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Abstract

A Signed distance field (SDF) is an implicit function that returns the distance to the sur-
face of a volume given a point in the space. The sign of the field indicates if the point is
inside or outside the volume. These fields are usually used to accelerate computer graphics
algorithms in different areas, such as rendering or collision detection.

There are many well-defined primitives and operators to model objects using these func-
tions. For example, SDFs allow applying smooth boolean operations between primitives.
Applying these operators to triangles meshes can require complex algorithms susceptible
to precision problems. Even though SDFs allow modelling objects, they currently are not
a used format, and not many modelling tools use it.

Most of the time, we want to calculate this field from triangle meshes. If the mesh is
two-manifold, the easiest way to calculate the signed distance from a point is by searching
for the minimum distance at all the mesh triangles. This strategy requires iterating all the
triangles for each query to the signed distance field. There are methods based on different
strategies that accelerate this nearest triangle search.

If the user does not require getting exact distances to the object, other strategies exist
that discretize the space in some fixed sample points. Then, the queries to arbitrary points
are calculated using an interpolation of the precalculated discretization.

This project presents a new approach based on an octree-like subdivision to accelerate the
computation of these signed distance fields queries from a triangle mesh. The main idea is
to construct an octree structure in which each leaf will contain only the nearest triangles
for all the points in that region. Therefore, when the user wants to calculate the distance
from an arbitrary point in the space, it will only compare the triangles influencing that
region.

Moreover, we present a method to calculate approximated distances based on the dis-
cretization approach mentioned before. We designed and developed an octree discretiza-
tion strategy and explored different interpolation techniques. The distance computation
of this discretization is accelerated by the strategy developed in the project.
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Chapter 1

Introduction

A signed distance field (SDF) is a function that returns a distance to the surface object at
any point in the space. The distance sign indicates whether the point is inside or outside
the object. Knowing the distance to an object is an interesting property required in many
fields related to computer graphics and geometry processing.

Signed distance fields are used in rendering, collision detection or shape reconstruction.
Recently, there have been investigations using signed distance fields for shape reconstruc-
tion and shape synthesis using deep learning.

In computer graphics, triangle meshes are the most used format to represent objects.
Therefore, computing the signed distance from a point to a triangle mesh is an interesting
application. There are different approaches to accelerate the process. Some methods are
based on finding the nearest triangles to the query point, and others are based on com-
puting an approximation of the field using a space discretization.

In this thesis, we propose a new strategy for accelerating signed distance field queries from
objects represented with triangles meshes.
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Chapter 2

Related work

In this chapter, we will explain and analyse all the previous work related to the project.
First, we will present the different strategies used to calculate signed distance fields from
triangle meshes and the techniques used to represent these fields approximately using only
a discretization of the real field. Finally, we will describe some methods and algorithms
that improve the efficiency and quality of its results using SDFs.

2.1 Signed distance field computation

Mainly, we can find two types of algorithms to compute signed distance fields: the algo-
rithms focused on accelerating the computation of the real distance to a triangle mesh,
and the methods focused more on calculating a discretization of the field, for example,
a uniform grid. These methods usually use the uniform grid pattern to accelerate the
distance computation at each point. Finally, we will present some methods used to inter-
polate distances at any point in the space given a discretization of the field.

All the methods explained in this part suppose that the input meshes are closed, orientable
two-manifold, so that their distance field is well-defined. The distance to an object formed
by a two-manifold mesh is the distance to the nearest primitive.

2.1.1 Accelerating signed distance field queries

Most methods to calculate the exact distance to a mesh are based on accelerating the
search of the nearest primitive to a point.
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Maier et al. [1] propose a method based on spheres hierarchies to accelerate the nearest
primitive search. The paper uses the technique to accelerate the Iterative Closest Point
(ICP) algorithm, which is used to align point sets. They construct a sphere hierarchy in a
bottom-up style to calculate the minimum distance. They create this hierarchical struc-
ture by creating a sphere containing each triangle and then merging the nearby spheres
on each hierarchy level.

To search the distance in one arbitrary point, they start iterating the generated data struc-
ture from the root spheres, the spheres at the first level of the hierarchy. During a search,
they track the minimum upper bound distance found. In the case of an inner node, the
upper bound is the maximum distance between the point and the sphere. Then, if a node
has a minimum distance to the point smaller than the current minimum upper bound, the
node is recursively traversed. Otherwise, the node is discarded. The algorithm stores all
the primitives reached during the traversal in a list. Finally, they compute the minimum
distance between the point and all the primitives of the list and get the minimum distance
found.

The method is easy to implement and does not require complex computations. The al-
gorithm’s main problem is that it can traverse unnecessary nodes because the minimum
upper bound, which is used to reduce the number of visited nodes, is calculated during
the traversal. Therefore, depending on which node the method starts the traversal, it
will have to process more nodes. Moreover, spheres are not the perfect shape to cluster
primitives, and the upper bound distance estimated can be much larger than the actual
distance to the primitives contained by the node.

Baerentzen and Aanaes [2] propose a similar method that improves some problems of the
previous method. Their approach uses a hierarchy of oriented bounding boxes. In the
paper, they use a priority queue to traverse the hierarchy to first explore the nodes with
the smallest distance to the point. If the front element of the priority queue is a leaf, a
primitive, the distance to the primitive is the minimal distance. Moreover, they use an
upper bound strategy, similar to the previous one, to limit the number of inserted nodes
in the queue. If the minimum distance to the node is bigger than the minimum upper
bound found, the node is discarded. The upper bound of a node is the distance to an
arbitrary vertex of the mesh contained in the node.

This method improves the previous one because it reduces the number of explored nodes
using the priority queue and uses a better upper bound than the maximum distance to
the node.

Most methods that can be found to accelerate exact distance queries on a point use similar
strategies. This methodology is good when querying distances for points near the surface.
But, perform worst when the query point is far from the surface because they have more
geometry in radius and have to traverse more branches of the hierarchy.
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2.1.2 Grid computation

Instead of calculating the distance field at arbitrary points, there are methods focused
on calculating a discretization of the distance field. Mainly, we can find two different
strategies, the methods based on propagating the distance field from the surface using
numerical methods and the ones focused on calculating the distance in grid points near
the surface using the triangle mesh. We present some of them in the following paragraphs.

Sethian [3] proposes a method named Fast marching method to numerically propagate
the distance field in a uniform grid given a set of fixed points. The fixed points are the
grid points near the surface whose distance can be easily calculated using the geometry
contained in the grid. The other points of the grid are set to a large constant value. Then,
they numerically update the grid until the Eikonal equation is fulfilled along the grid. The
Eikonal equation is a non-linear first-order partial differential equation usually used for
wave propagation and viscosity simulations. To simulate the propagation of the distance
field, the Eikonal equation forces that the magnitude of the distance field gradient must
always be one. The method can require a lot of solver iterations until convergence.

Zhao [4] presents a new method called Fast sweeping method to accelerate the convergence
of the Eikonal equation propagation. The method sweeps the grid in different directions to
reduce the number of iterations needed for convergence. The number of iterations required
until convergence cannot be proven, but they estimate that the solution is almost similar
to the optimal with eight iterations of the method. The disadvantage of this method is
that each solver iteration has dependencies because each sweep iteration requires that the
previous cell values are already calculated. These dependencies reduce the parallelism
level of the algorithm.

The main advantage of the methods based on distance field propagation is that the com-
plexity of the algorithms depends on the grid size, not on the number of triangles. There-
fore, they can support big models. The main problem is the accuracy of the computed
grid because the distance field is only propagated in some directions. They require a small
discretization to achieve acceptable errors.

Mauch [5] proposed a different approach based on the rasterization of the Voronoi regions
in a uniform grid. They rasterize the Voronoi region of every triangle, edge and vertex
of the triangle mesh. The grid value is only updated if the distance is smaller than the
previous one. To rasterize the Voronoi regions, they print the region in slices parallel to
the z-plane. Then, they print each slice in rows. In Figure 2.1, we have a representation
of the regions rasterized.
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Figure 2.1: (a) Voronoi regions of faces. (b) Voronoi regions of edges. (c) Voronoi region
of an edge. (d) Voronoi regions of vertices. Image from [5]

The previous method achieves good computation times when it calculates the distance to
points near the surface, but performs worst when it has points of the grid far from the
surface because many Voronoi regions would intersect the same grid point.

Sud, Otaduy and Manocha [6] propose a similar method to the previous one that focuses
on reducing the rasterization area of each region by considering the other regions. The
algorithm rasterizes the whole triangle mesh Voronoi cells by slices, z-planes, in an iter-
ative way. The results obtained in one slice are used to reduce the number of regions
to rasterize in the next one. For example, suppose a primitive is already swept, and the
current rasterized slice does not contain any part of the primitive’s Voronoi region. In
that case, the following slices will not contain the Voronoi region in any case, therefore,
the primitive can be discarded.

The method performs better than the method based on rasterizing each Voronoi region
individually because it can avoid printing unnecessary region parts. The main problem
of the technique is its parallelization capabilities. It can only rasterize one slice at a time
because each slice depends on the previous one. Another problem is it has an axis depen-
dence because the primitives are only culled on the z-axis.
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All the techniques presented in this section are focused on computing distance fields in
uniform grids. In some situations, it is beneficial to have different resolutions in differ-
ent parts of the object. These discretization methods are called Adaptive distance fields
(ADFs). The resolution criteria can change depending on the use of the distance field.

Chen and Tang [7] propose a method for computing ADFs from triangle meshes. Its ADF
is an octree that only has leaf nodes in parts containing geometry. They first generate a
bounding volume hierarchy (BVH). Then, they initialize the octree structure using the tri-
angle hierarchy. For each leaf node, the algorithm calculates the distance field at the eight
corners using the BVH with the strategy explained in the previous section. The paper’s
main contribution is the adaptation of the algorithm for exploiting the GPU parallelism.
Also, the paper proposes a strategy to recalculate the octree for deformable objects in
each frame by using the ADF of the previous frame. The method proposes an algorithm
that can be used for deformable objects almost in real-time. The main problem is that
the method is only helpful for techniques requiring a distance field representation at the
object’s surface.

Liu and Kim [8] propose a similar method to the previous one. In this case, each octree
node only stores the distance of its center. Instead of computing the distance to each leaf
node directly, as in the previous method, they do a top-down traversal. The algorithm
uses the distance of the parent node as an upper bound distance to reduce the number of
evaluations in its children’s distance computation.

By using the parent distance, the method reduces the number of nodes traversed in the
BVH. The problem of the top-down traversal is that it reduces the potential parallelism
compared to the technique explained before.

2.1.3 Grid interpolation

Most of the time, even though we have a discretized distance field to reduce the query
time, we want to get the value of the distance field at any point. One way to do it is using
a trilinear interpolation of the nearest points. A trilinear interpolation in a uniform grid
will only guarantee C0 continuity. Next, we present works that improve the interpolation
method to reduce the discretization size and ensure a smoother field.

