATION

where Ω is the set of all coordinates x̄ that belong to the domain D and in which the first of the

phases appears. Trying to optimize the conditions specified in 3.1, the optimizer tests different

distributions of the Ω function, combining both phases of the material so that the smallest possible

fraction of material is used, causing the Ω domain to be the zone of presence of material and the

Ωvoid = [x̄ ∈ D|x̄ /∈ Ω] the zone with absence of material.

3.1.1 Density-based methods

Normally, the optimization problem to be solved consists of a domain with a given number of finite

elements, where the main objective is to determine the state of each of these elements (1 or 0, black

or white, full or void) by minimizing the objective function. This usually results in a highly complex

problem when dealing with a discrete state variable. Density-based methods solve this problem

by replacing the discrete variable with a continuous variable and an iterative method that allows

driving the solution towards a discrete scenario for each element (full/void). This is achieved with

an interpolation function, where the continuous design variables are explicitly interpreted as the

material density in each element, ρe. The density values from the interpolation are set to the range

0 ≤ ρe ≤ 1, where 0 means absence of material and 1 means presence of material. As discussed

above, it is necessary to combine the interpolation process with a method that allows penalizing the

result to force the solution to a discrete result (as provided by SIMP [7] and RAMP [8] techniques).

Density-based methods are usually governed by the following formulation for a static linear finite

element analysis:

B =



min f(ρ, U)

s.t. K(ρ)U = F (ρ)

gi(ρ, U) ≤ 0

0 ≤ ρ ≤ 1

(3.3)

where f is the objective function, ρ is the vector of the density assigned to each design variable, U is

the vector of displacements, K is the stiffness matrix, F is the force vector and gi are the constraints.

3.1.2 Boundary variations methods: Level Set

A more recently developed method that, unlike density-based methods, relies on implicit functions

that define structural contours instead of explicitly parameterizing the design domain. In the Level

Set method, the contours are represented as the level zero curve of a scalar function Φ. Boundary

variations and mergin, as well as the need for new hole appearances are performed on this scalar

function while optimizing.

The shape and geometry of the contour are modified by controlling the movement of the level set

according to the physical problem and the optimization conditions.

8



CHAPTER 3. THEORETICAL DEVELOPMENT 3.2. THE INVERSE PROBLEM

Figure 3.2: 2D design domain created by the level set model [9].

The figure above indicates the boundary contour between the material and non-material zone,

defined as a level set isosurface of the 3D scalar function Φ specified at the beginning of the section,

for a specific step of time in the optimization. The contour is defined as: δΩ = x(t) : Φ(x(t), t) = k

where k = 0, defining the 2D circle inside the D domain. The material-filled zone is that defined by

the Ω domain, and is characterized as the zone where Φ(x, t) > 0. Conversely, the area that does

not belong to Ω (the area where Φ < 0) is in a state of absence of material.

Level Set method is governed by the following formulation for the minimization of the compliance

with volume constraints:

C =


min c(U,Φ) = UTK(H(Φ))U

s.t. K(H(Φ))U = F∫
Ω

H(Φ)δΩ
V0

≤ V ∗

(3.4)

where V0 is the total geometric volume, V ∗ is the target volume fraction and H(Φ) is the Heaviside

function.

Note that the Heaviside function H(Φ) represents the zones above and below the level set isosurface

(presence and absence of material respectively), causing it to be equal to 1 for positive values of Φ

and 0 otherwise.

3.2 The inverse problem

Problem with high interest from the point of view of materials design, since it allows to obtain the

configuration of the micro-architecture of a two-phase composite (phase of presence and absence

of material) whose elasticity tensor is equal to one preset by the user. Therefore, by defining the

working domain D and the desired tensor for the material C∗, the optimizer would generate the χ

distribution forming the Ω domain. For this reason, the problem involves both the macroscopic scale,

from which the homogenized tensor is calculated in each iteration (σ = Ch : ε) and the microscopic

scale, where the material design process is carried out.

The problem is formulated as follows:

D =

min
∫
D χdΩ

s.t. ||Ch(χ)− C∗|| = 0
(3.5)
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Note that the notation Ch(χ) is used because of the dependence of the homogenized tensor on the

material distribution in the working domain. It should also be noted that the resolution of the

problem at the microscopic scale is solved considering periodic conditions of translation of cells,

thus causing the fulfillment of the principle of tessellation at the macroscopic scale.

The presented approach allows to obtain the distribution of material with the desired properties,

thus facilitating the design of the materials. However, it also causes implicit variables to appear

that condition the optimizer’s ability to converge to the desired tensor. Among these conditions

are the size and shape of the domain D, the initial distribution of Ω and the symmetries generated

in the designed micro-architecture. This is because certain shapes and symmetries have a higher

affinity with certain objective tensors, causing that the election should be made carefully according

to the study carried out in the subsequent sections.

3.3 Relationship between elastic symmetries and micro-architecture

configuration

In this section we will try to analyze the possible symmetric distributions of the two-phase composite

material mentioned so far within the preset domain. This analysis will be based on providing the

reason for the relationships established in the function Ch(χ), that is, how the elastic properties

of the material are related by means of the constitutive tensor with the spatial distribution of the

material in the micro-structure. This will be done based on the explanation on crystallographic

principles and constraints for materials with periodic micro-architecture in the plane.

To understand the above relationship, all possible periodic micro-architectures will first be categorized

by the point groups and the associated Bravais lattice in the plane. Then, the possible symmetries

by means of the plane groups will be shown and the types of elastic constitutive tensors will be

studied. Finally, the relations between the physical symmetries of the constitutive tensor with those

of the material configuration will be established by means of the Neumann’s principle.

Point group symmetries

Transformation or set of isometric transformations that keep the internal distribution of the minimum

units of symmetry invariant. Each of these transformations is called a symmetry element, and the

set of symmetry elements that form the geometric distribution of a material are the point groups.

These transformations that form the groups are characterized by maintaining a fixed point of the

geometry, therefore, two types of elements are distinguished:

• Rotations (denoted by the letter n in the notation used): transformation based on the rotation

of the geometry of the minimum unit of symmetry a certain angle α with respect to an axis

orthogonal to the plane passing through the selected fixed point.

• Reflections (denoted by the letter m): mirror-like symmetry on lines that belong to the plane

and pass through the point that is held fixed. It should be noted that mirror lines are formed

by the intersection between the plane of reflection and the working plane.

Once the elements that can compose a group have been presented, the two possible distinctions of

point groups in the plane are made:

• Cyclic groups: groups composed only of rotationally symmetric elements. This group includes

10
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n rotations of 360
n around the axis perpendicular to the plane.

• Dihedral groups: group that combines rotation elements and reflection elements, considering

that all those lines generated by rotation are also mirror lines. Again, in this group there can

be two cases:

– Subgroup nm (n odd): the separation between the n reflection lines is 180
n , therefore, 2n

symmetry elements appear (n rotations and n reflections).

– Subgroup nmm (n even): in this case, the n rotations generate n
2 mirror lines, whose

separation will be the same as for the rotations. But, in this case, not only these mirror

lines appear, but also those generated by the bisectors of the already existing mirror

lines. This is because the combination of a reflection and a rotation of 360
n is equivalent

to a set of reflections forming an angle of 180
n with respect to one of the original mirror

lines, causing that in these subgroups appear two independent possibilities to consider

the symmetries of the geometry.

Based on these considerations, from the geometrical point of view, there are infinite groups of

point symmetries, since the only restriction is that n is an integer. On the other hand, from the

crystallographic point of view, these point groups are considerably reduced due to the constraints

of the crystallographic restriction theorem and the Bieberbach theorems. These theorems show

that due to the peculiarities of lattices with translational symmetry (tessellation), if there is a

displacement vector between two points of the lattice, then, this vector must be present throughout

the domain. A few examples are given below to facilitate the understanding of the explanation:

Figure 3.3: Compatible and incompatible polygons when applying the crystallographic restriction
theorem.

Observing the previous figure and considering the theorem mentioned above, the origin of all the

vectors corresponding to the sides of the polygon (with the rotational symmetry to be evaluated)

can be placed at the same point, thus making them act as radial vectors that form the nodes of

the original polygon. As shown in figure (3.3) this happens for hexagons and squares, but not for

octagons and pentagons. It is observed, for example, that the vectors of the net of the octagon, only

allow to obtain this same polygon with reduced area, making it non-compliant with crystallographic

restrictions.

3.3.1 Periodic micro-architecture materials

Type of materials composed by the translational repetition of the micro-structure pattern around

the 2D space selected. The micro-architecture remains invariant under discrete translations along

11



CHAPTER 3. THEORETICAL DEVELOPMENT 3.3. ELASTIC SYM. & MICRO. CONFIGURATION

the two primitive vectors of the lattice. Thus, the material is generated respecting the following

characteristic function:

f(x⃗+ t⃗) = f(x⃗) where t⃗ = ω1a⃗1 + ω2a⃗2 (3.6)

where a⃗1 and a⃗2 are the primitive vectors that define the lattice and the directions to generate the

translational symmetry and ω1 and ω2 are the scaling factors (define the distance of the translation

with respect to the reference material or unit cell).

Any material with a periodic micro-architecture has a Bravais network composed of a minimum

unit with translational periodicity whose shape ensures the tessellation principle. For this to be

fulfilled, it must be ensured that the micro-architecture of the minimum unit of the network covers

a predefined space in 2D, guaranteeing continuity in the topology of the network without overlaps

or gaps. This is also a justification that shows why a Bravais lattice on a material with a periodic

micro-architecture can be composed by a square or a regular hexagon, but in any case, by an

octagon.

(a) Hexagon translation (b) Octagon translation

Figure 3.4: Demonstration of tessellation compliance in the hexagon and non-compliance in the
octagon

Identification and parametrization of Bravais lattices

Every configuration that complies with the principle of tessellation or translational symmetry

contains an associated Bravais lattice and motif. The lattice refers to the shape of the unit cell

obtained in the pattern, while the motif refers to the pattern that generates the distribution of

material within that unit cell. The way to identify both parameters is based on the steps specified

below and complemented with the figure 3.5:

1. Identify the points of the pattern that have the same state. In the case of the example figure,

the tail of the pegasus is chosen and marked with green points.

2. Join these points by identifying the primitive vectors of the network.

3. Identify the shape of the mesh obtained by means of the Vornoi cells (cells obtained by

generating the perpendicular in the center of union between two nodes of the pattern with the

same state of the material and intersecting between them to obtain a closed shape) and the

configuration of the material inside the cell.

12
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Figure 3.5: Determination of Bravais lattice, Voronoi cell and motif of the pegasus tessellation
artistic wallpaper created by Escher.

