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Abstract: Banana (and plantain, Musa spp.), in sub-Saharan Africa (SSA), is predominantly grown as
a mixed crop by smallholder farmers in backyards and small farmlands, typically ranging from 0.2 ha
to 3 ha. The crop is affected by several pests and diseases, including the invasive banana bunchy top
virus (BBTV, genus Babuvirus), which is emerging as a major threat to banana production in SSA. The
BBTV outbreak in West Africa was first recorded in the Benin Republic in 2010 and has spread to the
adjoining territories of Nigeria and Togo. Regular surveillance, conducted as part of the containment
efforts, requires the identification of banana fields for disease assessment. However, small and
fragmented production spread across large areas poses complications for identifying all banana farms
using conventional field survey methods, which is also time-consuming and expensive. In this study,
we developed a remote sensing approach and machine learning (ML) models that can be used to
identify banana fields for targeted BBTV surveillance. We used medium-resolution synthetic aperture
radar (SAR), Sentinel 2A satellite imagery, and high-resolution RGB and multispectral aerial imagery
from an unmanned aerial vehicle (UAV) to develop an operational banana mapping framework
by combining the UAV, SAR, and Sentinel 2A data with the Support Vector Machine (SVM) and
Random Forest (RF) machine learning algorithms. The ML algorithms performed comparatively
well in classifying the land cover, with a mean overall accuracy (OA) of about 93% and a Kappa
coefficient (KC) of 0.89 for the UAV data. The model using fused SAR and Sentinel 2A data gave an
OA of 90% and KC of 0.86. The user accuracy (UA) and producer accuracy (PA) for the banana class
were 83% and 78%, respectively. The BBTV surveillance teams used the banana mapping framework
to identify banana fields in the BBTV-affected southwest Ogun state of Nigeria, which helped in
detecting 17 sites with BBTV infection. These findings suggest that the prediction of banana and other
crops in the heterogeneous smallholder farming systems is feasible, with the precision necessary to
guide BBTV surveillance in large areas in SSA.

Keywords: Musa; banana; plantain; smallholder farms; remote sensing; drones; machine learning;
disease surveillance; banana bunchy top virus; Africa

1. Introduction

Banana (and plantain, Musa spp.) is an important staple food for nearly 100 million
people and supports rural livelihoods and food security in sub-Saharan Africa (SSA) [1].
The crop is predominantly grown as a semi-perennial mixed crop along field boundaries
and backyards by smallholder farmers whose farmland holdings typically range from 0.2 ha
to 3 ha [2]. The FAO estimate suggests that the crop is cultivated across 6.7 million hectares
of land in SSA, representing 59.7% of the total global banana and plantain production
area [3]. However, due to the low productivity of this 6.7 t/ha, the total annual production
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of 48.5 million tonnes accounts for 29.8% of the global output [3]. Cultivation under
subsistence farming conditions, low soil fertility, and pests and diseases have contributed
to this low productivity.

Out of many diseases affecting banana production, the bunchy top disease caused
by the banana bunchy top virus (BBTV, genus Babuvirus) has emerged as a major con-
straint on banana production in SSA [4]. Within the past decade, BBTV spread has been
reported in at least six countries, with an outbreak in West Africa first reported in Benin
in 2011 [5], in 2012 in Nigeria [6], and in 2018 in Togo [7]. Recently, BBTV has spread to
East Africa, mainly Uganda [8] and Tanzania [9], indicating the further expansion of the
virus across the continent. The required ground-level scouting and extensive surveillance
required to identify BBT V-infected banana stands across a large area is a tall order due to
the fragmented nature of the plantations, including in backyards, unmanaged habitats,
abandoned plantations, and the fact that many farms are difficult to access due to a lack
of roads. BBTV surveillance, under such conditions, requires local individuals to guide
the survey teams to the banana fields. However, this approach has not only proven to be
difficult and time-consuming, but it is also often marked by the unintentional omission
of several banana farms, with implications for the representativeness of the incidence
mapping and full remediation of the disease within the target geography. This suggests
a critical need for alternative and reliable approaches to rapidly map banana lands in
order to support efficient BBTV surveillance, such as the use of high-resolution satellite
imagery and unmanned aerial vehicles (UAVs) for the mapping of banana fields prior to
disease scouting.

Satellite imagery has been used extensively in combination with machine learning
(ML) models to map vegetation and crop types on the local and regional scales [10-13].
For instance, MODIS satellite data are available at a spatial resolution of 250 m and well
suited for regional-scale mapping. However, Landsat and Sentinel 1 and Sentinel 2 data
possess an intermediate resolution (10-30 m) and have been widely used for landscape
mapping [13,14]. Commercial satellite technologies, such as IKONOS, QuickBird, and
WorldView multispectral imagery, have been successfully utilized for more detailed crop
mapping in precision agriculture [15,16].

The successful application of remote sensing products depends on the data charac-
teristics and the type of analytics applied. There are diverse ML techniques, comprising
conventional models, such as Random Forest (RF), Support Vector Machine (SVM), decision
trees (DT), and k-nearest neighbors (KNN), as well as deep learning and neural networks
models, such as convolution neural network (CNN) and multi-layer neural network (MLP).
ML algorithms accept various input predictor data, without assumptions about the data
distribution, in order to classify land cover types in remotely sensed imageries [1,17]. RF
and SVM are the two most common models that have been applied for cropland mapping
in various contexts due to their ability to handle high-dimensional spectral data for crop
and landcover classification [18-21].

Several studies have applied ML combined with satellite and drone imagery when
classifying crops [22,23]. For instance, ML algorithms and Sentinel 2A data were used to
identify crops such as soybean, rice, and maize in the Jilin Province of China, with a high
classification accuracy of >90% [20]. Multispectral Sentinel 2A data were used to classify
crop types and accurately distinguish between crops on the landscape scale in India [24].
Airborne orthophotos, combined with object-based image analysis, were used to detect
banana plants in order to aid in the BBTV eradication program in Australia [25]. A deep
learning model algorithm was developed in order to train drone imagery acquired in the
smallholder system of Rwanda to identify maize, beans, and bananas [26]. A combination
of UAV and other optical satellite imagery were used to detect bananas for banana disease
surveillance in Benin and the Democratic Republic of Congo (DRC) [27]. Recently, UAV-
based multispectral data were used for the automated detection of individual banana plants
in monocultures in Australia [12].
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Although these studies have demonstrated the utility of employing UAV and satellite
imagery data to map crops, limitations associated with the spatial resolution persist, espe-
cially in the case of smallholders’ patchy farm sizes in heterogeneous landscapes [28]. In
the banana-growing areas of West Africa, the operational use of optical satellite imagery
is limited by cloudy weather conditions, which degrade the quality of the images [29,30].
Persistent cloud cover during the cropping season prevents the acquisition of useable
optical imagery that captures the crop phenology for accurate mapping. On the other hand,
the utility of synthetic aperture radar (SAR) is unlimited throughout the crop cycle. SAR
imagery shows potential because it is not affected by weather and clouds and can discrimi-
nate between crop structural and geometric features. Many studies have demonstrated an
improved classification accuracy by integrating SAR imagery with optical data [30,31]. Yet,
limited knowledge exists regarding the potential value of combining this technique with
UAV-derived and Sentinel 2 imageries for land cover classification in complex smallholder
farming systems.