Bán and Valasek [9] propose an efficient method to improve the approximation of a dis-
tance field in a uniform grid. At each point of the grid, they estimate the first order
Taylor expansion of the distance field, which requires the field value and the gradient at
that point. They estimate the gradient in one point by fitting a plane that simulates the
field’s behaviour in the neighbour vertices using least-square minimization. Finally, to in-
terpolate the distance point in one arbitrary point, they get the nearest eight grid vertices,
evaluate the first order Taylor expansion in each point and use the trilinear interpolation
to merge the eight results.

13



In Figure 2.2, we can see some comparisons between a normal trilinear interpolation, la-
belled as 0th order, and the proposed method, labelled as 1st order. As we can see in the
image, the method improves the quality of the field. Moreover, the computation complex-
ity does not increase too much. The main problem of the paper is that they do not prove
the correctness of the method at any moment.

Figure 2.2: Comparison between the trilinear interpolation and the method proposed by
Bán and Valasek [9]. Image from [9]

Koschier et al. [10] proposes a method to construct an octree in which the distance field
inside each leaf node is represented by polynomials of different degrees. The method starts
with a uniform grid of the field and low-order polynomials in each node. Then, the al-
gorithm iterates the nodes with bigger errors and evaluates if it is best to subdivide or
increase its polynomial degree. The method uses the Legendre polynomials because they
can recycle the coefficients of their previous degree when we increase the degree. The
polynomial coefficients are calculated using the Gauss quadratures, which estimate the
integration by evaluating the function at some points.

The method allows approximating the distance field of a triangle mesh very precisely.
The disadvantage is the computation time. Estimating these high degree polynomials and
evaluating the error of each node is computationally expensive. Moreover, they do not
guarantee any type of continuity between neighbour nodes.

2.2 Applications

Distance fields are used in a wide range of applications. Next, we will explain its most
common uses and present some methods for each application.

2.2.1 Calculate geometric properties

Distance fields are useful for calculating geometric properties related to the distance to
the surface, such as applying spherical dilations and erosions to an object or calculating
an object’s medial axis.
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Applying offsets, spherical dilations and erosions, is usually used in modeling tools, for
example, to apply tolerances in CAD programs. Liu and Wang [11] propose a method for
offsetting objects. The method calculates the distance field near the object’s surface and
then extracts a mesh of the field in the desired isovalue. The main disadvantage of this
method is that the extracted mesh can present bad results in complex parts of the object
if the distance field resolution is not enough.

The medial axis of an object is the set of points that have more than one nearest point
to the object’s surface. This property is usually used for automatic object rigging [12]
and for shape segmentation [13]. In a signed distance field, these points represent local
minimums. There are methods [14] that calculate these medial axis points by searching
the local minimums in a distance field.

2.2.2 Surface reconstruction

Surface reconstruction is a technique that generates a triangle mesh from a point set.
Usually, these point clouds contain noise and do not have the same point density in all
parts. Therefore, in most cases, extracting a triangle mesh directly from the points will
not give a good reconstruction. Some methods use a distance field as an intermediate
representation between the point representation and the final reconstructed mesh.

Calakli and Taubin [15] proposes a method that uses a distance field for reconstructing
point-sets that contain the position and surface normal of each point. They represent
a distance function using an octree discretization of the space. The function inside an
octree node is calculated using a trilinear interpolation of its eight corners. The octree
is subdivided if the number of points contained by one node exceeds a threshold. They
define an energy function that promotes the correspondence between the points and the
function. The energy function forces the function to be zero and its gradient to be equal to
the point normal at each point of the point-set. Also, they add a regularization factor to
force some smoothness degree to the function. The regularization factor forces the square
sum of the Hessian matrix components to be close to zero. Finally, they minimize the
energy function by formulating it as a least-squares minimization problem.

2.2.3 Collision detection

Another useful usage of distance fields is for detecting and solving collisions. Depending
on the type of collision needed to solve, they are used in different ways.
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Macklin and Müller [16] uses SDFs to solve collisions with solid shapes in fluid simulation.
They simulate the fluid as a set of particles that have internal forces between the nearest
particles. The distance fields are used to solve the collision between the fluid particles
and a complex solid shape. The method only requires evaluating the field one time for
each particle to detect if particles are inside or outside the solid. The collision response is
calculated using the gradient of the field.

SDFs are very efficient in solving collisions with spherical particles, but solving collisions
with more complex objects can be more complicated. Macklin et al. [17] proposes a
method to solve collision between a deformable object represented by a mesh and a solid
represented by a signed distance field. They formulate the problem as a constraint mini-
mization problem to find the smallest field values inside the object mesh. If the smallest
value is negative, the objects are colliding. They search the minimum point using gradient
descent. From the mathematical point of view, this collision detection will only work if
both objects are convex, otherwise, the gradient descent could find a local minimum. The
paper simulates collisions between non-convex objects using multiple starting points in the
search. However, the method does not guarantee to detect always the collision between
non-convex objects.

Figure 2.3: Representation of the Macklin [17] method to search a collision between a
segment and an object represented by a distance field. The red circles represent the solver
iterations. Image from [17].
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2.2.4 Rendering

SDFs are used in some rendering algorithms to improve renderization quality. Most of the
methods use a technique proposed by Hart [18] called sphere tracing. Sphere tracing is a
ray casting technique for distance fields. The method given a start position and direction
iterates the ray in a variable step size until colliding with a surface. The step size in one
point of the ray is equal to the value of the distance field because we can guarantee that
there is no surface in that radius.

Sphere tracing can be used to visualize distance fields by throwing a ray for each pixel of
the virtual camera. Next, we present some methods that use SDFs to improve the render
quality.

Evans [19] presents a real-time method to approximate the global illumination of a scene
using distance fields. For each fragment rasterized, the method makes some samples to the
distance fields towards the fragment’s normal direction. If the field value in one sample
point is smaller than the real distance between the sample point and the surface point, the
sample has another surface point near that can be a potential light blocker. They use the
difference between the real distance and the field value in each sample point to calculate
the level of light reached by global illumination.

Figure 2.4: Scene with the global illumination calculated using the Evans [19] method.
The distance field has a resolution of 128 x 128 x 128. Image from [19].

Tan et al. [20] proposes a method that approximates soft-shadows for real-time applica-
tions. The technique uses sphere tracing to check if the light reaches the surface points. If
the ray does not collide with any object, they use the minimum distance obtained during
the ray tracing to estimate the amount of light reaching the surface point. Moreover, they
explain some techniques to reduce artifacts obtained using a low-resolution SDF.
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Chapter 3

Overview

In the project, we present a new approach to accelerate queries for the signed distance
field from a triangle mesh. We present two different methods using a similar strategy:

• A data structure for accelerating arbitrary queries to an object’s distance field.

• An adaptive discretization of the signed distance field to solve distance queries faster.
This data structure represents an approximation of the distance field. The queries
solved using this method does not return the real distance to the surface, but a very
close approximation.

Both data structures are based on a space subdivision using an octree. Each leaf of the
octree represents a region of the space. The difference between the methods is the data
stored in each tree leaf.

The objective of the first method is to accelerate the distance field queries at any point in
the space. Therefore, each leaf stores the necessary information to calculate the real dis-
tance field at any point inside the node. We explain the method in more detail in chapter 6.

In the second method, each leaf stores a polynomial representing the field’s behaviour
inside the region. The data structure and the algorithm are explained in more detail in
chapter 7.

We use a common strategy to compute these structures efficiently using the incremental
subdivision of the octree. The algorithm starts with a box representing the space we want
to represent and a triangle mesh. The box is the root node of the octree. Initially, we
assign all the mesh triangles to the root node. In each algorithm step, the nodes are
subdivided into eight equal children. For each child, we select only the triangles of the
parent that influence the child. When the octree reaches the desired depth, we calculate
the leaf information of the chosen method using only the node triangles.
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The distance field behaviour in a region is usually described by a subset of the triangles
forming the object. The smaller the region, the fewer triangles will describe the distance
field of that region. When a triangle describes a part of the field in a region, we say that
the triangle influences that region.

With this strategy, we reduce the number of triangles per node in each subdivision. At
large octree depths, the number of nodes is also large, but the number of triangles per
node is small. Therefore, it is faster to recursively subdivide the space than computing
directly the leafs’ node information using all the mesh triangles.

In chapter 5, we explain the different techniques used to test if a triangle influences a node.
Some of these techniques overestimate the triangles’ influence for efficiency purposes. So,
the method can classify a primitive as an influencing triangle when, in reality, it is not.
But, if the triangle influences the node, the method must classify it as influencing. In the
end, our strategy is conservative.
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Chapter 4

Signed distance field from a
triangle mesh

In this chapter, we will explain how to get the signed distance field from a triangle mesh.

A signed distance field represents a function that returns the distance to the volume sur-
face for every point in the space. The sign of the distance represents if the point is inside
or outside. If the point is inside, the distance will be negative, and if it is outside positive.
The subset of points in which the distance is zero forms the volume surface.

Next, we will explain the different steps of calculating the signed distance from a triangle
at any arbitrary point.

4.1 Distance to a triangle mesh

Given an arbitrary point p, the distance to a surface is defined as the infimum distance
between p and all the points belonging to the surface. So, we compute the distance to a
triangle mesh as the minimum distance to all the triangles.

To calculate the distance between p and a triangle, first, we have to identify in which
Voronoi region it belongs. It can belong to the face, edge or vertex regions. A triangle
has seven different regions and nine separating planes.

After determining which region contains p, we only need to calculate the distance between
p and the element of the region. For example, if p belongs to a vertex region, the distance
to the triangle will be the distance to that vertex.

It is crucial to evaluate the distance between point and triangle fast because it is one of
the most used functions in our method.
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We use a technique proposed by Jones [21]. The method transforms the triangle to do
the region detection in 2D instead of 3D. However, the technique requires storing more
data than only three points to be efficient. We calculate the properties needed to evaluate
the triangle distance using this method in a preprocess before starting the signed distance
field generation.

Given a triangle formed by the vertices v1, v2. v3. We set the origin of the new space as
v1. Then, we create an orthonormal transform that rotates the triangles in a way in which
the triangle normal vector becomes the Z-axis, and the vector

−−−→
v1v2 becomes the X-axis.

We use an orthonormal transformation to be able to evaluate representative distances in
the transformed space.

Also, we need to store information about the triangle in the new space. The position of
the vertex v1 is the origin, so we do not need to store extra information. For the v2 po-
sition we have to store only the X-axis coordinate, because

−−−→
v1v2 is aligned to the X-axis.

Finally, for the v3 position, we have to store the two coordinates.

Moreover, we store the unitary vectors perpendicular to the edges in this XY-plane in the
new space to reduce the number of operations needed in the region evaluation.

In Figure 4.1, we have a representation of a triangle transformed. The seven different
regions are the different colour zones. The variables in the image are the extra data ex-
plained in the previous paragraphs (the point coordinates and the perpendicular vectors
to the edges).

Figure 4.1: Triangle transformed for the distance computation. The variables are the data
needed to test in which region belongs the point.
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Without storing extra data, a triangle is represented by three vectors, a total of 9 decimal
values. With this method, we have to store the origin of the space, a 3x3 transform ma-
trix, and the extra data explained before. So, we need to keep 19 decimal values for each
triangle. That is more or less the double of storing the triangle as usual.