As can be deduced from the figure above, the type of Bravais lattice depends on the relationship

between the modulus of the primitive vectors and the angle formed between them:

ω =
||a⃗2||
||a⃗1||

(3.7)

ζ = arccos(
a⃗2 · a⃗1

||a⃗2|| · ||a⃗1||
) (3.8)

Based on these relationships, the types of Bravais lattices and, consequently, of Vornoi cells can

be classified in five groups: Hexagonal, Square, Rectangular primitive, Rectangular centered and

Oblique. The following table depicts the characteristics and relation between parameters of each

type of cell:

Figure 3.6: Types of Bravais lattices in the plane [4].
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Bravais lattices’ related point group

As specified in previous sections, translational symmetry characteristics combined with crystallo-

graphic constraint theorems limit the infinite geometric point groups to five. These are characterized

by having n rotational symmetries, where n ∈ [2, 3, 4, 6] with one or two mirror line systems. Looking

at the possibilities in the point groups and the available unit cell shapes, they are associated with

each other according to the notation nmm (where n refers to rotation symmetries and mm to two

mirror line systems) to form the lattice systems:

• Group 2: group associated with the oblique lattice, where the only possibility is double rotation

symmetry.

• Group 2mm: group associated to the rectangular cells, both primitive and centered. In

these there are two rotation symmetries and two systems of reflection lines separated by 90º
(conventional lines and bisector).

• Group 4mm: group associated with square lattices. In this group there are four rotation

symmetries and four systems of reflection lines (conventional and bisector).

• Group 6mm: point group associated with the hexagonal cell. In this group there are six

rotation symmetries and six reflection line systems (conventional and bisector).

Figure 3.7: Bravais lattices with parallel lines indicating the mirror planes [4].

It should be noted that for the cases considered, the rotations of n around the axis coming out of

the plane passing through the center of the cell coincide with the conventional mirror lines (the

rest are created by bisector). Bravais grids are formed from the tessellation of a minimum unit of

volume, called unit cell. The unit cells shown in the figures above correspond to a Voronoi cell,

which preserves the same symmetries as a Bravais lattice and therefore maintains the point group.

Plane groups

In this new section, instead of going into the symmetries of the lattices, as was previously done for

the point groups, the present study focuses on analyzing the symmetries of the motif, therefore, the

symmetries formed by the distribution of the two-phase material within the unit cell.

This analysis leads to the appearance of a new symmetry element in addition to rotation and

reflection. This is the glide reflection, which is characterized by a reflection through a mirror line

and then a translation parallel to the same line. It should be noted that by applying the inverse

procedure (first translation and then reflection), the result remains invariant with respect to the

regular procedure.

With this new symmetry element, all the components that make up the plane groups are now
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available. The plane groups are defined as the set of symmetry elements that identify and characterize

a mosaic, with a mosaic being understood as a symmetrical and periodic distribution of the two-phase

composite mentioned since the beginning.

Therefore, as shown in the figure (3.5), a mosaic has an associated Bravais lattice and a motif that

defines the plane group of the 2D domain considered. Again, as with the point groups, there is

a restricted number of plane groups. Yegraf Fyodorov was the Russian crystallographer who in

1891 discovered that with only 17 plane groups it was possible to explain the symmetries of all

possible mosaics. All these groups are specified in the figure shown below 3.9, where the Voronoi

cells associated to the corresponding lattices with different distributions of material inside (motif)

and the symmetry elements composing each group can be observed:

• Reflection lines indicated in black.

• Number of rotation symmetries indicated in the center of the polygon in red.

• Glide reflection lines and their translation direction indicated in blue.

Also note the notation used to name each of the groups. The letters p or c at the beginning of the

notation of each group refer to whether the lattice of that plane group is primitive (only contains

one internal node, summing the fraction of node of each of the corners) or centered (contains two

internal nodes, one in the center and the other adding the node fraction of each corner). Next, the

number of rotation symmetries appearing in the composite is indicated. Finally, in some cases,

after the above, the terms referring to reflections appear. The first possibility is to have g or gg,

indicating one or two glide reflections respectively. Secondly, there is the possibility of finding m or

mm, indicating the presence of one or two mirror line systems.

Figure 3.8: Explicative figure of the notation used for the plane groups.
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Figure 3.9: Voronoi cells for the seventeen point groups in 2D indicating the symmetry elements
that compose each one. The colours inside the cell identify the phases of the composite [4].

It is likely that the point group symmetries of the Bravais lattice of the mosaic will be broken

when the motif has a lower symmetry than that of its associated lattice. Therefore, the presented

mosaic symmetry group of the mosaic is a subgroup of the one characterizing the underlying lattice.

According to this property, the relations between the point groups and the 17 possible plane groups

are therefore established. To characterize all the mosaics, ten point groups are necessary: 1, 2,

m, 2mm, 4, 4mm, 3, 3mm, 6 and 6mm. These relationships can be seen in the table 3.1, where

the plane groups are classified in the ten group points mentioned above according to the common

symmetry elements between lattices and motifs. An example of this would be the point group 2mm,

which is related to the plane groups p2mm and c2mm since they also contain two rotations and two

mirror line systems. However, the relationships become more complicated when glide reflections

are added, since the point groups do not include this element of symmetry. When analyzing the

groups containing these symmetry elements, it is determined that the classification is done by

substituting the g of the plane group to the m for point groups. For example, the plane group

p2mg, is interpreted as p2mm, and is therefore classified in the point group 2mm. This is because

performing a mirror symmetry of a crystal with glide symmetry yields the same crystal with a

translation of half the unit cell size parallel to the line of displacement. Therefore, when considering

an infinite crystal, both the original and the reflected and translated crystals are indistinguishable

when considering the effective material properties.
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Crystal systems

Classification of the types of crystals by their point group symmetries. It should be noted that each

crystal is formed by its associated lattice and its motif with the symmetry given by one of the plane

groups with the associated point group, as presented in the previous section. That is why crystal

systems are defined as the collection of crystals that share the same point groups with an identical

set of compatible lattices. Using this criterion, four crystal systems are distinguished that allow

classification of the ten point groups considered: oblique, rectangular, square and hexagonal. For

example, crystals with point groups 4 and 4mm are both compatible with the same type of lattices,

in this case, square lattices. Therefore, they belong to the square crystal system.

3.3.2 Type of tensors according to its symmetries

Considering the fact that the problem to be solved is of the linear elastic type, the objective of

the tensor C is to relate the stress field with the deformation field, forming a matrix equation

that generates the constitutive equations of the problem. Since the problem is linear elastic, these

stress-strain relationships can be explained by Hooke’s law. For one of the simplest cases, such as

the uni-axial one, the constitutive equation would be the following:

σ = E · ϵ (3.9)

where E is the elasticity modulus of the material.

The extension of a simple problem to a completely general one (three-dimensional solid) is established

by means of a fourth order tensor C, whose components are the elastic coefficients which are constant

given the material.

σ = C · ϵ (3.10)

The assumption that the problem is linear elastic restricts the operating range of the material to its

limit of proportionality, thus ensuring adequate results for small deformations.

Since the problem to be solved is of the 2D type and assuming that the elastic tensor is defined in a

coordinate system aligned with the symmetry planes of the lattice point group (natural coordinates),

the resolution of the problem is affected as follows:

• Simplification of the fourth-order tensor to a nine-component square symmetric matrix.

• Plane stresses and strains.

• Simplification of the tensor typology to four depending on the symmetry of the material

distribution properties.

• Appearance of a new variable, θ, which relates the canonical basis to the natural basis. It

is also considered as a new elastic coefficient. The method to transfer an arbitrary tensor C

from Cartesian coordinates to the natural coordinate basis is performed following the Auffray

pattern [3], in which, by using the invariants of the elastic coefficients, the type of symmetry

of the tensor, its appearance in the new basis and the θ angle necessary to access it from its

definition in the original basis are determined.

The symmetry in the elastic properties are properly classified according to the point group of the

material [10]. Therefore, by applying isometric transformations compatible with each point group
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on the 2D elastic tensor, the following types of tensors are derived, ordered from highest to lowest

order of symmetry:

• Isotropic O(2): type of tensor defined from elastic coefficients that is characterized by keeping

the material properties identical in all directions of evaluation. This tensor is described below

as a matrix in Voigt notation (use of engineering shear):

C =


a1 a2 0

a2 a1 0

0 0 a1−a2
2

 (3.11)

• Tetragonal D4: type of tensor with the need for four elastic coefficients to define it. The

material properties are identical in the directions defining the natural base but vary when

evaluating the shear. The tensor type is shown below:

C =


a1 a2 0

a2 a1 0

0 0 a3

 (3.12)

note that the fourth of the elastic coefficients corresponds to the rotation necessary to go from

canonical axes to natural axes. This element is avoided in isotropic materials, since any basis

is the natural basis because of tensor symmetries and properties.

• Orthotropic D2: tensor defined from five elastic elements. They contain two orthogonal

axes of double rotational symmetry, which implies that their properties depend completely on

the direction of evaluation. These tensors are of the following form:

C =


a1 a2 0

a2 a4 0

0 0 a3

 (3.13)

• Fully anisotropic Z2: tensor with the smallest number of symmetries that requires six

elastic coefficients to be defined. This results in a material whose mechanical properties have

no symmetry with respect to any plane or axis. The tensor has the following peculiarities:

C =


a1 a2 a5

a2 a4 −a5

a5 −a5 a3

 (3.14)
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3.3.3 Connection between geometrical and physical symmetry

Having presented all the characteristics of the physical and geometric domain of micro-architecture,

the table below establishes the links between the two by means of point group symmetries:

Elastic

Symmetry

class

Crystal

system

Point

group

Plane

group

Compatible Voronoi cell

Oblique
Rectangular

Primitive

Rectangular

Centered
Square Hexagonal

Z2 Oblique
1 p1

2 p2

D2 Rectangular

m

pm

pg

cm

2mm

p2mm

p2mg

p2gg

c2mm

D4 Square

4 p4

4mm
p4mm

p4gm

O(2) Hexagonal

3 p3

3m
p3m1

p31m

6 p6

6mm p6mm

Table 3.1: Connection between the elastic symmetries (column 1), the crystal systems (column 2),
the lattice point groups (column 3), the motif plane groups (column 4) and the compatible Voronoi
cells (column 5) that can accomplish the characteristics displayed in previous columns.

It follows that to achieve the elastic tensor characteristics of the first column, one of the Voronoi

cells shown in the last column, combined with one of the plane group symmetries indicated in the

same row for the motif is required. For example, if a micro-architecture is desired to be obtained

whose elastic tensor is of the D4 type, the squared Voronoi cell will be necessary jointly with a

plane group symmetry of type p4, p4mm or p4gm for the internal distribution of the two phases of

the composite.

3.3.4 Neumann’s principle

Fundamental postulate of crystal physics that allows establishing the connection between the

symmetry elements of the micro-architecture geometry with the symmetries appearing in the elastic

constitutive tensor. Neumann’s principle states the following: ”the symmetry elements of any

physical property (optical, magnetic, thermal and mechanical properties) of a crystal must include

the symmetry elements of the crystal’s point groups”[11]. This principle supports and explains the

relationships obtained in previous sections, and is also demonstrated by the examples given in the

practical section.

