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Abstract

To compute PageRank in the classical model, it is supposed that
for some fixed probability d, a surfer jumps to a random node with
probability d (damping factor) and goes to an adjacent node with
probability (1 − d). In the personalized PageRank, a vector v (tele-
portation or personalized vector) is also considered. Then, the person-
alized PageRank is the unique probability eigenvector of the Google
matrix associated with the eigenvalue 1. The Google matrix, see [3],
is

G = (1 − d)P + d e v,

where P is the transition probability matrix and e is the all one vec-
tor. Some methods to compute the PageRank consider the M -matrix
I− G, which is singular and weakly diagonally dominant. Other mod-
els consider also a constant probability of remaining in the node, the

so-called lazy parameter that correspond to consider
I + P

2
instead of

P , then I − G is a diagonally dominant M -matrix and hence it is
nonsingular.

G is stochastic it is convex combination of the two stochastic matri-
ces S and ev> The fundamental centrality measure PageRank implic-
itly uses Schrödinger operators for its formulation, which corresponds
to use diagonally dominant M -matrices. This is due to the presence
of the damping parameter for the formulation of the ranking process.
Therefore, it is possible, to extend this centrality measure to gen-
eral Schrödinger operators; that is, to general M -matrices. We plan
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here to tackle a more realistic model with a wider range of applica-
tions. Specifically, we consider in each step of the random walk the
importance of both the present state and the state we want to reach.
Moreover, the lazy term can be considered as a function instead of a
parameter. This model appears when considering a transition proba-
bility matrix associated with a symmetric M -matrix (singular or not
singular); that is, we can erase the diagonally dominant hypothesis.

1 Introduction

The rapid growth of the World Wide Web has created a need for search tools.
(Let’s ask Google, how many searches does daily)
The first we found is that Google doesn’t share its search volume data, (2021)

...but I succeded to find a more recent data that says the number of Google
searches per day is 8.5 billion (american bilion) this is 8.5 times ten to nine.

This is aproximately almost ten thousand milion of searches per second, or
one daily search per inhabitant of the hole world.

8.5 × 109 searches

1day

1day

24hours

1hour

3600second
= 98379, 63

searches

1second
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2 Google’s PageRank algorithm

Why is it used by most of us? Why is it so efficient? One of the best-known
algorithms in web search is Google’s PageRank algorithm that consists in
obtaining a vector raiting the importance of web pages. This vector contains
the information of the long term behavior of the random surfer, for instance
if the value of the PageRank in pages i and j is respectively 0.35 and 0.01 it
means that the web surfer has visited page i 35% of the time and 1% of it
for page j. Thus, page i is more important than page j
We first model the web as a directed graphs whose nodes are each web page
and there is a link from node i to node j if it is possible to jump from page
i to page j.

3 The random surfer model

Imagine a web surfer who bounces along randomly following the hyperlink
structure of the web. That is, when he arrives at a page with several outlinks,
he chooses one at random, hyperlinks to this new page, and continues this
random decision process indefinitely. In the long run, the proportion of
time the random surfer spends on a given page is a measure of the relative
importance of that page. If he spends a large proportion of his time on
a particular page, then he must have, in randomly following the hyperlink
structure of the Web, repeatedly found himself returning to that page. Pages
that he revisits often must be important, because they must be pointed to by
other important pages. Unfortunately, this random surfer encounters some
problems. He gets caught whenever he enters a dangling node.
Therefore, the Page Rank convergence problems caused by sinks and cycles
can be overcome if H is modified slightly so that it is a Markov chain with
the desired properties stochasticity adjustment because the 0> rows of H are
replaced with 1/ne> As a result, the random surfer, after entering a dangling
node, can now hyperlink to any page at random.
Moreover the surfer can get bored or become ”lazy” o stop jumping for a
while, the meaning of parameter α is: the random surfer keeps traveling
through the web with probability α and with probability 1 − α decides to
remain.
It is known from the theory of Markov chains that for any starting vector the
power method applied to a a Markov matrix converges to a unique positive
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vector called the stationary vector as long as P is stochastic, irreducible and
aperiodic.
That is S = H + dv> The random surfer argument for the primitivity ad-
justment goes like this. While it is true that surfers follow the hyperlink
structure of the Web, at times they get bored and abandon the hyperlink
method of surfing by entering a new destination in the browser’s URL line.
When this happens, the random surfer, like a Star Trek character, “tele-
ports” to the new page, where he begins hyperlink surfing again, until the
next teleportation, and so on. To model this activity mathematically, Brin
and Page invented a new matrix G, such that G = αS+(1−α) 1

n
ee>, where α

is a scalar between 0 and 1. G is called the Google matrix. In this model, α
is a parameter that controls the proportion of time the random surfer follows
the hyperlinks as opposed to teleporting. Suppose α = .6. Then 60% of the
time the random surfer follows the hyperlink structure of the Web and the
other 40% of the time he teleports to a random new page.
The nonzero elements of row i correspond to the outlinks of page i whereas
the non zero elements of column i correspond to inlinks pages of page i.
Define the PageRank vector, a vector holding the global measure of impor-
tance for each page, to be the stationary vector for a Markov chain related
to P [2, 3]. This definition is intuitive, as the stationary vector gives the
long-run proportion of time the chain will spend in each state.
In the random surfer model let us look at the combinatorial Laplacian that
may be expressed as the difference between a diagonal matrix ( degrees)
and the (generalized) adjacency matrix. so L is irreducible iff the network is
connected.
From it we can obtain ∆ the probabilistic Laplacian by dividing each row
by the degree, so that the ∆ is equal to the identity minus a transition
probabilistic matrix, an stochastic irreducible an aperiodic(??).
So we know how to associate P with L which is irreducible, symmetric and
diagonally dominant, and λ = 0 is the lowet eigenvalue and ω = 1 is the
associated eigenvector.
Getting inspired with this fact, we consider a generalized Pλω associated with
Lq an irreducible symmetric M -matrix whose lowest eigenvalue is λ and ω
the corresponding eigenvector. By the way, according to Perron Frobenius’
theory, ω is a positive vector.
Who is Lq? is a positive semidefinite Schordinger matrix that can be written
as the sum of a Laplacian of a certain network and a diagonal matrix Observe
that there is no need for Lq to be diagonally dominant.
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Characterization of M matrices. This is a well know result, I would like just
mention.
As we related a transition probability matrix with a Laplacian matrix we
now relate an Schrodinger matrix with a transition probability matrix with
respect to λ an ω because the effective resistance is related with the escape
probability for a reversible Markov chain. Therefore, the effective resistance
with respect to a non-negative value and a weight will correspond to a gen-
eralization of the escape probability.

4 Questions/answers?

The advantage of using Schrödinger matrices, this is Schodinger operators is
that we can raise BVP in the sense that we can consider absorbing states
or lazy nodes. This situation may correspond to study not only Poisson
problems, but Neuman or Dirichlet problems or mixed.
If we associate the Schoringer matrix to a transition probability matrix w.r.t.
λ and ω, which is the role of the parameter λ is it like the responsible of
teledeportation.
See [6], [7],[3],[4], [2], [5], [1].
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