
Fast Soft-Tissue Deformations with
FEM

Martín Garcia, Pol

Master’s Thesis

Master in Innovation and Research in Informatics
Computer Graphics and Virtual Reality

June 2022

Supervisor: Susín Sánchez, Toni
Dpt. MAT

Abstract

Soft body simulation has been a very active research area in computer animation
since Baraff and Witkin’s 1998 work on cloth simulation, which led Pixar to start
using such techniques in all of its animated movies that followed.
Many challenges in these simulations come from different roots. From a numerical
point of view, deformable systems are large sparse problems that can become numer-
ically unstable at surprising rates and may need to be modified at each time-step.
From a mathematical point of view, hyperelastic models defined by continuum me-
chanics need to be derived, established and configured. And from the geometric side,
physical interaction with the environment and self-collisions may need to be detected
and introduced into the solver.
It is a fact that the Computer Graphics academia primarily focuses on offline methods,
both for rendering and simulation. At the same time, the advances from the industry
mainly apply to real-time rendering. However, we wondered how such high-quality
simulation methods would map to a real-time use case.
In this thesis, we delve into the simulation system used by Pixar’s Fizt2 simulator,
based on the Finite Element Method, and investigate how to apply the same tech-
niques in real-time while preserving robustness and fidelity, altogether providing the
user with some interaction mechanisms.
A 3D engine for simulating deformable materials has been developed following the
described models, with an interactive interface that allows the definition and config-
uration of scenes and later interaction with the simulation.

Acknowledgements

I would like to thank all the people that have helped me, directly or indirectly, with
this thesis during these stressful times.
First and foremost, I have to thank my thesis supervisor Toni Susín Sánchez. His
guidance made doing this thesis possible, and I have to especially thank him for
constantly pushing me to improve and for putting up with me in all the meetings
where our conversation always strayed from the topic.
I also want to thank the people at the ViRVIG research group, and in particular Àlvar
Vinacua Pla and Toni Chica Calaf. If it were not for their involvement with me, this
thesis and my undergrad thesis would have never happened, as working with them
pushed me further to become interested in computer graphics.
Finally, because being able to develop this thesis required more than academic assis-
tance, I also want to thank my family and friends who provided me with the support
and encouragement that I needed to carry on and finish the thesis. They have been
too kind, supporting and caring, for words to describe.

Contents

1 Introduction 1
1.1 Motivation and Objectives . 1
1.2 State of the Art . 2
1.3 Document structure . 3
1.4 Notation and Tensors . 4

2 Deformation evaluation 5
2.1 Continuum mechanics fundamentals 5

2.1.1 Deformation map . 5
2.1.2 Deformation gradient . 6
2.1.3 Deformation energy . 7
2.1.4 Stress tensors . 8
2.1.5 Deformation forces . 9

2.2 Strain evaluation . 10
2.2.1 Cauchy-Green strain . 10
2.2.2 Strain Invariants . 11
2.2.3 Cauchy-Green Strain Invariants 11
2.2.4 S-centric invariants . 12
2.2.5 Lamé Parameters . 12

2.3 Deformation Energy Hessian . 13
2.3.1 Hessian from S-centric invariants energy 14

2.4 Hyperelastic Constitutive Models 14
2.4.1 Neo-Hookean . 14
2.4.2 Corotational . 15
2.4.3 Stable-Neo-Hookean . 16

3 The Finite Elements Method 17
3.1 Tetrahedral elements . 17
3.2 Linear tetrahedral elements on energy density gradients . . . 18
3.3 Computing the deformation gradient 19
3.4 Gradient of the deformation gradient 21
3.5 FEM system formulation . 22

3.5.1 Explicit FEM . 22
3.5.2 Implicit Backwards-Euler FEM 23
3.5.3 Damping forces . 24

4 Practical simulation 26
4.1 Collisions and interaction . 26

4.1.1 External forces . 26
4.1.2 Velocity Constraints . 27
4.1.3 Position alteration . 28
4.1.4 Collision handling . 28

4.1.5 Friction . 29
4.1.6 Floating-point error . 30

4.2 Sparse matrices . 31
4.3 Preconditioned Conjugate gradient 31

4.3.1 Preconditioning . 33
4.4 Adaptive time-steps . 33
4.5 Analytic Eigenanalysis of Energies 34

4.5.1 Stable Neo-Hookean analysis 35
4.5.2 Forcing positive-definite Hessians 37

5 Implementation details 39
5.1 Intersection queries . 39
5.2 Eigen Sparse considerations . 39

5.2.1 Sparse matrix block address indexing 39
5.2.2 Avoiding memory reallocations 40
5.2.3 Preconditioned Conjugate Gradient 41

5.3 Optimized PPCG . 41
5.4 Parallelization . 42
5.5 CPU-GPU bandwidth . 42
5.6 Fast 3× 3 SVD . 43

6 Results 44
6.1 Implementation Screenshots . 44
6.2 Optimizations . 44

6.2.1 General analysis . 46
6.2.2 Parallelization . 48
6.2.3 Preconditioned Conjugate Gradient 49

6.3 Stability . 49
6.3.1 Dynamic time-stepping . 50
6.3.2 Floating-point precision . 51
6.3.3 Degenerate tetrahedron meshes 51

6.4 Energy models . 52
6.4.1 Performance . 52
6.4.2 Stability and behavior . 54

6.5 Conclusions . 55
6.6 Future work . 56

A Linear algebra 58
A.1 Frobenius norm . 58
A.2 Tensor flattening . 58
A.3 Tensor double contraction . 59
A.4 Singular Value Decomposition 60
A.5 Polar Decomposition . 60
A.6 Divergence of a vector field . 60
A.7 Tetrahedron volume . 61

B Derivations 62
B.1 S-centric invariants . 62

B.1.1 Invariant I1 . 62
B.1.2 Invariant I2 . 63
B.1.3 Invariant I3 and ∂J

∂F
. 63

B.1.4 Summary . 63
B.2 Corotational Energy . 64
B.3 Stable Neo-Hookean Energy . 65
B.4 Analytic Eigensystems of Arbitrary isotropic energies 65

Bibliography 68

1. Introduction
The field of computer animation with simulation started gaining traction since Ter-
zopoulos’ work in 1987 [31], where he defines the foundations for all the techniques
we use nowadays. However, simulations were too unstable to be used robustly with
large time steps, and too costly to run with small time steps.
That changed with Baraff and Witkin [1], who first introduced simulation with im-
plicit integration with models that simplified managing such systems. It enabled the
usage of constraints to enforce one-way-interaction (solid-deformable) and penaliza-
tion forces for two-way interaction and self-collisions (deformable-deformable). This
work allowed such simulations in production environments as the previous authors
joined Pixar shortly after to work in Monsters, Inc. (2001).
Since then, computational physical simulation has been making its way into many
different fields, becoming an essential tool. The times when simulations were only
used to make engineering simulations are gone forever.
On the other side, interactive simulation is a topic of added complexity, but many
fields benefit from it, from games to medical training. However, we need to consider
also the requirements involved with such applications to create usable systems.
User interaction is one crucial issue that needs to be handled carefully. Offline sim-
ulators usually react to a scripted environment. However, an interactive application
must respond to the user input, which cannot be predicted, while maintaining a stable
and robust simulation online.
Efficiency is another essential point that needs to be assessed for the simulation, ren-
dering, collision system, and others. To provide some context, Pixar’s Fitz2 simulator
spends an average of 56.5% of the time of a frame simulation computing and solving
collisions in the scene [15].

1.1 Motivation and Objectives

Interactive simulation is a fascinating topic because of its immediate results in com-
plex phenomena and interactions. Multiple works try to handle the issues it entails,
mainly by introducing simplifications in the Finite Elements Method or providing
alternatives to the method altogether.
Personally, I became interested in interactive simulation after my Bachelor thesis
[17] on simulation with the Material Point Method. This powerful technique offers
a simpler algorithm to the competition that can simulate very complex phenomena
in record times, which I also implemented in the GPU. However, each frame took
seconds (if not minutes) to be simulated.

1

Fast Soft-Tissue Deformations with FEM

Chapter 1. Introduction

The knowledge and experience gained, together with my advisor’s guidance, let me re-
search a different method that is widely used across the industry, the Finite Elements
Method.
The project aims to replicate, in real-time, some of the phenomena that production-
level simulators can produce, while solving the inherent problems of interaction and
real-time constraints.
Thus, every concept explained in this thesis has been implemented into C++ code in
a custom-made engine for validation of the involved methods.

1.2 State of the Art

The original Baraff and Witkin [1] paper can still be considered state-of-the-art, as it
introduced all the basis of what we use today. It presented an implicit backward Euler
formulation of the system to solve, easy to configure constraints directly encoded in
the solver, and a custom preconditioned Conjugate Gradients algorithm to solve the
linear system. It also introduced some guidelines to make the simulated objects react
robustly to the environment and to themselves.
It is interesting to highlight that the Baraff-Witkin model was not explicitly for-
mulated as a Finite Elements Method model; however, Theodore Kim [14] recently
showed a modern analysis of the very same Baraff-Witkin model, discussing the adapt-
ability of the method with customizable energies (both isotropic and anisotropic).
With acceleration in mind, many new simulated systems arose from the previous
works, mainly focused on geometric multigrid simplifications. We would highlight
Tamstorf et al. [30], which includes a new linear system formulation to include the
constraints while not worsening its condition number.
For interactive simulation, the parametrization of the whole scene in a pre-compute
step seems to be one of the best alternatives to FEM simulations, as Dough and
Kayvon showed in [12]. Also, Zhisong et al. [6] present a GPU architecture for FEM
simulations; meanwhile, Georgii et al. [7] simplify the formulation into a mass-spring
system with an explicit integration in the GPU and use particle systems, which are
alternatives that scale efficiently with the computing power of a graphics card. Meier
et al. [19] offer a survey on real-time simulation for surgery simulation that still
applies.
Other exciting approaches are from Barbi et al. [2] on editing an established animation
with a deformable body by evaluating the cost of an edition, Jeřábková et al. [13]
on interactively cutting deformable bodies, and Hildebrandt et al. [10] on key-frame
control of a simulated body in a simplified system.

2

Fast Soft-Tissue Deformations with FEM

Chapter 1. Introduction

Collision detection for deformable models also needs to be considered. Due to the
nature of deformable solids, we would need to recompute an acceleration data struc-
ture for collision detection after each modification. The alternatives rely on GPU
parallelized implementations of massive pairwise intersection tests like Zhang et al.
[32], or simplifications of the surface and recovery via interpolation like Civit et al.
[5].
Multiple courses on deformable simulation are published and available. Theodore Kim
and David Eberle’s course [15] offers excellent explanations of the whole method and
uncovers some of the optimizations and characteristics used in Pixar’s Fizt2 solver.
A more gentle introduction to the maths and concepts behind computer animation
is presented by Bargteil et al. [3]. And finally, a comprehensive guide to the FEM
was presented by Sifakis and Barbic [27] with accurate and rigorous derivations of
the whole method.

1.3 Document structure

The structure of this thesis is the following:

• Chapter 1 introduces the context and the previous works that define this thesis.

• Chapter 2 presents the necessary concepts to understand the formalisms for
simulation of deformable materials, and the continuous dynamics knowledge
used to achieve it.

• Chapter 3 explains the FEM formulation of the deformable system, and how
we use it to simulate the materials.

• Chapter 4 enhances the basic FEM with utilities for practical simulation re-
quirements, like collision interaction and performance optimizations.

• Chapter 5 describes how several features have been implement to achieve inter-
active simulation.

• Chapter 6 provides a final discussion and analysis of the topics discussed and
implemented in this thesis.

Finally, the appendices review several mathematical concepts, derivations, and extra
information to fully comprehend this thesis.

• Appendix A reviews several classical concepts of linear algebra and explains
some tensorial notation and algebra that are used in this thesis. We highly
recommend at least skimming through it.

• Appendix B provides some derivations and descriptions of some formulations
used in the thesis.

3

Fast Soft-Tissue Deformations with FEM

Chapter 1. Introduction

1.4 Notation and Tensors

Here we describe the notation used in this thesis on its mathematical derivations to
ease understanding and avoid confusion about the multiple elements. The table 1.1
briefs the different mathematical notations.

Type Notation Examples
Scalar italics a, t, vx,Ψ
Vector vector v⃗, u⃗
Normalized vector hat n̂, ê1
Matrix boldface F,σ

Table 1.1: Brief of the notation used in the thesis.

All vectors used in the documents are column vectors by default:

v⃗ =

vxvy
vz

 (1.1)

For the matrices, access to the elements mij of matrix M is indexed by row i and
column j. In the case of 3× 3 matrices:

M =

m11 m12 m13

m21 m22 m23

m31 m32 m33

 (1.2)

This thesis also deals with tensors up to the fourth-order. To compute with ease
products between tensors of a different order, and simplify its analysis, we flatten such
tensors following the notation of Golub and Van Loan [8], with the vec(·) operator.
Much more insight into the vectorization operator can be seen in appendix A.2.
To give some intuition, for a second-order tensor of 2× 2.

M =

[
m11 m12

m21 m22

]
←→ vec(M) =

m11

m12

m21

m22

 (1.3)

We also define the double contraction operator for tensors “:”, which is a general-
ization of the dot product for tensors. The result is a tensor of less order than the
operands. It requires that the two operands have the same dimensions in their two
lowest orders. See appendix A.3 for a more in-depth explanation.

A : B =
∑
i

∑
j

aijbij (1.4)

In the case of 2× 2 matrices it behaves as follows:

A : B =

[
a11 a12
a21 a22

]
:

[
b11 b12
b21 b22

]
= a11b11 + a12b12 + a21b21 + a22b22 (1.5)

4

2. Deformation evaluation
This chapter presents the necessary background to understand how to mathematically
represent deformations of a solid, following the rules of continuous dynamics, and how
we measure and control the elasticity of a material.
We will only consider homogeneous solids whose material domain Ω, which repre-
sents the undeformed solid geometry, is well defined and has constant topology (no
fractures).

2.1 Continuum mechanics fundamentals

Here we describe the behavior of an ideal continuum material domain Ω, according
to its infinitesimal elements, along some time t. When we want to identify the unde-
formed configuration of the material domain it will be noted as Ω or Ω0, and Ωt will
determine the configuration at time t.
For the sake of clarity, at first, we can assume that Ω ⊂ R3. However, the elements
of Ω can be identified by any number of degrees of freedom.

2.1.1 Deformation map

To see the evolution of the deformable body, we define a deformation map ϕ⃗ : Ω0 → Ωt.
Ideally, this function will be able to map any position of the undeformed configuration
to its deformed location at a specific time t.

x⃗ = ϕ⃗(X⃗) (2.1)

In the equation 2.1 we map some reference (undeformed) configuration X⃗ ∈ Ω, which
are called material coordinates, to its corresponding new deformed location x⃗, called
spatial coordinates. We will always identify material coordinates with capital letters,
and spatial coordinates with lower case. This is shown in figure 2.1.
It is important to note that the deformation map is bijective, and one can recover
the material coordinates from the spatial ones X⃗ = ϕ⃗−1(x⃗).
Notice that we omit the time t in the function. One has to assume that time is a
parameter implicitly expressed in the deformation map. When it becomes necessary,
it will be noted explicitly.

5

Fast Soft-Tissue Deformations with FEM

Chapter 2. Deformation evaluation

X⃗ x⃗

x⃗ = ϕ⃗(X⃗)

X⃗ = ϕ⃗−1(x⃗)
Ω0 Ωt

Figure 2.1: Deformation mapping function ϕ⃗, which maps undeformed material coor-
dinates in Ω0 into spatial coordinates in a spatial configuration in Ωt after some time
t. Note that ϕ⃗ is bijective.