However, it should be noted that this principle does not state that the symmetry elements of a

physical property must be the same as those corresponding to the point group of the crystal. In fact,

sometimes physical properties may possess a symmetry greater than that indicated by the crystal
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point group. Therefore, according to Neumann, the table 3.1 should be interpreted as follows: a unit

cell with a given shape and a given internal symmetry ensures a symmetry equal to or higher than

that of the tensor type specified in the corresponding row. For example, a square cell with a motif

with plane group p2mm, corresponding to point group 2mm, ensures at least a symmetry tensor D2

(orthotropic). This means that it could also be the case to obtain a symmetry tensor O2 (isotropy).
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Study of optimal shapes for lightweight material design

Chapter 4

Code performance and composition

Regarding the available possibilities of shapes in 2D unit cells reviewed in previous chapter, the

objective is to develop a compact code which allows the user to create the desired mesh (between

the Bravais lattices options) introducing a set of common parameters.

4.1 Variables to be defined by the user

The first step consists in analyzing which are the required variables to introduce by the user to

perform each of the polygons. Taking into account the possible shapes of the Bravais lattices, it is

observed that there is only the possibility of having polygons with 4 or 6 sides.

On the one hand, the analysis of 4-sided polygons includes:

• Squares: quadrilateral polygon with equal length sides (a0) and angles (as all the angles

are equal, each one must have 90º). That’s the reason why the user only needs to define the

length of the side.

c = a0 θ = 90 (4.1)

• Rectangles: quadrilateral polygon with two different lengths to define (a0 and a1) and the

same 90º angle in the intersection between sides.

c = [a0, a1] θ = 90 (4.2)

• Rhomboids: quadrilateral polygon with the parallel sides of equal length, which translates

into two variables of length (a0 and a1) and an angle between the horizontal and the side

following the base in the counterclockwise direction (θ1).

c = [a0, a1] θ = θ1 (4.3)

Taking into account the elemental definitions, it is clear to see that the rhomboid is the most general

case, since by assigning the appropriate input parameters it would be possible to have a rectangle

or a square. Hence, the inputs for the program to generate a four-sided polygon will be a vector of

lengths (c⃗) with two components and a vector of angles (θ⃗) composed of an initial angle to define

the inclination of the lower side of the polygon and a second angle that will define the inclination
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between the horizontal and the second side.

c⃗ = [a0, a1] θ⃗ = [θ0, θ1] (4.4)

Figure 4.1: Representation of the required inputs to generate a 4-sided polygon.

On the other hand, the analysis of the 6-sided polygons includes:

• Regular Hexagons: 6-sided polygon with all the sides with the same length and an angle of

60º between sides. This causes the only possible input to be the length of the sides.

c = a0 θ = 60 (4.5)

• Irregular Hexagons: 6-sided polygon, in this particular case, with equal length in parallel

sides, which translates in three side-lengths to define (a0, a1 and a2) and two angles θ1 (angle

between the horizontal and the side next to the base in the counterclockwise direction) and θ2

(angle between the horizontal and the next side, corresponding with the length a2).

c = [a0, a1, a2] θ = [θ1, θ2] (4.6)

In this case, the most particular case is the irregular hexagon, as defining properly the input

variables, the user can generate a regular hexagon. In the same way as in four-sided polygons, a

vector of lengths (c⃗) and another one of angles (θ⃗) will be defined, but in this case, each vector will

have three components.

c⃗ = [a0, a1, a2] θ⃗ = [θ0, θ1, θ2] (4.7)

As said before, θ0 is the angle between the lower side and the horizontal.
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Figure 4.2: Representation of the required inputs to generate a 6-sided polygon.

With this, the definition of the contour of the polygon has been done. But it is also necessary for

the user to define the density of the mesh (r = divUnit). Hence, another input of type integer must

be introduced. This value will define the number of equal divisions per unitary length of the side.

Taking this into account, every side will contain two nodes, one in each vertex and the following

nodes between them:

nint = r · ci − 1 (4.8)

where i refers to the desired position in the vector c⃗.

Once the analysis is done, the variables to be introduced by the user are: c⃗, θ⃗ and divUnit.

As a guide of use of the code, the following table shows which are the input variables to introduce

to obtain each one of the shapes considered and some limitations to take into account with the

angles selected (setting θ0 to 0 in all cases):

Cell shape c⃗ θ⃗ divUnit Remarks

Square [a,a] [0,90] 2 -

Rectangle [b,a] [0,90] 2 -

Rhomboid [b,a] [0,α] 2 α ̸= 0, 180

Regular Hexagon [a,a,a] [0,60,120] 2 -

Irregular Hexagon [a,b,c] [0,α,β] 2
α ̸= 0, 180

α < β < α+ 180

Table 4.1: Input data required to obtain the desired cell shape and divisions.

As an example: a = 1, b = 2, c = 1, α = 60º and β = 100º.
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Figure 4.3: Boundary obtained by the mesh creator for the five inputs specified in 4.1

4.2 Boundary nodes disposition mechanism

Looking at the study done in the last section it is clear to see that the initial data introduced by

the user, defines the location of the boundary nodes. In this section, the study is centered in the

mechanism used by the MATLAB code to set the boundary nodes in the position specified by the

used with the inputs. For this case, the mechanism is general for 4-sided and 6-sided polygons,

that’s why the explanation will use the most general situation, the irregular hexagon. Note that,

all the shapes exposed in 4.3 comply with the tessellation principle, so that they have at least

equal sides and angles two by two (causing the spatial translation of these, making them fit into a
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pre-established space in 2D without leaving gaps and maintaining continuity). This makes that

the inputs introduced by the user, define directly the master nodes (nodes of the first half of the

polygon) and indirectly the slave nodes (nodes of the second half of the polygon that have the same

succession of lengths as the first half, but supplementary angles with respect to the horizontal).To

make it easier, the code differentiates between vertex nodes and interior boundary nodes in the

computation of the coordinates:

• Vertex Nodes: first coordinates set by the code defining the shape of the selected polygon.

On the one hand, the equation used to calculate the coordinates of the master nodes is as

follows: x

y

 = c0 + ci ·

cos(θi)

sin(θi)

 (4.9)

where c0 are the coordinates of the previous node (the first vertex is always set at the origin of

coordinates), ci is the vector of lengths for the succession of master sides and θi is the vector

of angles with respect to the horizontal axis for the master sides and i is a parameter that

selects the successive positions in the input vectors from 1 to sides
2 .

On the other hand, the equation used to compute the coordinates of the slave nodes is as

follows: x

y

 = c0 + ci ·

cos(θi + 180)

sin(θi + 180)

 (4.10)

where, the only difference with respect to 4.9 is that to complete the polygon shape, rotate

the angles defined for the master sides (user-defined) by 180 degrees.

The following figure is shown as an example (as in last examples, it has been considered that

θ0 = 0):

Figure 4.4: Representation of the data used for the calculation of the coordinates of the vertex
nodes. Note that the numeration of the nodes is also shown.

The figure clearly shows the initial node (red/green), the pure master vertices (green) and the
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pure slave vertices (red). The first node is considered a slave even though it is defined during

the master calculation phase, since the slave calculation process retrieves it again to verify

that all calculations performed so far are correct.

• Interior Boundary Nodes: nodes located between consecutive nodes. As said before, the

number of divisions of every side is directly related with the length of the side and the unitary

divisions considered by the user (divUnit) as equation 4.8 shows. The equation used to obtain

the coordinates of the internal master nodes is as follows:x

y

 = c0 +
ci
divi

·

cos(θi)

sin(θi)

 (4.11)

where divi = ci · divUnit is the number of divisions corresponding to the i side.

At a glance, it can be seen that the distance between two consecutive vertices (ci) is divided by

the number of divisions of the side (divi) to generate equidistance between nodes. In this case,

c0 will be the first vertex of the side (the smallest in terms of numbering) if the coordinates of

the first internal node of each side node are calculated and if not, its value will be that of the

last node calculated.

The calculation for the internal slave nodes is identical to that of the equation 4.11 but in this

case, using the supplementary angle to the one introduced in the vector θ⃗.

As an example of the performance of the code to this point, the following indicative figure is

provided:

Figure 4.5: Boundary interior master and slave nodes in the six-sided polygon of figure 4.4. Note
that the numeration of the nodes is also shown.

4.3 Interior nodes disposition mechanisms

Once the nodes that make up the boundary have been generated, it is time to calculate the internal

nodes. Due to the peculiarities of each polygon, two methods are presented, where the first one is

used for four-sided polygons and the second one for six-sided polygons.
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• Computation of coordinates by intersections: A way to calculate the coordinates of the

nodes by intersecting lines parallel to the sides for four-sided polygons. This method is based

on the following steps:

– 1. Obtaining the vectors of contiguous sides (v1 and v2). It should be noted that these

vectors will allow to obtain all the interior nodes of the mesh.

– 2. Obtaining the points to generate the first two lines to intersect (p1 and p2). We

start with the points closest to the axis of coordinates of the contiguous sides (without

including the vertices).

– 3. Generation of the equation of both of the lines. Note that the first line is generated

with the point p1 and the vector v2 of the adjoining side. For the second line in this case,

the point p2 and the adjoining side vector v1 are used.

– 4. Obtaining the coordinates of the node by the intersection between the two lines.

– 5. Move to the next point on the first side. Note that the second line remains invariant

until all the nodes of the contour of the first side are completed. When this point is

reached, we move to the next node of the second side.

The following image clarifies the explanations made:

Figure 4.6: Procedure followed by the intersection mesher. The figure shows the original polygon
and the first iteration of the intersection mesher.

• Computation of coordinates by division of diagonals: Second method to compute

the coordinates of the interior nodes of 6-sided meshes by the division of the diagonals and

reduction of the contour scaling factor. The method is based on the following steps:

– 1. Computation of the coordinates of the node on the center of the 6-sided polygon by

the intersection of two of the three diagonals.

– 2. Generation of the the six vectors that connect every vertex with the central node

(diagonals).
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– 3. Division of the vectors of the diagonals according to maximum value of div and

computation of the new vertices of the scaled polygon.

– 4. Connection of the consecutive nodes of the scaled polygon and meshing of each line

taking into account to the following rule for the number of divisions when reducing the

length of the sides when scaling: the length distance between two consecutive nodes in the

interior of the polygon should not be higher than the distance between two nodes in the

boundary. When this rule is not followed, the algorithm reiterates with a higher number

of divisions until it is fulfilled. Highlight that after every scaling iteration, the number of

divisions of every side is reduced by one.

– 5. Repetition from step 2, taking as reference the vertices of the new scaled polygon.

This repetition is made until the last division of the diagonals.

The following figure makes it easier to understand the above steps:

Figure 4.7: Procedure followed by the division of diagonals mesher. The figure shows the real
polygon and the first scale with the nodes of the master sides.

Note that this internal node meshing strategy is fully functional for any even-sided polygon with

opposite sides of equal length.

4.4 Creation of elements: connections between nodes

Once all the necessary nodes for the mesh have been created, the algorithm is in charge of generating

triangular unions formed by three nodes each, thus obtaining the elements. The connection between

the nodes is made by proximity using the MATLAB precomputed function delaunay. This allows to

make the triangular connections quickly and effectively, but, on the other hand, it requires certain

filters to avoid the following problems:

• Generation of linear elements in the contour in those polygons with non-straight sides. The

trigonometric functions used when placing the contour nodes cause the nodes to not lie exactly

on the side line, causing the delaunay function to detect these differences and generate an
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erroneous element. This is solved by requiring the algorithm to prevent the generation of an

element if it contains three contour nodes.