Therefore, this study was conducted in order to develop an operational banana map-
ping framework by combining UAV, SAR, and Sentinel 2 imagery with RF and SVM
analytics to identify bananas in heterogenous smallholder farming systems in SSA and to
use the maps to guide rapid and efficient BBTV surveillance in SSA.

2. Materials and Methods
2.1. Study Area

This research was carried out in an area of about 32,500 ha in four local government
areas (LGA) of Ogun State, Nigeria, where BBTV occurrence was first recognized in 2012 [6]
(Figure 1). The main trees and common arable crops cultivated in the region include cocoa,
oil palm, oranges, maize, cassava, banana/plantain, cowpea, and vegetables. Farmers
predominantly practice intercropping or mixed cropping, and monocropping is rare. The
land in this area includes evergreen lowland forest and deciduous woodland, with pockets
of agricultural land. The topography varies from nearly flat to moderately high slopes with
a mean elevation of about 60 m above sea level (masl) and a mean gradient of 16%. The
major soil types in this area are Lixisols, Nitisols, and Fluvisols [32]. The site is characterized
by a sub-humid tropical climate with a mean annual rainfall of about 1200-1300 mm, an
annual mean temperature ranging from 31.2 to 32.0 °C at the maximum, and a minimum
temperature of 22.3 to 23.1 °C. The rain starts around March and continues until the end of
October [33].

2.2. UAV Data Acquisition

A senseFly eBee X fixed-wing UAV (Sensefly, Cheseaux-Lausanne, Switzerland) was
used to acquire ultra-high-resolution images of the seven geographic sites (Figure 1c).
The UAV has a 116 cm wingspan weighing between 1.1 to 1.4 kg, fitted with a Parrot
Sequoia RGB and multispectral camera combined with four radiometric self-calibrating
sensors (green: 530-570 nm, red: 640-680 nm, red edge: 730-740 nm, and near-infrared:
770-810 nm), an integrated irradiance sensor (sunshine sensor) to synchronize the irra-
diance values with the onboard GPS, an inertial measurement unit (IMU), and a mag-
netometer. The ancillary real-time kinematic (RTK) positioning satellite navigation tool
was activated to enhance the precision of the position data derived from the satellite po-
sitioning systems during each UAV flight. The RTK activation achieved an accuracy of
about 3 cm without ground control points (GCPs). Preliminary surveys were conducted in
August 2020 and identified seven UAV flight mission sites based on the banana cultivation
diversity and intensity (Table 1). Subsequent flight missions were conducted between
9-12 December 2020, which coincided with the end of the rainy season, when the fields
contained the most arable crops that were mature for harvest. Of the seven UAV flight
areas, the largest was the Olokuta site (390 ha) and the smallest was Ipaja Road (117 ha)
(Table 1).
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Figure 1. (a) Geographic location of the study area in Nigeria. (b) Map of four local government areas
(LGAs) affected by the banana bunchy top virus (BBTV) in the Ogun state, Nigeria, where the area
used for banana and BBTV assessment is indicated by a black rectangle. (c) Natural color composite
of the Sentinel 2A map of the study area with markings of the seven UAYV flight sites (red outlines).
(1) Okoeye, (2), Olujere, (3) Erimi, (4) Olokuta, (5) Ipaja Road, (6) Ipaja Town, and (7) Igbeji.

Table 1. Details of the UAV flight sites, land area covered, and images collected during flight missions.

Flight Area Number of . .
S. No. Flight Site Coverage Multispectral (MS) Ple Is of th(;i\’[ os;l;edl MS
(Ha) and RGB Images mages (12 cm/Pixel)

1 Okoeye 140.7 5095 100,271,680
2 Olujere 234.3 6620 178,918,529
3 Erimi 132.5 5225 99,285,096
4 Olokuta 390 11,160 298,709,636
5 Ipaja Road 117.3 4125 75,646,024
6 Ipaja Town 243.9 6540 187,536,630
7 Igbeji 192.9 5265 142,513,653

Total 1451.50 44,030 1,082,881,248

Flight parameters similar to those described in Bohler et al. [34] were adopted, with
lateral and longitudinal overlaps set at 60% and 80%, respectively, to ensure optimal UAV
image overlap. The resolution per pixel ranged from 10 cm to 15 cm, while the flight
altitude ranged from 74.3 m/AED to 106.1 m/AED. The same standard protocol was used
for all the flight missions, and we took images of the physical radiometric targets before
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each flight. The eMotion software version 3.16 (Sensefly, Cheseaux-Lausanne, Switzerland)
was used for the flight planning and mission control. The UAV flew to pre-determined
waypoints according to flight plans pre-programmed using the eMotion software (AgEagle
Aerial Systems Inc., Wichita, KS, USA). The total area covered by the drone flight missions
for the seven sites was about 1450 ha, and about 44,030 multispectral and RGB images were
acquired during the various flight missions (Table 1).

2.3. UAV Image and Ancillary Data Processing

All images collected during UAV flight missions were processed using the eMotion
flight data manager. The optimized images were further processed using photogrammetric
imagery processing software, Pix4D Mapper (Pix4D SA, Lausanne, Switzerland), for the
image geo-tagging and correction of terrain and platform distortions. The irradiance values
obtained from the sunshine sensor were used to generate orthomosaics of the reflectance
data [16]. The reflectance bands produced were mosaiced at a spatial resolution of 12 cm.
A similar procedure was used to create ortho-rectified RGB mosaic images at a 2.5 to 3.5 cm
spatial resolution. The digital terrain model (DTM) and digital surface model (DSM) were
produced as ancillary data based on the structure of the motion point cloud (SfM) by the
Pix4D Mapper (Pix4D S.A., Prilly, Switzerland). The difference between the DSM and
DTM was used to obtain the height raster of the above-ground object, which was used to
discriminate between objects such as trees, buildings, and crops [35].