2.1.2 Deformation gradient

Because the deformation map is an affine function, as we assume that the material
does not break, its derivative is straightforward to derive:

F(X⃗) =
∂ϕ⃗

∂X⃗
(X⃗) (2.2)

The deformation gradient F(X⃗) is a function over the undeformed space and time
that represents the infinitesimal deformation around X⃗. This deformation gradient,
even though it is a function, in a 3-dimensional space can usually be interpreted as a
R3×3 matrix transformation.
In other words, F is the Jacobian matrix of the deformation map, which varies across
Ω. To simplify the expressions to follow, we will express the gradient as a matrix F.
To be more precise with the definition of the deformation gradient, if we define the
material coordinate’s components as X⃗ = (X,Y, Z) and the deformation map’s as
ϕ⃗(X⃗) = (ϕx(X⃗), ϕy(X⃗), ϕz(X⃗)), then the deformation gradient F in 3D is:

F =
∂(ϕx, ϕy, ϕz)

∂(X,Y, Z)
=

∂ϕx∂X
∂ϕx
∂Y

∂ϕx
∂Z

∂ϕy
∂X

∂ϕy
∂Y

∂ϕy
∂Z

∂ϕz
∂X

∂ϕz
∂Y

∂ϕz
∂Z

 (2.3)

The deformation gradient is an essential concept, and almost everything dealing
with the simulations discussed in this thesis will deal with it, as it defines a local
infinitesimal deformation and how to produce it. In other words, and as depicted in
figure 2.2, we can describe the following relationship.

dx⃗ = F dX⃗ (2.4)

Another key concept is that the deformation gradient F also explains the infinitesimal
change in volume. This is explained by the determinant of F, denoted J . Given a

6

Fast Soft-Tissue Deformations with FEM

Chapter 2. Deformation evaluation

dX⃗ dx⃗

Ω0 Ωt

F(X⃗)

Figure 2.2: Deformation gradient F, which expresses infinitesimal deformation of
some material differential dX⃗, identified in red. Notice that the deformation gradient
changes over space.

volume of the undeformed body V0 and a volume after a deformation V , we can define:

dV = det(F) dV0 = J dV0 (2.5)

Note that when the deformation map ϕ⃗ defines rotations and translations, J = 1.
When J < 1 or J > 1, the material has been compressed or has been expanded.
Degenerate situations that cannot happen in real life need to be also considered.
When J < 0, the material has been inverted altogether. If J = 0, we have a very
degenerate case in which the portion of material has collapsed into a single point with
no volume, which we must try to avoid.

2.1.3 Deformation energy

To run a simulation, we need to be able to compute forces from a deformation. One
straightforward way to calculate forces intuitively is by defining the deformation’s
energy, called strain or elastic energy E, which will depend on the current deformation
mapping E[ϕ⃗].
We will use the notation E[ϕ⃗], used by Sifakis [27], for the strain energy which means
that the energy E is fully determined by the deformation mapping ϕ⃗. Different parts
of the material can suffer deformations of varying magnitude; thus, we define this
strain energy locally.
To do this, we introduce an energy density function Ψ. This function of the defor-
mation map measures the strain energy that the current infinitesimal deformation
entails per unit of undeformed volume.

E[ϕ⃗] =

∫
Ω

Ψ[ϕ⃗](X⃗) dX⃗ (2.6)

Before we have discussed that the deformation given by ϕ⃗ is defined by its deformation
gradient F. Thus, it is convenient to express always the energy density as a function
of F, i.e. Ψ[ϕ⃗](X⃗) = Ψ(F(X⃗)) = Ψ(F):

E[ϕ⃗] =

∫
Ω

Ψ(F) dX⃗ (2.7)

7

Fast Soft-Tissue Deformations with FEM

Chapter 2. Deformation evaluation

Note that the energy only depends on the current deformation of the material, and
it is independent of the previous elastic energy. This property defines hyperelastic
materials.
Using this energy density function gives us direct control over the simulated material.
Giving an explicit formula for Ψ as a function of F is one of the two usual ways to
define a material. Specific models will be seen in section 2.4.
The most direct expression for an elastic force f⃗e that we can obtain on any infinites-
imal deformed portion of the material, where x⃗ denotes the degrees of freedom that
define it, is the negative gradient of the energy density function Ψ, scaled by the
original volume of x⃗ identified as VX⃗ :

f⃗e(x⃗) = −VX⃗ ·
∂Ψ

∂x⃗
(F) (2.8)

At the moment we could only use this expression 2.8 to obtain forces from infinitesimal
points. However, we will use the Finite Elements Method to discretize portions of
the material and compute forces from the elastic energy described here.

2.1.4 Stress tensors

Because we cannot analyze our material’s internal forces in infinitesimal points, we
will handle such forces with traction τ⃗ on infinitesimal surfaces.
Traction is defined as a force f⃗ acting on a deformed surface s with normal n̂. In
other words: the density of forces working on a particular surface.

τ⃗ (n̂) =
df⃗

ds
(2.9)

However, we are more interested in defining this traction from the point of view of
the undeformed surface S with normal N̂ .

T⃗ (N̂) =
df⃗

dS
(2.10)

Even more interesting is the fact that traction is not only valuable for defining forces
on the surface of a material, but can define forces in interior sections of a body.
For example, if we consider a domain Ω, for any internal point X⃗ ∈ Ω \ ∂Ω we could
consider an infinitesimal cut through X⃗ perpendicular to N̂ and compute the traction
along with it.
We would like to have some tool that easily relates the force density and an arbitrary
plane; these are stress tensors. For the topic that concerns us, we are interested in
the first tensor of Piola-Kirchhoff P, a unique matrix that explains traction for any
boundary orientation.

T⃗ (N̂) = −P · N̂ (2.11)

8

Fast Soft-Tissue Deformations with FEM

Chapter 2. Deformation evaluation

The first Piola-Kirchhoff stress tensor P, also called PK1, has some other interesting
properties. In the first place, because it defines the force density in any direction,
its divergence is equal to the force density (See divergence in appendix A.6). This is
useful as it offers another way to obtain forces.

f⃗ = (∇X⃗ ·P) · VX⃗ (2.12)

Moreover, another essential property of the PK1 is that, for hyperelastic materials, it
can be computed as a function of the deformation gradient F from the elastic energy
density function’s derivative.

P(F) =
∂Ψ

∂F
(F) (2.13)

Using the PK1 is another typical way of defining a new material, which we can do
by giving an explicit formula for P as a function of F. Together with, as stated
previously, giving an explicit formula for Ψ as a function of F are the two typical
styles of description for hyperelastic materials. Different materials are showcased in
section 2.4

2.1.5 Deformation forces

Using the previous definition of forces from equation 2.8, we find ourselves aiming to
compute forces given any deformed portion of material, with degrees of freedom x⃗,
but we need to come up with an expression for ∂Ψ

∂x⃗
(F). By applying the chain rule,

we can expand this derivative as follows:

∂Ψ

∂x⃗
(F) =

∂Ψ

∂F

∂F

∂x⃗
(F) (2.14)

This new transformation is incredibly powerful, as it uses ∂Ψ
∂F

which is equivalent to
the PK1 P for hyperelastic materials. Notice that we have isolated the energy into a
single term, independent of the degrees of freedom.
With this first part of the expression known, we only need to define ∂F

∂x⃗
which expresses

the change of the deformation gradient F as its infinitesimal neighborhood changes
(aka its degrees of freedom). As complex as it sounds, we will see that with the FEM,
this term has a direct, energy-independent formula that always remains the same.
However, notice that ∂F

∂x⃗
is the derivative of a matrix by a vector, which will pro-

duce a tensor of order 3. Because we are dealing with a second-order tensor valued
function with a scalar solution, its tensor derivative needs to use the “:” operator for
tensor contraction. This operation is reviewed in appendix A.3, but essentially is a
generalization of the dot product for tensors, where the result is a tensor of less order
than the operands. In this case, the resulting ∂Ψ

∂x⃗
(F) is a vector.

∂Ψ

∂x⃗
(F) =

∂Ψ

∂F
:
∂F

∂x⃗
(F) (2.15)

9

Fast Soft-Tissue Deformations with FEM

Chapter 2. Deformation evaluation

Knowing that operation, we can define the final equation to compute forces given any
deformation by combining equations 2.8 and 2.15:

f⃗e(x⃗) = −VX⃗ ·
∂Ψ

∂F
:
∂F

∂x⃗
(F) (2.16)

2.2 Strain evaluation

This section presents some terms used to construct constitutive models for hyperelastic
materials (Section 2.4)), which model a mathematical description of the material
behavior and expected response to deformations.
To design constitutive models, we need to be able to get descriptors to measure the
magnitude of the deformation as a function of the deformation gradient F. For
example, we cannot use the raw matrix F as a metric because it also encodes perfect
rotations. Ideally, we only want to evaluate the scaling that it encodes.

2.2.1 Cauchy-Green strain

One of the classical descriptors for strain is the right Cauchy-Green tensor C:

C = FTF (2.17)

This tensor is able remove the pure rotations from F. To see how it does this one
can imagine that we substitute F by its polar decomposition F = RS, where R is
the rotational orthonormal component, and S the symmetric scaling component (See
appendix A.5 for more information). Because RTR = I:

FTF = (RS)T (RS) = STRTRS = S2 (2.18)

Also, the eigenvalues of C are the squared three principal stretches that identify the
deformation in 3 different orthonormal directions.

Cauchy-Green strain tensor

With the right Cauchy-Green tensor C we can define one of the most known strain
descriptors, the Cauchy-Green strain tensor E.

E =
1

2
(FTF− I) (2.19)

It succeeds in discarding the rotational components and keeps information on the
strain (shear and stretch) but squared. One problem with the Cauchy-Green strain
tensor E is that it is non-linear and will propagate this non-linearity into the consti-
tutive model that uses it.

10

Fast Soft-Tissue Deformations with FEM

Chapter 2. Deformation evaluation

One alternative to the tensor E is to do its Taylor expansion to reach a linear expres-
sion. The resulting matrix is the small strain tensor ϵ:

ϵ =
1

2
(F+ FT)− I (2.20)

Though linear and cheap to compute, the tensor ϵ is only reliable for very small
motions. It will grow and produce noticeable wrong results as the deformations
increase.

2.2.2 Strain Invariants

Instead of creating an energy density function with arbitrary terms, there is a set of
usually used invariants to combine when creating such functions. These invariants
are an already selected set, which comes with many already computed expressions to
define energy density functions easily.
The usage of invariants is very appealing to build energy density functions because
its derivatives and Hessians with respect to F have already been derived. These
derivatives will become necessary when modeling an implicit solver in section 3.5.2.
Invariants also make it easier to analyze the expected behavior of an energy, and serve
as guidance to better, more stable formulas.

2.2.3 Cauchy-Green Strain Invariants

The Cauchy-Green invariants describe different phenomena, and are generally easy
to compute:

IC = tr(FTF) (2.21)
IIC = tr((FTF)2) (2.22)
IIIC = det(FTF) (2.23)

On [15] there is an exemplary derivation of the meaning of each one of the invariants,
but they can be roughly interpreted as the deformation in edges, areas and volume,
respectively, of a cube affected by F.
These invariants are very convenient to use because their derivatives with respect
to F are already defined and ready to use. It makes it easier to later compute the
derivatives of the PK1 P for later implicit integration.
The derivatives are the following. Notice that ∂IIIC

∂F
is expensive to compute.

∂IC
∂F

= 2F (2.24)
∂IIC
∂F

= 4FFTF (2.25)
∂IIIC
∂F

= 2 IIIC F−T (2.26)

11

Fast Soft-Tissue Deformations with FEM

Chapter 2. Deformation evaluation

2.2.4 S-centric invariants

In Smith et al.[29] they propose a new set of invariants with more expressibility.
Those invariants aim to be simpler, provide non-quadratic terms, and are also able
to encode the Cauchy-Green invariants.
For this project, we used these invariants, and from here onwards, we will assume
we are using these when mentioning invariants. They use the polar decomposition
F = RS (Appendix A.5).

I1 = tr(S) (2.27)
I2 = tr(FTF) (2.28)
I3 = det(F) (2.29)

In appendix B.1 we derive gradients and Hessians of this set of invariants. A compi-
lation of the 3 gradients and 3 Hessians is in appendix B.1.4.

2.2.5 Lamé Parameters

To configure a constitutive model, one can use multiple parameters. However, it is
typical to use a set of interconnected parameters known as the Lamé parameters for
isotropic materials, λ and µ. The µ parameter controls length preservation, while λ
controls volume preservation.
Because these parameters encode some obscure magnitudes, they can be encoded
with an equivalent set of parameters. The Young modulus E and Poisson’s ratio ν.
The Young modulus measures the stiffness of the material; it is defined by pressure
(force per unit area) related to axial strain.
The Poisson ratio is a unitless measure that relates the deformation effect in perpen-
dicular directions; in other words, ν is the fraction between the amount of strain in an
axial direction that affects a transversal one. It is always defined in the range [0, 1

2
].

The two set of parameters are related as follows:

µ =
E

2(1 + ν)
(2.30)

λ =
Eν

(1 + ν)(1− 2ν)
(2.31)

Note that when ν = 1
2
, to compute λ we cause a division by zero. Specifying ν ∼ 1

2

means that the energy must preserve the volume, but it will affect the stability of the
simulation. This is the case of tissues, skin or muscle.

12

Fast Soft-Tissue Deformations with FEM

Chapter 2. Deformation evaluation

2.3 Deformation Energy Hessian

Up until now, we have derived a way to obtain forces from an energy density function.
This is enough to simulate with explicit integration, as we have the energy and its first
derivative, the PK1. However, simulating with this model can worsen the stability of
the simulation very quickly. We will get into the details for this in the next chapter
3.
To get better simulations we will need the derivative of the force with respect to the
deformed degrees of freedom, ∂f⃗e

∂x⃗
. This derivative is a 2nd order tensor that explains

how the force changes with the deformation. Deriving equation 2.8:

∂f⃗e
∂x⃗

= −V0
∂2Ψ

∂x2
(2.32)

It is important to remember that we are dealing with an unknown number of degrees
of freedom at this moment; thus, we do not know the dimensionality of x⃗.
Because we do not know how to compute ∂2Ψ

∂x2
, we need to find a way to write it

in terms of something we do know or can compute: ∂2Ψ
∂F2 . There are many ways to

get there, all with its compromises. For example, Müller et al. [22] compute this
algorithmically by rotating the coordinate frame of each F every time and applying
some “force offsets”.
However, we take the analytical approach. We can do something very similar to what
we did to obtain equation 2.16. By applying the chain rule on tensors, and assuming
∂2F
∂x2

= 0, we can get the following:

∂2Ψ

∂x2
=
∂F

∂x

T ∂2Ψ

∂F2

∂F

∂x
(2.33)

We can only get equation 2.33 if we assume that ∂F
∂x

does not depend on x⃗. In other
words, the deformation gradient is linear with respect to x⃗. This is very important,
as it allowed us to simplify this expression. The reason for this simplification will be
seen in section 3.2.
Thus, we require the second derivative of the energy density function, which is similar
to the acceleration. This derivative, also called Hessian matrix, made of second-order
partial derivatives, is defined equivalent to the derivative of the PK1 ∂2Ψ

∂F2 = ∂P
∂F

.

Also, the ∂2Ψ
∂F2 is problematic because it is an order 4 tensor in R3×3×3×3. To perform

the product with the second-order tensors ∂F
∂x

we will flatten them. To see more on
this operation, see appendix A.2.

∂2Ψ

∂x2
= vec

(
∂F
∂x

)T vec
(
∂2Ψ
∂F2

)
vec
(
∂F
∂x

)
(2.34)

This is our final expression to compute the force derivative with respect to the de-
formed degrees of freedom. We only need to derive vec(∂2Ψ

∂F2), which is a matrix in
R9×9, from our selected constitutive model.

13

Fast Soft-Tissue Deformations with FEM

Chapter 2. Deformation evaluation

2.3.1 Hessian from S-centric invariants energy

Luckily, computing this order 4 tensor from an energy created from invariants is easy.
If we develop the derivative ∂2Ψ

∂F2 and clump together the terms for each invariant, we
get a straightforward expression to compute such tensor.
In the case of the S-centric invariants, from section 2.2.4, the derivatives and Hessians
of each invariant with respect to the deformation gradient are simple expressions we
can find derived in appendix B.1, and compiled in B.1.4.
To simplify the final expression we will use the flattened version of the derivatives,
following Smith et al. notation [29]. To do this we define F⃗ = vec(F). Thus, for all
3 invariants:

∂Ii
∂F⃗

= vec(∂Ii
∂F

) ∂2Ii
∂F⃗2

= vec(∂2Ii
∂F2) (2.35)

Then, the final expression of the energy density Hessian is the following:

vec(∂
2Ψ

∂F2
) =

3∑
i=1

∂2Ψ

∂I2i

∂Ii

∂F⃗
(
∂Ii

∂F⃗
)T +

∂Ψ

∂Ii

∂2Ii

∂F⃗2
(2.36)

We have marked in blue the only entries we will have to derive by ourselves from
the energy density function. Furthermore, these derivatives are scalars, which makes
derivation even easier.

2.4 Hyperelastic Constitutive Models

There are an unlimited amount of potential hyperelastic constitutive models, and
many papers are presented now and then with new exciting models. In this thesis, we
have experimented with 2 of the most famous energies, Neo-Hookean and Corotated,
and one relatively new energy that is more stable for large values of ν.
There are two different and interchangeable ways to describe a constitutive model:
either as a formula for the PK1 stress tensor P as a function of the deformation
gradient F, or as a formula for the energy density Ψ as a function of also F.

2.4.1 Neo-Hookean

There are many forms of Neo-Hookean, as it has been discussed and analyzed con-
tinuously since its original paper came out [20]. It is a type of energy that tries to
preserve volume more than prevent elongations.
Here we will look at the known Bonet and Wood Neo-Hookean [4].

ΨBW08 =
µ

2
(||F||2F − 3)− µ log(J) + λ

2
log2(J) (2.37)

As a reminder, || · ||F is the Frobenius norm (See appendix A.1), and J = det(F)
which explains the volume change (Equation 2.5).