• Disappearance of the corners of four-sided polygons. The above solution is perfect for six-sided

polygons, but in four-sided polygons, where the corner elements consist of three nodes, it is

insufficient. Therefore, the code implements a new filter around the previous solution in which

it is required that elements are not removed when the node numbering sequence corresponds

to a corner in a four-sided polygon.

4.5 Implementation of boundary conditions

Every finite element problem requires boundary conditions, and this is no exception. As discussed

in the theoretical section, the microstructures obtained must be able to comply with the tessellation

property. This is achieved by forcing the nodes on opposite sides to have the same topology during

optimization and therefore, it is necessary to provide the optimizing algorithm with master-slave

nodes pairs. On the other hand, it is also necessary to establish Dirichlet boundary conditions,

which for this particular case, are based on fixing the vertices of the polygons.

The code implements these conditions as follows:

• Obtention of the master-slave nodes: type of boundary condition where the master node

gets a condition and the slave copies it. The topology optimization code needs the list of

master-slave nodes of every polygon created so as to ensure the tessellation property. The

steps followed by the algorithm to obtain the master-slave nodes are as follows:

– 1. The first step is to obtain the normal vectors of each of the sides of the polygon, trying

to make them come out to the area created by them. To obtain this vector, what the

code does is to obtain the director vector of each of the sides that make up the polygon,

and then normalize and orthogonalize them.

– 2. Obtaining all those vectors that have as origin one of the vertices and destination

all the nodes that form the contour. The destination node of these vectors will be the

possible candidates to be master-slave.

– 3. The next step consists in revising which of the vector candidates are orthogonal to

the normal vectors of the sides forming the polygon. In this step, the code saves in an

ordered way (remember that the contour numbering is done counterclockwise for the

interior nodes) the nodes of each of the sides that comply with the orthogonality in a

matrix that has as much rows as master-slave nodes and as much columns as sides has

the polygon. In this way, the master-slave nodes on each side are arranged in column

vectors within the master-slave matrix.

– 4. Now, it is necessary to know the parity between the sides, that is, to determine which

sides should be related to each other, in order to copy the conditions of the other. These

relations are established two by two following the rule that the orthogonal vectors of

their sides are parallel. In this way, the code groups in pairs the lines that form the

polygon by checking the parallelism between orthogonal vectors.

– 5. The code groups the previously obtained nodes according to the parity of the sides.
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The first half of the lines will act as masters (considering the first lines, those with a

lower number of nodes than the rest) and the second half will act as slaves. The result

of the imposition of these boundary conditions is a matrix where the numbering of the

master node is related to that of the slave, taking into account that for the translation

symmetry to be fulfilled, it is necessary to invert the order of numbering of the column

vectors corresponding to slave sides.

A simple example is shown below to complete the explanations:

Figure 4.8: Numbered square mesh with the master nodes in green and the slave nodes in red
together with the master-slave matrix.

It can be seen that in the master-slave matrix, the master nodes are ordered in the first

column, while the slave nodes on each side are numbered inverted in order to guarantee

translation symmetry.

Note that this methodology is completely general for any polygon with even sides where the

opposite ones have equal length.

• Application of the prescribed displacements (Dirichlet boundary conditions): as

discussed above, the code is responsible for constraining the movement of the two degrees

of freedom of the corner nodes automatically. This is done by specifying the numbering of

the nodes to be constrained, their degrees of freedom and the prescribed value (in this case

null), during the creation of the .m file (file generated to subsequently submit the mesh to the

topological optimization phase).

4.6 Organization of the code: object oriented programming &

UML diagram

One of the characteristics that differentiate the code presented in the previous sections is that

it is organized following an object oriented pattern of programming instead of patterns centered

in functions or logic. This is implemented using classes instead of functions, where the object is

defined as a data field that has certain exclusive attributes and methods. This way of programming,

despite having greater programmatic and logical complexity, has several benefits, among which are
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efficiency, reusability of methods and scalability (ease of increasing the algorithm’s capabilities).

To explain the organization of the classes that make up the Mesh Creator code, the Unified Modeling

Language (UML) diagram is used to show the attributes of the objects, the methods of each of

the classes and the relationships established between them. The diagram can be seen in figure 4.9,

where only the attributes and public functions are reflected, that is, those that are accessible by the

user. Each box in the diagram represents a class, whose name is reflected at the top of the box.

Next, the attributes of the object of the class appear and in the lower subdivision of the box, the

exclusive methods of the class appear. As for the relationships between classes, two can be found in

the diagram:

• Composition: relationship of association in which the parts exist only in association with

the compound. This relationship is represented by a black arrow.

• Inheritance: relationship between a general superclass and its more specific subclasses.

These subclasses acquire all the properties of the superclass, but not all the properties of the

subclasses are contained in the superclass. This relationship is represented by a white arrow.

Once the casuistry of the UML diagram is known, we proceed to explain the work developed by

each of the classes from the top to the bottom, in order of class execution:

• MeshCreator: Brain class, from which most of the code functionalities are executed. From it

you can obtain the coordinates and connectivities of the mesh, draw the mesh and create the

.m file.

• NodesCalculator: Class in charge of calculating the number of nodes necessary to initialize

the coordinate variables of the vertex nodes, of the contour and of the whole mesh.

• NodesCalculatorFactory: Class that selects the subclass required for the calculation of the

number of nodes based on the number of sides of the polygon selected by the user.

• QuadrilateralNodesCalculator: Class in charge of calculating the totality of the nodes of the

quadrilateral mesh.

• HexagonalNodesCalculator: Class in charge of calculating all the nodes of the six-sided meshes.

• NodeCoordinatesComputer: Class in charge of calculating the coordinates of all the nodes of

the mesh. By composition, there are three classes in charge of calculating the coordinates of

the vertices (VertexCoordinatesCalculator), of the contour (BoundaryCoordinatesCalculator)

and of the whole mesh (TotalCoordinatesCalculator).

• TotalCoordinatesCalculatorFactory: Due to the peculiarities of four-sided and six-sided mesh-

ing, this class takes care of directing the superclass to the corresponding subclass.

• IntersectionCoordComputer: Meshing class of internal nodes of four-sided polygons by the

method of intersections.

• DiagonalCoordComputer: Meshing class of the internal nodes of six-sided polygons by the

method of diagonal division and scaling.

• NodesConnector: Class in charge of establishing the connections between the nodes to form

the triangular elements.
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• MasterSlaveComputer: Class in charge of calculating the master-slave nodes.

• MatlabFileWriter: Class in charge of setting the Dirichlet boundary conditions and writing to

the .m document.

In addition, although they do not appear in the UML diagram, three additional functions that

facilitate the user’s work with the algorithm are presented below:

• createShapedMeshes: Matlab function that allows the user to create the mesh with the desired

shape by entering the length of the first half of the sides of the polygon, the angles with

respect to the horizontal of the first half of the vertices, the number of divisions for each unit

of side length and the desired name for the .m file created by the algorithm.

• testQuadrilateralSolutions: function in charge of verifying that the classes through which a

four-sided polygon passes, work correctly. By default, this test checks that the code works

correctly when working with a square of side length 1 and 3 divisions per side. This allows the

programmer to verify the correct functioning of the code when making small modifications, as

well as to quickly find possible faults by detecting in which class they occur.

• testHexagonalSolutions: test function that does the same job as the previous function but

for six-sided polygons. In this case, by default, it checks the performance of the code for a

hexagon with side length 1 and 3 divisions per side.

Finally, the GitHub link to view the MATLAB code is provided here.
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Figure 4.9: UML diagram of the Mesh Creator code.
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4.7 Performance verification

All code needs a series of verifications before starting its use, in order to try to detect possible

problems or cases not taken into account during the code development process. In this way, several

checks are performed with different polygons of both four and six sides, observing the obtained

parameters and those that can be expected taking into account the input parameters. The following

are the examples verified using divUnit = 3, in which the numbering of the vertices is shown in blue

and the numbering of the contour nodes in green or red depending on whether they are master or

slave nodes:

Figure 4.10: Performance of the code using different inputs.
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Chapter 5

Micro-structures design methodology

Any design of material goes through a process in which a solution is proposed, its performance is

interpreted and it is constantly iterated until the shape or distribution that fulfills the required

function is achieved. As mentioned in previous sections, topological optimization eliminates this

material testing time since the material is designed knowing the desired physical characteristics

(inverse problem). The steps to obtain a topology with the desired properties by the designer are

presented below as a guide:

1. Selection or elaboration of the elastic tensor according to the properties desired for the material.

Of course, in this step it is advisable to transform the tensor to natural coordinates using

the algorithm that implements the method of Auffray invariants, both to observe the tensor

symmetries and to filter out those decimals that make it difficult to distinguish between the

tensors of the section 3.3.2. The tensor obtained in the natural coordinates will be the target

tensor C* to be forced into the micro-structure by the optimizer.

2. Selection of the Voronoi cell shape with compatibility with the chosen tensor type, taking into

account the relationships in the table 3.1.

3. Choice of the initial descriptive parameters of the cell: length of the sides, angles (if required)

and initial topology. Of course, the selection of these parameters is made based on experience

with numerous designs. That is why, in the practical section, a deeper analysis of the optimizer

behavior with the variation of these preprocessing parameters is performed.

4. Use of the cell generator code to generate the desired shape with the conditions established in

the previous point. At this point, a new parameter appears which is the number of divisions

per side that make up the mesh of the cell. This selection can be made according to the

convergence analysis and error evaluation carried out in the practical part.

5. Introduction of the conditions established with the mesh creator in the topological optimizer

to proceed to solve the inverse problem. It should be noted that the creation and optimization

of the code is performed in Cartesian coordinates.

6. Analysis of the symmetries obtained. Review of the distribution of material obtained in the

cell and classification of the type of plane group. Ideally, the algorithm, as a post-processing,

should be able to force one of the plane symmetries that ensure at least the desired tensor

for the selected Voronoi cell. Without forcing these symmetries, the optimizer should be able
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to achieve them by selecting a Voronoi cell related to the peculiarities of the tensor to be

forced. Of course, as discussed in the theoretical section by means of Neumann’s theorem, if

an optimized Voronoi cell contains a plane symmetry that allows obtaining a tensor of type

D4, this only ensures that the topology will have at least that symmetry, and may even reach

isotropy if the appropriate symmetry conditions are met.

7. Transfer of the final tensor obtained from Cartesian coordinates to natural coordinates by

means of the Auffray algorithm.

8. Culmination of the design of the desired micro-structure.
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Chapter 6

Practical assessments

Once all the necessary knowledge has been compiled and all the essential concepts related to

topological optimization and the meshing algorithm have been reviewed, it is time to test the theory

reviewed and test the capability of both the optimizer and the mesher.

For this purpose, this practical part is organized in four essential points:

• Convergence study with mesh refinement. Observation of the ability of the meshing code to

tend to reduce the error of the tensor obtained by increasing the number of divisions per side

(divUnit). The study aims to provide the user with a tool to decide the number of elements of

his mesh according to the rigor required by his results in contrast to the computational cost.