2.4. Sentinel 1 Image and Preprocessing

The eight C-band data (wavelength ~6 cm), formatted as interferometric wide (IW)-
swath single and dual polarization images acquired in all light and weather conditions
by the European Space Agency Copernicus program Sentinel 1 SAR satellites 1A and
1B between June and December 2020, were downloaded from the source website (https:
/ /scihub.copernicus.eu/dhus/#/home (accessed on 25 March 2021)), and the ground range
detected (GRD) products, level-1C images, were used (Table 2). We selected eight corre-
sponding SAR images of the study site of the banana-growing area at an incidence angle (0)
of about 30.9—46 and processed each image using the Sentinel Application Platform (SNAP)
software version 8. First, we conducted the precise orbit determination (POD) using the
orbit file and then conducted the terrain correction using a subset of the image within the
extent of the study area. After removing the thermal noise, radiometric calibration, geomet-
ric correction, and speckle filtering were performed [30,36]. The final image was converted
from linear to dB (logarithmic) format and exported to Geotiff format for further analysis.

Table 2. Details of Sentinel 1, SAR, and Sentinel 2A data acquired between June and December 2020.

Sentinel 1 (SAR) Sentinel 2A
Spatial
Parameters Aclglaltizit?(fns Band ID Rest()]lnu)tion
Azimuth 10 11 June 2020 1 (Coastal)—0.443 pum 60
resolution
Polarization Dual 17 July 2020 2 (Blue)—0.490 pm 10
(VV-VH)
Mode w 22 August 2020 3 (Green)—0.560 pm 10
Incidence angle ascending 15 September 2020 4 (Red)—0.665 um 10
30.9-46

27 September 2020 5 (Red Edge)—0.705 20

pm
21 October 2020 6 (Red Edge)—0.740 20

pm
8 December 2020 7 (Red Edge)—0.783 20

pm
8 (NIR)—0.842 um 10
8A (NIR)—0.865 pm 20
9 (Water)—0.940 um 60
10 (SWIR)—1.357 pum 60
11 (SWIR)—1.610 um 20
12 (SWIR)—2.190 pm 20

VV-VH = Vertical transmit and vertical receive and horizontal transmit and vertical receive. IW = interferometric
wide; NIR = near-infrared; SWIR = short-wave infrared band.
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2.5. Sentinel 2 Image and Preprocessing

The Sentinel 2A (S2A) images accessed were captured on 26 December 2020, as this was
the closest cloud-free temporal match with the UAV data obtained from 9-12 December 2020.
Sentinel 2A (52A) is one of the two polar-orbiting satellites in the same sun-synchronous
orbit, phased at 180° to each other. The S2A has 13 spectral bands at different spatial
resolutions (10, 20, and 60 m) (Table 2). Ten bands were used for the subsequent analysis,
excluding bands 1, 9, and 10 for aerosol, water vapor, and cloud monitoring. Using the
Sen2Cor toolbox in SNAP, we performed an atmospheric correction and used resampled
bands to obtain a 10 m/pixel resolution using the bilinear interpolation method.

2.6. Processing of Vegetation Indices

Vegetation indices (VIs) are crucial in image analysis for crop identification and land
cover classification [34-36]. VIs provides additional information from original spectral
reflectance bands to discriminate better vegetative and land cover types, including land-
cover characteristics such as soil brightness, crop stress, water content, and crop chloro-
phyll [37,38]. We generated thirty VIs from the original spectral reflectance bands to
identify vegetation and landcover classifications such as soil brightness, crop stress, wa-
ter content, and crop chlorophyll [35,36]. Due to the limited spectral characteristics of
the UAV data, only eleven UAV-based VIs were computed (marked with asterisks in
Supplementary Table S1). We used the function spectral indices from the RStoolbox package
within R software (Vienna, Austria) to calculate all the Vis [39,40].

2.7. Image Classification

The image classification was implemented based on the integration of various features
and data fusion. We assessed the performance of the ML classification models with regard
to the spectral bands, vegetation indices, and a combination of bands and indices derived
from the UAV, S2A, and SAR data (Table 3). The numbers of predictor variables used for
the different datasets for modeling purposes are shown in Table 3.

Geotagged photos were collected as reference field data during the UAV flight missions.
In addition, the on-screen digitization of the UAV RGB mosaics was performed with ArcGIS
10.7 software (ESRI, Redlands, CA, USA) [41] to obtain training polygons for different crop
and landcover classes. Training sample polygons for each UAV flight site were obtained for
seven landcover and crop type classes, including banana, cassava, maize, forest, grassland,
buildings, and bare ground/dirt road. The crop type and landcover classifications were
performed using the caret tool [42] within the R software [43]. The ground truth data were
split 70:30 into training and testing datasets using the createDataPartition function of the
caret package.

Table 3. List of parameters used for the image classification.

Number of Predictor

Data Series Data Combination Abbreviation Variables Used
1. UAV spectral bands and height UAV-B 5
2. UAV spectral indices and height UAV-VI 12
3. UAV spectral bands, indices, and height UAV-BVI 16
4 UAV sPectral' bands and indices, BVLH 15

excluding height
5. S2A spectral bands S2B 10
6. S2A spectral indices S2VI 27
7. S2A spectral bands and indices S2BVI 37
8. SAR data SAR 16
9. S2A spectral bands, indices, and SAR data S2BVI-SAR 53

2.8. Machine Learning Algorithms

Two commonly employed ML algorithms, RF and SVM, were explored for the banana
and landcover classification in the target area using the UAV, Sentinel 2, and SAR data. The
banana mapping workflow is shown in Figure 2.
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Figure 2. Workflow of unmanned aerial vehicle (UAV), synthetic aperture radar (SAR), and Sentinel

2 data processing for banana mapping.

2.8.1. Random Forest Classifier

The REF classification algorithm forms predictions by training several decision trees in
parallel through bagging [44], a process of stepwise bootstrapping followed by aggrega-
tion [45]. The R caret package was systematically used by comparing different algorithms to
implement various ML methods. RF has two major parameters, namely mtry (the number
of variables randomly sampled at each split) and ntree (the number of trees to grow), which
are tuned to obtain an accurate model. Parameter tuning was executed in order to optimize
the RF model performance within the R caret package. The parameter tuning involved a
10-fold cross-validation and was repeated thrice for each model. In addition, the ranger
package was used for the RF model. Parameter tuning was used to optimize the mtry, while
the ntree was held as constant at 500, and the minimum node size was 1. The optimal mtry
was achieved with the best accuracy and varied according to the number of input variables.