14

Fast Soft-Tissue Deformations with FEM

Chapter 2. Deformation evaluation

Its PK1 tensor PBW08 is the derivative of ΨBW08 with respect to F, as seen on equation
2.13.

PBW08(F) = µ(F− 1

J

∂J

∂F
) + λ

log J

J

∂J

∂F
(2.38)

Notice we have a new partial to solve ∂J
∂F

. Luckily it is equivalent to ∂I3
∂F

, and is
provided in appendix B.1.3.
Of course, ΨBW08 can be rewritten in terms of the S-centric invariants of section 2.2.4:

ΨBW08 =
µ

2
(I2 − 3)− µ log(I3) +

λ

2
log2(I3) (2.39)

Notice that we cannot rewrite ΨBW08 with the Cauchy-Green Invariants without in-
troducing a

√
IIIC term, which makes things messier.

To build the energy density Hessian, we need to calculate the 3 derivatives and 3
Hessians of the PK1 with respect to the invariants.

∂ΨBW08

∂I1
= 0 (2.40)

∂ΨBW08

∂I2
=
µ

2
(2.41)

∂ΨBW08

∂I3
=
λ log I3 − µ

I3
(2.42)

∂2ΨBW08

∂I21
= 0 (2.43)

∂2ΨBW08

∂I22
= 0 (2.44)

∂2ΨBW08

∂I23
=
λ− λ log I3 + µ

I23
(2.45)

Notice half of the terms end up being zero. Now, we insert those terms to equation
2.36 to get the final Hessian:

vec(∂
2ΨBW08

∂F2
) = µI9×9 +

λ− λ log I3 + µ

I23

∂I3

∂F⃗
(
∂I3

∂F⃗
)T +

λ log I3 − µ
I3

∂2I3

∂F⃗2
(2.46)

Moreover, that is our final Hessian. The µI9×9 appears because ∂2I2
∂F⃗2

= 2I9×9, it is one
of the simpler derivatives of the S-centric invariants.
Now we could plug this Hessian into our simulator, and we would be good to go.

2.4.2 Corotational

The Corotational energy is one of the more widely used energies in the industry and
academia. It was invented in mechanical engineering by Rankin and Brogan [24] in
1986, and rediscovered for computer animation in early 2000 by Müller et al. [21].
This energy density function is classically known as:

ΨCo =
µ

2
||F−R||2F +

λ

2
tr2(S− I) (2.47)

Notice that this energy does not have any term with J ; thus, the biggest flaw of
this energy is that it does not take into account the volume of the deformation, but
has an approximation in its rightmost term. However, it is an stable energy, simple
to compute, and has an appropriate behavior in almost all situations (the exception
being when ν ∼ 1

2
).

15

Fast Soft-Tissue Deformations with FEM

Chapter 2. Deformation evaluation

This energy, its PK1 and Hessian can be expressed with the S-centric invariants as
follows:

ΨCo =
µ

2
(I2 − 2I1 + 3) +

λ

2
(I21 − 6I1 + 9) (2.48)

PCo = (λI1 − 3λ− µ)∂I1
∂F

+
µ

2

∂I2
∂F

(2.49)

vec(∂
2ΨCo

∂F2
) = λ

∂I1

∂F⃗
(
∂I1

∂F⃗
)T + (λI1 − 3λ− µ)∂

2I1

∂F⃗2
+
µ

2

∂2I2

∂F⃗2
(2.50)

The derivations for this energy, as well as the rewriting in terms of the S-centric
invariants, can be found in appendix B.2.

2.4.3 Stable-Neo-Hookean

This model, presented by Smith et. al [28], tries to fix the stability and behavior
problem of Neo-Hookean energies, like the one from section 2.4.1, when ν ∼ 1

2
.

Here, we present the version of this energy used at Pixar according to [15].

ΨSNH =
µ

2
(I2 − 3)− µ(I3 − 1) +

λ

2
(I3 − 1)2 (2.51)

PSNH =
µ

2

∂I2
∂F

+ (λI3 − λ− µ)
∂I3
∂F

(2.52)

vec(∂
2ΨSNH

∂F2
) =

µ

2

∂2I2

∂F⃗2
+ λ

∂I2

∂F⃗
(
∂I2

∂F⃗
)T + (λI3 − λ− µ)

∂3I1

∂F⃗2
(2.53)

The derivation process for this energy is described in appendix B.3.

16

3. The Finite Elements Method
The Finite Elements method is a technique and a justification to faithfully approxi-
mate ordinary differential equations, such as those that describe movement.
This method is based on the idea that we can have a finite number of degrees of
freedom to analyze a continuum and use interpolation to reconstruct the function
everywhere.
Choosing the interpolation function significantly impacts the FEM form of the equa-
tions. A linear interpolation function will result in simpler systems, but it does not
provide continuous derivative (C1). Meanwhile, a quadratic interpolation function
produces better results with C1 continuity at the cost of more complexity.
We will rasterize the degrees of freedom into elements to work with them. An element
is defined by a set of degrees of freedom and an interpolation function to retrieve any
property defined inside of the element.

3.1 Tetrahedral elements

We have used tetrahedral elements for this thesis, the simplest elements one can use
with volume.
Each tetrahedral element has 12 degrees of freedom: 4 nodes with 3 components each,
as shown in the figure 3.1. Notice we call them nodes instead of vertices.
A tetrahedral mesh is a set of tetrahedrons that have shared nodes. These meshes
can represent an arbitrary shape and volume, building an interconnected net of tetra-
hedrons.

X⃗0

X⃗1

X⃗2

X⃗3

Figure 3.1: Tetrahedral element. Determined by 4 material coordinates X⃗i.

17

Fast Soft-Tissue Deformations with FEM

Chapter 3. The Finite Elements Method

Generating tetrahedral meshes is out of the scope of this thesis; however, we give some
intuition about how they can be generated. We can create elements by extruding on
an arbitrary surface mesh. If the mesh is watertight and a 2-manifold (i.e., there are
no holes and all faces are orientable), we can fill the volume enclosed by the mesh
with tetrahedrons using an algorithm akin to Delaunay triangulation.
In our particular case, we have used TetGen [26] to generate tetrahedral meshes.
Like with any geometry processing need, having good faces (or elements in this case)
is preferred. We want to avoid very small elements, or with very acute angles, as
those may produce numerical precision or/and stability issues.

3.2 Linear tetrahedral elements on energy density
gradients

Elements for FEM need an interpolation function that defines them. Depending on
the degree of the function, we get a trade-off between accuracy and complexity. As we
have seen in the section 2.3, we used the fact that ∂2F

∂x2
= 0 to simplify an expression

because the elements are linear, and thus F is too.
Because we are using linear tetrahedral elements, we will use barycentric coordinates
as interpolation function to retrieve any property at any location inside the element.
Let us formalize this for the case of a tetrahedra, we define 3 barycentric coordinates

b⃗ =

uv
w

, and 4 basis functions:

ψ0(⃗b) = 1− u− v − w
ψ1(⃗b) = u

ψ2(⃗b) = v

ψ3(⃗b) = w

(3.1)

With the properties that
∑3

i=0 ψi = 1 and ∀i, ψi ≥ 0. This constraints the function to
define any interior property as a convex combination of the tetrahedron nodes, which
defines a simplex shape.
Given the barycentric coordinates b⃗, any magnitude fi defined at the 4 nodes can be
linearly interpolated as:

f (⃗b) =
3∑
i=0

ψi(⃗b)fi (3.2)

We can use the barycentric interpolation to reconstruct any point inside the tetrahe-

18

Fast Soft-Tissue Deformations with FEM

Chapter 3. The Finite Elements Method

dron both in the deformed and undeformed configuration:

X⃗ (⃗b) =
3∑
i=0

ψi(⃗b)X⃗i (3.3)

x⃗(⃗b) =
3∑
i=0

ψi(⃗b)x⃗i (3.4)

3.3 Computing the deformation gradient

The deformation gradient F, defined in section 2.1.2, is one of the essential concepts
in deformable material simulation, and now we want to get an analytic expression to
compute it.
How we have seen in the previous equations 3.3 and 3.4, we can write x⃗ and X⃗ in
terms of any barycentric coordinate b⃗, thus we can develop the deformation gradient
definition:

F =
∂ϕ

∂X⃗
(2.2)

=
∂x⃗

∂X⃗
(3.5)

=
∂x⃗

∂b⃗

∂b⃗

∂X⃗
(3.6)

=
∂x⃗

∂b⃗

(
∂X⃗

∂b⃗

)−1

(3.7)

Having introduced the barycentric coordinates into the deformation gradient defini-
tion, we can substitute the interpolation function into the previous equations:

F =
∂x⃗

∂b⃗

(
∂X⃗

∂b⃗

)−1

(3.7)

=
∂

∂b⃗

(
3∑
i=0

ψi(⃗b)x⃗i

)
∂

∂b⃗

(
3∑
i=0

ψi(⃗b)X⃗i

)−1

(3.8)

=

(
3∑
i=0

x⃗i
∂ψi(⃗b)

∂b⃗

)(
3∑
i=0

X⃗i
∂ψi(⃗b)

∂b⃗

)−1

(3.9)

We can see how both X⃗ and x⃗ do not depend on the value of b⃗, which allowed us to
move the derivative inside the sum. What is even more interesting, is that we can

19

Fast Soft-Tissue Deformations with FEM

Chapter 3. The Finite Elements Method

represent the previous formula 3.9 as a product of matrices:

F =

(
3∑
i=0

x⃗i
∂ψi(⃗b)

∂b⃗

)(
3∑
i=0

X⃗i
∂ψi(⃗b)

∂b⃗

)−1

(3.9)

= xH(XH)−1 (3.10)

The matrices X and x are just the undeformed and deformed coordinates of the nodes
put together in columns:

X =

 X⃗0 X⃗1 X⃗2 X⃗3

 (3.11)

x =

 x⃗0 x⃗1 x⃗2 x⃗3

 (3.12)

The Hessian matrix H seems very complex, but because our basis functions of equa-
tion 3.1 are simple and linear, it becomes a very simple matrix:

H =

∂ψ0

∂u
∂ψ0

∂v
∂ψ0

∂w
∂ψ1

∂u
∂ψ1

∂v
∂ψ1

∂w
∂ψ2

∂u
∂ψ2

∂v
∂ψ2

∂w
∂ψ3

∂u
∂ψ3

∂v
∂ψ3

∂w

 (3.13)

=

−1 −1 −1
1 0 0
0 1 0
0 0 1

 (3.14)

To finish up, we can multiply the hessian with x and X, and set the computation of
the deformation gradient as the product:

F = xH(XH)−1 (3.10)
= DsD

−1
m (3.15)

Where Ds and Dm are the spatial and material parts of the deformation gradient,
computed as follows:

Dm = XH =

 X⃗1 − X⃗0 X⃗2 − X⃗0 X⃗3 − X⃗0

 (3.16)

Ds = xH =

 x⃗1 − x⃗0 x⃗2 − x⃗0 x⃗3 − x⃗0

 (3.17)

Notice how lucky we are with the previous expressions; as Dm is defined by the
undeformed configuration of the tetrahedron, we can calculate and cache D−1

m since
the beginning of the simulation. Thus, each time we need the deformation gradient
F, we only need to put together Ds and multiply by our stored D−1

m .

20

Fast Soft-Tissue Deformations with FEM

Chapter 3. The Finite Elements Method

3.4 Gradient of the deformation gradient

The term ∂F
∂x⃗

has appeared before on the deformation energy Hessians of section 2.3.
It is a required term we needed but could not define. Now that we have stated we
are using linear tetrahedral elements, we can define it.
Because x⃗ has 12 degrees of freedom (4 nodes of 3 components each), ∂F

∂x⃗
is a 3rd

order tensor of 12 matrices of 3× 3.

For the sake of clarity, we define x⃗ =

x⃗0
x⃗1
x⃗2
x⃗3

 =

x0
x1
...
x11

. Thus, the gradient of the

deformation gradient is:

∂F

∂x⃗
=

[
∂F
∂x0

]
[
∂F
∂x1

]
...[
∂F
∂x11

]

 (3.18)

In order to compute such tensor, we can make us of the previous equation 3.15
F = DsD

−1
m , and derivate the right hand side:

∂F

∂x⃗
=

Ds

∂x⃗
D−1
m (3.19)

Notice that only Ds depends on x⃗. Thus, we can define ∂F
∂x⃗

in terms only of the
partials of Ds

∂x⃗
. Because of our linear interpolation function, all 12 matrices are very

simple:

Ds

∂x0
=

−1 −1 −10 0 0
0 0 0

 Ds

∂x1
=

 0 0 0
−1 −1 −1
0 0 0

 Ds

∂x2
=

 0 0 0
0 0 0
−1 −1 −1

Ds

∂x3
=

1 0 0
0 0 0
0 0 0

 Ds

∂x4
=

0 1 0
0 0 0
0 0 0

 Ds

∂x5
=

0 0 1
0 0 0
0 0 0

Ds

∂x6
=

0 0 0
1 0 0
0 0 0

 Ds

∂x7
=

0 0 0
0 1 0
0 0 0

 Ds

∂x8
=

0 0 0
0 0 1
0 0 0

Ds

∂x9
=

0 0 0
0 0 0
1 0 0

 Ds

∂x10
=

0 0 0
0 0 0
0 1 0

 Ds

∂x11
=

0 0 0
0 0 0
0 0 1

(3.20)

With these previous partials we can reconstruct ∂F
∂x⃗

by multiplying each of these with
D−1
m . This means that F

∂xi
= Ds

∂xi
D−1
m , for all i ∈ [0, 12), which defines our final tensor

F
∂x⃗

, the gradient of the deformation gradient.

21

Fast Soft-Tissue Deformations with FEM

Chapter 3. The Finite Elements Method

Because of the significant amount of zeros, this computation can be optimized by
building directly the final tensor F

∂x⃗
, instead of doing the matrix products.

3.5 FEM system formulation

As any motion based system, our FEM formulation will be based in the equations of
motion, which states that some positions x⃗ will evolve over time t as follows:

∂2x⃗

∂t2
= M−1f⃗(x⃗,

∂x⃗

∂t
) (3.21)

Where M is the mass matrix, and f⃗ are all the forces that take effect, as a function
of x⃗ and ∂x⃗

∂t
. Notice also the velocity term v⃗ = ∂x⃗

∂t
.

The forces f⃗ include different terms, and we define them here as:

f⃗(x⃗,
∂x⃗

∂t
) = f⃗e(x⃗,

∂x⃗

∂t
) + f⃗d(x⃗,

∂x⃗

∂t
) + f⃗ext (3.22)

Each component is defined as follows:

• f⃗e(x⃗,
∂x⃗
∂t
): Elastic forces. Resulting from our energy density function. This force

is defined in the previous equation 2.16.

• f⃗d(x⃗,
∂x⃗
∂t
): Damping forces. These are other forces that seek to balance out our

assumptions of hyperelasticity and try to cancel out oscillation by dissipating
energy from the system. It will be defined in the section 3.5.3.

• f⃗ext: External forces that affect the system externally. This may mean gravity
or collisions, for example.

To simulate equation 3.21 we need to transform it into a first-order differential equa-
tion:

∂

∂t

(
x⃗
v⃗

)
=

(
v⃗

M−1f⃗(x⃗, v⃗)

)
(3.23)

3.5.1 Explicit FEM

The explicit formulation of the problem using FEM is the most simple and requires
no complex analysis. We only need to set up the problem.
We want to simulate a the system at time t+1 from the state of the same system at
the previous time t, where the interval of time between both states is ∆t. Because of
that, instead of focusing on the state of the system at a certain time x⃗(t) and v⃗(t), we
will focus in the differences needed to reach a next step:

x⃗(t+1) = x⃗(t) +∆x⃗ (3.24)
v⃗(t+1) = v⃗(t) +∆v⃗ (3.25)

22

Fast Soft-Tissue Deformations with FEM

Chapter 3. The Finite Elements Method

The explicit system can be defined by approximating equation 3.23 with ∆t:(
∆x⃗
∆v⃗

)
= ∆t

(
v⃗(t) +∆v⃗

M−1f⃗(x⃗(t), v⃗(t))

)
(3.26)

Where the state of the system is defined by:

• x⃗(t): Vector in R3n with the positions of the n nodes at time t.

• v⃗(t): Vector in R3n with the velocities of the n nodes at time t.

The mass matrix M is a diagonal matrix in R3n×3n with the respective masses of each
node. If the mass of the i-th node is mi, then diag(M) =(m0, m0, m0, m1, m1, m1,
. . . , mn−1, mn−1, mn−1).
Notice that forces f⃗(x⃗(t), v⃗(t)) are simple to compute, as they depend on the current
system state. The elastic forces f⃗e can be directly computed with their equation 2.16,
using the original volumes of each tetrahedron to scale the force (See the appendix
A.7 for the volume of a tetrahedron).