To evaluate if the increase in memory is worth it, we compare the method with an al-
gorithm that uses only the three vertices position. This other technique computes the
separating planes on the fly in 3D. In the analysis, we conclude that our method is 3.6
times faster than the other technique. Our method takes 19ns for each call, and the other
takes 69ns for each call.

4.2 Sign computation

In the previous section, we explain how to calculate the distance to a surface formed of
triangles. The distance to the surface is always positive; therefore, we want to change the
distance sign when the point is inside the object.

Any mesh represents a surface, but it does not always represent a volume. In this project,
we only support closed orientable two-manifold meshes because they always represent a
closed volume and computing if a point is inside or outside only requires the nearest tri-
angle.

A mesh is a closed two-manifold if it does not contain intersections between triangles.
Every edge is adjacent to two triangles. And the triangles on a vertex form a single cycle
around the vertex.

A Voronoi region of a triangle mesh can contain points inside and outside the volume,
but in the case of triangle meshes, there is always a plane that separates the two types
of points. For example, in a region formed by a face, the plane containing the face is a
separating plane. The points outside the volume will always be on the side towards the
face normal, and the points inside will always be on the other side.

The separating plane for face regions is simply the face normal, but in edges and vertices,
we have to calculate this plane. Baerentzen and Aanaes[2] define and prove a pseudonor-
mal that always separates the inside and outside vertex regions. They define the plane
normal as the normal vector weighted average of all the triangles incident on the vertex.
The weight of each triangle is the corner angle formed by the vertex.

In Figure 4.2, we have a drawing representing the pseudonormal computation. The vector
nα is the separating plane normal of the top vertex.
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Figure 4.2: The vertex pseudonormal average.

In the edges’ region, they use the normal average of the two faces incidents to the edge.
From a theoretical point of view, the Voronoi cell of an edge will only contain points inside
or outside the volume. If the two triangles are convex, all the region points will be outside,
and if they are concave, all the points will be inside. However, we compute the sign in
each call to avoid precision errors when the incident faces are coplanar.

In the implementation, we precompute these normals before computing the distance field
data structure. We store these normals for each triangle.

4.3 Field gradient

In some methods of the project, we need the gradient of the signed distance field. In
the case of triangle meshes, the gradient can be easily computed after identifying which
Voronoi region owns the query point. If it belongs to a region formed by a face, then
the gradient is always the unit normal of the triangle. In a vertex region, the gradient is
the vector going from the vertex to the point normalized. Finally, in an edge region, the
gradient is the vector perpendicular to the edge and with direction towards the query point.

Given an edge form by e1 and e2 and a query point p which its nearest element is the
edge. Then the gradient of the signed distance field at that point is:

∇f(p) = (e2 − e1)× ((p− e1)× (e2 − e1))

∥ (e2 − e1)× ((p− e1)× (e2 − e1)) ∥
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4.4 Implementation details

In the project, we usually have to calculate the signed distance field in one point, given
a set of triangles influencing a region of the space. To reduce the amount of work to do,
first, we search which is the nearest triangle, computing only the square distance without
the sign. After determining the nearest triangle, we calculate the sign and, if it is needed,
the gradient.
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Chapter 5

Triangles influencing a region

In this chapter, we will explain the methods used to find the triangles influencing the
distance field of a region.

A triangle influences a region if, at least at one point of the region, the triangle is the
nearest element of the mesh because, as we saw in the previous chapter, the distance to
the surface is equal to the closest triangle distance.

In the project, we want to get the triangles influencing a region to reduce the number of
triangles to evaluate when we compute a value of the signed distance field. Therefore, we
are more interested in an efficient method than an optimal solution. To guarantee the
correctness of the techniques, we cannot discard triangles that are influencing the region.

In the project, we are interested in selecting the triangles influencing an octree node. An
octree node is always represented as an axis-align bounding box.

Given a set of triangles M = {T1, ..., Tn}, where Ti is the set of points contained by the
triangle ti. And a set of point C that represents all the point contained by a node c.

We want to find a set of points R, where if Ti ∩ R = Ø imply that ti does not influence
the region C. But, we are not interested in the other side of the statement, i.e, if ti does
not influence the region C we do not guarantee that Ti ∩R = Ø

As we said before, a triangle influences a point if it is the nearest triangle. Therefore, we
can define the optimal region R∗ as:

R∗ =
⋃
x∈C

S(x, min
Ti∈M

d(x, Ti))

Where S(a, b) is the set of points contained in a sphere at center a and radius b. And
d(x, S) is the distance of the point x to the set of point S:

d(x, S) = min
y∈S
∥y − x∥
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In Figure 5.1, we can see an example of a region R∗ using only the segment S as a mesh.
As we explained before, R∗ is formed by a union of spheres centered at all the points of
C with a radius equal to the distance to mesh. In the example, we can see two of these
spheres that contribute to the final shape of R∗. The green region represents all the points
of R∗. All the elements that do not intersect with the green area do not influence the
node’s distance field.

Figure 5.1: Example of region R∗ from only a segment S

R∗ can be proof by contrapositive, which mean proving that if ti influences C imply that
Ti ∩R∗ ̸= Ø. Let’s suppose that we have a new triangle t′ which influences C. By defini-
tion, t′ is at least in one point p′ near than any other triangle of M . This mean that the
sphere S(p′, d(p′, T ′)) is inside the set R∗. Moreover, the sphere contains at least on point
of t′. Therefore, T ′ ∩R∗ ̸= Ø.

We can reformulate R∗ as:

R∗ =
⋂

Ti∈M
R∗

Ti

Where:

R∗
Ti

=
⋃
x∈C

S(x, d(x, Ti))

This formula of R∗ and the one used before are the same. R∗ represents the nearest
points to any triangle in the mesh. And, R∗

Ti
represents the nearest point to the triangle

Ti. Therefore, the two formulas are equivalent because being nearer to the hole mesh is
the same as being nearer to all the triangles. This property also fulfills for supersets of R∗.
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Computing R∗ is very computationally expensive. As we said before, we are more inter-
ested in inexpensive methods. We need a region R which is easier to calculate and fulfills
the initial statement. We can prove that R fulfills it by proving that R ⊇ R∗. Moreover,
using the fact that R is equal to the intersections of all the regions RTi . We only need to
prove that RTi ⊇ R∗

Ti
.

In Figure 5.2, we can see an example of R∗ with three segments S1, S2, S3. The segment
S3 does not intersect with R∗

S2
and R∗, therefore, it does not have influence in node c

because S2 is nearer in all point of C.

Figure 5.2: Composition of regions that form R∗ for a mesh containing three segments.

Next, we propose two overestimations of R∗, which were implemented in the project.

5.1 R by radius

The first idea that we had was only using distance to the node. We want to find the
minimum radius that guarantees that all the coming triangles with a larger distance to
the node than the radius are not influencing the region.

We define the set of points inside the radius Rr
Ti

as spherical dilation of node c with radius
δi :

Rr
Ti

= {x+ s | ∀x ∈ C ∧ ∀s ∈ S(
−→
0 , δi)}

We want to find the minimum radius δi for the triangle Ti, that fulfills R
r
Ti
⊇ R∗

Ti
.

In the construction of R∗
Ti

the sphere with the biggest radius is the sphere of the point
furthest away from Ti. Moreover, this point will always belong to the boundary of C, by
definition of closed volume. Therefore, we can define the radius δi as:

δi = max
x∈C

d(x, Ti)
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In addition, given that c is a convex polygon, the node’s furthest point is always a vertex.
Therefore, to calculate δi, we only need to evaluate the distance to the eight vertices of
the node and get the maximum value.

Using this method, we can determine if a triangle influences a node by comparing dis-
tances. For example, given a triangle t′. If the distance between t′ and c is bigger than δi,
then t′ does not influences the region C over the triangle ti.

In Figure 5.3, we have an example where given a segment S, we represent its region Rr
S . In

the image, we named the furthest point to the segment x. Therefore, as we define before,
the set Rr

S is a spherical dilatation of the node with a radius equal to d(x, X) (notice that
δ = d(x, X)).

Figure 5.3: Example of the region Rr
S . x is the furthest point to the segment S. Therfore,

δ = d(x, S).

We can calculate Rr as the intersection of Rr
Ti

for all the triangles of the mesh, as we stated
before. Due to all the sets Rr

Ti
are spherical dilation of the node, we can reformulate Rr

as:

Rr = {x+ s | ∀x ∈ C ∧ ∀s ∈ S(
−→
0 , min

0<i<|M |
δi)}

Therefore, we can test if a triangle intersects with Rr, comparing if the minimum distance
to the node is smaller than the minimal δi for all the triangles.

The advantages of this method are that the δi values are easy to calculate, and we only
need to evaluate the distance between a triangle and the node to determine if the triangle
influences the node.
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The method’s main disadvantage is that it represents a rough approximation of R∗. In
Figure 5.4, given a segment S, we have a comparison between R∗

S and Rr
S . In the image,

we can see many points near the segment are overestimated. This is produced by not
considering the relative location of the segment.

Figure 5.4: Shape comparison between the set R∗
S and Rr

S . Where S is the segment in
black.

5.2 R by interpolation

In the previous section, we conclude that approximating R∗ only by radius is insufficient.
Representing the real R∗ requires knowing the distance to the mesh at any point of C,
which is expensive to compute. We propose a new region RCH which uses the distances
to the eight vertices of the node to approximate a similar set to R∗.

We define Cijk (where i, j, k ∈ {0, 1}) as the positions of the 8 corners and dijk as the
distance to the triangle Ti from the 8 vertices:

dijk = d(Cijk, Ti)

The new region RCH
Ti

is defined as:

RCH
Ti

= CH(S(C000, d000), S(C100, d100), S(C010, d010), S(C110, d110),

S(C001,C001), S(C101, d101), S(C011, d011), S(C111, d111))
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Where CH(X) is the set X convex hull, defined as the set of all convex combinations
of points in X. For any sphere S(x, r), CH(S(x, r)) = S(x, r). The basic structure
and convexity of RCH

Ti
allow testing if a triangle has any point inside the set with the

algorithms we will explain in the following sections. In Figure 5.5, we have an example
of the RCH region. For simplicity, the distances dij are not actual distances to any element.

Figure 5.5: Example of RCH

To prove that RCH
Ti
⊇ R∗

Ti
, we define another set R+

Ti
which is computed using a trilinear

interpolation of the 8 vertices distance to approximate the distance field inside the node.
First, we will prove R+

Ti
⊇ R∗

Ti
and then RCH

Ti
⊇ R+

Ti
.