2.8.2. Support Vector Machine Classifier

SVM is a machine learning method based on the learning theory of statistics, where
decision boundaries accounting for the maximum separation between features are estab-
lished. For a two-feature problem, the margin or separation equates to the sum distances to
the hyperplane from the closest points of the two features [46]. The points closest to the
decision boundary are called support vectors. SVM works seamlessly for linearly sepa-
rable classes. However, the kernel concept is introduced for non-linear cases. The kernel
transforms the classes into a higher dimension to enhance the linear separability [46,47].

The SVM comprises four commonly employed kernel types: the radial basis function
(RBF) and the linear, polynomial, and sigmoid functions. This study used the Gaussian
radial basis kernel function within the R caret package. Two parameters, the cost (C) and
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gamma (y), were tuned using a 10-fold cross-validation and repeated three times to select
the best model.

2.9. Accuracy Assessment

We employed the Confusion Matrix function in the caret package to assess the per-
formance of the models. The procedure generated the overall accuracy (OA), producer
accuracy (PA), user accuracy (UA), and kappa coefficient (KC) required to evaluate the
model performance and accuracy of the resulting maps. Descriptions of OA and KC are
written in the equations presented below:

oA — (TP +TN)
~ (TP+ TN+ FN + FP)

1-0A

KC=1=-9—%

where TP and TN are the samples predicted as true positives and true negatives, FN and
FP are false negatives and false positives, and Pr is the probability of chance agreement.
The Wilcoxon rank-sum test, a nonparametric alternative two-sample t-test, was
performed to compare the RF and SVM models across all datasets [48]. The Wilcoxon
signed-rank test with continuity correction was carried out using the R software. In
addition, the Kruskal-Wallis rank sum test, a pairwise comparison used to identify the
significant pairings among the accuracies of the different datasets, was performed [49].
Variable importance to identify significant features contributing to the models’ per-
formance was computed using the Boruta package in the R software [50]. This procedure
enwraps the RF algorithm and iteratively eliminates the elements considered statistically in-
significant for the classification of the model performance [51]. Several studies have shown
that the Boruta package as one of the most accurate feature selection methods [52,53].

2.10. Evaluation of the Banana Land Cover Maps for BBTV Surveillance

The utility of the banana land cover map generated by the model established in the
study was assessed for the purpose of BBTV surveillance. The GPS coordinates of the
plantations evaluated in 2019 and 2020 were mapped in the landcover map to identify the
occurrence of banana fields in the vicinity of disease-affected plantations for the BBTV
assessment. A survey team identified about 40 plantations for BBTV assessment by visually
examining the plants for typical BBTV symptoms in August 2021. The data collected were
used to map the virus-affected and unaffected plantations.

3. Results
3.1. UAV Classification Performance across Locations and Datasets with the Two ML Models

The classification performance parameters of the four UAV datasets, namely UAV-B,
UAV-VI, UAV-BVI, and BVI-H, were compared across four UAV flight missions using
the RF and SVM models (Tables 4 and 5). The overall accuracies (OAs) exceeded 89%
(mean = 93%) for the datasets that included the height for both classifiers. The Kappa
coefficients (KC) were equally high, with a mean of 0.89 and range between 0.85 and
0.93 for the datasets that included the vegetation height. However, when height was
excluded from the input features of the two ML models, the changes in the OA values were
substantial. Overall, the OA values decreased from 8% to about 20% for the BVI-H dataset
across all the locations compared to the other UAV-derived datasets. The location appeared
to impact the performance of the models as well. For instance, the KC values for the RF
classifier declined from 0.87 to 0.69 at Olokuta and 0.91 to 0.75 at Igbeji (comparing UAV-
BVI to BVI-H) (Table 4). We observed a similar declining trend in the OA and KC values
using the SVM algorithm at all locations for the datasets in which height was excluded.
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Table 4. Performance of the Random Forest (RF) and Support Vector Machine (SVM) models applied
to UAV datasets in four sites in Nigeria.

. . RF SVM
Site Metric —7\v-B UAV-VI  UAV-BVI  BVI.H  UAV-B UAV-VI  UAV-BVI  BVI-H
Olok OA 89.9 88.9 90.0 778 89.4 89.3 89.4 77.0

okuta e 0.87 0.85 0.87 0.69 0.86 0.86 0.86 0.68
Tebeil OA 95.0 95.1 95.3 87.2 953 95.4 95.3 88.0
gbe) KC 0.91 0.91 0.91 0.75 0.91 0.91 0.91 0.76
Ipaja OA 91.9 92.4 91.9 70.7 92.4 924 9.4 73.9
Road KC 0.87 0.88 087 0.50 0.88 0.88 0.88 054
Tpaja OA 95.1 94.4 95.1 81.1 95.0 942 947 72.6
Town KC 0.93 091 092 0.71 0.92 091 092 059
Mean OA 93.0 927 93.1 792 93.0 9238 93.0 779
Mean KC 0.89 0.89 0.89 0.64 0.89 0.89 0.89 0.65

UAV spectral bands (UAV-B); UAV spectral indices (UAV-VI); spectral bands and spectral indices (UAV-BVI);
and spectral bands and indices excluding height (BVI-H). All datasets, except BVI-H, include crop height. OA =
overall accuracy and KC = Kappa coefficient.

3.2. Class-Specific Classification Performance for the UAV Datasets Using the Two ML Models

Using the BVI dataset for the crop classes (banana, cassava, and maize), we obtained
moderately high UA values, which ranged from 77.4 to 83.3% for the RF model and from
54.1 to 74.7% for the SVM at the Olokuta site (Table 5). The range of the UA values at Ipaja
Town showed a moderately accurate prediction, as it varied from 69.3 to 91.8% using the
REF classifier and from 52.8 to 91.4 for the SVM. Furthermore, the PA values across the crop
classes exhibited a similar pattern using the two classifiers for the BVI dataset. UA and PA
values obtained for the banana crop were consistently higher than 69% for the RF classifier,
outperforming the SVM classifier. Using the complete dataset (BVI), maize was the most
accurately classified among the three crops, followed by cassava.