3.5.2 Implicit Backwards-Euler FEM

The implicit formulation of FEM is a little more complex and requires solving the
following system: (

∆x⃗
∆v⃗

)
= ∆t

(
v⃗(t) +∆v⃗

M−1f⃗(x⃗(t) +∆x⃗, v⃗(t) +∆v⃗)

)
(3.27)

This new formulation has the issue that is written in terms of the end result. Also,
this equation 3.27 is non linear. We could use a non-linear solver, like the Newton-
Rhapshon method, however the convergence of such method may be too slow for
interactive applications.
We can fix the non-linearity by transforming the implicit formulation into the implicit
Backwards-Euler formulation by performing a Taylor expansion on f⃗ of the first order.
This formulation tries to reach a new state where taking a step backward (−∆t) brings
the state back to the current state:

f⃗(x⃗(t) +∆x⃗, v⃗(t) +∆v⃗) ≈ f⃗(x⃗(t), v⃗(t)) +
∂f⃗

∂x⃗
(x⃗(t), v⃗(t))∆x⃗+

∂f⃗

∂v⃗
(x⃗(t), v⃗(t))∆v⃗ (3.28)

Such Taylor series induces in the worst case a quadratic error O(∆x⃗2+∆v⃗2), which is
acceptable as ∆x⃗ and ∆v⃗ should be small. Also, the error is more tolerable because
of the implicit formulation’s stability.
As the force f⃗ and its derivatives are always evaluated with the state (x⃗(t), v⃗(t)), let
us write f⃗ (t) = f⃗(x⃗(t), v⃗(t)) to compact the equations:

f⃗(x⃗(t) +∆x⃗, v⃗(t) +∆v⃗) ≈ f⃗ (t) +
∂f⃗ (t)

∂x⃗
∆x⃗+

∂f⃗ (t)

∂v⃗
∆v⃗ (3.29)

23

Fast Soft-Tissue Deformations with FEM

Chapter 3. The Finite Elements Method

Substituting our approximation 3.29 into the system 3.27 results in the following
linear system: (

∆x⃗
∆v⃗

)
= ∆t

(
v⃗(t) +∆v⃗

M−1
(
f⃗ (t) + ∂f⃗ (t)

∂x⃗
∆x⃗+ ∂f⃗ (t)

∂v⃗
∆v⃗
)) (3.30)

Given the previous system 3.30, we can substitute ∆x⃗ = ∆t
(
v⃗(t) +∆v⃗

)
into the

second equation:

∆v⃗ = ∆tM−1

(
f⃗ (t) +

∂f⃗ (t)

∂x⃗
∆t
(
v⃗(t) +∆v⃗

)
+
∂f⃗ (t)

∂v⃗
∆v⃗

)
(3.31)

With that we only have one variable, ∆v⃗, we can regroup to build a linear system we
can actually solve:[

M−∆t
∂f⃗ (t)

∂v⃗
−∆t2

∂f⃗ (t)

∂x⃗

]
∆v⃗ = ∆t f⃗ (t) +∆t2

∂f⃗ (t)

∂x⃗
v⃗(t) (3.32)

Which can be interpreted as solving a common linear system Ax⃗ = b⃗, where our
unknown variable is ∆v⃗. Once the linear system is solved, we can update v⃗(t+1) and
x⃗(t+1) accordingly.
An interesting and crucial fact about the previous 3.32 system, is that its left hand
side is a symmetric matrix. In section 4.3 we review how to solve such system.

Finally, it is important to note that on the literature the derivative ∂f⃗ (t)

∂x⃗
is denoted

K, the elasticity stiffness matrix. The damping term ∂f⃗ (t)

∂v⃗
is historically denoted with

C.

3.5.3 Damping forces

Up until now, we have included the term ∂f⃗ (t)

∂v⃗
into our system, but we have not

discussed where it comes from or what is it.
In mechanics, the damping affects an oscillatory system to reduce the oscillation along
time, usually with a decay rate ζ. The same concept can be applied in the simulation
of deformable materials, where because of the simulation with discrete time steps, we
can produce permanent oscillations.
Damping formulations are usually hand-crafted to avoid such issues, as those are
based on assumptions. One of the most common damping models is Rayleigh damping,
which can be configured with 2 coefficients α and β. The configuration of the damping
parameters entails a complex discussion of oscillatory mechanics. See Liu and Gorman
for an interesting analysis [16].
The damping term is defined as follows:

∂f⃗ (t)

∂v⃗
= −αM− β∂f⃗

(t)

∂x⃗
(3.33)

24

Fast Soft-Tissue Deformations with FEM

Chapter 3. The Finite Elements Method

To provide at least a little insight on how damping works and can be configured,
given an oscillation angular velocity ω, the damping rate of Rayleigh damping is:

ζ =
1

2

(α
ω
+ βω

)
(3.34)

Because ζ depends on the current oscillation speed, it is impossible to guarantee good
damping during all the simulation if no dynamic parameters are used. We want to
aim for ζ ∈ (0, 1], as ζ = 0 means that the system is undamped, while ζ = 1 means it
is critically damped, i.e., leads to the rest state the fastest. Values of ζ outside that
range can lead to overshooting, and cause an increase in the oscillation.

25

4. Practical simulation
With the knowledge of the previous chapters and the last implicit system formulated
in the equation 3.32, we have the necessary tools to start simulating any hyperelastic
material.
However, full-fledged simulation systems require more features so that the simulated
objects can interact with the scene and each other.

4.1 Collisions and interaction

This section delves into introducing collision reactions to the simulation system. Be-
cause the implicit linear system 3.32 only works with some deformable primitives, we
need to add a method to take into account:

• External forces: Per node external forces which modify the behavior locally.
External Forces can model gravity or friction on nodes in contact with some
surface.

• Velocity Constraints: Impose velocity constraints in the nodes. Constraints
are used to introduce interaction by forcing nodes to behave according to user
input. Directional constraints can also be used to force a node to stay and move
only along one plane.

• Position alteration: Modify nodes’ positions directly while maintaining the sys-
tem stable. Moving nodes explicitly introduces artificial corrections, like moving
nodes along some collider.

4.1.1 External forces

Introducing external forces to each node is trivial, as forces are already part of the
original formulation.
Remembering the system equation 3.32:[

M−∆t
∂f⃗ (t)

∂v⃗
−∆t2

∂f⃗ (t)

∂x⃗

]
∆v⃗ = ∆t f⃗ (t) +∆t2

∂f⃗ (t)

∂x⃗
v⃗(t) (3.32)

We can configure all the forces that affect a particle with the term f⃗ (t). So this is
already supported by our default system.

26

Fast Soft-Tissue Deformations with FEM

Chapter 4. Practical simulation

4.1.2 Velocity Constraints

Constraints were introduced by the original Baraff and Witkin paper [1] to have more
control over the behavior of some selected nodes.
The idea is to set the constrained nodes with infinite mass as a way to force nodes not
to be affected by the system. Another way to see it is: if we formulated the system
for a single node with inverse masses ∂2x⃗

∂t2
= 1

m
f⃗ , if m = ∞ then the acceleration of

the node is 0.
However, we would like to apply constraints in arbitrary planes and directions. To
do so we will constraint each i-th node, i ∈ [0, n), with the following 3× 3 matrix Si,
which emulates the previous inverse masses example:

Si =

I if no DoF is constrained
I− p̂ip̂Ti if 1 DoF p̂i is constrained
I− p̂ip̂Ti − q̂iq̂Ti if 2 DoFs, p̂i and q̂i, are constrained
0 if all 3 DoFs are constrained

(4.1)

This reflects any 3D constraint, and allows us to fix the particle and allow it to move
along a plane or only a direction. We can bring together all small matrices Si into
symmetric matrix S ∈ R3n×3n, where its diagonal 3 × 3 blocks correspond to the
respective Si.
Constraints work together with a forced change of velocity z⃗i for each node. This
variable allows us to force a node to reach the desired velocity at the end of the step.
If a node i has been constrained in all its degrees of freedom, then ∆v⃗i = z⃗i. In other
words, we are solving the system while guaranteeing that (I− S)∆v⃗ = (I− S)z⃗.
In the original Baraff and Witkin [1], they applied such constraints inside the linear
solver; however, doing so reduced the condition number of the matrix because con-
straints did set to zero its rows and columns of the system. However, we used the
following newer approach by Tamstorf et al. Pre-filtered Preconditioned formulation
[30], which is integrated into the formulation of the implicit FEM problem.
Tamstorf et al. handle the linear system as a minimization problem with satisfaya-
bility. With some clever algebra manipulation and common pattern substitutions,
they are able to integrate the constraints in the system. If we interpret system 3.32
as Ax⃗ = b⃗:

(SAS+ I− S)y⃗ = Sc⃗ (4.2)
y⃗ = x⃗− z⃗ (4.3)
c⃗ = b⃗−Az⃗ (4.4)

The idea behind this system is that with SAS we project the system A into a space
defined by S. Also, the term I− S is added to improve the condition number of the
system without modifying the expected solution.

27

Fast Soft-Tissue Deformations with FEM

Chapter 4. Practical simulation

Solving this new system requires some extra matrix-vector products, and even if
we optimize the products with the very sparse matrix S, this cost is non-negligible.
However, solving this system guarantees a speed-up in the linear solver, which makes
this worth it.

4.1.3 Position alteration

To handle collisions, we require to move nodes to the surface of the collider they
have intersected. We cannot do that with the velocities because this would introduce
energy to the system. However, moving a node explicitly is not enough as the node’s
neighbors are not notified of such movement, and will behave randomly.
Baraff and Witkin [1] proposed solving a slightly different system. Instead of com-
puting ∆x⃗ with equation 3.30, we add a correction term in equation 4.5:

∆x⃗ = ∆t(v⃗(t) +∆v⃗) (3.30)
∆x⃗ = ∆t(v⃗(t) +∆v⃗) + r⃗ (4.5)

The r⃗ represents a correction term that encodes the extra displacement (position
alteration) that a node must have applied at the end of the step.
If we repeat the derivation of section 3.5.2, instead of using equation 3.32 as our linear
system, we use:[

M−∆t
∂f⃗ (t)

∂v⃗
−∆t2

∂f⃗ (t)

∂x⃗

]
∆v⃗ = ∆t f⃗ (t) +∆t2

∂f⃗ (t)

∂x⃗
v⃗(t) +∆t

∂f⃗ (t)

∂x⃗
r⃗ (4.6)

The new rightmost term ∆t∂f⃗
(t)

∂x⃗
r⃗ of the equation 4.6 propagates the alteration to

neighbor nodes, and makes its velocities adapt accordingly.
It is necessary to note that the velocity of the altered nodes will not be affected
by such, and the position must be modified after solving the linear system with the
equation 4.5.

4.1.4 Collision handling

Collisions with external elements to the simulation must be detected, tracked, and
handled correctly.
For detection, Kim and Eberle [15] discuss the usage of proximity queries as a robust
method to detect intersections. Proximity queries allow checking if a node is close to
some collider at any point, only requiring a position. However, this method has some
drawbacks:

• Generating SDF of the colliders is expensive to compute and store; simplifica-
tions can be done, and only consider offsets and insets of the collider faces, but
this can produce very degenerate regions on sharp angles.

28

Fast Soft-Tissue Deformations with FEM

Chapter 4. Practical simulation

• Another point is that these queries are expensive because we need not only to
classify points according to some 3D extruded collider faces, but we need to
handle the boundaries of these offsets and insets, so that sets of neighboring
faces do not overlap.

• Self-intersections of the sets can happen in non-neighboring faces and need to
be handled accurately, maybe returning multiple collider faces as a response to
the query.

Because of this, we ended up using ray intersection tests. Given a node i-th, that
has evolved from x⃗

(t)
i to x⃗

(t+1)
i , we can create a ray with direction x⃗

(t+1)
i −x⃗(t)i

||x⃗(t+1)
i −x⃗(t)i ||

, and

maximum length ||x⃗(t+1)
i − x⃗(t)i ||.

Ray intersection tests are fast, reliable, and quickly accelerated by spatial data struc-
tures. Pharr et al.’s Physically Based Rendering book [23] has a thorough survey on
ray intersection and acceleration data structures, which we have used.
Once an intersection has been found with an external collider, we enforce a constraint
on the node that traversed the collider, move the node above the surface with position
alteration, and keep track of the node.
Nodes that are tracked are kept constrained only in the perpendicular direction of the
collider. This means that the node can move tangentially across the collider freely.
The constraints are removed when we detect that the last step’s residual constraint
forces do not restrict the node from staying on the surface by pulling it above. This
is depicted in the figure 4.1.
The residual constraint forces e⃗ for all nodes can be easily computed from the original
system of equation 3.32 interpreted as A∆v⃗ = b⃗:

e⃗ = A∆v⃗ − b⃗ (4.7)

If a particle is constrained, its residual e⃗i may be different from zero because we have
solved for the system of section 4.1.2. This error e⃗ corresponds to the extra force
being enforced by the constraint.
Notice that this incurs in 1 step of delay to free the constraint. However, in practice,
it does not seem to have a significant effect if the time steps are small enough and
the model has a considerable amount of elements.

4.1.5 Friction

Friction is a type of damping where the kinetic energy of the system is dissipated via
sliding against bodies. There are many ways of modeling this behaviour, where the
most accurate and accepted is Coulomb damping. However such damping requires
computing the surface area if you want accurate responses.
We take the simplification that each node in contact with a collider will be subject
to some friction damping proportional to its velocity. This is that a node will have a

29

Fast Soft-Tissue Deformations with FEM

Chapter 4. Practical simulation

forces

constraint residuals

Figure 4.1: Constraint force residuals in different configurations. In the left case, the
triangle is squished, and the constrain applies an upward force to keep the bottom
node from moving down. In the right case, the triangle is being moved away, and the
constraint prevents the bottom node from separating by pulling down. The constraint
is removed in the right case.

friction damping force applied:
f⃗fric = −kv⃗ (4.8)

Where k ∈ [0, 1] is a constant of friction defined by the material the node is sliding
against.
Because we want to use this force in our implicit system, we need its derivative:

∂f⃗fric

∂v
= −kI (4.9)

However, this equation expresses a damping force applied in any direction. Because
we only want to damp the tangential direction of the surface, we project the damping
into the plane defined by the normal of the surface n̂ we are sliding against:

∂f⃗fric

∂v
= −k

(
I− n̂n̂T

)
(4.10)

We can easily add this simple model of friction into our system, with almost no cost.
However, setting the damping constant k → 1 can make the system unstable as the
damping equals the exact velocity we are trying to produce.

4.1.6 Floating-point error

Floating-point numbers are a discretization of real numbers, which may cause many
different problems. In the case of collisions, we need to be very careful with how to
apply the position alteration.
Suppose we move the nodes at the exact boundary of a face of a collider; at later
frames, because of the tangential movement, the node may have gone through the
collider due to floating-point error. This will lead to missing collisions in the future
or block the node underneath the collider.

30

Fast Soft-Tissue Deformations with FEM

Chapter 4. Practical simulation

We need to keep track of the collider affecting a node and apply the position alteration
with some small offsets to fix this.
It is essential to keep track of the collider and the node that collided against it. They
are used to check when to release the collision, and to ascertain that the node is
always at the right side of the collider.

4.2 Sparse matrices

The described system of equations 3.32 or 4.6 that we have to solve is very sparse,
which means the number of non-zero entries of the matrix A is much lower than the
number of zeroes. Instead of using dense matrices, we can use sparse ones.
A sparse matrix is a data structure that represents a matrix but only stores its non-
zero components. Linear algebra libraries have optimized operations of all kinds with
sparse matrices, making it desirable to use them.
Sparse matrices are optimal to use in their compressed form, where their non-zero
entries are stored tight and contiguously in memory.
One drawback of sparse matrices is that they cannot have O(1) random access, and
use binary searches to locate its entries. Another drawback is that when a matrix
is compressed, one cannot insert new elements without paying O(m), where m is its
number of non-zero entries.
To build the FEM system, we want to reutilize as much memory as possible and be
able to insert and add the values into the sparse matrix without reallocating memory.
In section 5.2 we will see how to explode properties of the FEM problem for efficient
O(1) random access into the sparse matrix.

4.3 Preconditioned Conjugate gradient

To solve any linear system Ax⃗ = b⃗, we require some algorithms to do so, called linear
solvers. There are many different solvers for as many different problems; however, we
will focus on the Conjugate Gradient Method (CG).
The perks of using CG is that it is an iterative solver that scales very well with sparse
systems of linear equations. Here we will provide some insight into how it works and
why it is so valuable. However, an in-depth introduction to the method is provided
by Shewchuk [25].
CG is very similar in its concept to the classical Newton-Raphson method to solve
non-linear equations. In Newton-Raphson method, given a function f from which we
want to find its zeros, and its derivative f ′, we chose an initial point x(0), and move
along the derivative to a next x(1) which should be closer to f(x) = 0. The method

31

Fast Soft-Tissue Deformations with FEM

Chapter 4. Practical simulation

is defined as follows at the i-th iteration:

x(i+1) = x(i) −
f(x(i))

f ′(x(i))
(4.11)

We are dealing with linear systems Ax⃗ = b⃗, and instead of a gradient we could
use matrix A ∈ Rn×n’s eigenvectors as search directions. If we went through the
eigenvectors in order, we could get closer to the solution very fast with the eigenvectors
with a larger eigenvalue.
If, and only if, the matrix A is positive-definite and symmetric, we will always
reach the best solution in at most n steps. Otherwise, convergence may be impossible
in some cases.
To get some intuition of this requirement, positive-definiteness of matrix A means
that :

• For any positive vector x⃗, x⃗TAx⃗ ≥ 0

• All the eigenvalues λ of A are positive.

