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Abstract: Robots that can learn in the physical world will be important to en-
able robots to escape their stiff and pre-programmed movements. For dynamic
high-acceleration tasks, such as juggling, learning in the real-world is particularly
challenging as one must push the limits of the robot and its actuation without
harming the system, amplifying the necessity of sample efficiency and safety for
robot learning algorithms. In contrast to prior work which mainly focuses on the
learning algorithm, we propose a learning system, that directly incorporates these
requirements in the design of the policy representation, initialization, and opti-
mization. We demonstrate that this system enables the high-speed Barrett WAM
manipulator to learn juggling two balls from 56 minutes of experience with a bi-
nary reward signal. The final policy juggles continuously for up to 33 minutes or
about 4500 repeated catches. The videos documenting the learning process and
the evaluation can be found at https://sites.google.com/view/jugglingbot
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1 Introduction
Robot learning is one promising approach to overcome the stiff and pre-programmed movements
of current robots. When learning a task, the robot autonomously explores different movements and
improves its behavior using scalar rewards. In recent years, research has focused a lot on improving
task-agnostic deep reinforcement learning (DRL) algorithms by changing either the optimization
[1, 2], the simulation to use perturbed physics parameters [3, 4], or the task to gradually increase
complexity [5]. While these approaches have propelled learning robots to very complex domains in
simulation, ranging from full-body control of humanoids [6] to control of dexterous hands [7, 8],
most of these approaches are not applicable to learn on physical systems as they neglect the intricate
complexities of the real world. On the physical system, the learning is constrained to real-time and
a single instance. Hence, the learning must not damage the robot with jerky actions and must be
sample efficient.

Consider the high-acceleration task of juggling two balls next to each other with a single anthro-
pomorphic manipulator. The manipulator is required to throw a ball upwards, move to the right,
catch and throw the second ball and return to the left in time to catch the first ball. To sustain
this cyclic juggling pattern, the robot must always throw the ball sufficiently vertical and maintain
precise timing. Therefore, this task pushes the limits of the robot to achieve the required high ac-
celerations (of up to 8g), while maintaining precise control of the end-effector and the safety of the
physical system. The task is not only inherently difficult to master1 but also requires learning on the
physical system. Real-world experience is required as simulation models, while good at simulating
contact-free rigid-bodies, cannot represent the non-linear effects close to the torque limits of the
actuators and the highly dynamic contacts between end-effector and balls. For the tendon driven
Barrett WAM, rigid-body-simulators also cannot model the dominating cable dynamics at high ac-
celerations. Hence, simulation-based solutions cannot be transferred for very dynamic tasks given
our current simulators. For this specific task even robot to robot transfer between robots of the same

∗Equal contribution
1For reference, the untrained human jugglers of the lab achieve 2 repeated catches and improve to about 20

repeated catches after a few hours of training.
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Figure 1: The juggling movement consisting of four separate movements, which are repeated to
achieve juggling of two balls with a single anthropomorphic manipulator: (a) throw ball 1, (b) catch
ball 2, (c) throw ball 2, (d) catch ball one, (e) repeat.

model is not possible. The learned policy fails immediately when transferred to a different Barrett
WAM. Therefore, the optimal policy depends on the exact robot instance and must be learned on the
individual robot. The high accelerations amplify the safety and sample efficiency requirements for
learning on the physical system as collisions at high velocities severely damage the system. Further-
more, the high acceleration movements induce a lot wear and tear and cannot be executed for days.
Therefore, high acceleration tasks are an ideal problem to test the limitations of current learning
algorithms on the physical system.

To emphasize important considerations for building a real-world learning system for high-
acceleration tasks, we describe our robot learning setup to learn juggling and the taken system
design considerations. We limit ourselves to existing methods to focus solely on the requirements
for the real-world application of current learning approaches. This is in contrast to many prior works,
which mainly propose new policy representations or policy optimizations and demonstrate that the
new algorithm can be applied to the physical system. Instead, we focus on a single challenging task
and evaluate which existing representations and algorithms can be used to build a safe and sample
efficient robot learning system. We also highlight limitations of learning approaches, which - given
the current knowledge - we do not dare to apply to the physical system for robot juggling. After-
wards, we describe one approach to solve robot toss juggling with two balls and an anthropomorphic
manipulator and validate the chosen approach in the real-world. The used approach - in our opin-
ion - optimally combines engineering expertise and learning to obtain a reliable, safe, and sample
efficient solution for this task.

Our contribution is (1) the application of robot learning to the challenging task of single-arm toss
juggling with two balls and (2) highlighting the challenges of applying a learning system in the
physical world for a high-acceleration task. In the following, we first cover the prior work on robot
juggling and learning dynamical tasks on the physical robot in Section 2. Afterwards, we compare
different approaches to learn real-world toss juggling in Section 3 and describe the implemented
learning system in Section 4. The experimental setup and results are presented in Section 5.