For bananas, the exclusion of the canopy height (BVI-H) decreased UA values obtained
from the RF model from 77.4 to 49.1% at Olokuta and 69.3 to 14.1% at Ipaja Town. Similarly,
without BVI-H, the UA values obtained for the SVM classifier also declined from 74.7 to
35.4% at Olokuta and from 52.8% to 6.6% at Ipaja Town. Similar decreases were noted in
the cassava class across all the reference locations. The inclusion of the UAV-estimated
vegetation height data considerably improved the crop type classification in the study area.

Table 5. UAV user accuracy (UA) and producer accuracy (PA) for Random Forest (RF) and Support
Vector Machine (SVM) model performance.

Bare
Site Model Metric ~ Dataset Banana  Building Cassava  Forest Grassland Maize Ground/
Road
UA BVI 77.4 98.3 78.0 91.5 53.5 83.3 96.2
BVI-H 49.1 95.6 36.3 89.2 35.1 529 60.7
RF PA BVI 70.9 99.3 72.0 88.8 717 83.1 96.5
BVI-H 61.8 88.2 62.6 724 55.6 61.1 822
Olokuta
A BVI 74.7 97.6 715 91.0 61.4 54.1 96.5
U BVI-H 35.4 90.1 349 94.8 27.6 445 75.2
SVM PA BVI 74.3 99.2 75.2 88.4 63.0 81.1 94.0
BVI-H 68.1 91.9 68.6 68.0 60.5 56.5 72.4
UA BVI 69.3 99.9 80.4 97.2 95.5 91.8 99.6
BVI-H 14.1 96.5 32.6 89.9 75.6 93.4 98.4
RF PA BVI 77.5 100.0 81.9 97.3 94.6 91.9 99.8
Ipaja BVI-H 36.6 96.3 61.2 81.2 80.8 80.7 98.6
Town UA BVI 52.8 99.7 79.6 97.2 95.7 91.4 99.7
BVI-H 6.6 97.8 31.3 86.6 55.2 97.1 70.7
SVM PA BVI 80.6 99.9 80.2 97.1 94.2 90.3 99.8
BVI-H 21.2 57.6 459 77.5 73.1 60.1 98.8

BVI = spectral bands and indices, BVI-H = spectral bands excluding height (BVI-H). All datasets, except BVI-H,
include crop height.

The two ML models performed well in predicting the three non-crop classes (buildings,
forests, and bare ground /roads), with UA and PA values always higher than 95% based on
the BVI dataset. Among the non-crop classes, grassland was the most difficult to classify.
The UA and PA values ranged between 53.5% and 71.7% at Olokuta for the BVI dataset and
declined further after excluding the vegetation height (BVI-H). The spectral profile of the
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UAV multispectral reflectance bands extracted for the major landcover types is presented
in Supplementary Figure S2.

3.3. UAV RF and SVM Confusion Matrices by Crop Type and Other Land Use Types

The classification performance according to the class categories for the Olokuta site
was representative of the other sites. Therefore, only the confusion matrix for this site is pre-
sented here (Table 6). For the crop classes (banana, cassava, and maize), misclassifications
were uncommon with respect to the building and bare ground/road classes. However, the
RF and SVM models often misclassified the forest class as bananas. This was not a surprise,
considering that the cultivation of bananas often takes place under or near forest canopies
with other tree crops, such as oil palm, citrus, cocoa, and evergreen deciduous tree species.
The prediction maps generated by the RF and SVM classifiers are comparable (Figure 3).
The relative intensity of the banana presence per location corresponds to the ground-level
observations during the field mission. Both the RF and SVM classifiers predicted a similar
areal range of bananas at all sites. For the Igbeji site, the RF estimated the banana land area
as 44.74 ha, while SVM estimated it as 43.18 ha. At Ipaja Town, the RF estimated an area of
11.49 ha for the banana class, while SVM estimated 11.06 ha (Table 7; Figure 3).

Table 6. Confusion matrices of RF and SVM for the complete UAV dataset at the Olokuta site
in Nigeria.

Random Forest (RF)

Bare
Banana  Building Cassava Forest Grassland Maize Ground/ PA
Road
Banana 18,832 598 203 3134 3532 8 241 0.71
Building 27 81,934 0 23 28 0 464 0.99
Cassava 62 0 6186 1060 1270 11 0 0.72
Forest 4703 35 555 57,573 1737 0 249 0.89
Grassland 622 136 990 1097 8076 253 96 0.72
Maize 26 3 1 0 256 1551 29 0.83
Bare
ground /road 45 680 0 43 184 38 26,987 0.96
UA 0.77 0.98 0.78 0.91 0.54 0.83 0.96
0OA:90.0 and KC:87.0
Support Vector Machine (SVM)
Banana 18,173 206 87 2527 3300 0 168 0.74
Building 16 81418 0 6 56 0 570 0.99
Cassava 36 5 5677 984 845 1 0 0.75
Forest 4822 133 1075 57,256 1364 0 93 0.88
Grassland 1150 331 1086 1959 9267 796 131 0.63
Maize 40 86 10 3 61 1007 35 0.81
Bare
ground /road 80 1207 0 195 190 57 27,069 0.94
UA 0.75 0.98 0.72 0.91 0.61 0.54 0.96
0OA:89.4 and KC:86.0
PA = performance accuracy, KC = Kappa coefficient.
Table 7. Estimated banana area (ha) based on UAV and Sentinel 2 + SAR data.
Site UAV RF UAV SVM S2SAR RF S2SAR SVM
Igbebji 447 43.2 14.7 13.0
Olokuta 55.3 63.3 59.8 66.3
Ipaja Road 10.7 7.7 7.4 7.8
Ipaja Town 11.5 11.1 22.7 24.8

UAV RF and S2SAR RF = Random Forest (RF) models of UAV and S2SAR data, respectively. UAV SVM and
S2SAR = Support Vector Machine (SVM) models of UAV and S2SAR data, respectively.
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Figure 3. Model prediction maps for (a) Igbeji, (b) Olokuta, (c) Ipaja Road, and (d) Ipaja Town using
Random Forest (1) and Support Vector Machine (2) at four UAV flight sites. The predicted banana
crop area (ha) is indicated on the maps.