To define linear and trilinear interpolation, we will use LinInt(α, v0, v1) and TriInt(α, β, γ, vijk)
respectively. LinInt corresponds to the linear interpolation of values v0 and v1 using pa-
rameter α (with α ∈ [0, 1]), while TriInt corresponds to the trilinear interpolation of the
8 values vijk (where i, j, k ∈ {0, 1}) using parameters α, β, γ (α, β, γ ∈ [0, 1]):

LinInt(α, v0, v1) = (1− α)v0 + αv1

TriInt(α, β, γ, vijk) =

1∑
i=0

1∑
j=0

1∑
k=0

(1− α)1−i(1− β)1−j(1− γ)1−kαiβjγkvijk

Here we are abusing notation because the values we are interpolating, vijk, may be scalars,
points, or vectors. Still, we will use the same name for all these functions.

We define a new set R+
Ti

as:

R+
Ti

=
⋃

α,β,γ∈[0,1]

S(TriInt(α, β, γ,Cijk), T riInt(α, β, γ, dijk))

We need to prove that R+
Ti
⊇ R∗

Ti
. By the definition of the two sets, we can prove it by

demonstrating that:
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∀α, β, γ ∈ [0, 1] TriInt(α, β, γ, dijk) ≥ d(TriInt(α, β, γ,Cijk), Ti)

First, we define Qijk as the nearest points from Ti to Cijk:

Qijk = arg min
x∈T1

∥x−Cijk∥

TriInt(α, β, γ, dijk) = (5.1)

= TriInt(α, β, γ, ∥Qijk −Cijk∥) ≥ (5.2)

≥ ∥TriInt(α, β, γ,Qijk −Cijk)∥ = (5.3)

= ∥TriInt(α, β, γ,Qijk)− TriInt(α, β, γ,Cijk)∥ = (5.4)

= d(TriInt(α, β, γ,Qijk), T riInt(α, β, γ,Cijk)) ≥ (5.5)

≥ d(TriInt(α, β, γ,Cijk), Ti) (5.6)

The step from eq (5.1) to eq (5.2) is by definition of distance.

The step from eq (5.2) to eq (5.3) is using a property of trilinear interpolation. The
property says that given a trilinear interpolation of vectors, the norm of interpolating the
vectors will always be smaller or equal to the trilinear interpolation of their norms. See
appendix A.4 for a formal proof.

In the step eq (5.3) to eq (5.4) we use the trilinear interpolation distribution over addition
(see appendix A.2):

TriInt(α, β, γ, uijk + vijk) = TriInt(α, β, γ, uijk) + TriInt(α, β, γ, vijk)

From the eq (5.4) to eq (5.5) we use the definition of distance.

Finally, from the eq (5.5) to eq (5.6), we use that TriInt(α, β, γ,Qijk) will always belong
to Ti, because, by definition, all the Qijk are inside Ti. In a trilinear interpolation between
points if the points belong to the convex shape then all the interpolated points will, also,
be inside the shape. Therefore, TriInt(α, β, γ,Qijk) can be the nearest point to Cijk or
a further point.

Next, we want to prove that RCH
Ti
⊇ R+

Ti
by demonstrating that any point p inside R+

Ti
is

inside RCH
Ti

.

p has to be inside one of the spheres S(TriInt(α, β, γ,Cijk), T riInt(α, β, γ, dijk)) that
compose R+

Ti
, which means that we can write p as TriInt(α, β, γ,Cijk) + v where ∥v∥ ≤

TriInt(α, β, γ, dijk).
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Now, we define one vector vijk inside each of the spheres Sijk = S(Cijk, dijk) with the
same direction as v, and a norm equal to their radii dijk. The trilinear interpolation of
these vectors at p will be TriInt(α, β, γ, vijk) and by appendix A.3 it has a norm equal
to TriInt(α, β, γ, dijk) which is larger than ∥v∥. By scaling vijk by the ratio between ∥v∥
and TriInt(α, β, γ, dijk) we get new vectors v′

ijk that are smaller than their correspondent
vijk and, thus, are still inside their respective spheres Sijk. But now, using the trilinear
interpolation of v′

ijk, we can express p as TriInt(α, β, γ, Pijk) + TriInt(α, β, γ,v′
ijk) or

the trilinear interpolation of points C′
ijk = Cijk + v′

ijk which are each inside one of the
8 spheres Sijk. Therefore, p is inside the convex hull of {P ′

ijk} and has to be in RCH
Ti

,

and thus R+
Ti

is a subset of RCH
Ti

.

As we proved earlier, RCH
Ti

is convex and allows us to test if a triangle intersected with

the methods we will explain in the next section. However, RCH , the intersection of all the
RCH

Ti
, is not convex and easy to compute. Therefore, using this method, we can only test

if a triangle influences a region over another triangle.

In Figure 5.6, we have a comparison between the region R∗ and RCH of the segment S.
As we can see, the method region is more similar to the optimal area than the method
explained before. In most cases, both regions are almost identical. In the example, the
segment was positioned in a worst-case scenario to be able to see the two sets.

Figure 5.6: Shape comparison between the set R∗
S and RCH

S . Where S is the segment in
black.

5.3 Computing distance between convex shapes

To test if a triangle influences a node, we will test if it intersects one of the regions ex-
plained before. We need an algorithm to test if two convex sets intersect each other. We
develop and analyze two methods with different characteristics, GJK and Frank-Wolfe.
Before explaining the two methods, we will explain the Minkowski difference operator, an
operation used in both methods.
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Minkowski difference

Given two sets of points A and B we define the Minkowski difference MD of both sets as:

MD(A,B) = {a− b | a ∈ A, b ∈ B}

We can see MD(A,B) as the set of differences between the points of the two sets.

If the two sets intersect, then at least one point will belong to both, so the point
−→
0 must

belong to the set MD(A,B). Furthermore, the minimum distance between the two sets
is the nearest point to the origin of MD(A,B), because the point is the smaller possible
distance between points of both sets. So, we can compute the distance between the two
sets as:

d(A,B) = min
x∈MD(A,B)

∥x∥

An attractive property of the Minkowski difference is that if A and B are convex sets,
then MD(A,B) will be convex.

In Figure 5.7, we can see an example of a Minkowski difference of two sets A, B. Notice
that the distance between A and B is equal to the distance between MD(A,B) and the
origin O.

Figure 5.7: Minkowski difference between A and B

The methods we will explain later are designed to find the nearest point to the origin given
a convex set of points. The most interesting part is that the methods do not require all the
points of the set. They only need the support mapping of the set. The support mapping
of a convex set A is a function sA that returns the furthest point in a given direction v:

sA(v) = argmax
x∈A

v · x
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The resulting point of support mapping is called the support point. By the Minkowski
difference definition, we can calculate sMD(A,B) using only sA and sB without computing
all the points of the set. Given a direction v, we want to find the largest point on the set
MD(A,B) in that direction. The points of the set sMD(A,B) are the points of A less the
points of B. Therefore, we want to find the maximum point of A and the smaller point of
B in the direction v. So, we can formulate sMD(A,B) as:

sMD(A,B)(v) = sA(v)− sB(−v)

In the Figure 5.8, we can see an example of the support point in a direction v. Notice that
the vector from sB(−v) to sA(v) is the same as the vector from the origin to sMD(A,B)(v).

Figure 5.8: Example of the Minkowski difference support point computation. Where
sMD(A,B)(v) = sA(v)− sB(−v)

GJK

GJK [22] is an algorithm that, given a convex set A, returns the distance from A to the
origin. The algorithm is based on the construction of simplexes. A simplex is the simpler
polygon in any given space. In 3D, we can construct four possible simplexes:

• A point to represent only one point of the space.

• A segment to represent a closed 1-dimensional subspace.

• A triangle to represent a closed 2-dimensional subspace.

• A tetrahedron to represent a closed 3-dimensional subspace.

If we construct any simplex using the points of A, all the points of the simplex will belong
to A, because the simplex and A are convex.
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The GJK founds the nearest point to the origin iteratively. Each step constructs a simplex
closer to the origin than the simplex of the previous iteration. The GJK can stop for two
reasons. If it founds a simplex containing the origin, it returns zero because the origin is
inside A. And, if it does not find any nearest simplex, it returns the distance from the
simplex to the origin. Because if it cannot find any nearest simplex, it does not exist any
point in A nearer the origin than the points belonging to the simplex.

We define a simplex S as a set of vertices defining the simplex.

In one iteration, using the simplex calculated in the previous iteration Sn−1 and the
direction vn−1 in which Sn−1 is nearest the origin. The GJK algorithm searches the sup-
port point in the direction vn−1, using the support mapping function sA. If the support
point sA(vn−1) is further to the origin than the points in Sn−1, the GJK has converged.
Otherwise, it creates a new simplex S′ adding to the simplex Sn−1 the support point,
S′ = Sn−1 ∪ {sA(v)}. If S′ contains the origin, the GJK stops. Otherwise, it computes
the direction vn in which S′ is nearest the origin, and defines the simplex Sn containing
the nearest points to the origins in the direction vn. Finally, it starts the next iteration.

In the first iteration, the GJK uses an arbitrary direction v0 because it does have any
simplex defined yet. The Algorithm 1 is a pseudocode of the GJK. Lines 7 and 9 are the
stop conditions.

Algorithm 1 GJK algorithm

1: procedure distToOrigin(A)
2: v0 ← random direction
3: S0 ← {}
4: n← 1
5: loop
6: x← sA(v)
7: if x · vn−1 > anyPoint(Sn−1) · vn−1 then return anyPoint(Sn−1) · vn−1

8: S′ ← Sn−1 ∪ {sA(v)}
9: if 0 ∈ S′ then return 0

10: vn ← nearestDirection(S′)
11: Sn ← nearestSimplex(S′, vn)
12: n← n+ 1

In Figure 5.9, we have an example of one iteration of the GJK split in three different steps.
The red lines are the simplex shape. Notice that the iteration does not fulfill any stop
criteria at any moment. Therefore, the GJK will continue iterating.
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(a) Start: We have Sn−1 = {x4,x6} and
vn−1.

(b) Step 1: Create a simplex S′ adding the
support point of vn−1. Therefore, S′ =
{x4,x6,x2}

(c) Step 2: Calculate the direction vn (the
nearest direction to the origin)

(d) Step 4: define Sn as the simplex con-
taining the nearest points of S′ in direction
vn. Therfore, Sn = {x4,x2}

Figure 5.9: GJK iteration example

During GJK iterations, we need to calculate the direction in which the simplex is nearest
to the origin. This direction depends on which Voronoi region of the simplex the origin
belongs to. If the origin belongs to a Voronoi region of a point, the direction is the vector
from the point to the origin. If it belongs to an edge, the direction is a vector perpen-
dicular to the edge with a direction towards the origin. And, if it belongs to a face, the
direction is the face normal. Moreover, the structure that influences the Voronoi region is
the simplex containing the nearest point to the origin.

In Figure 5.10, we have the resulting directions v with different origin positions regarding
a triangle (a possible simplex). In the right image, the origin belongs to the Voronoi region
of an edge. Therefore, simplex containing all the nearest points to the origin is the edge.
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(a) Point Voronoi region (b) Edge Voronoi region

Figure 5.10: Example calculating direction by v, the nearest direction to the origin from
a triangle.

The advantage of the GJK is that it always converges. The disadvantage is the cost of
each iteration because testing which Voronoi region of the simplex owns the origin requires
many dot and cross products.