• If A is also symmetric, the system Ax⃗ = b⃗ has a unique solution, reachable
from anywhere by moving along the eigenvectors e⃗.

However, computing eigenvectors is too expensive. Instead, we will start in a specific
direction and continue in new orthogonal directions, using Gram-Schmidt orthogo-
nalization. At most, we will still reach the solution in n steps, but not as fast as if
we were moving along the eigenvectors.
The overall iterative algorithm is as follows:

d⃗(0) = r⃗(0) = b⃗−Ax⃗(0) (Initial conditions) (4.12)

α(i) =
r⃗T(i)r⃗(i)

d⃗T(i)Ad⃗(i)
(Align direction with solution) (4.13)

x⃗(i+1) = x⃗(i) + α(i)d⃗(i) (Update variable) (4.14)
r⃗(i+1) = r⃗(i) − α(i)Ad⃗(i) (Get residual/error) (4.15)

β(i+1) =
r⃗T(i+1)r⃗(i+1)

d⃗T(i)r⃗(i)
Gram-Schmidt (4.16)

d⃗(i+1) = r⃗(i+1) + β(i+1)d⃗(i) (orthonormal new direction) (4.17)

We might get very close to the solution before completing the n steps. We will stop
the process when the residual’s norm is below a threshold ||r⃗(i)||2 < ϵ2.
This method will converge with a speed relative to the condition number κ of the
matrix A. If matrix A is sparse, and has m non zero entries, it will converge in
O(m

√
κ).

If we start with a good guess at the first iteration x⃗(0), the convergence will be much
faster. In the simulation case, using the previous step’s final solution is a good starting
value.

32

Fast Soft-Tissue Deformations with FEM

Chapter 4. Practical simulation

4.3.1 Preconditioning

Preconditioning is a technique used to improve the condition number of a matrix even
more. If we have some matrix P which is “similar” to A, positive-definite, symmetric
and easy to invert, then we can solve the following system instead:

P−1Ax⃗ = P−1⃗b (4.18)

In the case that P is similar in solutions to A, κ(P−1A) ≪ κ(A). However, P−1A
might not be positive definite or symmetric. We can rewrite the CG algorithm into
the Untransformed Preconditioned Conjugate Gradient Method by using some matrix
identities and algebra manipulation.

r⃗(0) = b⃗−Ax⃗(0) (Initial conditions) (4.19)
d⃗(0) = P−1r⃗(0) (Initial preconditioned direction) (4.20)

α(i) =
r⃗T(i)P

−1r⃗(i)

d⃗T(i)Ad⃗(i)
(Align direction with solution) (4.21)

x⃗(i+1) = x⃗(i) + α(i)d⃗(i) (Update variable) (4.22)
r⃗(i+1) = r⃗(i) − α(i)Ad⃗(i) (Get residual/error) (4.23)

β(i+1) =
r⃗T(i+1)P

−1r⃗(i+1)

d⃗T(i)P
−1r⃗(i)

Gram-Schmidt preconditioned (4.24)

d⃗(i+1) = P−1r⃗(i+1) + β(i+1)d⃗(i) (orthonormal new direction) (4.25)

For the simulations, we have used a simple Diagonal Preconditioner, i.e. P is a
diagonal matrix, whose P−1 entries pii = 1

aii
.

4.4 Adaptive time-steps

In order to avoid instabilities with the system, we try to keep the ∆t to a minimum,
in a compromise between ∆t magnitude and number of steps.
This needs to be handled carefully when dealing with interactive systems, as the
framerate is variable and might have spikes. Also, adding more simulation steps in a
single frame without proper care can make the system unstable, and the framerate
can be affected.
In the first place, we need to stabilize the time in-between frames. To do so, we use
the average of the time in-between the last few frames. This allows us to avoid sudden
time spikes caused either by our simulation or operative system-related issues.
On the other hand, we would like to run at a specific framerate, where 100% of the
computing power in a frame is being actively used. If a simulation step only requires
a third of the frame computation time, we could run at least 2 steps with smaller ∆t,
making the simulation much more stable.

33

Fast Soft-Tissue Deformations with FEM

Chapter 4. Practical simulation

Our approach is to infer how much margin of time we have from the previous frame
and check if a simulation step would fit in this margin. We increase the number of
simulation steps at most once per frame if the average simulation step of the previous
frame would fit in the remaining margin of time.
If the frame time is less than the objective frame rate, we decrease the number of
simulation steps by one.

4.5 Analytic Eigenanalysis of Energies

As we have seen in section 4.3, we require that the matrix A of the system we
are trying to solve is symmetric and positive-definite. However, our left hand side[
M−∆t∂f⃗

(t)

∂v⃗
−∆t2 ∂f⃗

(t)

∂x⃗

]
albeit symmetric, may not be positive-definite.

In the case that the matrix A does not fulfil such property, multiple solutions of
the system exist. This can cause permanent oscillations, as the solver is indecisive
towards which solution to go at each step, or an explosion to infinity.
Of course, analysing the eigenvalues of the full system is unfeasible. Nevertheless,
because it is built from the composition of the Hessians ∂2Ψ

∂F2 , and no negative terms
appear after substitution, the positive-definitiveness of the system is determined by
those Hessians ∂2Ψ

∂F2 because the sum of positive-definite matrices is guaranteed to be
a positive-definite matrix.
The energies are also defined by the product of gradients ∂Ψ

∂F
∂Ψ
∂F

T , however this outer
product is its own eigenvector and defined by 3 eigenvectors of ∂2Ψ

∂F2 .
By analysing the Hessians analytically we can do 2 different things:

• Study under which circumstances our system may stop being positive-definite.

• If a non positive-definite ∂2Ψ
∂F2 is found, we can project the Hessian into a positive-

definite one by clamping its eigenvalues to positive values, and reconstructing
∂2Ψ
∂F2 .

Luckily for us, a generalization of the eigensystems for any isotropic energy Hessian,
defined with respect of the Cauchy or S-centric invariants, has already been derived
by Smith et al. [29]. We use it to obtain the 9 eigenvalues and 9 R9 eigenvectors of
∂2Ψ
∂F2 . The eigenvectors can be consulted in appendix B.4.
The 9 general analytic eigenvalues are the following (the eigenvectors are left out).
Notice, it uses σ as the singular values of F (See appendix A.4 for more information
on the SVD).

34

Fast Soft-Tissue Deformations with FEM

Chapter 4. Practical simulation

λ0...2 = eigenvalues(A) (4.26)

λ3 =
2

σx + σy

∂Ψ

∂I1
+ 2

∂Ψ

∂I2
+ σz

∂Ψ

∂I3
(4.27)

λ4 =
2

σy + σz

∂Ψ

∂I1
+ 2

∂Ψ

∂I2
+ σx

∂Ψ

∂I3
(4.28)

λ5 =
2

σx + σz

∂Ψ

∂I1
+ 2

∂Ψ

∂I2
+ σy

∂Ψ

∂I3
(4.29)

λ6 = 2
∂Ψ

∂I2
− σz

∂Ψ

∂I3
(4.30)

λ7 = 2
∂Ψ

∂I2
− σx

∂Ψ

∂I3
(4.31)

λ8 = 2
∂Ψ

∂I2
− σy

∂Ψ

∂I3
(4.32)

The general symmetric matrix A, which is a matrix that encodes the scaling only
components of the energy, is defined as follows with the {i, j, k} notation (i ̸= j ̸= k).

aii =2
∂Ψ

∂I2
+
∂2Ψ

∂I22
+ 4σ2

i

∂2Ψ

∂I22
+ σ2

jσ
2
k

∂2Ψ

∂I23
+ 4σi

∂2Ψ

∂I1∂I2
+ 4I3

∂2Ψ

∂I2∂I3
+ 2

I3
σi

∂2Ψ

∂I3∂I1
(4.33)

aij =σk
∂Ψ

∂I3
+
∂2Ψ

∂I21
+ σiσj

∂2Ψ

∂I22
+ σkI3

∂2Ψ

∂I23
+ 2(I1 − σk)

∂2Ψ

∂I1∂I2
(4.34)

+ 2σk(I2 − σ2
k)

∂2Ψ

∂I2∂I3
+ σk(I1 − σk)

∂2Ψ

∂I3∂I1

4.5.1 Stable Neo-Hookean analysis

Given the Stable Neo-Hookean energy of section 2.4.3:

ΨSNH =
µ

2
(I2 − 3)− µ(I3 − 1) +

λ

2
(I3 − 1)2 (2.51)

35

Fast Soft-Tissue Deformations with FEM

Chapter 4. Practical simulation

The eigenvalues of ∂2ΨSNH
∂F2 and its general scaling system are:

λ3 = µ+ σz(λ(I3 − 1)− µ) (4.35)
λ4 = µ+ σx(λ(I3 − 1)− µ) (4.36)
λ5 = µ+ σy(λ(I3 − 1)− µ) (4.37)
λ6 = µ− σz(λ(I3 − 1)− µ) (4.38)
λ7 = µ− σx(λ(I3 − 1)− µ) (4.39)
λ8 = µ− σy(λ(I3 − 1)− µ) (4.40)

aii = µ+ λ
I23
σ2
i

(4.41)

aij = σk(λ(2I3 − 1)− µ) (4.42)

Analysing the matrix A is overly-complicated because guaranteeing that its eigenval-
ues are positive requires asserting that for any positive vector v⃗, v⃗TAv⃗ ≥ 0:

vTAv⃗ =− x(σzy(µ− λ(2I3 − 1))− x(µ+ (I23λ)/σ
2
x) + σyz(µ− λ(2I3 − 1))) (4.43)

− y(σzx(µ− λ(2I3 − 1))− y(µ+ (I23λ)/σ
2
y) + σxz(µ− λ(2I3 − 1)))

− z(σyx(µ− λ(2I3 − 1))− z(µ+ (I23λ)/σ
2
z) + σxy(µ− λ(2I3 − 1)))

However, we can consider the extremes of the material parametrization. When ν → 1
2

then λ ≫ µ. Thus, we can modify the previous system by removing µ, and setting
λ = 1 as we know that λ will always be positive, and it allows us to work with a
simpler expression:

vTAv⃗ ≈ x(I23x/σ
2
x + σzy(2I3 − 1) + σyz(2I3 − 1)) (4.44)

+ y(σzx(2I3 − 1) + I23y/σ
2
y + σxz(2I3 − 1))

+ z(σyx(2I3 − 1) + σxy(2I3 − 1) + I23z/σ
2
z)

Here it is easier to see that whenever I3 ≥ 1
2

the matrix is guaranteed to be positive
definite. Remember that I3 = detF = σxσyσz, which implies that if I3 > 0 then all
singular values are positive. Trying to derive much more from this complex system is
difficult.
We can also analyse the other eigenvalues. For the λ3...5 we check when the eigenvalue
will be zero.

λ3 = µ+ σz(λ(σxσyσz − 1)− µ) ≥ 0 (4.45)

Solving for σx yields the following root:

σx ≥
σz(λ+ µ)− µ

λσyσ2
z

(4.46)

If we do the same assumption than before that the material is volume preserving, we
can assume the following.

σx ≥
1

σyσz
(4.47)

36

Fast Soft-Tissue Deformations with FEM

Chapter 4. Practical simulation

This is very revelating, as it tells us that the system will remain stable while the
compression along one direction is more than the inverse area of its cross-section.
In other words, if an element is compressed by n units in one direction, its cross-section
area must be at most n2 units for the Hessian to be positive-definite.
Something similar happens with the eigenvalues λ6...8, but slightly worse:

λ6 = µ− σz(λ(I3 − 1)− µ) (4.48)
= µ− σz(λ(σxσyσz − 1)− µ) (4.49)

And solving λ6 ≥ 0 for σx:
σx ≥

σz(λ+ µ) + µ

λσyσ2
z

(4.50)

Notice that to guaranty such inequality, for great compressions along the cross-section
we need to ensure a minimum elongation along our axis.
In conclusion, this material is always stable under moderate stretching, and stable
under compression if its volume at most halved, or the compression inverse cross-
section area is at most the compression factor along a direction.

4.5.2 Forcing positive-definite Hessians

Given the previous analytic analysis of the energy eigensystem, we could use it to
detect and prevent non-positive-definite Hessians on the different elements.
Given the computed 9 eigenvalues, if we detect at least one of them is negative we
clamp the eigenvalues to the positive space, and reconstruct the Hessian from these
new eigenvalues and analytic eigenvectors.
This type of re-projection is not perfect, if there are multiple eigenvalues at zero
there will be a deficiency in the number of orthogonal eigenvectors, which can led to
problems.
To reconstruct a matrix A from a set of n eigenvectors e⃗i with eigenvalues λi we can
write the following system:

A

 e⃗0 . . . e⃗n−1

 =

 λ0e⃗0 . . . λ⃗n−1en−1

 (4.51)

We can rewrite it as follows, where E is a square matrix with the eigenvectors, and
D a diagonal matrix with the eigenvalues.

AE = ED (4.52)

Because our eigenvectors must be linearly independent, we consider E to be invertible,
and thus our matrix A can be reconstructed:

A = EDE−1 (4.53)

37

Fast Soft-Tissue Deformations with FEM

Chapter 4. Practical simulation

Furthermore, if our eigenvectors are also orthonormal i.e. ||e⃗i|| = 1, then E is an
orthonormal matrix and easily invertible with its transpose:

A = EDET (4.54)

From an algorithmic point of view, this means that matrix A can be constructed with
a simple loop of additions, with no need to build E:

A =
n−1∑
i=0

λi e⃗ie⃗
T
i (4.55)

38

5. Implementation details
For this thesis, we have implemented an interactive simulator using the techniques,
energies and approximations described in this document.
This simulator has been implemented with raw C++, with some libraries for linear
algebra (GLM and Eigen), and OpenGL for the visualization. In this chapter we will
only discuss some interesting or remarkable optimizations implemented in our solvers
and simulators.

5.1 Intersection queries

As discussed in the section 4.1.4, we use ray intersection queries for collision detection.
These rays are slightly unique because their direction does not need to be normalized.
Such alteration allows us to efficiently compute rays with a maximum span without
requiring us to calculate distances or normalize vectors.
Ray queries are the only component of the simulator that uses floating-point numbers
of single precision. This is to prevent issues when the rays are parallel to a surface,
or its origin/end are too close, because less number resolution gives us larger margins
to take these errors into account.
Furthermore, all ray queries also return the intersected primitive. This is used for
more reliable distance tests, and to maintain or release collisions if required.

5.2 Eigen Sparse considerations

The Eigen [9] linear algebra library has its own set of routines specialized in working
with sparse information. These are fine-tuned to get the maximum performance with
an API that tries to replicate “on paper” formulation, which poses some limitations,
obscures potential optimizations, and conceals other issues.
Ideally, we would use Sparse matrices with 3×3 block elements. However, these types
of matrices are not supported by Eigen; thus, we have to use the standard Sparse
Matrices and use them as best we can. Sparse matrices were described in section 4.2.

5.2.1 Sparse matrix block address indexing

Because in our simulation the mesh of tetrahedrons is not modified, and no extra
forces are to be inserted between nodes, the system size is constant. We can store the
memory addresses for each element into the sparse matrix for efficient O(1) random
access.

39

Fast Soft-Tissue Deformations with FEM

Chapter 5. Implementation details

At the beginning of the simulation, we preallocate a sparse matrix with entries in
all 3 × 3 blocks of each pair of nodes that share an element and the blocks on the
diagonal of the matrix. It is of utmost importance to build the matrix in compressed
format, and building it from triplets has proven to be the most efficient.
Once the matrix is built, we can iterate through it and store for each block of 3× 3
the pointers to the first elements of the 3 columns into a hash table (or a simple
vector) indexed by the pair of node indices corresponding to the block. Because the
sparse matrix is compressed, the following 2 elements of each stored pointer identify
the other components down the column of the block.
This optimization was essential to get the O(1) random access to update the system
at each iteration in real-time and set the sparse system to 0 without modifying its
structure.
If we did not use this optimization and instead used Eigen’s default random indexing
and setZero() method to clean the matrix, we would have the following issues:

• Each random access to the matrix requires a binary search. So this is logarith-
mic access time even for consecutive values.