3.4. Random Forest and Support Vector Machine Classification Performance for Different Sentinel
2A and SAR Datasets

Compared to the classification results achieved with the Sentinel 2A and SAR datasets,
the S2BVI-SAR dataset performed best, with OA values of 89.8% and 89.0% for the RF and
SVM, respectively (Table 8). This is followed by the classification performance based on the
S2B datasets, with 88 and 86% OA values for the RF and SVM, respectively. Although the
Kruskal-Wallis test suggested that the OA values were significantly different between the
five Sentinel 1 and 2 datasets (p value < 0.00424), the observed significance was mainly due
to OA differences between S2BVI-SAR and SAR. The RF classification algorithm generally
outperformed the SVM for the five datasets with respect to the OA and KC, and the differ-
ences were significant according to the Wilcoxon signed-rank test (p value < 0.005761). The
lowest prediction performance was observed when only the SAR dataset was processed as
an input to the ML models. Overall, the S2BVI-SAR dataset generated the best classification
performance (OA = 89.8).

The classification accuracies per class varied, with UA values ranging from 100% for
the water class to 55.7% for bananas. Using the S2BVI-SAR dataset, the banana class was
the most accurately predicted among the three crop classes, with UA values of 83 and
74% and PA values of 77.7% and 72.8% for the RF and SVM classifiers, respectively. The
cassava class under this dataset configuration was the second most successfully classified
crop type. The SAR dataset generated low classification performance metrics. Specifically,
the SVM classified the banana class poorly, as the UA decreased from 74% to 28% and the
PA from 72% to 49%, relative to the accuracy achieved using the S2BVI-SAR dataset. The
performance was better with the RF classifier, as the UA value decreased from 83% to 64.3%.
Similar to the results of the UAV data, the confusion matrix (Supplementary Table S2)
shows that the banana was confused with the forest class. The spectral profiles of the
Sentinel 2A multispectral reflectance bands for the major landcover types are presented in
Supplementary Figure S3.

Our models accurately delineated roads, bare ground, water, and built-up areas
on the maps. Using the two maps (Figure 4), clusters of banana farms were identified
around the northeastern and southeastern parts of the study region. Banana plantations
were frequently detected as being concentrated around built-up areas, in correlation with
our field-observed knowledge, as backyard banana farming was common in the study
area. The estimated banana area predicted by the RF model was 2210 ha, slightly lower
than the 2262 ha predicted by the SVM classifier for the entire study area of 32,500 ha
(Figure 4). Maize and cassava were the two most essential arable crops in the study area
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and were scattered throughout the study sites. Both models performed accurately in the
discrimination of crop and landcover types in the study area based on the visual inspection
of both predicted maps. To illustrate the mapping accuracy, we conducted a comparison of
the predictions of RF and SVM using the UAV and combined Sentinel 2A and SAR data in
the Olokuta site, where banana production is high compared to the other sites, assessed
using UAV (Figure 5).

Table 8. User accuracy (UA) and producer accuracy (PA) of the Sentinel 2A and SAR integrated
dataset experiments.

Dataset Model  Metric Banana Building Cassava Forest Grassland Maize Grou]iﬁdr/eRoa 4  Water OA KC
RF UA 72.8 67.2 75.5 92.9 814 67.0 62.6 100 88.0 0.85

OB PA 76.0 85.1 75.5 91.9 80.3 62.4 60.4 100
SVM UA 51.5 64.1 66.0 93.2 79.2 70.2 60.4 100 85.9 0.82

PA 59.0 79.6 71.7 91.5 783 59.8 54.9 100
RF UA 71.1 68.0 70.5 93.9 79.4 60.7 61.9 100 87.3 0.84

SoVI PA 67.6 87.0 69.5 92.4 82.2 58.9 58.1 100
SVM UA 57.0 64.8 61.5 92.7 77.7 72.8 62.6 100 85.9 0.82

PA 60.4 83.0 66.5 90.9 80.2 58.2 60.4 100
RF UA 74.5 64.1 75.0 93.6 79.0 61.8 63.3 100 87.6 0.84

SOBVI PA 68.4 84.5 71.1 92.6 82.8 63.8 56.1 100
SVM UA 55.7 64.1 63.5 93.1 77.3 70.7 61.2 100 85.8 0.82

PA 60.6 80.4 69.8 90.7 79.4 58.2 57.0 100
RF UA 64.3 46.9 65.5 84.6 48.8 54.5 24.5 100 773 0.70

SAR PA 76.3 83.3 63.9 69.5 51.0 77.6 35.1 100
SVM UA 28.1 492 55.5 844 48.6 50.3 27.3 99.5 74.1 0.66

PA 49.3 62.4 53.4 67.4 51.7 70.6 35.5 99.9
RF UA 83.0 68.0 78.5 93.7 81.8 76.4 65.5 100 89.8 0.87

S2BVI- PA 77.7 84.5 78.1 93.0 84.8 72.3 61.9 100
SAR SVM UA 74.0 64.8 76.5 94.1 82.4 75.4 64.0 100 89.0 0.86

PA 72.8 80.6 732 929 86.2 67.6 63.6 100

UAV RF and S2SAR RF = Random Forest (RF) models of UAV and S2SAR data, respectively. UAV SVM and
S2SAR = Support Vector Machine (SVM) models of UAV and S2SAR data, respectively. OA = observed accuracy;
KC = Kappa coefficient.

[ Banana
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[ cassava

[ Forest

[ Grassiang

[ maizs

I =orearoundiroae
Wistar

Total area :
32,465 Ha

Figure 4. Prediction maps of the combination of the optical and SAR datasets by Radom Forest
(left) and Support Vector Machine (right) models in the Idologun region, Ogun state in Nigeria.
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Figure 5. Comparison of the predictions of the Random Forest (RF) and Support Vector Machine
(SVM) models for the UAV and Sentinel 2A data, fused with SAR data, in a high-density banana
production site (Olokuta, Nigeria).

3.5. Use of a Banana Predictor Map for BBTV Surveys

The GPS coordinates of the locations of the banana farms investigated for BBTV oc-
currence between 2019 and 2020 were mapped onto the predicted map, developed by
combining the optical and SAR datasets using the banana mapping workflow established
in this study (Figure 6). The predicted map revealed several banana fields in the landscape,
many of which were not investigated for BBTV during the previous surveys. Surveys con-
ducted in about 40 new sites selected using the banana predicted map (marked with black
circles in Figure 6) in August 2021 revealed BBTV occurrence in 17 new sites (Table 9). This
case illustrates the benefits of the predicted map for the rational planning of surveillance
locations, including the identification of sites in the vicinity of the disease with the greatest
need for the implementation of containment measures.

Table 9. Summary of banana field sites surveyed for the occurrence of BBTV in the Idologun region
of Ogun State, Nigeria.