• Demonstration of Neumann’s theorem and canonical deformations. Demonstration of the

relationship between the geometrical and the physical domain by means of several examples.

In addition, it is shown the fulfillment of the tessellation principle for each of the cells in their

deformations under horizontal, vertical and shear stress states.

• Design of isotropic and orthotropic materials. Point destined to the testing of different Voronoi

cells and initial conditions to evaluate the ability of the optimizer to generate the necessary

plane symmetries to obtain the desired tensor.

• Study of the peculiarities of the non-Voronoi rhomboid cell. Review of the tessellation principle

in principal deformations and the relation of its tessellated domain with that of a hexagon.

The objective of this practical study is to evaluate the behavior of the optimizer by varying the

preprocessing conditions related to the cell shape, the initial optimization conditions and the number

of mesh divisions to obtain the objective tensor. Therefore, it seeks to facilitate the designer’s

task by providing the necessary tools for the selection of initial conditions to ensure that its

micro-architecture has the properties of the objective tensor.

6.1 Convergence of the results upon the increase of divisions

Basic point of any finite element study in which it is sought to assess the number of divisions required

for each type of mesh to obtain rigor in the results without having an excessive computational cost.

The first thing to note is the title of the section, where the increase in the number of divisions is

mentioned, as if it were the application of the finite element method in 1D, instead of the number
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of elements. This is because the user control variable is the number of divisions per unit side length

(divUnit) instead of the number of elements. In addition, assessing a priori the number of elements

in six-sided meshes is very complex given the functionality of the algorithm in these meshes to

densify the mesh if necessary.

To reflect the two phases of the composite, a hole has been introduced in the center of each of the

meshes and the dimensions of the sides have been adjusted to ensure that the volume fraction of

the composite is identical in all meshes and of value π
4 .

The convergence with increasing number of divisions has been evaluated from the relative error

between the determinant of the calculated tensor with respect to the real tensor:

ϵrel(%) =
||Ccalc − Creal||

||Creal||
· 100 (6.1)

where Ccalc is the calculated tensor for a given number of divisions and Creal is the ”correct” or

”zero-error” tensor. In this case, the tensors obtained for meshes of 300 divisions per unit side

length and filtered by the symmetric trend tolerances of the Auffray algorithm have been assumed

to be correct. This is the reason why correct and zero-error appear in quotation marks.

The procedure followed was based on evaluating the relative error of tensors generated from 25,

50, 100, 175 and 300 (without Auffray filter) divUnit meshes to fit an exponential curve passing

through these points in a relative error vs number of divisions per unit side length plot. In this

way, the exponential trend curve allows to represent the relative error of all points of interest for

medium and large divUnit, since the exponential curve does not allow to adequately represent how

the error is triggered for low divisions. But, since at these divisions, the error is high and of low

interest, the exponential fit already adequately covers the expected range of work to be covered.

As an example, the procedure followed for the square case is explained below:

• 1. Calculation of the ”real” tensor. For the case of the square, the result is as follows:

Creal =


0, 6703 0, 1921 0

0, 1921 0, 6703 0

0 0 0, 1823

 (6.2)

• 2. Obtantion of the calculated tensors for each number of divisions and evaluation of the

relative error by means of equation 6.1.
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divUnit Ccalc Relative Error (%)

25


0, 6506 0, 1811 −0, 0036

0, 1811 0, 6506 −0, 0036

−0, 0036 −0, 0036 0, 1743

 2, 54 · 10−3

50


0, 6569 0, 1864 −0, 0021

0, 1864 0, 6569 −0, 0021

−0, 0021 −0, 0021 0, 1783

 6, 92 · 10−4

100


0, 6662 0, 1897 −0, 0010

0, 1897 0, 6662 −0, 0010

−0, 0010 −0, 0010 0, 1797

 3, 37 · 10−5

175


0, 6669 0, 1908 −0, 0006

0, 1908 0, 6669 −0, 0006

−0, 0006 −0, 0006 0, 1812

 1, 24 · 10−5

300


0, 6703 0, 1921 −0, 0004

0, 1921 0, 6703 −0, 0004

−0, 0004 −0, 0004 0, 1823

 ≈ 0

Table 6.1: Relative error obtained for each number of divisions for the squared mesh.

• 3. Fit of an exponential curve to the points obtained in the above table:

Figure 6.1: Convergence of the squared mesh tensor upon the increase of divUnit.

The figures below show the calculated points and the exponential fit for the rest of the cells:
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Figure 6.2: Convergence of the Rectangular Primitive mesh tensor upon the increase of divUnit.

Figure 6.3: Convergence of the Hexagon mesh tensor upon the increase of divUnit.

Figure 6.4: Convergence of the Rectangular Centered mesh tensor upon the increase of divUnit.
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Figure 6.5: Convergence of the Oblique mesh tensor upon the increase of divUnit.

Figure 6.6: Convergence of the Rhomboid mesh tensor upon the increase of divUnit.

It is observed that the errors committed are of very low magnitude, achieving good results from

60 divisions for all the shapes considered with a relatively low computational cost. Again, it is

important to note that the zone between 0 and 25 divisions does not correctly capture the behavior

of the error with the exponential fit, so it is recommended to avoid it. A peculiarity observed in

all cases is that from 25 elements onwards, the symmetry of the tensor is correctly shown when

passing it through the Auffray filter. This is clearly observed in the case of the square, where from

25 elements up to 300, the D4 symmetry is maintained if the tensors are filtered by the Auffray

algorithm (it evaluates the error made in positions 13 and 23 and their symmetrical positions

of the tensor and eliminates them). This event is very useful for further studies, since with low

computational cost, the symmetry characteristics of the tensor can be obtained.

For a better comparison of the error trend for all types of cells, the following figure is shown:
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Figure 6.7: Comparative of the convergence of shaped mesh tensors upon the increase of DivUnit.

This comparison shows that four-sided polygons have a slightly higher error than six-sided polygons

before convergence. This is due to the fact that the mesher densifies the hexagonal meshes to try to

keep the distance between nodes invariant, generating, in general, a higher number of elements in

the grid.

The differences between the curves of the four-sided polygons are due to the differences in the

lengths of the sides of each of the polygons and their direct relationship with the number of divisions

generated by means of the user-imposed variable divUnit. On the other hand, for the six-sided

polygons, the error curves in the cells practically follow the same pattern despite varying side

lengths, so it follows that the meshing tool is able to better separate the relationships between

divUnit and side lengths by creating more elements.

In general, rigorous results are obtained from 60 elements and the error in the tensor converges to

almost zero from 100 elements for all shapes.

6.2 Demonstration of the Neumann’s principle

The Neumann principle postulates that there are connections between the symmetries in the micro-

architecture and the symmetries in the elastic constitutive tensor by means of the point groups.

The table 3.1 establishes these connections and through this section we seek to exemplify some of

them to demonstrate the fulfillment of Neumann’s principle. For these demonstrations the following

methodology will be followed:

• Mesh generation by means of the shape creator algorithm. The number of divisions, as

previously mentioned, must be greater than 25 divisions to guarantee that the symmetries in

the tensor are shown. For the subsequent demonstrations, 60 divUnit have been chosen.

• Generation without topological optimization of the material distribution within the lattice to

emulate the results of some of the crystallographic plane groups. This is done using the Level

Set methodology and forcing a certain symmetry in each of the Voronoi cells.
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• Obtantion of the homogenized elastic tensor and identification of the symmetries of this one

transferred to the natural basis by means of the Auffray algorithm.

• Tessellation of the deformations for the canonical stress states (horizontal, vertical and

shear) using GiD to show the compliance of this essential principle and the behavior of the

micro-structure in these situations.

The result of the present demonstration is a table showing the obtained tensor together with its

symmetry and the generated topology together with its plane group. In this way, it will be possible

to analyze in a simple way whether the relations specified in the table 3.1 are verified.

To proceed in a simple manner, a circular gap of material has been introduced in the center of each

topology to achieve the maximum plane symmetry group of each cell type.

Before analyzing the results, it should be noted that the red zone of the deformations of the first

column represents the zone of presence of material, while the blue zone is the zone of absence of

material. The rest of the colors observed is a scale that allows to pass continuously from the zone

without material to the zone with material. In this case, because the decision does not affect the

evaluation of the tensor symmetries, it can be considered a zone without material.

By observing the table 6.2 in the first instance it is reported the fulfillment of the tessellation

principle, an essential requirement to continue with the analysis. The results of each of the cells

from the top to the bottom of the table are discussed below:

• The circle inside the oblique lattice forces a symmetry of type p2, since the rotation of half

of the domain 180º generates the entire topology of the unit cell. A figure showing the

topology is indicated below. It should be noted that the union between two opposite vertices

is the one that generates the minimum unit symmetry to be rotated. According to table 3.1

the symmetry of the geometrical domain corresponds with a fully anisotropic elastic tensor

coinciding with the results shown in the table of results 6.2

• The next cell is the rectangular centered one. As the table indicates it has a c2mm symmetry

with two rotations and two systems of mirror lines. Therefore, the complete topology can be

created by selecting a quarter of the unit cell, rotating it by 180° and then using one of the

two mirror line systems (vertical or horizontal) to generate the entire micro-cell. As before, it

complies with what was developed during the theory, by obtaining an orthotropic tensor.

• The following one is the rectangular primitive with the same symmetry as the rectangular

centered case. The forced hole in the center of the topology causes two rotation operations

and two mirror line systems to appear. This topology, having p2mm plane symmetry and an

orthotropic elastic tensor, complies with the Neumann principle.

• The next case introduces four rotations and two sets of symmetry lines for the squared

micro-cell. As expected, the p4mm plane group symmetry observed in the undeformed 6.8,

allows the the tensor to have a tetragonal format.

• The fifth case is the diamond test, where the square is rotated 45º to check whether a tensor

D2 or D4 is obtained. Since a material hole is introduced in the center, it could be assumed

that the symmetry is of the c2mm type, but, there is a higher symmetry in this case associated

with the square without rotating 45º, which is the p4mm. That is why, when passing the

tensor in cartesian coordinates through the Auffray algorithm, it indicates that it is necessary
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to rotate the tensor and the topology -45º to obtain the tetragonal tensor.

• Finally, the maximum symmetry is studied by means of the hexagon. The plane group

corresponding to this succession of symmetry operations is p6mm, where six rotations and

two mirror line systems appear. Again, this case also fulfils the Neumann’s theorem.