Frank-Wolfe

Frank-Wolfe is a gradient descend minimization algorithm for solving constraint convex
problems. We will use specifically Frank-Wolfe to find the between a convex set and the
origin. First, we will explain the Frank-Wolfe algorithm and how we used it to calculate
the distance to a convex set.

Given a compact convex set D and a function f which for each point returns a scalar.
The Frank-Wolfe algorithm search a point x inside the set D that minimizes f(x).

As the GJK, the algorithm only needs the support mapping function of the set D.

The algorithm starts x at any point inside D. Then in each iteration it moves x in a
calculated direction to a new position which has a smaller value f(x). The basic gradi-
ent descent moves the point in the opposite direction of the gradient −∇f(x). Instead,
the Frank-Wolf algorithm moves x towards the support point in the opposite gradient
direction, which is defined as sD(−∇f(x)). Moving the point x towards a support point
guarantees that we will never move the point outside the set by the convexity properties.

Given a start point x0 inside D. In each iteration, Frank-Wolf calculates the new point
value as:

xn+1 = xn + α(sD(−∇f(xn))− xn)
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Where α is the step value, the α must be a real number between 0 and 1. Otherwise,
we would move in the other direction or go outside the set S. The optimal α is the one
minimizing f(xn + α(sD(−∇f(xn)) − xn)). Usually, in some problems computing the
optimal step value is computationally expensive, so it is better to use a step value α that
decreases in each iteration. For example, a function related to the number of iterations
as:

α =
2

n+ 2

In our case, we want to use Frank-Wolfe to find the distance between the set D and the
origin. Therefore, we want to minimize the distance to the origin:

f(x) = ∥x∥

∇f(x) = x

∥x∥

In our case, we can calculate the optimal step value as the projection of the origin to the
line xn+α(sD(−∇f(xn))−xn), because the projection of a point in a line represents the
nearest point inside the line. We need to clamp the α value to 1 to avoid going outside
the set D when the projection of the origin is outside D. Therefore, we can define the
optimal α as:

α = min

(
1,
−xn · d
∥d∥2

)
Where d = (sD(−∇f(xn))− xn, the Frank-Wolf descend direction.

In Figure 5.11, we have an example of one Frank-Wolfe iteration minimizing the distance
to the origin. The opposite gradient of the minimization function is the vector pointing
to the origin. The orange point is the support point in the opposite gradient direction.
Notice the algorithm moves x to the projection of the origin in the support point direction.

Figure 5.11: Frank-Wolfe iteration example
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In Figure 5.12, we have an example of Frank-Wolfe minimizing the distance to the origin.
As we can see, the algorithm converges over the optimal value located at the origin. The
method’s main disadvantage is that it only descends toward the support points, a reduced
set of directions. Even though each step converges towards the solution, the method
never reaches the optimal solution in some situations. So, we need to add a threshold
to specify when the solution has enough precision. In the next section, we will explain
some modifications made to the algorithm to ensure that the results always guarantee a
solution overestimation.

Figure 5.12: Frank-Wolfe example when origin is inside.

5.4 Implementation

Next, we will explain the adaptation made to use GJK and Frank-Wolfe with the regions
R for testing if a triangle influences a node’s distance field.

In all the methods, we can use overestimations of the triangle influence. So, even though
a triangle does not intersect the region, we can classify it as intersecting. But we cannot
do the opposite thing, classify a triangle as non-intersecting when in reality is intersecting.
Otherwise, we could affect the computed signed distance filed.

We use the Minkowski difference between the influence region R and a triangle, to detect
if the two shapes intersect using GJK or Frank-Wolfe. In this section, we will also describe
how we implement each shape’s support mapping function, which is necessary to compute
the support mapping of the Minkowski difference, as we explain in the previous section.
The support mapping of a triangle T is always the same method. Given a direction v, the
method searches which of the three vertices is the furthest in that direction and returns
that vertex:
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sT (v) = argmax
x∈V

(x · v)

Where V is a set containing the three vertices of T .

GJK

R by radius

We want to test if the triangle has a distance to the node bigger than a threshold δ. As
we prove later, δ is the maximum distance to the mesh in the eight vertices of the node.
We calculate the distance between the triangle and the node using the GJK.

To calculate this distance, we need the support mapping function of the node. We could
test the eight vertices to get the furthest one. Instead, we use a trick that allows us to get
the support point given a direction v without evaluating the eight vertices:

sC(v) = center + sign(v) ∗ size

Where C is the node, size is the node size and center is the center point of the node.
sign is a function that, given a vector, returns a vector of the same size representing the
sign in each coordinate. If the coordinate is positive, it sets the value to 1 and if it is
negative to −1.

The GJK iterates until converging to the real distance, but we only need to know if
the distance is bigger or smaller than the threshold δ. In each iteration, the algorithm
creates a simplex nearer than the simplex of the previous iteration. Therefore, if the sim-
plex in one iteration is nearer the origin than the threshold δ, we can stop the GJK earlier.

In Figure 5.13, we have an example of one case in which the GJK can stop earlier because
the current simplex, in red, has a smaller distance to the origin than δ. The sphere
represents the range of δ.

Figure 5.13: GJK early termination example
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R by interpolation

In this case, we can only represent one triangle’s region and not the whole mesh region.
So, in each call to the GJK, we will only be able to detect if one triangle influences the field
of the node compared to another triangle. In the next section, we explain the heuristics
used to avoid comparing all the triangles between each other.

The region RCH
Ti

is the convex hull of the eight spheres centered at each vertex of the
node with a radius equal to the distance between the vertex and the triangle Ti. So, to
calculate the region support point in a direction v, we calculate the support point in each
node vertex representing a sphere, which is equal to the vertex position plus the radius in
the direction v, and get the furthest point in the direction v.

In Figure 5.14, we can see an example of the support point computation in the direction
v. The red and green points are the eight support points of each sphere, and the green
point is the resulting support point.

Figure 5.14: RCH
Ti

support point computation in direction v

We want to check if the set RCH
Ti

intersects with a triangle. If it does not intersect, the
triangle does not influence the node over Ti. So, using the GJK, we only want to test if the
origin is inside the Minkowski difference. We are not interested in the distance. In each
iteration, the GJK searches the support point in a direction v to create a new simplex.
If, in one iteration, the origin is further than the support point in the direction v, the
origin is not inside the set because v is a separating plane between the set and the origin.
Therefore, we can stop the GJK execution earlier.
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Frank-Wolfe

As we explained, Frank-Wolfe always converges but never reaches the optimum in some
situations because it only descends towards the support point directions. We add two new
stop conditions to guarantee that we never lose the intersection between a triangle and a
region and improve the number of iterations per call.

In the two region methods, we only need to test if two sets are nearer or further than a
threshold δ, we do not need the real distance. So, during the Frank-Wolfe iterations, if the
current point is nearer to the origin than δ, we can ensure that the sets are in radius and
stop the Frank-Wolfe execution earlier. If δ is very small, the algorithm can take many
iterations. We solve this case by adding a maximum number of iterations allowed (in the
implementation 15). When the method reaches the maximum number of iterations, we
overestimate the results by classifying the triangle as influencing.

We also need a stop criterion when the distance to the origin is greater than δ. In each
iteration, the Frank-Wolfe method searches the support point in the opposite gradient
direction (the direction towards the origin), which we will call v. If, in one iteration, the
distance between the support point and the origin in the direction v is bigger than δ and
the support point is previous to the origin in the direction v. Then, the Minkowski differ-
ence set does not have the origin in radius δ, and we can stop the Frank-Wolfe execution.
Because v is a separating plane between the set and the sphere centered at the origin with
radius δ.

In Figure 5.15, we have an example of two situations meeting the two stop criteria ex-
plained before. In subfigure 6.2a, we have an example when the algorithm is in radius.
In subfigure 6.2e, we have an algorithm iteration in which it can determine that the set
is out of radius. The yellow point is the support point in the opposite gradient direction.
Notice that the projection of the support point in the gradient direction is not in radius,
therefore, the gradient direction is a separating plane.

(a) Early stop when the set is in radius (b) Early stop when the set is out of radius

Figure 5.15: Example of Frank-Wolfe termination criterias.
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R by radius

In this method, we want to test if the triangle has a distance to the node bigger than a
threshold δ. So, we can employ the Frank-Wolfe method using the optimizations explained
without any other change. In this case, the threshold δ will always be large, despite very
uncommon cases, because δ is the maximum distance to the mesh in the eight vertices of
the node.

R by interpolation

We want to check if the RCH
Ti

of the triangle Ti is intersected by a triangle. Testing for
intersections is the same as using an δ of zero. But, as we explained before, we need large
δ values to ensure that Frank-Wolfe stops.

To increment the threshold δ, we apply a spherical erosion to the RCH
Ti

region. Then, in-
stead of checking if both sets intersect, we search if the two sets are at a smaller distance
than the erosion applied. RCH

Ti
is formed by the convex hull of the eight spheres centered

at each node vertex with a radius equal to the distance to Ti. So, we apply a spherical
erosion using the smaller radius of the eight spheres as a radius.

The support point of the eroded set in a direction is calculated as before (explained in the
GJK optimizations section), but subtracting the eroded radius in the eight vertex spheres.
Because applying the spherical erosion to the convex hull of the eight spheres is the same
as the convex hull of the eight spheres with its radius minus the erosion radius, as we will
prove later. Notice that this only works if the spherical erosion radius is smaller or equal
to the smaller sphere. So, we use the smaller radius of the eight spheres because it is the
maximum erosion we can make with this method.

In Figure 5.16, we have an example of a RCH
Ti

region, and on the other side, we have the
same region spherically eroded. As we explained, the erosion radius is the smaller sphere
radius, in this case, d00.
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Figure 5.16: Example of RCH
Ti

spherically eroded by the minimum sphere radius, which is
d00

As we stated before, we define RCH
Ti

:

RCH
Ti

= CH

 ⋃
i,j,k∈{0,1}

S(Cijk, d(Cijk, Ti))


Where Cijk are the eight vertex positions of the node.

Using the definition of RCH
Ti

we define the eroded set RSCH
Ti

as:

RSCH
Ti

= CH

 ⋃
i,j,k∈{0,1}

S(Cijk, d(Cijk, Ti)− α)


Where α = mini,j,k∈{0,1} d(Cijk, Ti).

First, we want to prove that RCH
Ti

= RSCH
Ti
⊕ S(α). Where A ⊕ B is the dilation of A

using B, and S(r) is a spherical operator of radius r.

CH

 ⋃
i,j,k∈{0,1}

S(Cijk, d(Cijk, Ti))

 = RSCH
Ti
⊕ S(α) (5.7)

CH

 ⋃
i,j,k∈{0,1}

S(Cijk, d(Cijk, Ti)− α)⊕ S(α)

 = RSCH
Ti
⊕ S(α) (5.8)

CH

 ⋃
i,j,k∈{0,1}

S(Cijk, d(Cijk, Ti)− α)

⊕ S(α) = RSCH
Ti
⊕ S(α) (5.9)

RSCH
Ti
⊕ S(α) = RSCH

Ti
⊕ S(α) (5.10)
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From eq 5.7 to 5.8, we use the property that given two radiuses r1 and r2 and a point
c, S(c, r1 + r2) = S(c, r1)⊕ S(r2), which can easily prove using the definition of dilation.
Notice, it only works when d(Cijk, Ti) ≥ α. In our case, by the definition of α, α is always
smaller.