• The setZero() method cleans the whole structure of the matrix, so elements
have to be inserted into the matrix again.

• Inserting elements into a matrix also makes the matrix uncompressed and will
cause extremely expensive memory reallocations. Plus having to compress the
matrix again.

5.2.2 Avoiding memory reallocations

Aside from the issue of filling a matrix, many other seemingly harmless statements
with Eigen hide memory allocations and reallocations. In particular, most of the
statements that use the assignment operator may cause the allocation of a new matrix
before assigning it to the left-hand side.
This is because Eigen has the concept of “aliasing” when the same variable we are
assigning into is being used on the right-hand side. Eigen cannot detect when to
consider aliasing or not; thus, with some non-component-wise operations, it operates
over a copy, then stores and deletes such copy.
There are some combinations of operations create better instructions than others
because of Eigen’s lazy evaluation, but this is not easy to assess because it can only
be checked after compilation.
Avoiding such allocations is tricky and requires careful analysis and debugging of the
statements. One can debug it by adding break-points in Eigen’s Core/util/Memory.h
allocations, and reorder the expressions until the desired behavior is reached.

40

Fast Soft-Tissue Deformations with FEM

Chapter 5. Implementation details

The usage of MatrixBase<Derived>::noalias() is also recommended on matrices
that are not used on the right-hand side of the assignment. However, sometimes this
is not as fast as it should be, and explicit, allocated once, matrices may be better
used.

5.2.3 Preconditioned Conjugate Gradient

Eigen’s Conjugate gradient solver is impossible to improve algorithmically because
the algorithm is so simple (Shown in section 4.3). However, applying the diagonal
preconditioner can be improved, as Eigen’s implementation does a linear search to
find the diagonal entries of the sparse matrix.
Because we know that our system has all entries in its diagonal, we can optimize the
preconditioner computation, making the computation of P−1r⃗(i) trivial with a simple
loop.
Also, we can use our own implementation to reuse as much memory as possible in-
between iterations of the Conjugate Gradient.
It is also interesting to note how important it is to start the Conjugate Gradient with
a good initial guess. Eigen can also solve with an initial guess; however, it requires
some memory copies and allocations.

5.3 Optimized PPCG

The application for constraints of our implementation for the Pre-filtered Precondi-
tioned Conjugate Gradient (Section 4.1.2) can be heavily optimized; in particular,
the computation for our final system SAST + I− S.
Because the symmetric matrix S will only have entries in its 3 × 3 blocks in the
diagonal, we could do something similar to our Block address cache (Section 5.2.1)
and preallocate all entries of this diagonal with zeros. However, this would imply
managing another sparse matrix, building it each step, and computing those products
as many times.
We can do better by exploding the nature of the SAST operation, the shape of S,
and our storage of constraints. If we consider our elements of sij ∈ S and aij ∈ A
to be blocks sij, aij ∈ R3×3 (or a tensor of 4th order in Rn×n×3×3) we can write our
SAST operation as:

(
SAST

)
ij
=

n−1∑
k=0

(
sik

n−1∑
l=0

akls
T
jl

)
(S is diagonal) (5.1)

= siiaijs
T
jj (S = ST) (5.2)

= siiaijsjj (5.3)

41

Fast Soft-Tissue Deformations with FEM

Chapter 5. Implementation details

This is a powerful optimization, as we do not need the matrix S at all, and only
have to consider the equation 5.3 when node i-th or j-th are constrained. Otherwise,(
SAST

)
ij
= aij.

We can apply this optimization by traversing the matrix linearly, and for each matrix
component check if it is under any constraint (using a hash table, for example, in
O(1)) and do the simple product. Of course, when iterating the diagonal we can also
add I− S to complete the PPCG system.

5.4 Parallelization

The construction of the sparse system can be easily parallelized. The computation of
the energy contribution of each element is independent of the other elements; thus, we
can parallelize the energies computation, together with the derivation of the forces,
gradients and Hessians.
Because we have our static sparse matrix indexed, we can use atomic additions to add
up the contribution of each element into the matrix without data races, and without
triggering reallocations of the matrix.
Also, we can parallelize our computation for the Optimized PPCG of section 5.3.
Given that the matrix A is sparse, we can parallelize the computation of the columns
of the final PPCG system, because to compute

(
SAST

)
ij

we only need to access Aij.
Iterating a sparse matrix by columns is equivalent to doing a simple iteration over
the non-zero values of the matrix, not requiring any complex behavior, which also is
thread-safe.

5.5 CPU-GPU bandwidth

One of the problems of interactive applications is when it is not bounded algorithmi-
cally, but by memory bandwidth. No matter how much computing power we have,
the program will not execute faster. Rendering can suffer from this issue.
GPUs are very fast in processing (and rendering) information already present in
their VRAM; however, sending information from the CPU to the GPU can be slow.
Because we are running our simulation on the CPU, we need to send the updated
nodes to the GPU for rendering each frame.
Given that we only render the surface of the tetrahedron models, it is an essential
consideration to only send to the GPU the vertices belonging to the surface of the
models.
Also, given our dynamic time stepping (Section 4.4) we could have several updates per
frame. It is important to only update the GPU memory once after several sub-steps
to avoid saturating the bus.

42

Fast Soft-Tissue Deformations with FEM

Chapter 5. Implementation details

5.6 Fast 3× 3 SVD

In 2011 McAdams et al. [18] published an algorithm to compute the singular value
decomposition of 3× 3 matrices minimizing branching and floating-point operations.
This SVD relies on approximating the eigenanalysis of the squared input matrix with
some Jacobi iterative method and then reconstructing from this the SVD. Of course,
the number of Jacobi iterations determines the precision of the output; however, state
that 4 iterations are usually enough for good convergence.
Such implementation is much faster and requires less memory than Eigen’s SVD
Jacobi solver, and numerous implementations exist on the web. We have used the
implementation provided by Yuanming Hu at taichi [11].

43

6. Results
In this last chapter, we present the results obtained with the implemented simulator.
We also discuss how the different energies behave in multiple scenarios and how their
behavior may impact an interactive simulation.

6.1 Implementation Screenshots

In the figure 6.1 we show some images of the implemented simulator, representing
and simulating different phenomena. In more detail:

• Subfigure 6.1a: Scene used for most benchmarks. Each sphere has almost
700 nodes and slightly over 1900 elements, and two of its vertices have been
constrained.

• Subfigure 6.1b: Spheres rolling and bouncing on high friction surfaces, rebound-
ing from one surface to the next.

• Subfigure 6.1c: Simple armadillo with several surface nodes constrained. The
constrained nodes are interactive and can be translated and rotated around
their centroid. The armadillo has 285 nodes and 787 elements.

• Subfigure 6.1d: Complex version of the armadillo, with an irregular surface,
reacting to a collider. This armadillo has 961 nodes and 2880 elements.

The screenshots also show the interface of the program. Its benchmarking UI, lists of
objects in the scene, simulation configuration, etc.
On the upper menu, one can also configure the engine’s frame rate and threading
configuration, load custom models into the scene, and load/store the scenes.

6.2 Optimizations

All optimizations presented in the chapter 5 have been benchmarked and are presented
here.
In the first place, we need to dissect a complete simulation step into multiple smaller
self-contained portions:

• Blocks assign: Computation of the energies for each element, adding Hessians
contribution to ∂f⃗

∂x⃗
and the forces f⃗ to the right-hand side of the system.

44

Fast Soft-Tissue Deformations with FEM

Chapter 6. Results

(a) Benchmarks (b) Friction and bounce

(c) Interaction (d) Complex response

Figure 6.1: Screenshots of different simulation scenes of varying complexity and phe-
nomena. The models shown are provided with the software. Here is shown some of
the UI; for example, on the left is the simulation configuration. On the image 6.1a
you can see the benchmarking utility, that shows the evolution of a simulation and
allows to export its contents to CSV. On the bottom images, you can see on the right
the inspector, which permits to configure the transformation, mesh data, and add
interaction groups to the game object.

45

Fast Soft-Tissue Deformations with FEM

Chapter 6. Results

• System finish: Complete the unconstrained system with position alteration of
the equation 4.6. Apply Rayleigh damping and friction damping.[

M−∆t
∂f⃗ (t)

∂v⃗
−∆t2

∂f⃗ (t)

∂x⃗

]
∆v⃗ = ∆t f⃗ (t) +∆t2

∂f⃗ (t)

∂x⃗
v⃗(t) +∆t

∂f⃗ (t)

∂x⃗
r⃗ (4.6)

• Constraints: Build the velocity constrained system of equation 4.2.

(SAS+ I− S)y⃗ = Sc⃗ (4.2)

• Solve: Solve the previous system with Conjugate Gradients.

• Update Mesh: Send the new surface vertices positions to the GPU’s VRAM.

• Remove constraints: Check the system’s constraints, and update/remove them
if necessary.

• Physics: Check intersections and collisions for each surface node with the envi-
ronment.

• Step: Total step time, considering all previous items, and some extra negligible
safety checks.

All benchmarks have been done in a desktop computer with the following specifica-
tions:

• AMD Ryzen 5 2600, 6 Cores (12 hyperthreading)

• NVIDIA GeForce GTX 1060 6GB

• 16GB RAM

With such a machine, all tests easily fit in memory and are not constrained by the
rendering.
The benchmark scene consisted of running at least 230 frames and averaging the
results, with ∆t = 1

100
, of the scene in the figure 6.1a, with almost 6000 elements and

2100 nodes. No dynamic substeps were used.

6.2.1 General analysis

Before the optimizations, as the figure 6.2a shows, the application of constraints was
the most expensive step, followed by the computation of energies and assignation to
the matrix. These were our two focuses for optimization.
The cost of the Constraints step is due to how expensive it is to build the sparse
matrix S in every step, even if it is very similar to the identity matrix. Even avoiding
reallocations, compressing the matrix for efficient products is too expensive.

46

Fast Soft-Tissue Deformations with FEM

Chapter 6. Results

(a) Distribution before optimizations (b) Distribution after optimizations

(c) Time comparison (d) Log time comparison

Figure 6.2: Charts for comparison of optimization implementations, using only 1
thread. Used the benchmark scene explained at the beginning of the section 6.1. In
the two bottom charts, lower is better.

Blocks assign SystemFinish Constraints Step
x5.487 x21.358 x218.79 x9.849

Table 6.1: Speedups table of the applied optimizations, using only 1 thread. Step
represents the overall pipeline.

47

Fast Soft-Tissue Deformations with FEM

Chapter 6. Results

Figure 6.3: Threading speedups of the multiple steps of the pipeline. Using the
benchmark scene explained at the beginning of the section 6.1. Step represents the
overall pipeline.

As you can see in the figures 6.2c and 6.2d, avoiding computing the matrix S reduces
the impact of this step enormously. This is a solution that can escalate to any scene.
In the case of the benchmark scene, this was reflected in a speedup of x218.79 (Table
6.1).
In the Blocks assign step, we added our static indexed sparse matrix by blocks (Section
5.2.1), which showed in a speedup of x5.487 by just avoiding the binary searches in
the sparse matrix. The cost decreased from 0.093 seconds to 0.017 seconds.
We modified the formulations for the system to avoid extra allocations in the Sys-
temFinish step, which is reflected in a speedup of x21.35, reducing the cost from 0.008
seconds to 0.00038 seconds. This optimization shows how important it is to analyze
how your algebra library operates with your variables.
All these optimizations effectively reduced the overall step cost by x9.85, from 0.194
seconds to 0.0197 seconds.
However, even with these optimizations, we still have some margin for improvement.
As the new cost distribution expresses, as shown in the figure 6.2b, the Blocks assign
are our new bottleneck taking up 89% of the step time. Parallelization serves to
mitigate such issues.

6.2.2 Parallelization

Introducing parallelization is necessary to use all the available resources of our pro-
cessors. We have added parallelization with OpenMP in multiple portions of our
code.
In the case of the bottleneck step Blocks assign, we have used atomic operations to
update the static indexed sparse matrix.

48

Fast Soft-Tissue Deformations with FEM

Chapter 6. Results

Eigen Eigen with guess Custom
Time 0.0071 s 0.00439 s 0.00168 s

Speedup x1 x1.614 x4.226

Table 6.2: Speedups of Conjugate Gradients implementations.

The figure 6.3 shows the different speedups of the different portions of the algorithm.
Notice how Blocks assign greatly benefits from our parallelization, carrying on the
speedup to the overall step.
However, notice that the speedup is not 1:1 with the number of threads. This is due
to the massive amount of atomic additions and the memory penalization induced by
random access.
Moreover, all the other pipeline parts do not seem to benefit from the parallelization.
Even if in smaller scenes we have data showing some speedups, with this benchmark
scene it does not show. This may be because non-parallelizable operations overshadow
the parallelized ones, adding to the penalization of opening and handling parallel
regions.

6.2.3 Preconditioned Conjugate Gradient

As explained in the section 5.2.3, we can improve Eigen’s implementation of the
conjugate gradient by using a more intelligent sparse matrix access, avoiding dynamic
memory allocations, and applying the preconditioner directly. Thus, we wanted to
see how using the previous step solution as a guess affected our solve time.
In table 6.2 you can see the costs and speedups of using Eigen’s solve and solveWithGuess
methods of the iterative solver, and our implementation of the Conjugate Gradient
applying all optimizations mentioned above.
Even if using a good guess for the first iteration of the Conjugate Gradients brings a
speedup of at least x1.614, avoiding dynamic allocations and unnecessary copies seems
to be the decisive factor. This shift in importance is explained by the fast convergence
of the Conjugate Gradients, and the cost befalling on all other operations of the solve
step.

6.3 Stability

In an interactive simulation we need to guarantee stability as much as possible, be-
cause if the simulation grows unstable we do not have a fallback system to go back
on track.
Stability depends on many different factors, like the delta time used, the implemen-
tation, and the models used. Also, stability can be easily measured by computing
the volume of the deformed bodies over time. Here we discuss some of the behaviors
these factors produce.

49

Fast Soft-Tissue Deformations with FEM

Chapter 6. Results

Figure 6.4: Volume over time of a mostly static simulation, under a different number
of substeps at 60 FPS. Notice how vibrations increase and decrease along with the
number of substeps. Observe that the 10 substeps chart seems to have stabilized, and
has more detail than the 1 substep.

6.3.1 Dynamic time-stepping

Dynamic time-stepping increases the frequency of the simulation steps in a second
significantly. Smaller time steps always have a positive impact on stability.
In environments with an FPS upper bound, this dynamic-time stepping lets us use as
much of the frame time for the simulation. For example, if we are running at 60 FPS,
we have a budget of 16ms to use. According to our optimized times using 10 threads,
one single step takes almost 8ms. If we only run one step at each frame, we have a
50% utilization of the frame. However, using 2 substeps, we have a 100% utilization.
Of course, having such time-stepping be dynamic helps only the framerate. When
large deformations happen, the system’s condition number can grow, and the solver
may take longer. In these cases, we would like smaller time steps to ensure that the
system can recover; however, because the solving is slower, we assign larger and fewer
time steps in a frame, which may lead to instabilities.
Also, we have identified one strange phenomenon: vibrations. Using smaller sub-steps
causes the model to vibrate, and the vibration augments and diminishes in a span of
substeps. This is depicted in the figure 6.4.
This interesting fact also happens with higher frame rates. It seems due to some
inherent issue with our Backwards Euler formulation, where the error produced be-
haves in some harmonic fashion. This may have something to do with the deformation
modes.

50

Fast Soft-Tissue Deformations with FEM

Chapter 6. Results

(a) Benchmark timings (b) Volume evolution in the same scene

Figure 6.5: Comparison of single and double precision in the simulator. Speedup of
x1.12 using single precision over double. However, they show very different behaviors,
where using floats causes stiffness.

Thus, it is important to fine-tune the maximum or minimum simulation substeps
if the vibrations start getting noticed. However, they do not seem to substantially
impact the stability, as the vibrations are small and do not lead to explosions.

6.3.2 Floating-point precision

Using single and double floating-point precision directly impacts stability and perfor-
mance.
In the figure 6.5a you can see how using floats is a little above a 10% faster than double
precision. This speedown is not only due to having to deal with more resolution in
the reals, but in having to allocate and manage double the memory, and because we
need to have random access in the sparse matrices, the cost of the access increases
also with memory because of the cache size.
However, the floating-point precision’s most significant impact is in the simulated
bodies’ behavior. Having less resolution in our reals causes the simulation to become
stiffer and do not deform nearly as much as if we were using double precision, which
can be seen in the figure 6.5b.
A simulation using floats will preserve the object’s shape much better and be closer to
the real/original shape. But if we want to simulate large deformations, it is mandatory
to use double-precision, as the floats are unable to provide enough resolution to encode
the small forces and gradients that overall cause the exciting phenomena.

6.3.3 Degenerate tetrahedron meshes

Correctness on the input tetrahedralization of the bodies to simulate is crucial for a
feasible simulation.