Cell mesh & deformed tessellation Plane group symmetry Ch (in Natural basis) Elastic symmetry class

p2


0, 5955 0, 2038 0, 0084

0, 2038 0, 6101 −0, 0087

0, 0084 −0, 0087 0, 2108

 Z2

c2mm


0, 7211 0, 2227 0, 0000

0, 2227 0, 7670 0, 0000

0, 0000 0, 0000 0, 2242

 D2

p2mm


0, 8157 0, 2589 0, 0000

0, 2589 0, 8769 0, 0000

0, 0000 0, 0000 0, 2525

 D2

p4mm


0, 6537 0, 1864 0, 0000

0, 1864 0, 6537 0, 0000

0, 0000 0, 0000 0, 1783

 D4

p4mm


0, 4045 0, 0821 0, 0000

0, 0821 0, 4045 0, 0000

0, 0000 0, 0000 0, 0651

 D4

(θ = −45º)

p6mm


0, 5931 0, 1882 0, 0000

0, 1882 0, 5931 0, 0000

0, 0000 0, 0000 0, 2025

 O(2)

Table 6.2: Demonstration of the fulfillment of Neumann’s theorem by means of the correspondence
between the symmetry and shape of the micro-cell with the type of symmetry of the elastic tensor.
In the first column we can find from left to right and from top to bottom, the mesh shape and
divisions, the deformed for the horizontal, vertical and shear state of stress.

The undeformed of each of these cases are presented below in the same order of appearance of the
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table in order to identify more easily the symmetries they contain:

Figure 6.8: Undeformed state with the forced micro-architecture of each of the Voronoi cells and
indication of the maximum plane group symmetry associated.

It is clear that the examples in the table comply with both essential principles of the present

study: that of tessellation (presenting continuity in the deformed and undeformed by translating

the unit cells in a 2D space without overlapping or leaving gaps) and that of Neumann 3.1 (the

symmetries in the physical characteristics of the tensor are related to the geometric domain of the

micro-architecture through the point groups and their associated plane groups).

6.3 Topology optimization in micro-structure design

Once the convergence capacity has been assessed and the ability to comply with the tessellation

and Neumann principles has been demonstrated, it is time to put oneself in the shoes of a structure

designer and try to obtain a topology that adapts to the target tensor. For this purpose, the inverse

problem will be solved by means of the level set methodology, introducing perimeter penalization

to avoid patterns with very narrow shapes and therefore, guaranteeing manufacturability, and

volume inequality constraints to try to use the minimum amount of material in the designed

micro-architecture. The mathematical problem to be solved is presented below:

P =

min ||Ch − C∗||+ λp(
P
P ∗ − 1)

s.t. V
V ∗ − 1 ≤ 0

(6.3)

where C∗ is the target elasticity tensor, λp the importance or weight assigned to the minimization

of the perimeter (0 < λp ≤ 1), P ∗ is the perimeter target and V ∗ is the desired volume fraction.

The present design seeks to observe the capacity of the optimizer to force the necessary symmetries

to achieve the target tensor typology. For this purpose, the effect of different design variables

selected during the preprocessing on the final result will be evaluated. These design variables are:

• Domain size and shape. Testing of the different Voronoi cells studied so far.

• Initial state of the distribution of material. Testing of different material configurations as a

starting point for topological optimization.

The objective is to compare the solutions obtained with each situation to evaluate their effectiveness

in designing the desired material.

Two inverse problems are posed in which the first one seeks in the convergence of the solution to an

isotropic tensor and the second one seeks in an orthotropic tensor. The rest of the optimizer variables

45



CHAPTER 6. PRACTICAL ASSESSMENTS 6.3. TOP OPT IN MICRO-STRUCTURE DESIGN

are set as the following since they have provided the best quality results during the pre-design tests:

V ∗ = 0, 5 ; P ∗ = 1 ; λp = 0, 5

It should be noted that in order to maintain good quality results without compromising computational

cost, 75 divisions per unit side have been selected for the four-sided cells and 60 for the six-sided

cells for all the cases presented in the following subsections.

6.3.1 Isotropic target tensor

As discussed in the theoretical section, this is a type of material that has the same physical

characteristics in all directions, which generates great importance in the search for optimal topologies

that ensure this type of symmetries. According to the table 3.1 the unit cells with the highest

affinity to isotropy are the hexagonal ones with p3, p3m1, p6 or p6mm plane group symmetries.

This statement will be tested by testing all Vornoi cells combined with different initial conditions

(circular inclusion, square inclusion, full, scattered holes...).

In order to numerically evaluate the capacity of each of the tests performed, two indicators are

introduced:

• Coefficient of non-isotropy (τ): coefficient between 1 and 0 indicating the level of isotropy of

an elastic tensor based on the following calculation [12]:

τ =
||Ch − Ciso||

||Ch||
(6.4)

where Ciso is the projection of Ch into a space of isotropic tensors and is obtained with the

equation below specified:

Ciso =


Kiso +Giso Kiso −Giso 0

Kiso −Giso Kiso +Giso 0

0 0 Giso

 (6.5)

where,

Kiso =
1

8
(3Ch

11 + 3Ch
22 + 2Ch

12 + 2Ch
33)−Giso Giso =

1

8
(Ch

11 + Ch
22 − 2Ch

12 + 2Ch
33)

It should be noted that the closer a tensor is to isotropy, the lower will be its τ coefficient,

being the null value, the maximum level of isotropy. This indicator will show the capacity of

the optimizer to generate those symmetries that bring it closer to isotropy.

• Relative error (ϵrel): error made when trying to find the target tensor. This is calculated by

the following expression:

ϵrel(%) =
||Ch − C∗|

||C∗||
· 100 (6.6)

This indicator will allow observing the capacity of the optimizer to approach to the desired

tensor, regardless of whether it generates the symmetries conducive to isotropy.
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Before starting the study it is necessary to fix the last and one of the most important design

variables: the target tensor. The arbitrarily chosen isotropic target tensor is shown below:

C∗ =


0, 5931 0, 1882 0, 0000

0, 1882 0, 5931 0, 0000

0, 0000 0, 0000 0, 2025

 (6.7)

A series of four tables are presented below, each showing the results for each of the four initial

conditions considered for all Voronoi cell types.

For the case of circle inclusion as the initial condition, the following results are obtained:

Optimized mesh & tessellated cell Plane group symmetry Ch (in Natural basis) Elastic symmetry class

p2


0, 6055 0, 1845 0, 0129

0, 1845 0, 6867 −0, 0129

0, 0129 −0, 0129 0, 2215

 Z2

c2mm


0, 5976 0, 1788 0, 0000

0, 1788 0, 9260 0, 0000

0, 0000 0, 0000 0, 1680

 D2

p2mm


0, 5633 0, 1865 0, 0000

0, 1865 0, 4390 0, 0000

0, 0000 0, 0000 0, 1880

 D2

p4mm


0, 6649 0, 1877 0, 0000

0, 1877 0, 6649 0, 0000

0, 0000 0, 0000 0, 1773

 D4

c2mm


0, 6223 0, 1894 0, 0000

0, 1894 0, 5257 0, 0000

0, 0000 0, 0000 0, 1928

 D2

Table 6.3: Results obtained for every Voronoi cell when forcing an isotropic tensor and using as
initial state the circle inclusion.

It should be noted that the first column indicates the optimized mesh (left) and the tessellation of

four micro-cells (right).This comment applies for the rest of the initial conditions considered in the

following tables.

For the case of full of material as the initial condition, the following results are obtained:
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Optimized mesh & tessellated cell Plane group symmetry Ch (in Natural basis) Elastic symmetry class

p2


0, 8693 0, 1870 −0, 0010

0, 1870 0, 5395 −0, 0069

−0, 0010 −0, 0069 0, 2446

 Z2

c2mm


1, 3656 0, 1910 0, 0000

0, 1910 0, 5601 0, 0000

0, 0000 0, 0000 0, 3264

 D2

p2mm


0, 7307 0, 1893 0, 0000

0, 1893 0, 6483 0, 0000

0, 0000 0, 0000 0, 1808

 D2

p2mm


0, 5866 0, 1852 0, 0000

0, 1852 0, 6853 0, 0000

0, 0000 0, 0000 0, 2033

 D2

c2mm


1, 0014 0, 1848 0, 0000

0, 1848 0, 5268 0, 0000

0, 0000 0, 0000 0, 2695

 D2

Table 6.4: Results obtained for every Voronoi cell when forcing an isotropic tensor and using as
initial state the full of material cell.

For the case of square inclusion as the initial condition, the following results are obtained:

Optimized mesh & tessellated cell Plane group symmetry Ch (in Natural basis) Elastic symmetry class

p2


0, 4717 0, 1877 −0, 0314

0, 1877 0, 4497 −0, 0179

−0, 0314 −0, 0179 0, 1770

 Z2

p2


0, 8788 0, 1773 0, 0341

0, 1773 0, 8234 0, 0074

0, 0341 0, 0074 0, 2323

 Z2

pm


0, 6785 0, 1840 0, 0000

0, 1840 0, 5420 0, 0000

0, 0000 0, 0000 0, 1646

 D2

pm


0, 4408 0, 0990 0, 0000

0, 0990 0, 3818 0, 0000

0, 0000 0, 0000 0, 0848

 D2

(θ = 33, 5º)

cm


0, 7445 0, 1830 0, 0000

0, 1830 0, 6843 0, 0000

0, 0000 0, 0000 0, 2264

 D2

(θ = 8, 1º)

Table 6.5: Results obtained for every Voronoi cell when an isotropic tensor and using as initial state
the inclusion of a void square.

For the last initial case, scattered holes, the results are below presented:
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Optimized mesh & tessellated cell Plane group symmetry Ch (in Natural basis) Elastic symmetry class

p1


0, 6668 0, 1856 0, 0392

0, 1856 0, 5372 0, 0074

0, 0392 0, 0074 0, 2190

 Z2

cm


1, 1833 0, 1791 0, 0000

0, 1791 0, 5388 0, 0000

0, 0000 0, 0000 0, 2797

 D2

p2


0, 6260 0, 1807 −0, 0015

0, 1807 0, 6454 −0, 0011

−0, 0015 −0, 0011 0, 1968

 Z2

pm


0, 5453 0, 1863 0, 0000

0, 1863 0, 4969 0, 0000

0, 0000 0, 0000 0, 1802

 D2

p1


0, 8773 0, 1756 −0, 0064

0, 1756 0, 5263 −0, 0053

−0, 0064 −0, 0053 0, 2439

 Z2

Table 6.6: Results obtained for every Voronoi cell when forcing an isotropic tensor and using as
initial state the inclusion of void scattered holes.

With all the results presented, we proceed to their joint analysis. As mentioned above, two meters

are available, one indicating the ability of the optimizer to force isotropy and the other showing the

ability to adapt to the isotropic objective tensor. It should be noted that the optimizer does not

force isotropy on the tensor, but tries to adapt to a predetermined isotropic tensor, which implies

that all its positions try to approximate those of the objective without taking into account the

relationships between positions. That is why, in the results it is not strange to find tensors with

high τ and very low ϵr.

(a) Non-isotropy coefficient (b) Relative Error

Figure 6.9: Non-isotropy coefficient and relative error for all the Voronoi cells and initial conditions
considered
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For the first of the initial conditions, the best isotropy behavior is that of the square, followed by

the oblique and hexagonal lattice. In the case of the relative error, all are of low magnitude, with

the square standing out above the average. In this case, this last mentioned form compromises

in distance of its determinant to that of the target tensor to maintain the symmetries that bring

it close to isotropy, unlike the hexagon, which approaches in few iterations to the target tensor,

compromising in the level of isotropy.