We move from eq 5.8 to 5.9 by a property of the convex hull which states that given a
convex dilation operator X and any set C, CH(C ⊕X) = CH(C)⊕X. See appendix B.1
for a formal proof.

Finally, we want to prove that, given any triangle T ′, (RSCH
Ti
⊕ S(α)) ∩ T ′ = Ø if only if

dist(RSCH
Ti

, T ′) > α, where dist(A,B) is the distance between the set A and the set B.
We demonstrate it by the properties of dilation. A dilation of C using the operator X is
defined as:

C ⊕X = {x+ y | ∀x ∈ C,∀y ∈ X}

We prove that, if (RSCH
Ti
⊕ S(α)) does not intersects T ′, then dist(RSCH

Ti
, T ′) > α by

contrapositive. So, we want to prove that if dist(RSCH
Ti

, T ′) ≤ α then (RSCH
Ti
⊕ S(α))

intersects T ′. We call p1 the nearest point of RSCH
Ti

to T ′, and p2 the nearest point of

T ′ to RSCH
Ti

. By distance definition, dist(RSCH
Ti

, T ′) is equal to ∥p1 − p2∥. We define a
point y in which p2 = p1 + y. This means that ∥y∥ = ∥p1 − p2∥ ≤ α, so y is a point of
the sphere S(α). Then by the definition of dilation, (p1 + y) ∈ (RSCH

Ti
⊕ S(α)), because

p1 belongs to RSCH
Ti

and y belongs to S(α). Also, p1 + y belongs to T ′. Therefore, we
prove that the two sets intersect.

We want to prove that, if dist(RSCH
Ti

, T ′) > α, then (RSCH
Ti
⊕S(α)) does not intersects T ′.

By the definition of dilation, we define any point of (RSCH
Ti
⊕S(α)) as a point x belonging

to RSCH
Ti

plus a point y belonging to S(α). Also, we define a point belonging to T ′ as p.
By the initial statement, we know that α < ∥x−p∥. Moreover, using the triangle inequal-
ity, we can say that ∥x−p∥ ≤ ∥y∥+ ∥(x+y)−p∥. We know that any point belonging to
S(α) at most will have magnitude α. So, ∥y∥+ ∥(x+y)−p∥ ≤ α+ ∥(x+y)−p∥. At the
end we have α < α+∥(x+y)−p∥, which can be reduced to 0 < ∥(x+y)−p∥. Using the
final inequality, we can conclude that the distance between any point in (RSCH

Ti
⊕ S(α))

and any point in T ′ will always be bigger than zero. Therefore, the two sets does not
intersect.

Even though we apply this erosion to the region to have a bigger δ for the stop criteria,
we cannot guarantee that δ will be large enough. For example, if in a region RCH

Ti
the

triangle Ti is intersecting with one of the vertex nodes, then the minimum sphere radius
will be zero. However, even when δ is zero, the method can still detect not intersecting
triangles. As we will see in the Results section, despite the existence of these cases, the
method performs well.
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R by interpolation heuristics

As we explained in the definition of the region R by interpolation, we can only define the
regions over only one triangle at a time because computing the region for all the mesh will
result in a non-convex region computationally expensive. So, with this method, we can
only test if one triangle influences the node over another triangle.

Given a list of triangles, we are interested in selecting all the triangles influencing the zone.
The way to discard the most amount of triangles is by testing all the triangles between
them, which will result in a complexity O(n2). If given a triangle, we find a region R of
another triangle that does not intersect, then the triangle is not influencing the node, and
we can discard the triangle. Comparing all with all results is an inefficient solution. In our
case, we need a faster method than an accurate solution. So, we designed some heuristics
to reduce the number of comparisons needed. We call the technique of comparing all the
triangles with all the triangles all for all.

In most cases, some regions are inside others, so we make unnecessary region tests. To
reduce the number of unuseful region tests, we design a method that we call region per
vertex, in which for each vertex, we select the region with the smallest sphere radius in
that vertex. Therefore, we reduce the number of tests to eight tests per triangle.

We only need to find a region that does not intersect with the triangle. So, comparing
the eight vertices, we are still doing some unnecessary tests that will only be useful in
particular cases. Given a triangle, we only want to compare with the smaller regions near
the triangle. We design a heuristic called n nearest vertices, which only compares the
smaller regions of the n nearest vertices to the triangle. The main disadvantage of the
method is that for each triangle, the algorithm has to evaluate the distance to the eight
vertices of the node to find out which vertices are the nearest.

Finally, we designed a lightweight method that we called nearest vertex to center, in which
we only compare the smaller region of the nearest vertex to the triangle centroid. This
way, we avoid computing the real distance to vertices, which is a more expensive operation.

In the next section, we will present a comparison in terms of computational cost and
triangles selected for all the explained heuristics.

Results

Next, we will analyze all the methods explained in this chapter. All the benchmarks have
been done using the octree subdivision algorithm (introduced in chapter 3) for signed
distance field computation with the same configuration. The input model is a model with
390978 triangles. The objective of this section is to show the differences between the
methods, so we will focus on comparing the things explained in this chapter without going
into details about how the octree construction is made.

46



First, we have an analysis of how the final solution performance is affected by using GJK
and Frank-Wolfe with R by radius and R by interpolation. In this first part, we will use
the region R by interpolation using the heuristic nearest vertex to center.

In Figure 5.17, we have the algorithm’s execution time using different strategies. As we
can see in the plot, there is a big difference in performance between using R by radius
and R by interpolation. Also, the solver used has a big impact. Notice that using R by
radius, the time difference between solvers is much smaller than using R by interpolation.

Figure 5.17: Execution time with different strategies.

In Figure 5.18, we can see a plot showing the mean of triangles per node in each octree
depth. Reducing more triangles in each octree subdivision impacts the execution time
because it allows faster computation of the next depths and the final distance field. We
can see that using R by interpolation allows us to discard more triangles in each depth. In
R by radius, the solver used does not change the mean of triangles per node in each depth,
both methods discard the same amount of triangles. But, with R by interpolation, there is
a difference, the Frank-Wolf method discards slightly fewer triangles than the GJK. This
difference affects the mean of triangles per node between 1% and 2%. However, as we saw
before, the whole computation is much faster using Frank-Wolf.
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Figure 5.18: Mean of triangles per node in each octree depth with different strategies.

In Figure 5.19, we compare the number of iterations needed by GJK and Frank-Wolfe to
determine if there are intersections in each call. The histogram shows the number of calls
in percentage solved with a specific number of iterations. In the histogram, we can see
that Frank-Wolfe usually needs fewer iterations than GJK. Notice that R by interpolation
requires more iterations than R by radius, but it is faster because, as we saw in the
previous plot, it can classify more triangles as non-influencing.

Figure 5.19: The number of calls in percentage solved with a number of iterations.
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The Figures 5.20 and 5.21 are visual comparison of the two methods, R by radius and R
by interpolation. The triangles printed are triangles classified as influencing the red cube.
To estimate the quality of the solution regarding the optimal solution, we do a random
sampling inside the cube and print the nearest triangles to the samples in red. As we can
see, R by interpolation fits more the optimal solution than R by radius.

(a) Using R by radius. 466 selected trian-
gles.

(b) Using R by interpolation. 23 selected
triangles.

Figure 5.20: Comparison of selected triangles between region methods
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(a) Using R by radius. 4659 selected triangles.

(b) Using R by interpolation. 189 selected triangles.

Figure 5.21: Comparison of selected triangles between region methods.

Finally, we will compare the heuristics proposed for selecting triangles using R by inter-
polation. In all the tests, we will use the Frank-Wolfe solver.

In Figure 5.22, we compare the program execution time using the different heuristics. As
we can see, the fastest method is the heuristic nearest vertex to center. Notice that between
testing the eight vertices’ smallest regions (regions per vertex ) and only comparing the
two nearest vertices (2 nearest vertices), there is not a big difference in performance. This
is produced because to find the closest vertex we have to calculate the distance to the
eight vertices of the node for each triangle, which is an expensive extra process to do.
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Figure 5.22: Execution time using different heuristics with R by interpolation.

Figure 5.23 is an analysis of the difference in selected triangles compared to the region
per vertex which is the method that selects fewer triangles per node. To compare the
difference in all the octree depths, we use percentages. The plot shows for each octree
depth the percentage of more triangles selected regarding the triangles selected with the
heuristic region per vertex. Notice that the number of selected triangles is accumulated
during the space subdivisions. As we can see, the faster heuristics discard fewer triangles
in each subdivision. Therefore, if we are interested in reducing the computation time, the
best heuristic is nearest vertex to center. But, if we are more interested in the number of
triangles per node in the octree leaves, it is better to use the heuristic region per vertex.

Figure 5.23: The percentage of more triangles selected than in the best heuristics.
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Chapter 6

Signed distance field acceleration
structure

In this chapter, we will explain and analyze our method for accelerating signed distance
field queries from triangle meshes in arbitrary points in space.

The technique subdivides the space in an octree where each leaf contains the triangles
influencing that node. After the octree generation, for every query point, the method
traverses the octree to identify in which leaf the point belongs. Then, it iterates all the
triangles influencing that leaf and computes the signed distance of the triangle mesh us-
ing the nearest triangle. The octree and the triangles influencing each leaf node are not
computed at every query. They are calculated in the initialization of the accelerating data
structure.

6.1 Termination Heuristic

The number of triangles influencing a node depends on the node location regarding the
triangle mesh. Nodes nearer the surface will be influenced by fewer triangles than nodes
nearer the model’s medial axis. Therefore, an adaptive subdivision of the space may help
in containing a more precise subdivision only in critical parts. We need a heuristic to
determine when the octree subdivision in a node should stop.

We implement a heuristic that ends the octree subdivision when a node is influenced by a
minimum amount of triangles. The user will set the threshold smaller or larger depending
on the query time requirements. Having fewer triangles per node will decrease the query
time, but it will increase the octree size and the initialization time.
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Also, we try other heuristics to reduce the computation time regarding the query time, as
only subdividing when it is expected to reduce more than a certain amount of triangles.
The results obtained with these other heuristics were very similar to the results using the
one explained before. So, we integrate the minimum number of triangles strategy in our
final solution.

6.2 Results

In this section, we have some tests done with the heuristic explained before. In all the
tests, we use an octree with a maximum depth of eight and the Armadillo model (345944
triangles) as the input model. In this case, the bounding box of the octree root node is
the bounding box of the model plus a 12% of margins in each axis.

We calculate the query time by averaging the needed time to solve signed distance field
queries at arbitrary points inside the octree bounding box.