51

Fast Soft-Tissue Deformations with FEM

Chapter 6. Results

We define a correct tetrahedralization where all tetrahedrons are as regular as pos-
sible. Using the definition of a Delaunay triangulation, we would like to have a
tetrahedralization where its minimum corner-angles have been maximized.
A tetrahedrons model with very elongated and thin tetrahedrons is prone to grow
unstable in just a few iterations unless tiny time steps are used. Thus, it is necessary
to use correct tetrahedron models which have been processed to attain such good
tetrahedrons.
One must note that, given a surface mesh with n vertices, its straightforward tetra-
hedralization with n nodes will most likely have degenerate tetrahedrons. We have
used TetGen [26] to add Steiner points and create better meshes for simulation with
more than n nodes.

6.4 Energy models

We have implemented the 3 different energy models explained in the section 2.4,
and another using the eigenanalysis of the Stable Neo-Hookean energy shown in the
section 4.5.1.
All these energies present many different behaviors, as they produce different gradients
and Hessians, which require different computations.

6.4.1 Performance

To compare the different energies, we have set up a scene that deals with both an
undeformed and deformed body, consisting of a sphere that falls and bounces multiple
times against a flat surface.
In the figure 6.6 you can see the results for the 4 different energies. Notice that in all
simulations the first bounce occurs at second 1.
All 4 charts have in common that the most critical substeps are the Blocks assign,
Solve, and Constraints. The other substeps, even the SystemFinish, remain constant
throughout the simulation.
It is easy to see that the Neo Hookean energy by Smith et al. is not only the fastest
to compute, but the most stable. Consecutive iterations have similar costs, making
this energy very suitable for the dynamic time-stepping feature because we can trust
that the predicted cost of the next frame will be similar to the current one.
As for the Corrotational, it is slightly more expensive than the previous one. However,
notice that the solve step is the cheapest among all energies. This is due to being a
“relaxed” energy, as it does not take volume into account, the forces introduced seem
to be softer, which leads to more stable systems.

52

Fast Soft-Tissue Deformations with FEM

Chapter 6. Results

Figure 6.6: Performance comparison of the different energies. The scene consists of a
ball suspended in the air that bounces against a flat surface, with a fixed frame rate
of 100Hz.

The noticeable fluctuations in the Corotational and Eigenanalysis energies are not due
to the energy per-se, but to the computation of the fast Singular Value Decomposition
of McAdams (Section 5.6), which may converge faster or slower depending on the
input matrix. It is a necessary cost to pay for up to a x2 speedup in the SVD
computation. Eigen’s SVD does not produce such fluctuations, though.
The Eigenanalysis implementation of the HookeanSmith19 energy, where we com-
pute the eigenmatrices and eigenvalues, snap those back to the positive domain, and
reconstruct the Hessian, has serious issues. Even if it can maintain the simulation,
it is not stable nor fast to compute. Trying to avoid producing not positive-definite
matrices ends up causing even more unstable systems, which defeats the purpose of
this approach.
Thus, fixing the Hessian through the eigenanalysis does not work for our case. We
suppose that in attempting to fix a few of the eigenvectors, the condition number of
the system augments considerably, forcing the solver to take many more iterations.
Either this, or we would need to reconstruct the Hessian with a different, more delicate
approach.
Finally, our old Neo-Hookean by Bonet and Wood still is able to compete with the
other, more new, energies. However, it does not react well to external forces or
interactions. An inherent problem of this energy causes these huge spikes, and that is
that it uses log(detF): when the sphere bounces against the surface, some elements
may compress a lot, and det(F)→ 0, which causes the logarithm to grow and add too
much energy to the system. Also, because of this logarithm, this energy will explode
if an inversion of an element happens.

53

Fast Soft-Tissue Deformations with FEM

Chapter 6. Results

Figure 6.7: Volume comparison of the different energies along a simulation consisting
of a bounce. All different energies correctly preserve the volume along time (no volume
disappears); however, they have different behaviors. In the bottom chart you see the
4 energies’ charts overlapped to compare the different oscillations better.

6.4.2 Stability and behavior

As we did in the section 6.3, one of the ways to consider stability and analyze the
behavior of an energy is through the evolution of the simulated bodies’ volumes.
In the figure 6.7 we see the change in the volume for the same simulation of our
performance analysis and figure 6.6.
The first thing that comes to our attention is that the Bonet and Wood Neo-Hookean
simulates the smallest of deformations, being overly conservative. No huge compres-
sions happen, and it balances the strain along with the deformation very fast. Notice
also that the deformation disappears quickly after a deformation, and the body re-
covers its original shape in the air.

54

Fast Soft-Tissue Deformations with FEM

Chapter 6. Results

On the other hand, the Neo-Hookean energies derived from Smith et al. have the
complete opposite behavior. Large compressions happen that take a while to become
stabilized. While the compression tries to stabilize, some wiggling happens, and the
perpendicular direction of the compression becomes elongated, and vice versa. This
wiggling produces a very particular phenomenon.
In particular, its Eigenanalysis version propagates this deformation oscillations too
much, making the material buckle from time to time, and explode. Notice also that
before the impact at second 1, some oscillations have started building up. This is a
prompt to see that this energy generates deformations out of nothing, which can be
terrible in the long run.
Furthermore, the Eigenanalysis energy is terrible when an inversion or a huge com-
pression occurs. These are the huge spikes in the figure 6.7. This energy also exploded
all the time on our interactive tests, even without any external input. Very tiny time
steps were necessary even to maintain stability.
The Corotational energy is an in-between. Because it only takes into account the
elongation of the elements, and not its volume, it clearly behaves very spring-like.
On a collision, it just compresses the material (with a considerable deformation) and
decompresses it returning immediately to its rest shape. Notice also that because of
this, all the energy of the deformation goes back only to the expansion, and thus the
jump is more extensive, and the sphere is in the air for a longer time.

6.5 Conclusions

In this thesis, we presented a comprehensive guide to simulation for animation using
the Finite Elements Method with tensors, discussed several optimizations and simpli-
fications to use them in interactive environments, and compared different energies in
such environments. Furthermore, a simulator has been implemented with everything
discussed in the thesis.
In the first place, we show that it is plausible to use production-level techniques in
real-time simulation, being able to simulate more than 5000 elements at 100Hz.
Next, we presented several optimizations used, their pros and cons, to achieve such
performance. We did an in-depth analysis of the Eigen C++ library with the objective
to have the most performant implementation possible with such a library, analyzing
what was worth coding from scratch, and what was worth using from the library.
With the data available in Kim and Eberle [15], our performance per element per
second is superior than Pixar’s Fizt2. Of course, take this statement with a pinch of
salt, as Fizt2 is much more complex than what we did in this thesis. However, taking
only into account the times of the systems assembly, our simulation performs just as
fast.

55

Fast Soft-Tissue Deformations with FEM

Chapter 6. Results

For interactive environments with fixed maximum frames per second (for example,
with forced V-sync), we presented a dynamic time-stepping solution that is able to
use as much as possible of the frame time with simulation steps. However, care must
be taken with this feature, as unstable energies with spikes of slowdowns can have an
even more significant impact.
Finally, we discuss some exciting energy models used in our system. The Neo-Hookean
by Smith et al. and a classical Corotational proved to be highly reliable; however not
equivalent as they produce very different behaviors. On the other side, an analytic
eigenanalysis to fix Hessians did not successfully produce good enough results.
Thus, this thesis successfully achieved most of its initial objectives, having analyzed
the inner workings of current production-level simulators, implementing such tech-
niques, and showing its capabilities.

6.6 Future work

We did not explore all the intended initial features and ideas for this thesis due to
the lack of time. Here we present some of these ideas, and others that arose during
the development of the thesis.

• Full Collision system: The current implementation is not accelerated with spa-
tial data structures and only supports planes as colliders. A complete collision
system with many collider primitives, even triangle meshes, accelerated with
a Bounding Volumes Hierarchy would be a great addition to test the collision
impact in the simulation at its fullest.

• Self-Collisions: Collisions of a body with itself are very complex and require
detecting the self-collision, and applying either spring forces, or solving some
minimization problem to correct them. Many algorithms (both global and lo-
cal) exist, and discussing them for real-time uses would produce a fascinating
discussion.

• Intel oneMKL: Intel provides the Math Kernel Library, which includes optimized
math routines. Using them would bring a new spectrum of optimizations for
the linear algebra of the solver. Also, Eigen is compatible with oneMKL, so it
would be interesting to analyze how it is used.

• Skin tissue with bones: Attaching a model representing muscle or skin tissue
to a set of bones and joints, animated using some kinematics, would be used to
make the skin react to the movements, showing the contraction of muscles on
the different joints. We could use it to animate a human face, where the skin
reacts automatically to different expressions.

56

Fast Soft-Tissue Deformations with FEM

Chapter 6. Results

• 3D Triangle elements: We have only used tetrahedrons as elements. It is tricky
to use triangles in 3 dimensions because their parameterization is 2D, and the
correspondent deformation gradient is R2×2. To build a 3D deformation gradi-
ent we need to apply some other approaches; that would allow us, for example,
to simulate triangulated cloth.

• Materials: The current simulation uses a single global material, and assumes all
nodes have the same weight. Being able to configure all these parameters per
simulated object would allow us to have a new myriad of different simulations.

• Smooth mouse interaction: Current interaction requires selecting groups of ver-
tices. Applying local deformations, or grabbing portions of the simulated body,
with a click of the mouse and affecting a region around it would be a great
addition to the simulator.

• Analyze vibrations with small steps: As shown in the figure 6.4, using smaller
delta-times causes some type of harmonic vibrations. An in-depth analysis of
this phenomenon would be very revelating.

57

Appendix A. Linear algebra

A.1 Frobenius norm

The Frobenius norm, identified with the operator || · ||F , evaluates the matrix similar
to the 2-norm of a vector.
For a matrix M ∈ Rn×m:

||M||F =

√√√√ n∑
i

m∑
j

m2
ij (A.1)

It is common to use the squared Frobenius norm, which gets rid of the square root.

||M||2F =
n∑
i

m∑
j

m2
ij (A.2)

A.2 Tensor flattening

Flattening of tensors following the notation of Golub and Van Loan [8], with the
vec(·) operator.
For order 2 tensors, vec(·) : Rn×m →Rnm:

vec(M) =

m11

m21
...

mnm

 (A.3)

For a second-order tensor of 2× 2.

M =

[
m11 m12

m21 m22

]
←→ vec(M) =

m11

m12

m21

m22

 (A.4)

For order 4 tensors it is slightly more complex.vec(·) : Rn×m×k×l →Rkl×nm. The best
way to understand this operation is with an example. Given the order 4 tensor A,
we arrange it as a matrix of matrices:

A =

[
a c
b d

] [
i k
j l

]
[
e g
f h

] [
m o
n p

]
 =

[[
A11

] [
A12

][
A21

] [
A22

]] (A.5)

58

Fast Soft-Tissue Deformations with FEM

Appendix A. Linear algebra

Then, the vectorization of such tensor is a double unfolding that returns the following
matrix:

vec(A) = [vec(A11)|vec(A21)|vec(A12)|vec(A22)] (A.6)

=

a e i m
b f j n
c g k o
d h l p

 (A.7)

The vectorization of a third rank tensor is equivalent.

A.3 Tensor double contraction

The double contraction operator for tensors “:” is a generalization of the dot product
for tensors, where the result is a tensor of less order than the operands.
For 2-dimensional matrices, we can compute A : B which will result in a scalar value.
To do this, A and B need to have precisely the same size. It is a multiplication
component by component, followed by an addition.

A : B =
∑
i

∑
j

aijbij (A.8)

Example in the case of 2× 2 matrices:

A : B =

[
a11 a12
a21 a22

]
:

[
b11 b12
b21 b22

]
= a11b11 + a12b12 + a21b21 + a22b22 (A.9)

This operator can scale up with higher-order tensors, where only the most inner 2
dimensions must be equal. It behaves equally, but reduces in 2 the order of the highest
order tensor.
For example, applying this operation to a 4th order tensor A with a 2nd order tensor
B leads to the following (again, defining A as a matrix of matrices):

A : B =

[[
A11

] [
A12

][
A21

] [
A22

]] : B (A.10)

=

[[
A11

]
: B

[
A12

]
: B[

A21

]
: B

[
A22

]
: B

]
(A.11)

The same operation, but for 3rd order tensors, is the same.

A : B =

[[
A1

][
A2

]] : B (A.12)

=

[[
A1

]
: B[

A2

]
: B

]
(A.13)

59

Fast Soft-Tissue Deformations with FEM

Appendix A. Linear algebra

This very same double contraction can be computed with vectorization, and simple
matrix-vector products, i.e. A : B = vec(A)Tvec(B).

A.4 Singular Value Decomposition

The Singular Value Decomposition (SVD) of a matrix A of real numbers is a product
of 3 matrices:

A = UΣVT (A.14)

From these matrices, Σ is a diagonal matrix with the singular values, which express
elongation across some orthonormal directions.
Both U and VT are orthonormal matrices, only encoding rotations. Because of this,
the SVD is not unique, as there may be multiple rotations that end up with an
equivalent factorization.
It is important to note that in this thesis we assume that all inversions are encoded in
the singular values, i.e. det(U) = det(VT) = 1. If you are using an SVD that allows
this kind of inversion, you can detect if U or V encode an inversion and apply the
inversion to the matrix on one dimension and its singular value.

A.5 Polar Decomposition

The Polar Decomposition of a matrix A is a product of two matrices:

A = RS (A.15)

Where R is an orthonormal matrix encoding a rotation, and S a symmetric matrix
with the scaling or shearing applied to the matrix.
It is important to note that the Polar Decomposition can be computed from the SVD.

R = UVT (A.16)
S = VΣVT (A.17)

A.6 Divergence of a vector field

The operator ∇· indicates the computation of the divergence of a vector field. This
concept defines the tendency of the vectors to “flow” inside or outside a point of
interest.
The divergence maps a vector field to a scalar field, representing the magnitude of
the flow in the vector field. It is defined for a 3D vector field as:

div(Φ⃗) = ∇ · Φ⃗ ≡ ∂Φx

∂x
+
∂Φy

∂y
+
∂Φz

∂z
(A.18)

60

Fast Soft-Tissue Deformations with FEM

Appendix A. Linear algebra

Where Φ⃗ is an arbitrary vector field.
If the vector field is a function of multiple variables, say Φ⃗(x⃗, t) a function of a position
and time, we can specify that we are computing the divergence with respect to one
of the variables with a subindex:

∇x⃗ · Φ⃗(x⃗, t) ≡
∂Φx

∂x
(x⃗, t) +

∂Φy

∂y
(x⃗, t) +

∂Φz

∂z
(x⃗, t) (A.19)

A.7 Tetrahedron volume

There are multiple ways to compute the volume of a tetrahedron. We define a tetra-
hedron with vertices a⃗, b⃗, c⃗ and d⃗.
Our approach here will make use one of the properties of the determinant of a matrix:
the determinant of a square matrix Rn×n gives the signed n-dimensional volume of a
parallelepiped, with its first coordinate in the origin.
Because we want the volume of a tetrahedron, we divide the volume of a parallelepiped
by 6, as this is the number of tetrahedrons needed to subdivide a parallelepiped.

V =
1

6

∣∣∣∣∣∣det
 a⃗− d⃗ b⃗− d⃗ c⃗− d⃗

∣∣∣∣∣∣ (A.20)

61

Appendix B. Derivations

B.1 S-centric invariants

Given the 3 S-centric invariants of Smith et al. [29].
I1 = tr(S) (B.1)
I2 = tr(FTF) (B.2)
I3 = det(F) (B.3)

We will derive the 3 invariants in the following sections:

B.1.1 Invariant I1
The first derivative of I1 with respect to the deformation gradient is straightforward:

∂I1
∂F

=
∂tr(S)
∂F

(B.4)

=
∂tr(RFT)

∂F
(B.5)

= R (B.6)

The Hessian is much more complex, as ∂2I1
∂F2 = ∂R

∂F
. For some years, this derivative has

been a problem, as numerical methods were used to approximate it. However, Smith
et al. [29] provide an analytic expression for it.
The analytic expression is derived from the eigendecomposition of ∂R

∂F
, and its eigen-

matrices. This derivation is out of the scope of this thesis, and we redirect to the
original paper for a very thorough derivation. Here are the terms needed, given the
singular-value-decomposition of F = UΣVT, where Σ = (σx, σy, σz).