For the initial full condition, in all the Voronoi cells it is observed a great difficulty to break the

symmetry of the initial topology and therefore, to comply with the minimum desired volume for the

preset iterations. That is why a great dispersion of the results is observed, highlighting the speed of

convergence of the square and hexagon to the objective.

For the squareInclusion case, the results are similar to the circleInclusion. Very low results for the

non-isotropy coeffient are observed, which indicates that the homogenized tensors are close to their

associated tensor in the isotropy basis for each micro-cell. This could be due to the fact that both

initial forms mentioned are compatible with the maximal plane group symmetries of each Voronoi

cell, bringing the tensor and topology closer to isotropy. In reference to the relative error, it is

observed in the topologies of the table 6.5 that they are not able to approach those suggesting that

of the target tensor, causing again very scattered errors among the different shapes.

The last case is the most chaotic, in which the importance of the symmetry of the material

distribution in the cell under initial conditions becomes evident. The six-sided cells were tested

with an irregular distribution of three initial holes, causing the optimizer to have great difficulty

in breaking this symmetry and approaching the target. The opposite happens with the four-sided

shapes, in which five holes were arranged allowing to start the optimization with symmetries of the

type 2mm. This is why better results are observed in the τ and ϵr plots.

In this way, it is shown that when forcing isotropy, not only are micro-cells more closely related to

the target tensor, but also the symmetry of the initial topology must be properly selected. It will

then be advisable to provide the maximum symmetry desired in the final topology, conditioning

the optimizer so that it does not deviate excessively from this. For this reason, the square and

hexagonal shape with circleInclusion and squareInclusion are the best options for this case.

6.3.2 Orthotropic target tensor

Orthotropy refers to the type of material that has different properties depending on the direction of

the constituent axis of the selected cell for measurement. This is why it is expected to obtain a

distribution with a high amount of material in the transverse distribution and less in the longitudinal

(assuming that these are the constituent directions of the micro-cell) or vice versa. It is therefore

expected that the best results will be observed for rectangular primitive cells, by initially conditioning

the optimizer with an uneven distribution of material in one constituent direction of the micro-cell

than in the other.

Again, to verify these theoretical propositions, all Voronoi cells will be tested with the same initial

material distributions considered in the isotropy section.
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For this case, the orthotropic target tensor is as follows:

C∗ =


0, 8157 0, 2589 0, 0000

0, 2589 0, 8769 0, 0000

0, 0000 0, 0000 0, 2525

 (6.8)

The results obtained are presented below, classified in four tables according to the initial conditions

of material distribution in the optimizer. For the case of circular inclusion, the following results are

obtained:

Optimized mesh & tessellated cell Plane group symmetry Ch (in Natural basis) Elastic symmetry class

p1


0, 8208 0, 2550 0, 0150

0, 2550 0, 7823 0, 0064

0, 0150 0, 0064 0, 2709

 Z2

cm


0, 9412 0, 2536 0, 0000

0, 2536 1, 1479 0, 0000

0, 0000 0, 0000 0, 3042

 D2

(θ = −88, 0º)

pm


0, 7972 0, 2642 0, 0000

0, 2642 0, 8967 0, 0000

0, 0000 0, 0000 0, 2734

 D2

(θ = −76, 1º)

p4


0, 7885 0, 2434 0, 0000

0, 2434 0, 7885 0, 0000

0, 0000 0, 0000 0, 2582

 D4

cm


0, 7978 0, 2581 0, 0000

0, 2581 0, 8913 0, 0000

0, 0000 0, 0000 0, 2850

 D2

(θ = −87, 5º)

Table 6.7: Results obtained for every Voronoi cell when forcing an ortothropic tensor and using as
initial state the inclusion of void circle.

The full of material initial case, generates the following results:
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Optimized mesh & tessellated cell Plane group symmetry Ch (in Natural basis) Elastic symmetry class

p2


0, 8900 0, 2525 0, 0021

0, 2525 0, 7470 0, 0029

0, 0021 0, 0029 0, 2755

 Z2

c2mm


1, 4028 0, 2577 0, 0000

0, 2577 0, 7538 0, 0000

0, 0000 0, 0000 0, 3628

 D2

p2mm


0, 8684 0, 2525 0, 0000

0, 2525 0, 7910 0, 0000

0, 0000 0, 0000 0, 2718

 D2

p2mm


0, 8708 0, 2545 0, 0000

0, 2545 0, 7359 0, 0000

0, 0000 0, 0000 0, 2796

 D2

(θ = −88, 3º)

c2mm


1, 0379 0, 2574 0, 0000

0, 2574 0, 7538 0, 0000

0, 0000 0, 0000 0, 3039

 D2

Table 6.8: Results obtained for every Voronoi cell when forcing an ortothropic tensor and using as
initial state the full of material cell.

For the square inclusion case, the results presented below are obtained:

Optimized mesh & tessellated cell Plane group symmetry Ch (in Natural basis) Elastic symmetry class

p1


0, 8728 0, 2501 0, 0014

0, 2501 0, 7545 −0, 0019

0, 0014 −0, 0019 0, 2715

 Z2

c2mm


1, 0496 0, 2529 0, 0000

0, 2529 0, 9848 0, 0000

0, 0000 0, 0000 0, 2990

 D2

p2mm


0, 8429 0, 3004 0, 0000

0, 3004 0, 7805 0, 0000

0, 0000 0, 0000 0, 2943

 D2

(θ = 33, 0º)

p4mm


0, 7732 0, 2308 0, 0000

0, 2308 0, 7732 0, 0000

0, 0000 0, 0000 0, 2444

 D4

cm


0, 8923 0, 2565 0, 0000

0, 2565 0, 8523 0, 0000

0, 0000 0, 0000 0, 2896

 D2

(θ = −88, 0º)

Table 6.9: Results obtained for every Voronoi cell when forcing an ortothropic tensor and using as
initial state the inclusion of a void square.
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Finally, the results for the scattered holes are presented in the following table:

Optimized mesh & tessellated cell Plane group symmetry Ch (in Natural basis) Elastic symmetry class

p1


0, 7966 0, 2545 0, 0103

0, 2545 0, 8191 −0, 0118

0, 0103 −0, 0118 0, 2720

 Z2

p1


1, 3372 0, 2563 −0, 0288

0, 2563 0, 7298 −0, 0106

−0, 0288 −0, 0106 0, 3478

 Z2

pm


0, 7922 0, 2515 0, 0000

0, 2515 0, 8049 0, 0000

0, 0000 0, 0000 0, 2575

 D2

pm


0, 6693 0, 2560 0, 0000

0, 2560 0, 7443 0, 0000

0, 0000 0, 0000 0, 2571

 D2

(θ = 87, 0º)

p1


0, 8490 0, 2539 −0, 0120

0, 2539 0, 8157 0, 0031

−0, 0120 0, 0031 0, 2961

 Z2

Table 6.10: Results obtained for every Voronoi cell when forcing an ortothropic tensor and using as
initial state the inclusion of void scattered holes.

We observe that in many cases of the results presented the dominance of the distribution of material

in one of the constituent directions of the cell in relation to the other is not notably observed,

because the proposed objective tensor does not have a high level of ortotropy, presenting low

differences between positions 11 and 22 of the tensor. Nevertheless, it is possible to evaluate the

ability of each type of cell and initial conditions to condition the optimizer. The only difference with

respect to the isotropy case is that there is no gauge of the capacity of the topology to generate the

symmetries that bring the tensor closer to orthotropy. In its absence, the comparison will be made

only according to the capacity of each of the tested conditions to approach the target tensor, by

means of the relative error (see figure 6.10).

In the case of circle inclusion, it is observed that all the cells present a very low error in the final

homogenized tensor with respect to the target. The only exception or the tensor that is the most

out of tune is the rectangular centered one. The hexagonal, rectangular primitive and centered cells

manage to reach the orthotropy, having even a low error except in the rectangular centered case,

where it is evident that the optimizer has a great difficulty to converge at positions 11 and 22 of the

tensor. It should also be noted that the square, reaches a higher symmetry level (tetragonal), since,

in this case, it has not been able to break with the p4mm symmetry of the initial topology.

For the full material case, the optimizer is able to converge to orthotropy in all cases except the

oblique one (high difficulties to force symmetries in this type of unit cell). Again, as in the isotropy

case, this initial condition generates large scatter in the error, having the best results for the

rectangular primitive case (low relative error and high convergence speed).
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Figure 6.10: Relative error for all the Voronoi cells and initial conditions considered when forcing
an ortothropic tensor.

Using as initial case the inclusion of an empty square in each micro-cell, the same symmetries in

the tensors are observed as for the circle inclusion case. Again, there is low dispersion of the error

results between cells, except in the rectangular centered case.

Finally, the scattered holes case provides the greatest disparity, having anisotropy in the six-sided

micro-cells due to the low ability of the optimizer to break with the symmetric irregularity of the

initial material scattering (three anti-symmetric holes). Therefore, the only tensors that achieve

orthotropy are those associated with four-sided micro-cells, since the initial conditions provide

symmetries close to those targeted (type 2mm).

With these results, the importance of selecting initial conditions with symmetry similar to the one

required as a target to obtain the target tensor has been observed again. As predicted, the rectangle

primitive is the cell with the highest convergence capability to the othotropic tensors for the four

initial conditions considered.

6.4 Analysis of the non-Voronoi rhomboid cell

So far, the behavior of the tensor of all the Voronoi cells has been analyzed against preprocessing

variations in the mesh. Given the ability of the meshing code to represent any four-sided and

six-sided shape, the study of the tensor symmetries of a rhomboidal topology with a central hole

is proposed, varying slightly the basic shape parameters of the mesh. The figure below shows the

three design parameters of the rhomboidal shape:
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Figure 6.11: Identification of the design variables of the rhomboid shape.

The convergence analysis carried out in the first section of the practical part 6.1 shows that for

a study of symmetries in the tensor, it would be sufficient to choose a mesh with divUnit greater

than 25. For this particular case, 70 divisions have been chosen to obtain more rigorous results

without considerably increasing the computational cost. We start this study with the rhomboid of

a = b and α = 60º. The following figure shows the tessellated results of the deformations of the

corresponding lattice in the canonical stress states, together with the initial mesh:

Figure 6.12: Display of the rhomboid mesh (a = b, α = 60º), the deformed tessellated horizontal,
vertical and shear tension states from left to right.

Surprisingly, the tensor obtained in this case is isotropic, which opens the door to further study of

the influence on the variations of the parameters that form the mesh. For this purpose, rhomboids

with the characteristics specified below are tested and the symmetries obtained in the tensors are

evaluated:
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a,b relation α C Symmetry

a = b 60º


0, 5978 0, 1995 0, 0000

0, 1995 0, 5979 0, 0000

0, 0000 0, 0000 0, 1992

 O(2)

a ̸= b 60º


0, 6788 0, 2337 −0, 0025

0, 2337 0, 6841 0, 0025

−0, 0025 0, 0025 0, 2332

 Z2

a = b 45º


0, 5253 0, 1783 0, 0078

0, 1783 0, 5351 −0, 0078

0, 0078 −0, 0078 0, 1760

 Z2

Table 6.11: Design parameters of the rhomboid mesh alongide with the tensor obtained and its
symmetry.