In Figure 6.1, we have some properties of the octree got using the heuristic that subdivides
until reaching a minimum number of triangles. We did tests with a minimum of 32, 64,
96, 128 and 160. As shown in the plot, increasing the threshold decreases the computation
time but increases the mean of triangles per node and the query time. Notice that the
computation time does not decreases linearly. However, the other two seem to have a
more linear behaviour. So, increasing the minimum number of triangles will not produce
big gains in computation time regarding the query time.

Figure 6.2 shows the percentage of leaf nodes in each octree depth. In each depth, the
number of nodes increases exponentially and the node size decreases, so the number of
ended nodes in each node is difficult to compare. To offer a more intuitive visualization,
we calculate the percentage of ended nodes in each depth, considering the node area. For
example, a node at depth 1, where we only have eight nodes, has a 12.5% of the space
area. As shown in the plots, increasing the threshold pushes the leaf nodes to lower depths.

In Figures 6.4, 6.5, 6.6, 6.7, 6.8, we have a part of the generated octree with different
minimum number of triangles per leaf. The colour of each node represents the number of
triangles in the node. As more red, more triangles have the node regarding the minimum
specified by the user. Figure 6.3 represents the signed distance field in the same location.
Notice that we usually have more subdivisions inside the model and on discontinuities of
the distance field.
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(a) Computation time in seconds (b) Mean of triangles per leaf

(c) Query time in microseconds

Figure 6.1: Results using different minimum number of triangles per leaf with the Ar-
madillo model.

(a) 32 (b) 64 (c) 96 (d) 128 (e) 160

Figure 6.2: Percentage of leaf nodes in each octree depth with different minimum number
of triangles per leaf
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Figure 6.3: Armadillo slice signed distance filed.

Figure 6.4: Octree with a minimum of 32 triangles per leaf. The colours go from 32
triangles (white) to 132 triangles (dark red).
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Figure 6.5: Octree with a minimum of 64 triangles per leaf. The colours go from 64
triangles (white) to 164 triangles (dark red).

Figure 6.6: Octree with a minimum of 96 triangles per leaf. The colours go from 96
triangles (white) to 196 triangles (dark red).
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Figure 6.7: Octree with a minimum of 128 triangles per leaf. The colours go from 128
triangles (white) to 228 triangles (dark red).

Figure 6.8: Octree with a minimum of 160 triangles per leaf. The colours go from 160
triangles (white) to 260 triangles (dark red).
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In addition, we compare our acceleration structure with other algorithms explained in the
related work. We test two other methods, one based on the signed distance field compu-
tation using sphere volume hierarchies (SVH) [1], and another base on using axis-aligned
bounding box volume hierarchies. The last one is incorporated inside the CGAL library
(CGAL BVH) [23].

In table 6.1, we compare these two methods with our strategy using a threshold of 32
triangles. As we can see, the other methods are much faster in computing the structure
because they only compute a hierarchy of the triangles. However, our method can achieve
faster times in queries with a speed-up of 22 times compared to SVH and 28 times com-
pared to CGAL BVH. Our method is better when the user needs fast distance queries or
when it needs to do a large amount of calls. For example, using the SVH, our method
starts taking less time, summing the computation and query time, when the user needs
to make more than 7 million queries.

Computation time Query time

SVH 0.885s 27.1us

CGAL BVH 0.015s 34.19us

Our method 183.25s 1.2us

Table 6.1: Computation time and query time comparison with other methods.
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Chapter 7

Approximated signed distance
field

This chapter explains a method for computing an approximated signed distance field of
a triangle mesh. The resulting structure is an octree in which each leaf is a polynomial
representing the field’s behaviour.

The structure is computed iteratively. We keep track of the triangles influencing an oc-
tree node in each subdivision to accelerate the computation signed distance field inside
nodes. For each octree node, we evaluate if a further subdivision is necessary. If it is not
necessary, we compute a polynomial representing the field’s behaviour using the values of
the distance field at certain points inside the node.

7.1 Termination Heuristic

We want a termination rule to decide when the node does not need more subdivisions.
The method computes an approximation of the distance field. So, we want to stop when
the approximation is accurate enough by the user requirements.

We calculate the accuracy of the polynomial approximation of a node using the root-
mean-square error (RMSE). If the error in a node is greater than the value specified by
the user, the node is subdivided. Given a node c with volume v, a set C containing the
points inside the node c, the real signed distance field f , and a function g representing the
polynomial approximation of the field in the node c. We express the RMSE of g as:

RMSE(g) =

√
1

v

∫
C
(g(p)− f(p))2 dp
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The integral cannot be computed algebraically because f is not an algebraic expression,
and calculating its integral will be computationally expensive. Therefore, we use well-
known numerical integration methods to approximate the RMSE value. We try two meth-
ods, the Trapezoidal rule and the Simpson’s rule.

The two methods subdivide the integral range into sections to approximate the final value.
In our case, we subdivide the space into eight parts equivalent to the octree children to
be able to recycle the computed values in lower depths.

Next, we have an explanation of the two methods. In both, we will explain the final
expression in 2D instead of 3D to simplify the size of the formula. In 2D, we subdivide
the space only into four parts instead of 8.

Trapezoidal rule

The Trapezoidal rule approximates the integral inside the interval [a, b] of an arbitrary
function h as: ∫ b

a
h(x) dx ≈ (b− a)

1

2
(h(a) + h(b))

To reduce the complexity of the explanation, we will suppose that the node always has a
volume of one, and we want to integrate between the point (0, 0) and the point (1, 1). In
our method, we split each axis in the middle. Therefore:

∫ 1

0
h(x) dx =

∫ 1
2

0
h(x) dx+

∫ 1

1
2

h(x) dx ≈
h(0) + h(12)

4
+
h(12) + h(1)

4
=

1

4
(h(0)+2h(0.5)+h(1))

So, we approximate the integral of the RMSE formula as:∫ 1

0

∫ 1

0
E((x, y)) dx dy ≈

∫ 1

0

1

4
(E((0, y)) + 2E((0.5, y)) + E((1, y))) dy =

=
1

16
(E((0, 0)) + 2E((0.5, 0))) + E((1, 0)) + 2E((0, 0.5)) + 4E((0.5, 0.5))+

+ 2E((1, 0.5)) + E((0, 1)) + 2E((0.5, 1)) + E((1, 1))

Where E(p) = (g(p)− f(p))2

Simpson’s rule

Simpson’s rule approximates the integral inside the interval [a, b] of an arbitrary function
h as: ∫ b

a
h(x) dx ≈ b− a

6
(h(a) + 4h

(
a+ b

2

)
+ h(b))
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As before, we will integrate between the point (0, 0) and the point (1, 1) for simplification
purposes. So, we approximate the integral of the RMSE formula as:

∫ 1

0

∫ 1

0
E((x, y)) dx dy ≈

∫ 1

0

1

6
(E((0, y)) + 4E((0.5, y)) + E((1, y))) dy =

=
1

36
(E((0, 0)) + 4E((0.5, 0))) + E((1, 0)) + 4E((0, 0.5)) + 16E((0.5, 0.5))+

+ 4E((1, 0.5)) + E((0, 1)) + 4E((0.5, 1)) + E((1, 1))

Where E(p) = (g(p)− f(p))2

7.2 Polynomial apporximation

For each octree leaf, we want to fit a polynomial representing the behaviour of the distance
field. We will use the same degree polynomial for all the nodes for efficiency purposes.
We can express a polynomial of degree n as:

g(x, y, z) =

n∑
i,j,k=0

aijkx
iyizi

The variables aijk are the polynomial coefficients that dictate the polynomial’s behaviour.
Given a node, we want to find the coefficients fitting better the real distance field inside
the node.

Usually, the coefficients are calculated by formulating a linear system in which the un-
knowns are the coefficients. Then, we need the same number of equations to have a
deterministic linear system and be able to find a solution. Each equation is a constraint
that forces the final polynomial to behave a certain way.

For example, imagine that we have 2D quad with vertices (0, 0), (1, 0), (0, 1), (1, 1). Given
dik representing the value of the distance field in each vertex, we want to find the coeffi-
cients of the polynomial of degree 1. The 2D polynomial of degree 1 is:

f(x, y) = a00 + a10x+ a01y + a11xy

We design a linear system that forces the value on each vertex:
1 x1 y1 x1y1
1 x2 y2 x2y2
1 x3 y3 x3y3
1 x4 y4 x4y4



a00
a10
a01
a11

 =


d00
d10
d01
d11


Where (xi, yi) are the points in each constraint. In this case, each constraint is a vertex
position. So if we change the values for the positions of the vertices, we got:
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1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1



a00
a10
a01
a11

 =


d00
d10
d01
d11


Finally, we invert the 4x4 matrix to calculate the coefficient values:

a00
a10
a01
a11

 =


1 0 0 0
−1 1 0 0
−1 0 1 0
1 −1 −1 1



d00
d10
d01
d11


Notice that if the points are the same, we can calculate the coefficients for different dij
without inverting the matrix each time. To avoid inverting the matrix for each octree leaf,
we always scale and translate the nodes to have the same vertex positions.

In 3D, a polynomial of degree one has 23 coefficients, so we need 8 constraints. In this
case, we force the eight vertices of the node to have the value of the signed distance field.
The resulting equation is equivalent to the trilinear interpolation. We call this method
trilinear interpolation.

However, we are interested in using a more high-order polynomial. Using a polynomial
of degree 2 requires specifying 33 constraints. Using 27 constraints does not allow forcing
properties of the eight node’s vertices because it is not a multiple of 8. So we use a poly-
nomial of one degree more.

A polynomial of degree 3 has 43 properties. If we want to force constraints in the eight
vertexes, we need to specify eight constraints per vertex. We use the constraint used by
Lekien and Marseden [24]. In each vertex, they force the value field, the gradient (one
equation per axis), the second derivative over xy, yz and yz and the third derivative over
xyz. However, we put all the second and third derivatives to zero because we use triangle
meshes which are planar representations. Setting all these parameters to zero, we reduce
the number of operations required and, as we will show in the results, the polynomials
obtained represent the distance field correctly. For each vertex, we calculate the field’s
gradient using the method explained in chapter 4. This equation is known as tricubic
interpolation.

We do not write the equations of the tricubic interpolation because it is a large equation
with 64 coefficients. We develop a program to solve the system and write how each coef-
ficient is calculated.
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7.3 Forcing continuity

In the main implementation, the subdivision strategy is done in a depth-first approach,
and each node is calculated independent of its neighbours. This strategy can produce
zero-level discontinuities at node boundaries. If a leaf and a neighbour had the same size,
it always has zero continuity because both nodes have the same vertices in contact, and
the polynomial at the contact boundary will behave equally. But, when a node and its
neighbour have different depths, not all the vertices in touch are the same. Therefore,
some discontinuities can appear in the boundary. Figure 7.1 shows an example of these
two cases.

(a) Neighbour nodes at the same depth. (b) Neighbour nodes at different depth.

Figure 7.1: Comparison between neighbour cases.