Plantations with Plantations without .
Year BBTV BBTV Total Plantations
2021 * 17 23 40
2020 117 93 210
2019 37 13 50
Total 171 129 300

* Survey sites identified using the banana map generated from the mapping framework established in this study.

The ML models established in this study were inadequate for identifying BBTV-
infected shoots using UAV or satellite imagery due to insignificant differences in the
spectral profiles. The BBTV symptoms constitute the severe shortening of the pseudostem
and petioles and narrowing of the leaf lamina, with pale yellow margins (Figure 7). The
infected shoots often coexist with a mix of asymptomatic or moderately symptomatic shoots,
which are shrouded by the canopy of tall-growing shoots and escape ready detection by
satellite and drone imagery (Figure 8). However, images of the symptomatic plants on the
ground level clearly expose the symptomatic plants (Figure 7). However, capturing images
from the ground angle is impossible with the UAV flight path used in the study. Therefore,
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we limited our efforts to the accurate identification of the banana plants and use of crop
maps to guide the disease surveillance.

B BBTY present
A NoBBTV

B NoBBTV
Banana
Building
Cassava
Forest
Grassland
Maize

Bareground/road|

Figure 6. Prediction of banana and other land cover types on the sites of BBTV occurrence in the
Idologun region in Nigeria. New survey areas for BBTV surveillance identified using the banana
mapping framework developed in this study are shown in black circles.

3.6. Feature Importance of the Predictor Variables

The ranking of the predictor variables of RF (Supplementary Figure Sla-d) shows that
the dual polarization image acquired in November (NOV-VH) was the best predictor of the
crop types and landcover in the study area, followed by the images obtained in August
(AUG-VV and AUG-VH). The RED band was the most influential predictor when Sentinel
2A bands were processed as the input data for the RF model (Supplementary Figure S1b).
The shortwave infrared bands (SWIR1 (1.55-1.75 um) and SWIR2 (2.08-2.35 um) were the
second-best predictive indicators for the crop type and landcover mapping of the study
area. Following these were the GREEN and REDEDGE1 bands. Unexpectedly, the BLUE
band ranked higher than the remaining two REDEDGE bands, probably due to water
bodjies in the study area.
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Figure 7. A few examples of banana bunchy top virus (BBTV)-infected banana mats in the farmers’
fields and backyards in the study area, captured in December 2020. Pseudostems with typical BBTV
symptoms are indicated in red circles, and asymptomatic/uninfected banana shoots are indicated
in yellow rectangles. BBTV-symptomatic plants are severely stunted, with narrow leaf lamina, and
resemble suckers (young side shoots emerging from the pseudostem base). Images were taken
manually using a 12-megapixel RGB camera from the ground level.

Figure 8. UAV RGB images of banana fields captured at an altitude of ~100 m during UAV flight
missions in December 2020 in the Olokuta site in the Idologun region of Ogun State, Nigeria. The
BBTV-infected plants were identified based on the ground survey in December 2020. The locations of
BBTV-infected plants are shown with red circles.
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Supplementary Figure Slc presents the importance scores of the vegetation indices
derived from the Sentinel 2A optical data as the input to the RF model. The two most
significant features in classifying the landcover types in the study area were the two
shortwave-based vegetation indices, the normalized burn ratio index (NBRI) and nor-
malized difference water index 2 (NDWI2). The third most important indicator was the
modified chlorophyll absorption ratio index (MCARI), based on red, red-edge, and green
bands. This result was not unexpected, since the red, green, and red-edge bands held the
top ranks among the influential sentinel 2A bands. Closely following the first three ranks,
the subsequent two vegetation indices substantially contributing to the model predictions
were the soil-adjusted total vegetation index (SATVI) and the specific leaf area vegetation
index (SLAVI). Both are similarly related to the shortwave and red bands. Firstly, these
results demonstrate the significance of the two shortwave infrared bands (SWIR1 and
SWIR?) included in the Sentinel 2A satellite. Secondly, the red band played a critical role in
the model performance in the study area. Consequently, these bands” importance featured
prominently in their indices. Finally, the normalized difference vegetation index (NDVI)
was moderately beneficial to the land use and crop type classification in the study area.

Importance ranks among the UAV-data-derived features are shown in
Supplementary Figure S1d. The vegetation height was the most significant layer that
influenced the crop type prediction performance in the study area by a wide margin. Fol-
lowing this were the REDEDGE, NIR, and GREEN bands, in that order of importance. The
most influential vegetation index, MCARI, derived from the REDEDGE, green and red
bands, ranked fifth among the key predictive indicators. Surprisingly, the popular NDVI
was not among the top ten crop type and land cover predictors in this study, as it ranked
12th. Recently, authors have noted the superior significance of the other spectral indices
compared to the traditionally known NDVI [26,54].

4. Discussion

Banana is a crop of social and economic importance in SSA. However, its production is
adversely affected by many emerging pests and pathogens, such as BBTV, banana bacterial
wilt, and fusarium tropical race 4. Timely and accurate surveillance is needed to prevent
the spread of these emerging diseases in Africa. However, this requires a methodological
workflow that can be used to identify and detect banana plantations in heterogeneous
smallholder farming systems for targeted surveillance, risk prediction, and modeling. In
this study, we explored UAV data and other satellite products, such as Sentinel 2A and
SAR, to predict the location of banana crops, leveraging the ML classifier models.

4.1. Banana Detection with UAV Data Using RF and SVM Models

The multispectral UAV data classification showed that banana can be mapped accu-
rately using ML models and other land cover classes, such as buildings, cassava, forests,
grassland, maize, and bare ground/roads. The classification outputs are reliable and use-
able, notwithstanding the different combinations of UAV data (including the vegetation
indices, spectral bands, and crop heights derived from the UAV, DSM, and DTM). For
instance, the mean, with the inclusion of the vegetation height, was 93% for both classi-
fiers, while the KC was around 0.89. These results are consistent with previous research
findings [26], which reported a high mean accuracy (86%) when identifying crop classes
with deep neural networks and transfer learning using UAV-based imagery acquired in
smallholder agricultural lands in Rwanda. Similarly, a high OA value (97%) was reported
after applying the ML models combined with UAV and other satellite imagery products
to detect banana plants under mixed, complex African landscapes [27]. Additionally, the
convolutional neural network (CNN) technique was used to detect bananas in Thailand,
with accuracies ranging from 75.8 to 96.4 [55]. Deep learning methods were used to ex-
tract apple tree crowns with UAV data, with 91 and 94% accuracies [56]. The accuracies
obtained in our study are comparable to those of these studies. For instance, the OAs of the
different variants of the UAV data varied from 89 to 95% for both RF and SVM, whereas
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the integration of Sentinel 2A and SAR resulted in the OAs of 89.8 and 89.0 for RF and
SVM, respectively.