This shows that only the first of the tested configurations provides symmetries in the homogenized

tensor. The explanation for this is based on the fact that this type of non-Voronoi cell is one

third of a hexagonal Voronoi cell with p3 or p3m1 type plane group symmetries. Therefore, when

tessellating the rhomboid, the Voronoi cell associated to the mosaic is a hexagon. The following

figure clarifies the explanation:

(a) Rotation of the rhomboid forming
a regular hexagon.

(b) Tessellation of four regular rhomboids.

Figure 6.13: Demonstration of the relation between the non-Voronoi rhomboid cell and the regular
hexagon.

It should be noted that the rotated hexagonal cell in the figure on the left generates the same

pattern as the figure on the right, demonstrating that the hexagon is the Voronoi cell associated

with the tessellation of the regular rhomboid.

By slightly varying the conditions of the regular rhomboidal cell (a = b, α = 60º), one goes from the

hexagonal to the oblique associated Voronoi cell, breaking the symmetries that allowed obtaining a

tensor of the O(2) type, generating the Z2 tensor.

56



Study of optimal shapes for lightweight material design

Chapter 7

Future project expansions

Every study has a logical order of accomplishment of its different sections or work packages. Of

course, all of them include a roadmap to follow with all those points of relevance for the success of

the research carried out. In most cases, the type available and the complexity of some of the tasks

cause part of the roadmap work to be presented as a future extension of the study.

The following table lists the tasks that would follow the completion of this project and the estimated

difficulty and time for its completion:

Task Product Difficulty Time (weeks)

Extension of the meshing algorithm Algorithm B 3

Development of the symmetry forcing code Algorithm A 10

Change of the cost function Algorithm A 5

Investigation of performance of new preprocess conditions Comparison C 2

3D printing of a complex pattern 3D model C 2

Table 7.1: Identification of future tasks to expand the study.

It shall be noted that the first column identifies the tasks with its name, the second column represents

the final result of each task, the third one classifies the difficulty of each task from A to C where A is

the higher grade of difficulty and the fourth column identifies the estimated time for the completion

of each task considering 25 hours of work per week.

The work to be carried out in each of these tasks is explained below:

• The first task is based on editing the mesh generator code so that it creates it from the

constituent parameters of the Bravais grids. Changing the input parameters of the meshing

code to make the transition from the geometric to the crystallographic mindset. The idea

would be to provide, instead of the parameters defining the shape of the cell, to provide the

mesher with the parameters defining the Bravais lattice (a⃗1, a⃗2 and ζ) and have the mesher

obtain the associated Voronoi cell, since each set of constituent Bravais parameters has a single

associated Voronoi cell. This extension would only require a previous functionality to the

current algorithm that would be in charge of translating the parameters of the Bravais lattice

to the parameters that define the geometry of the Voronoi cell (parameters that currently

define the mesh).
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• The second task is one of those identified in the scope of work, which was not finally carried out

due to the difficulty involved and the incompatibility with the methodologies used for meshing.

It is the generation of a symmetry forcing algorithm in the topological optimizer. This would

identify the minimum unit of symmetry of the plane group selected for the corresponding grid

and would try to generate the symmetry operations required to obtain the plane group specified

by the user. This process would not only entail the implementation of this algorithm, but

would also require editing the mesh generator algorithm to avoid interference from improper

meshing when selecting the minimum symmetry unit. Therefore, to avoid interference, it

would be necessary to mesh in such a way that the limits of the minimum unit coincide with

the edges of the elements, and in no case, the elements cross this edge. It is for these reasons

that a high execution time and difficulty has been assigned.

• The third of the proposed tasks consists of modifying the cost function of the topological

optimizer when solving inverse problems. The objective would be to minimize the distance

between the homogenized and target tensors as before, but penalizing the fact that the topology

breaks symmetries. In this way, the optimizer would be driven towards the desired target

tensor, maintaining the symmetries of the initial topology. With this task, the effectiveness

of the optimizer would be improved, providing the target symmetry in the initial tensor and

using the cells related to the target tensor type. In this case, it is considered to be a task

of high difficulty, since this task requires a high level of research to be implemented in the

optimizing algorithm.

• The fourth of the proposed tasks is the testing of other initial conditions and mesh design

parameters that help the user to have a greater number of possibilities or alternatives to

classify the project. It is classified as a simple task, since the optimizing algorithm is already

implemented and therefore, the completeness of this task is entirely dependent on the time

required by the program to converge to the solution.

• Finally, the last of the proposed future tasks is the 3D printing of a complex optimized

microstructure model. This task would ratify the potential of 3D printing to represent complex

shapes in contrast to conventional manufacturing methods.
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Chapter 8

Analysis and evaluation of the

environmental, social and technological

implications

Since the resources available in nature are limited, it is vitally important to use them as efficiently

as possible. The lack of raw materials that is evident today, leads to the need to optimize structural

designs to the maximum so that they resist given stresses using the minimum amount of material

possible and thus reducing production costs. Therefore, the topological optimization method

developed in this study allows:

• Minimize the excessive use of resources.

• Reduce the environmental impact for the procurement of raw materials.

• Reduce considerably the design time, avoiding the trial-and-error process, reducing again, the

need to create prototypes that increase costs and the use of excessive raw materials.

• Improvement of the technological competitiveness of companies.

• Development of new additive manufacturing technologies. New 3D printing methods involve a

technological development that makes it possible to represent highly complex topologies. But

is it really a method that reduces environmental impact?

– On the one hand, by reproducing products according to users’ needs, mass production

is reduced and with it, the excessive exploitation of raw materials and the generation

of waste. Another advantage of this technology is that it makes it possible to break

with the current model of offshored production in other countries, giving way to a local,

customized and small-scale production system. This not only implies a saving in the

amount of material used, but also eliminates the cost of imports and fuel pollution from

transportation.

– On the other hand, 3D printing has a number of main enemies: premature obsolescence,

printing time, high energy consumption and its current dependence on materials from

fossil fuels (plastics). Despite being great enemies of climate change and excessive

consumption of raw materials, they have some alternatives. The ease of generating
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customized spare parts without the need to wait for the hypothetical manufacturer to

provide the spare part is something in favor in the field of premature obsolescence. The

alternative use of recycled plastics from renewable sources (PLA) or the recent use of

metals in micro-objects are presented as mitigation of environmental impact [13]. In

relation to time and energy consumption, these two variables are directly related and

depend on the type of 3D printing system used.
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Chapter 9

Conclusions

Symmetries are natural tools that simplify problems and unite the links between geometry and

physical properties of microstructures. The study takes advantage of the power and versatility of

topological optimization to distribute the material inside the unit cell, in order to solve the inverse

problem using the minimum amount of material possible, obtaining lighter structures, with high

competitiveness and performance. Therefore, during the study, the existing relationships between

Bravais lattices, Voronoi lattices, plane group symmetries and symmetries in the elastic tensor are

reviewed, thus linking the geometrical domain with the physical domain by means of the point

groups. The importance of the two basic principles of periodic microstructure generation: Neumann

principle and tessellation should also be emphasized.

Based on the first of these, an algorithm was developed capable of reproducing the geometry of

Voronoi cells to cover a pre-established 2D space. This algorithm has been a key tool in this study

in addition to the basic methodology to obtain materials with the desired symmetry properties

together with the elastic tensor and the material distribution has been elaborated. This is why the

practical development demonstrates the fulfillment of the basic principles, as well as the importance

of carefully selecting the pre-process variables (unit cell and initial material distribution conditions).

Therefore, it is advisable to use the relationships established by means of the table 3.1 to select the

type of cell and to use an initial material distribution compatible with the type of elastic tensor

elaborated. More specifically, obtaining an isotropic elastic tensor is more favorable when using a

hexagonal lattice with initial material distribution with plane group symmetries of type p6mm or

equivalent.

Of course, despite the conclusion of this research, new lines of future development 7 open the door

for the development of new methods that extend the convergence capability of the tensor to the

objective by solving the inverse problem.
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A microarchitecture design methodology to achieve extreme isotropic elastic properties of

composites based on crystal symmetries. Structural and Multidisciplinary Optimization. 2021,

vol. 63, no. 5, pp. 2459–2472.

6. BARBAROSIE, Cristian; TORTORELLI, Daniel A; WATTS, Seth. On domain symmetry and

its use in homogenization. Computer Methods in Applied Mechanics and Engineering. 2017,

vol. 320, pp. 1–45.

7. BENDSØE, Martin P. Optimal shape design as a material distribution problem. Structural

optimization. 1989, vol. 1, no. 4, pp. 193–202.

8. STOLPE, Mathias; SVANBERG, Krister. An alternative interpolation scheme for minimum

compliance topology optimization. Structural and Multidisciplinary Optimization. 2001, vol. 22,

no. 2, pp. 116–124.

9. LUO, Jun; LUO, Zhen; CHEN, Liping; TONG, Liyong; WANG, Michael Yu. A semi-implicit

level set method for structural shape and topology optimization. J. Comput. Phys. 2008,

vol. 227, pp. 5561–5581.

10. TING, Thomas Chi-tsai; TING, Thomas Chi-tsai. Anisotropic elasticity: theory and applications.

Oxford University Press on Demand, 1996. No. 45.

11. NYE, John Frederick et al. Physical properties of crystals: their representation by tensors and

matrices. Oxford university press, 1985.

12. MEILLE, Sylvain; GARBOCZI, Edward J. Linear elastic properties of 2D and 3D models of

porous materials made from elongated objects. Modelling and Simulation in Materials Science

and Engineering. 2001, vol. 9, no. 5, p. 371.

13. ALL3DP. Tipos de impresoras 3D. 2022. Available also from: https://all3dp.com/es/1/tipos-

de-impresoras-3d-tecnologia-de-impresion-3d/.

62

https://all3dp.com/es/1/tipos-de-impresoras-3d-tecnologia-de-impresion-3d/
https://all3dp.com/es/1/tipos-de-impresoras-3d-tecnologia-de-impresion-3d/

	Introduction
	Aim
	Scope
	Requirements
	Justification

	State of the art
	Theoretical development
	Introduction to topology optimization
	Density-based methods
	Boundary variations methods: Level Set

	The inverse problem
	Elastic sym. & micro. configuration
	Periodic micro-architecture materials
	Type of tensors according to its symmetries 
	Connection between geometrical and physical symmetry
	Neumann's principle


	Mesher performance
	Variables to be defined by the user
	Boundary nodes disposition mechanism
	Interior nodes disposition mechanisms
	Creation of elements: connections between nodes
	Implementation of boundary conditions
	Organization of the code
	Performance verification

	Micro-structures design methodology
	Practical assessments
	Convergence of results
	Demonstration of the Neumann's principle
	Top Opt in micro-structure design
	Isotropic target tensor
	Orthotropic target tensor

	Analysis of the non-Voronoi rhomboid cell

	Future project expansions
	Analysis and evaluation of the environmental, social and technological implications
	Conclusions