In some applications, we do not require a continuous representation of the field, but in
other applications, these discontinuities can generate problems. To ensure continuity be-
tween neighbours at different depths, we force the not shared vertices in the boundary to
have the same values as the neighbour node. So, instead of forcing the vertices values to be
equal to the signed distance field, we calculate the value using the neighbour polynomial
representation of the field.

In Figure 7.2, we have an example of this case. At one point during the octree generation,
the node is subdivided, but its neighbour is not. The nodes that will not be more subdi-
vided are coloured in green. The not shared vertices with its neighbour are represented
as red dots. Then, to ensure continuity, the values of the red dots are calculated using
the polynomial representation of the neighbour node, the green ones, instead of the real
signed distance field.
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Figure 7.2: Subdivision example.

In each subdivision step, we need to get the state of the neighbour nodes. So, we need
a breadth-first strategy in which all the nodes at the same depth are calculated before
processing the next depth nodes.

This octree subdivision per depth is more expensive than the depth-first strategy because
it requires having all the nodes of one depth in memory at the same time. Moreover, we
need extra work to keep track of the neighbour nodes. In the next section, we analyze the
performance penalties for forcing the generated field’s continuity.

7.4 Results

In this section, we will present some analyses made using the technique explained in this
chapter. In all the tests, we use an octree with a maximum depth of eight and the Frog
model (390978 triangles) as the input model. The bounding box of the octree is set as the
model bounding box plus a 12% of margins in each axis.

We observe both termination heuristics purposed give similar results. So, we will use the
trapezoid rule in all the tests.

In Figure 7.3, we have a plot showing the computation times regarding the desired error
specified by the user. We noticed that between the computation time and the desired
error, there was an exponential relation. To better visualize the progression, we applied a
logarithmic scale at the error threshold axis, the X-axis. In the plot, we have a comparison
between using the trilinear interpolation and the tricubic interpolation. As we can see,
the tricubic method is faster at all the requested errors because each node can represent
a more complex behaviour and, therefore, needs fewer octree subdivisions.
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The termination heuristic uses an approximation of the integral. To calculate the precision
of the heuristic, we develop a method that calculates the RMSE of the hole octree bound-
ing box using the Monte Carlo approximation. We use 10 million samples to estimate the
model error. In Figure 7.4, we compare the error requested by the user and the actual
error of the resulting model. The gray line represents the perfect behaviour, where the
model error is exactly the one requested by the user. As we can see, trilinear and tricubic
methods always produce smaller errors than the required ones. Therefore, our approach is
conservative regarding the user demands. Notice that this plot uses the logarithmic scale
in both axes.

In Figures 7.5 and 7.6, we have two pictures at the same position of the octree generated
using trilinear and tricubic interpolation. In both cases, the user requested an error of
10−3. Comparing the images, we can see that the tricubic method uses bigger nodes,
especially in rounded parts of the octree.

Figure 7.3: Computation time with different requested errors.

65



Figure 7.4: Comparison between the requested error and real error.

Figure 7.5: Octree generated using trilinear interpolation with an error threshold of 10−3
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Figure 7.6: Octree generated using tricubic interpolation with an error threshold of 10−3

The computation times plotted before were made using the depth-first algorithm without
forcing the continuity of the field. In this case, we found that the forcing the continuity
increases between 1% and 5% the computation cost. In Figure 7.7, we have an example
of the resulting distance field not forcing and forcing the continuity of the field.

(a) Not forcing continuity. (b) Forcing continuity.

Figure 7.7: Forcing continuity example.
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In Figure 7.8, we have a plot showing the query time regarding the requested error. The
queries are more expensive at smaller errors because the octree has deeper leaves. Even
though the tricubic interpolation requires less depth to achieve the same error as the
trilinear interpolation, the trilinear interpolation is faster. The trilinear interpolation is
faster because its polynomial is much faster to evaluate.

Figure 7.8: Query time (in microseconds) with different requested errors.
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Chapter 8

Conclusions and future work

8.1 Conclusions

This thesis presents a solution to accelerate signed distance fields queries from triangle
meshes, using a strategy based on subdividing the space and filtering the triangles not
influencing that subspace.

One of the main project’s contributions is the process of finding if a triangle is influencing
a node. We start with a basic idea of comparing distances to the node, and we improve
the technique until creating these new methods that perform much better than the initial
solution. Also, we prove the correctness of all the proposed methods.

Moreover, we explore and analyze different methods to calculate the distance between
convex sets, the GJK and Frank-Wolfe. We propose some optimizations to these solvers
specifics for the problem we want to solve, finding intersections between an influence re-
gion and a triangle.

We present two algorithms using our strategy for finding the triangles influencing a zone
to accelerate the signed distance field computation in points.

First, we present a method for accelerating the signed distance field computation in arbi-
trary query points. The method generates an octree which accelerates the search of the
nearest triangle to the query point. Even though our proposal takes more time to initialize
than other solutions, our method achieves faster query times. The method solves queries
28 times faster than the solution offered by CGAL, an important library of geometric
algorithms.
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We also present a method for accelerating the computation of an adaptive approximation
of the signed distance field using an octree. The method can calculate approximations
of the field with a precision specified by the user. Moreover, we present an algorithm to
guarantee no discontinuities of the field between neighbour nodes at a different depth.
The method calculates this discretization at reasonable computation times.

8.2 Future work

We strongly believe that our method for detecting the influencing triangles in a box can
also be used for other types of convex shapes. So, we would like to search for other algo-
rithms that benefit from this new procedure.

The two methods for solving signed distance field queries are designed to solve any point
inside the octree bounding box. We would like to explore solutions to offer faster query
times at specific parts, for example, near the object surface. This would improve the
computation time because we will not have to improve the query time or the field quality
in all the space.

We could not compare our method for computing the signed distance field approximations
with other strategies because all the competitive techniques are developed in the GPU.
We would like to port our method to the GPU to compare it with others. We believe that
given the times achieved using only the CPU with one thread, our solution would perform
very well at the GPU.

In addition, we would like to give practical uses to the method developed in the thesis.
As we saw in the related work, the signed distance fields can be used in many areas such
as rendering, collision detection, and shape reconstruction.
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Appendix A

Trilinear interpolation properties

A.1 Trilinear interpolation is a composition of linear inter-
polations

Trilinear interpolation TriInt can be expressed as a composition of linear interpolations
LinInt, first four linear interpolations on the X axis, then two on the Y axis, and a final
one on the Z axis.

TriInt(α, β, γ, vijk) = LinInt(γ,LinInt(β, LinInt(α, v000, v100), LintInt(α, v010, v110)),

LinInt(β, LinInt(α, v001, v101), LintInt(α, v011, v111)))

Where vijk are 8 values or vectors.

A.2 Trilinear interpolation is distributive over addition

Given 2 values vi and v′i (where i ∈ {0, 1}).
We define the linar interpolation LinInt as:

LinInt(α, v0, v1) = (1− α)v0 + αv1

We can clearly see, using the distributive propery of the product:

LinInt(α, v0 + v′0, v1 + v′1) = LinInt(α, v0, v1) + LinInt(α, v′0, v
′
1)

Trilinar interpolation is distributive over addition, beacuse a trilinar interpolation is a
composition of linear interpolations (appendix A.1) and a linear interpolation is distribu-
tive over addition.
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A.3 The norm of the interpolation of a set of vectors with
the same direction is equal to the norms interpolation

Given 8 vectors all towars the same direction vijk (where i, j, k ∈ {0, 1}). We want to
proof:

∀α, β, γ ∈ [0, 1] : ∥TriInt(α, β, γ, vijk)∥ = TriInt(α, β, γ, ∥vijk∥)

Trilinar interpolation is a composition of linear interpolations (appendix A.1), therfore,
we only need to prove it for linear interpolation. Moreover, the demostrating the statment
is equivalent to prove it for the square of the norms. So, given two vectors v0 and v1 with
the same direction (vT0 v1 = ∥v0∥∥v1∥), we need to prove that the square of the norm of
their linear interpolation is equal to the square of the linear interpolation of their norms:

∥LintInt(α, v0, v1)∥2 = ∥(1− α)v0 + αv1∥2 = [(1− α)v0 + αv1]
T [(1− α)v0 + αv1] =

= (1− α)2∥v0∥2 + α2∥v1∥2 + 2α(1− α)∥v0∥∥v1∥ = [(1− α)∥v0∥+ α∥v1∥]2

= [LintInt(α, ∥v0∥, ∥v1∥)]2

A.4 The norm of the interpolation of a set of vectors is
smaller or equal to the norms interpolation

Given 8 vectors vijk (where i, j, k ∈ {0, 1}). We want to proof:

∀α, β, γ ∈ [0, 1] : ∥TriInt(α, β, γ, vijk)∥ ≤ TriInt(α, β, γ, ∥vijk∥)

Trilinar interpolation is a composition of linear interpolations (appendix A.1), therfore,
we only need to prove it for linear interpolation. Moreover, the demostrating the statment
is equivalent to prove it for the square of the norms. So, given two vectors v0 and v1 , we
need to prove that the square of the norm of their linear interpolation is less or equal to
the square of the linear interpolation of their norms. We pove it using the Cauchy-Schwarz
inequality.

∥LintInt(α, v0, v1)∥2 = (1− α)2∥v0∥2 + α2∥v1∥2 + 2α(1− α)vT0 v1 ≤

≤ (1− α)2∥v0∥2 + α2∥v1∥2 + 2α(1− α)∥v0∥∥v1∥ = [(1− α)∥v0∥+ α∥v1∥]2 =

= [LintInt(α, ∥v0∥, ∥v1∥)]2
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Appendix B

Convex Hull properties

B.1 The convex hull of a dilation of a set is the dilation of
its convex hull if the structuring element used by the
dilation is convex.

Given a convex structuring element X and any set C. We want to proof that:

CH(C ⊕X) = CH(C)⊕X

First we prove that ∀p p ∈ CH(C ⊕X) =⇒ p ∈ CH(C)⊕X:

p ∈ CH(C ⊕X) =⇒

=⇒ p =
∑
i

αi ∗ gi ∧
∑
i

αi = 1 ∧ gi ∈ (C ⊕X) =⇒

=⇒ gi = si + vi ∧ si ∈ C ∧ vi ∈ X =⇒

=⇒ p =
∑
i

αi ∗ gi =
∑
i

αi ∗ (si + vi) =
∑
i

αi ∗ si +
∑
i

αi ∗ vi =⇒

=⇒
∑
i

αi ∗ si ∈ CH(C) ∧
∑
i

αi ∗ vi ∈ X =⇒

=⇒ p ∈ (CH(C)⊕X)

Finnaly, we prove that ∀p p ∈ CH(C)⊕X =⇒ p ∈ CH(C ⊕X):
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p ∈ CH(C)⊕X =⇒

=⇒ p = q + v ∧ q ∈ CH(C) ∧ v ∈ X =⇒

=⇒ q =
∑
i

αi ∗ si ∧ si ∈ C ∧ v =
∑
i

αi ∗ v =⇒

=⇒ p = αi ∗ (si + v) ∧ (si + v) ∈ (C ⊕X) =⇒

=⇒ p ∈ CH(C ⊕X)
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