Our findings suggest that any of the datasets could be utilized to achieve accurate
UAV-based predictions of banana and other crop types in the diverse smallholder farming
system in the study area. However, the processing times increased significantly as the
number of bands increased for the model training and the prediction of very-high-spatial-
resolution (10-15 cm) UAV data. Using the minimum dataset of UAV-B (four layers of
UAV data and height) would likely be more efficient for the operational use of UAV data
for banana plant detection compared to the UAV-VI (15 layers of spectral indices and
canopy heights) or the combination of both spectral bands and VI (19 bands). However,
ML models with only spectral bands and indices, without height data, failed to produce a
reliable accuracy, as the OA and KC reduced significantly. The mean OA across the four
sites decreased from around 93% to 78%, and the KC values likewise declined from 0.89 to
about 0.64 when the vegetation height was excluded from the input features for the RF and
SVM classifiers. Furthermore, the performance of the two models showed no remarkable
differences between the three datasets that incorporated height measurements, suggesting
that using UAV multispectral bands and vegetation indices separately or in combination
does not improve the classification accuracies, as demonstrated in this study. However, the
integration of the height measurement into the UAV multispectral imagery significantly
enhanced the performance of the two classifiers.

Most of the previous studies that have used UAV-derived data for crop or land use
classification have focused on spectral and vegetation indices, with little or no emphasis
on the canopy height data. However, this study found that canopy height data from UAYV,
DSM, and DTM proved remarkably significant in improving the classification accuracy.
Similar observations were reported in previous reports on the use of height and coverage
indicators for crop growth monitoring [16,57]. Kedia et al. [54] reported that incorporating
the UAV-derived canopy height feature considerably increased the OA from 80 to 93%
while mapping invasive vegetation species in arid regions of the USA. There is a noticeable
variation in the canopy height of bananas compared to other crops and landcover categories
in the study area. Such contrasts can influence the reflectance signals from the canopy,
with pronounced discriminating features that can complement the color spectra of the
vegetation. This supports the notion that structural features and spectral profiles are
essential for banana detection and rapid mapping.

This study’s feature importance ranking shows that the most widespread vegetation
index (NDVI) was not a critical discriminator of the crop and landcover types. This is likely
due to the saturation of the red spectral band when the vegetation classes are in the peak
green period during the cropping season [58]. Therefore, the other spectral indices, such as
MCARI, SAVI, and GNDVI, based on a combination of green, red-edge, and red spectral
bands, were better predictors of the landcover classification.

4.2. Crop Type and Landcover Classification with Sentinel 2A and SAR Data

We successfully utilized the different spectral and vegetation indices of Sentinel 1
and 2 data to detect and classify bananas in heterogenous agro-ecological landscapes. By
isolating the shortwave infrared, red, and green bands as critical spectral features for
the crop classification in the study area, we narrowed down the relevant indices (such
as the NBRI, SLAVI, SATVI, and NDWI2) for the prediction of crop/land cover classes.
Several studies have highlighted the efficacy of the shortwave infrared bands in landcover
discrimination [59]. SWIR-based indices are sensitive to vegetation structures and can
highlight substantial dynamic changes [60]. Although all the S2A bands and indices tested
were applicable to the classification of crops in the study, the NIR and associated indices
were among the least important indicators.

The potential of high-resolution UAV-RGB aerial images for simultaneous banana
localization and disease classification, with an accuracy of 90 to 99%, was demonstrated
in Benin, and DR Congo [27], which shows the feasibility of remote sensing approaches
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to disease detection in the field. However, the model developed was insufficient for
identifying banana plantations with BBTV-symptomatic shoots using the UAV and SAR
data. The canopy cover of healthy banana plants or weeds and wild plants often shroud
the severely stunted BBT V-infected shoots, leading to an insufficient resolution for infected
plant detection based on aerial imagery. The detection infected plants using UAV or
SAR imagery may be possible in monoculture plantations due to the better exposure
of symptomatic plants. However, we could not test this hypothesis due to the lack of
monoculture farms with BBTV infection in the study area.

The best overall classification accuracy of the banana crops in this large area was
achieved using optical Sentinel 2A and SAR data. A similar approach was used to classify
winter wheat in southern China, with a 98% accuracy [51]. Regarding the model perfor-
mance, the classification metrics of the RF classifiers were slightly better than those of
SVM. This could be associated with the model’s capacity to generate multiple paths with
different variables (as tree ensembles) to optimize the prediction and discrimination within
and between classes [52]. The application of these tools and integration of S2A and SAR
datasets provide a promising outlook for the monitoring of the banana production area in
order to target relevant areas for banana disease surveillance on a regional or national scale.
The banana mapping model developed aided in the selection of survey sites and guided
the surveillance efforts for the early detection and eradication of BBTV in Togo [7], as well
as the subsequent surveillance design used to verify that other banana production regions
were free of BBTV.

5. Conclusions

In this study, we developed a mapping framework for banana detection in a small-
holder complex system using UAV, Sentinel 2A, and SAR data. UAV images were used to
create spectral orthomosaics and develop a digital surface model, a digital terrain model,
and a canopy height model. From the UAV spectral features, we derived a suite of vegeta-
tion indices and developed the RF and SVM models with or without the canopy height in
order to distinguish between banana, cassava, maize, and other landcover types. The RF
and SVM models with vegetation height features performed with an average OA of 93%,
while the model without the canopy height exhibited a much lower OA of 78%. From this
observation, we conclude that structural height features are essential for crop delineation
using the UAV-based predictors.

We used Sentinel 2A optical and SAR data to improve banana detection on a regional
scale. We computed several vegetation indices and developed various RF and SVM models
from the suite of resulting datasets. The SAR data alone resulted in a classification accuracy
of around 76%, compared to the 90% accuracy achieved by integrating the optical and
SAR data. These findings suggest that the prediction of banana, along with other crops,
in mixed, complex smallholder systems is feasible, with a reasonable level of precision
necessary to guide targeted BBTV surveillance. Further studies are necessary in order
to improve the model capacity, so as to differentiate between BBTV symptomatic and
asymptomatic plantations.
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