λ0 =
2

σx + σy
(B.7)

λ1 =
2

σy + σz
(B.8)

λ2 =
2

σx + σz
(B.9)

Q0 =
1√
2
U

0 −1 0
1 0 0
0 0 0

VT (B.10)

Q1 =
1√
2
U

0 0 0
0 0 1
0 −1 0

VT (B.11)

Q2 =
1√
2
U

 0 0 1
0 0 0
−1 0 0

VT (B.12)

The final Hessian is:

vec(∂I
2
1

∂F2
) =

2∑
i=0

λivec(Qi)vec(Qi)
T (B.13)

62

Fast Soft-Tissue Deformations with FEM

Appendix B. Derivations

B.1.2 Invariant I2
The derivatives of I2 with respect to the deformation gradient are both simple:

∂I2
∂F

=
∂tr(FFT)

∂F
(B.14)

= 2F (B.15)

And the Hessian:

vec(∂I
2
2

∂F2
) = vec(∂2F

∂F
) (B.16)

= 2vec(

I3×3 0 0
0 I3×3 0
0 0 I3×3

) (B.17)

= 2I9×9 (B.18)

B.1.3 Invariant I3 and ∂J
∂F

The gradient of J can be derived from Jacobi’s formula of the derivative of the
determinant of a matrix, i.e. |∂M|

∂mij
= adj(M)ji.

In another words, if F =

 f⃗0 f⃗1 f⃗2

, f⃗i the columns of F:

∂J

∂F
=

 f⃗1 × f⃗2 f⃗2 × f⃗0 f⃗0 × f⃗1

 (B.19)

The Hessian of J is a little more complex and requires quite a bit of symbolic analysis.
However, it can be built from the cross-product matrices of the columns of F.

A cross product matrix of a vector a⃗ is a matrix ×
a where given any vector b⃗, then

×
a⃗b = a⃗× b⃗.
The final Hessian of J is the following flattened tensor:

vec(∂I
2
3

∂F2
) =

0 −

×
f 2

×
f 1

×
f 2 0 −

×
f 0

−
×
f 1 f̂0 0

 (B.20)

B.1.4 Summary

As a summary here are the invariants:

63

Fast Soft-Tissue Deformations with FEM

Appendix B. Derivations

I1 = tr(S) (B.21)
I2 = tr(FTF) (B.22)
I3 = det(F) (B.23)

And its gradients and Hessians.

∂I1
∂F

= R (B.24)
∂I2
∂F

= 2F (B.25)

∂I3
∂F

=

 f⃗1 × f⃗2 f⃗2 × f⃗0 f⃗0 × f⃗1

(B.26)

vec(∂I
2
1

∂F2
) =

2∑
i=0

λivec(Qi)vec(Qi)
T (B.27)

vec(∂I
2
2

∂F2
) = 2I9×9 (B.28)

vec(∂I
2
3

∂F2
) =

0 −

×
f 2

×
f 1

×
f 2 0 −

×
f 0

−
×
f 1

×
f 0 0

 (B.29)

B.2 Corotational Energy

Given the corotational energy:

ΨCo =
µ

2
||F−R||2F +

λ

2
tr2(S− I) (B.30)

We would need to rewrite the energy in terms of the S-centric invariants through
some algebraic manipulation. Let’s start with the left-most term:

||F−R||2F = ||F||2F + ||R||2F − 2tr(FTR) (B.31)
= I2 − 2I1 + 3 (B.32)

To simplify the trace term we applied the following identity tr(FTR) = tr(S) = I1.
As for the ||R||2F term, the squared Frobenius norm of an orthonormal matrix is the
number of dimensions, in this case: 3.
The right-most term can be rewritten as follows:

tr2(S− I) = tr(S− I)tr(S− I) (B.33)
= (trS− trI)(trS− trI) (B.34)
= (trS− 3)(trS− 3) (B.35)
= tr2S− 6trS+ 9 (B.36)
= I21 − 6I1 + 9 (B.37)

With those 2 simplifications, the final energy written with the S-centric invariants is
the following:

ΨCo =
µ

2
(I2 − 2I1 + 3) +

λ

2
(I21 − 6I1 + 9) (B.38)

64

Fast Soft-Tissue Deformations with FEM

Appendix B. Derivations

The gradients and Hessians are the following:

∂ΨCo

∂I1
= λI1 − 3λ− µ (B.39)

∂ΨCo

∂I2
=
µ

2
(B.40)

∂ΨCo

∂I3
= 0 (B.41)

∂2ΨCo

∂I21
= λ (B.42)

∂2ΨCo

∂I22
= 0 (B.43)

∂2ΨCo

∂I23
= 0 (B.44)

B.3 Stable Neo-Hookean Energy

Given the Stable Neo-Hookean energy in thers of the S-centric invariants:

ΨSNH =
µ

2
(I2 − 3)− µ(I3 − 1) +

λ

2
(I3 − 1)2 (B.45)

The gradients and Hessians are the following:

∂ΨSNH

∂I1
= 0 (B.46)

∂ΨSNH

∂I2
=
µ

2
(B.47)

∂ΨSNH

∂I3
= λI3 − λ− µ (B.48)

∂2ΨSNH

∂I21
= 0 (B.49)

∂2ΨSNH

∂I22
= 0 (B.50)

∂2ΨSNH

∂I23
= λ (B.51)

B.4 Analytic Eigensystems of Arbitrary isotropic
energies

Following [29] and [15], we present here the generalization of the eigenvalues and
eigenvectors of any isotropic energy, defined with respect of the S-centric invariants,
and given the singular value decomposition F = UΣVT .

65

Fast Soft-Tissue Deformations with FEM

Appendix B. Derivations

The eigenvalues λ0...8 are:

λ0...2 = eigenvalues(A) (B.52)

λ3 =
2

σx + σy

∂Ψ

∂I1
+ 2

∂Ψ

∂I2
+ σz

∂Ψ

∂I3
(B.53)

λ4 =
2

σy + σz

∂Ψ

∂I1
+ 2

∂Ψ

∂I2
+ σx

∂Ψ

∂I3
(B.54)

λ5 =
2

σx + σz

∂Ψ

∂I1
+ 2

∂Ψ

∂I2
+ σy

∂Ψ

∂I3
(B.55)

λ6 = 2
∂Ψ

∂I2
− σz

∂Ψ

∂I3
(B.56)

λ7 = 2
∂Ψ

∂I2
− σx

∂Ψ

∂I3
(B.57)

λ8 = 2
∂Ψ

∂I2
− σy

∂Ψ

∂I3
(B.58)

Where A ∈ R3×3 is defined as follows with the {i, j, k} notation (i ̸= j ̸= k).

aii =2
∂Ψ

∂I2
+
∂2Ψ

∂I22
+ 4σ2

i

∂2Ψ

∂I22
+ σ2

jσ
2
k

∂2Ψ

∂I23
+ 4σi

∂2Ψ

∂I1∂I2
+ 4I3

∂2Ψ

∂I2∂I3
+ 2

I3
σi

∂2Ψ

∂I3∂I1
(B.59)

aij =σk
∂Ψ

∂I3
+
∂2Ψ

∂I21
+ σiσj

∂2Ψ

∂I22
+ σkI3

∂2Ψ

∂I23
+ 2(I1 − σk)

∂2Ψ

∂I1∂I2
(B.60)

+ 2σk(I2 − σ2
k)

∂2Ψ

∂I2∂I3
+ σk(I1 − σk)

∂2Ψ

∂I3∂I1

The general eigenvectors, represented as a matrix R3×3 so that its vectorization is
the actual eigenvector, are the following:

Q3 =
1√
2
U

0 −1 0
1 0 0
0 0 0

VT (B.61) Q4 =
1√
2
U

0 0 0
0 0 1
0 −1 0

VT (B.62)

Q5 =
1√
2
U

 0 0 1
0 0 0
−1 0 0

VT (B.63) Q6 =
1√
2
U

0 1 0
1 0 0
0 0 0

VT (B.64)

Q7 =
1√
2
U

0 0 0
0 0 1
0 1 0

VT (B.65) Q8 =
1√
2
U

0 0 1
0 0 0
1 0 0

VT (B.66)

Smith et al calls Q3...5 the twist matrices, and Q6...8 the flip matrices.
The first 3 eigenvectors are a little more complicated. Given the corresponding on-
diagonal scaling modes:

66

Fast Soft-Tissue Deformations with FEM

Appendix B. Derivations

D0 =
1√
2
U

1 0 0
0 0 0
0 0 0

VT D1 =
1√
2
U

0 0 0
0 1 0
0 0 0

VT D2 =
1√
2
U

0 0 0
0 0 0
0 0 1

VT

(B.67)
The eigenvectors are a linear combination of the previous scaling modes. For i ∈ [0, 2]

Qi =
∑2

j=0 zjDj where

z0 = σxσz + σyλi
z1 = σyσz + σxλi
z2 = λ2i − σ2

z

(B.68)

67

Bibliography
[1] D. Baraff and A. Witkin, “Large steps in cloth simulation”, in Proceedings of

the 25th annual conference on Computer graphics and interactive techniques,
1998, pp. 43–54.

[2] J. Barbič, F. Sin, and E. Grinspun, “Interactive editing of deformable simula-
tions”, ACM Trans. Graph., vol. 31, no. 4, Jul. 2012.

[3] A. W. Bargteil, T. Shinar, and P. G. Kry, “An introduction to physics-based
animation”, in SIGGRAPH Asia 2020 Courses, 2020, pp. 1–57.

[4] J. Bonet and R. D. Wood, Nonlinear Continuum Mechanics for Finite Element
Analysis, 2nd ed. Cambridge University Press, 2008.

[5] O. Civit-Flores and A. Susı́n, “Fast contact determination for intersecting de-
formable solids”, in Proceedings of the 8th ACM SIGGRAPH Conference on
Motion in Games, 2015, pp. 205–214.

[6] Z. Fu, T. J. Lewis, R. M. Kirby, and R. T. Whitaker, “Architecting the finite
element method pipeline for the gpu”, Journal of computational and applied
mathematics, vol. 257, pp. 195–211, 2014.

[7] J. Georgii, F. Echtler, and R. Westermann, “Interactive simulation of deformable
bodies on gpus.”, in SimVis, 2005, pp. 247–258.

[8] G. H. Golub and C. F. Van Loan, Matrix computations. JHU press, 2013.
[9] G. Guennebaud, B. Jacob, et al., Eigen v3, http://eigen.tuxfamily.org, 2010.

[10] K. Hildebrandt, C. Schulz, C. von Tycowicz, and K. Polthier, “Interactive space-
time control of deformable objects”, ACM Trans. Graph., vol. 31, no. 4, Jul.
2012.

[11] Y. Hu, T.-M. Li, L. Anderson, J. Ragan-Kelley, and F. Durand, “Taichi: A lan-
guage for high-performance computation on spatially sparse data structures”,
ACM Transactions on Graphics (TOG), vol. 38, no. 6, pp. 1–16, 2019.

[12] D. L. James and K. Fatahalian, “Precomputing interactive dynamic deformable
scenes”, ACM Trans. Graph., vol. 22, no. 3, pp. 879–887, Jul. 2003.

[13] L. Jeřábková, G. Bousquet, S. Barbier, F. Faure, and J. Allard, “Volumetric
modeling and interactive cutting of deformable bodies”, Progress in Biophysics
and Molecular Biology, vol. 103, no. 2, pp. 217–224, 2010, Special Issue on
Biomechanical Modelling of Soft Tissue Motion.

[14] T. Kim, “A finite element formulation of baraff-witkin cloth”, in Computer
Graphics Forum, Wiley Online Library, vol. 39, 2020, pp. 171–179.

[15] T. Kim and D. Eberle, “Dynamic deformables: Implementation and production
practicalities”, in ACM SIGGRAPH 2020 Courses, 2020, pp. 1–182.

[16] M. Liu and D. Gorman, “Formulation of rayleigh damping and its extensions”,
Computers & Structures, vol. 57, no. 2, pp. 277–285, 1995.

68

Fast Soft-Tissue Deformations with FEM

Bibliography

[17] P. Martin Garcia, “Aplicació del material point method a la deformació d’objectes”,
B.S. thesis, Universitat Politècnica de Catalunya, 2020.

[18] A. McAdams, A. Selle, R. Tamstorf, J. Teran, and E. Sifakis, “Computing the
singular value decomposition of 3x3 matrices with minimal branching and el-
ementary floating point operations”, University of Wisconsin-Madison Depart-
ment of Computer Sciences, Tech. Rep., 2011.

[19] U. Meier, O. López, C. Monserrat, M. C. Juan, and M. Alcaniz, “Real-time
deformable models for surgery simulation: A survey”, Computer methods and
programs in biomedicine, vol. 77, no. 3, pp. 183–197, 2005.

[20] M. Mooney, “A theory of large elastic deformation”, Journal of applied physics,
vol. 11, no. 9, pp. 582–592, 1940.

[21] M. Müller, J. Dorsey, L. McMillan, R. Jagnow, and B. Cutler, “Stable real-time
deformations”, in Proceedings of the 2002 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation, ser. SCA ’02, San Antonio, Texas: Association
for Computing Machinery, 2002, pp. 49–54.

[22] M. Müller and M. Gross, “Interactive virtual materials”, in Proceedings of
Graphics Interface 2004, ser. GI ’04, London, Ontario, Canada: Canadian Human-
Computer Communications Society, 2004, pp. 239–246.

[23] M. Pharr, W. Jakob, and G. Humphreys, Physically based rendering: From
theory to implementation. Morgan Kaufmann, 2016.

[24] C. Rankin and F. Brogan, “An element independent corotational procedure for
the treatment of large rotations”, 1986.

[25] J. R. Shewchuk et al., An introduction to the conjugate gradient method without
the agonizing pain, 1994.

[26] H. Si and A. TetGen, “A quality tetrahedral mesh generator and three-dimensional
delaunay triangulator”, Weierstrass Institute for Applied Analysis and Stochas-
tic, Berlin, Germany, vol. 81, 2006.

[27] E. Sifakis and J. Barbic, “Fem simulation of 3d deformable solids: A practi-
tioner’s guide to theory, discretization and model reduction”, in Acm siggraph
2012 courses, 2012, pp. 1–50.

[28] B. Smith, F. D. Goes, and T. Kim, “Stable neo-hookean flesh simulation”, ACM
Trans. Graph., vol. 37, no. 2, Mar. 2018.

[29] B. Smith, F. D. Goes, and T. Kim, “Analytic eigensystems for isotropic distor-
tion energies”, ACM Trans. Graph., vol. 38, no. 1, Feb. 2019.

[30] R. Tamstorf, T. Jones, and S. F. McCormick, “Smoothed aggregation multigrid
for cloth simulation”, ACM Transactions on Graphics (TOG), vol. 34, no. 6,
pp. 1–13, 2015.

[31] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, “Elastically deformable
models”, in Proceedings of the 14th annual conference on Computer graphics
and interactive techniques, 1987, pp. 205–214.

69

Fast Soft-Tissue Deformations with FEM

Bibliography

[32] X. Zhang and Y. J. Kim, “Interactive collision detection for deformable models
using streaming aabbs”, IEEE Transactions on Visualization and Computer
Graphics, vol. 13, no. 2, pp. 318–329, 2007.

70

	Introduction
	Motivation and Objectives
	State of the Art
	Document structure
	Notation and Tensors

	Deformation evaluation
	Continuum mechanics fundamentals
	Deformation map
	Deformation gradient
	Deformation energy
	Stress tensors
	Deformation forces

	Strain evaluation
	Cauchy-Green strain
	Strain Invariants
	Cauchy-Green Strain Invariants
	S-centric invariants
	Lamé Parameters

	Deformation Energy Hessian
	Hessian from S-centric invariants energy

	Hyperelastic Constitutive Models
	Neo-Hookean
	Corotational
	Stable-Neo-Hookean

	The Finite Elements Method
	Tetrahedral elements
	Linear tetrahedral elements on energy density gradients
	Computing the deformation gradient
	Gradient of the deformation gradient
	FEM system formulation
	Explicit FEM
	Implicit Backwards-Euler FEM
	Damping forces

	Practical simulation
	Collisions and interaction
	External forces
	Velocity Constraints
	Position alteration
	Collision handling
	Friction
	Floating-point error

	Sparse matrices
	Preconditioned Conjugate gradient
	Preconditioning

	Adaptive time-steps
	Analytic Eigenanalysis of Energies
	Stable Neo-Hookean analysis
	Forcing positive-definite Hessians

	Implementation details
	Intersection queries
	Eigen Sparse considerations
	Sparse matrix block address indexing
	Avoiding memory reallocations
	Preconditioned Conjugate Gradient

	Optimized PPCG
	Parallelization
	CPU-GPU bandwidth
	Fast 33 SVD

	Results
	Implementation Screenshots
	Optimizations
	General analysis
	Parallelization
	Preconditioned Conjugate Gradient

	Stability
	Dynamic time-stepping
	Floating-point precision
	Degenerate tetrahedron meshes

	Energy models
	Performance
	Stability and behavior

	Conclusions
	Future work

	Linear algebra
	Frobenius norm
	Tensor flattening
	Tensor double contraction
	Singular Value Decomposition
	Polar Decomposition
	Divergence of a vector field
	Tetrahedron volume

	Derivations
	S-centric invariants
	Invariant I1
	Invariant I2
	Invariant I3 and JF
	Summary

	Corotational Energy
	Stable Neo-Hookean Energy
	Analytic Eigensystems of Arbitrary isotropic energies

	Bibliography