2 Related Work
2.1 Robot Juggling
For decades robot juggling has been used to showcase the ingenuity of mechanical system design and
control engineering as listed in table 1. Starting with Claude Shannon in the 1970s, many different
juggling machines were built.2 For example, the Shannon juggler used cups to bounce up to five balls
off a surface [9], the devil-sticking machine stabilized a stick in the air [10, 11], paddle jugglers, built
from designated hardware [12, 9] or by attaching tennis rackets to manipulators [13, 14, 15, 16, 17,
18, 19], juggled multiple balls using paddling. Toss jugglers were built using manipulators to juggle
one [20, 21] or two balls [22] and even humanoids were used to juggle up to three balls using two
arms [23, 24]. Most of these approaches proposed new engineering solutions for movements and
controllers showing that these systems achieve juggling when the control parameters are manually

2A historic overview of robot juggling is available at https://www.youtube.com/watch?v=
2ZfaADDlH4w.
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fine-tuned. Only a few approaches used supervised learning for model learning [14, 11], behavioral
cloning [18], or evolutionary strategies with dense fitness functions [25] to achieve paddle juggling
and devil sticking. We build upon the vast experience on end-effector and controller design for
robot juggling but in contrast to the prior work, we demonstrate, to the best of our knowledge, the
first robot learning system that learns toss juggling with two balls and a single anthropomorphic
manipulator in the real world using only binary rewards. Using this approach, we achieve juggling
of up to 33 minutes and high repeatability between trials.

Table 1: Prior work on different types of robot juggling
Juggling Type Approach Papers
Devil Sticking Engineered [9]
Devil Sticking Model Learning [11]
Paddle Juggling Engineered [15, 16, 9, 17, 12, 19]
Paddle Juggling Imitation [18]
Paddle Juggling Model Learning [14]
Paddle Juggling Evolutionary Strategies [25]
Toss Juggling Engineered [22, 24, 23, 21, 20]
Toss Juggling Reinforcement Learning [Ours]

2.2 Learning Dynamical Tasks on the Physical Robot
Despite the recent surge of deep reinforcement learning algorithms for controlling robots, most of
these approaches are constrained to learn in simulation due to sample complexity and the high risk
of catastrophic policies. Only relatively few DRL approaches have been applied to physical robots,
e.g., robot manipulators [26, 27, 8, 28, 29, 30] or mobile robots [31, 32]. Most of the work for
manipulators focuses on non-dynamic tasks. Only Schwab et al. [30] and Büchler et al. [33] ap-
plied DRL to learn the dynamic tasks of Ball-in-a-Cup or robot table tennis. In [30], the authors
built a fully automated environment to achieve large-scale data collection and engineered classical
safety mechanisms to avoid damaging the physical system. Using the safe and automated environ-
ment, SAC-X was able to learn Ball-in-a-Cup from raw pixels within three days [30]. Most other
approaches for learning dynamical tasks on the physical system use more classical robot learning
techniques. These algorithms combine engineering- and task knowledge with learning to achieve
sample efficient and safe learning that does not require completely safe and fully automated envi-
ronments. For example, combining model learning with trajectory optimization/model predictive
control [34, 8, 11] or model-free reinforcement learning with engineered policy representation, ex-
pert policy initialization, and dense rewards [35, 36, 18, 37, 38]. In our work, we extend the classical
robot learning approach to a robot learning system that learns the high acceleration task of juggling
with designed feature representations, expert policy initialization, and binary rewards instead of
dense rewards. We also discuss the necessary design decisions that incorporate engineering and task
expertise to achieve safety and sample efficiency. This focus is in contrast to most prior work as
these mostly highlight the details of the learning algorithms but not the many engineering details
that enable learning on the physical system.

3 System Design for High-Acceleration Tasks
Designing a robot learning system for robot juggling can be approached from different learning
paradigms with different benefits. In the following we briefly discuss these trade-offs to motivate
our approach presented in section 4.

3.1 Model-based vs. Model-free Learning
To minimize the wear and tear during the high acceleration movements and minimize the manual
resets of picking up the balls, one desires to learn with minimal trials. Commonly model-based
reinforcement learning (MBRL) methods are much more sample efficient compared to model-free
reinforcement learning (MFRL) [39, 40]. However, MBRL requires to learn an accurate model
describing the system such that the optimal policy transfers to the real system. For the considered
task of robot juggling, the model would need to accurately describe the rigid-body dynamics of the
manipulator, the stiction of the cable-drives, the contacts of the end-effectors with the balls, and the
ball-movement. The model would also need to be robust to out-of-distribution model exploitation
to avoid optimizing a spurious and potentially harmful solution. Out-of-distribution exploitation
is especially challenging for deep networks as the networks do not generalize well to previously
unexplored states and this may result in unpredictable behaviors potentially damaging the system.
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We are not aware of a model-learning approach that can capture the different phenomena ranging
from multi-point contacts to low-level stiction with sufficiently high fidelity and are robust to out of
distribution generalization. Therefore, we resort to a MFRL approach. Besides the theoretical as-
pects, the practical implementation of observing the necessary quantities to construct such accurate
models is challenging by itself, e.g., the collisions of the ball and end-effector are obscured by the
end-effector and hence not observable.

3.2 Open-Loop Policy vs. Closed-Loop Policy
Closed-loop policies are favorable for robot juggling as the interactions between the end-effector
and ball are not consistent. A closed-loop policy could recover from these irregularities. Learning a
closed-loop policy for juggling is non-trivial as one closes the loop on noisy ball observation. The
noisy observations or potential outliers might cause the system to become unstable. The unstable
behavior might cause the robot to hit its joint limits with high momentum and severely damage the
system. One would need to guarantee that the closed-loop policy is stable for all possible obser-
vations including many edge-cases. For the pre-dominant closed-loop deep network controller of
deep reinforcement learning, the stable behavior cannot be guaranteed. Especially as the out of dis-
tribution prediction for networks is undefined. Currently, to the best of our knowledge, no network
verification process for complex closed-loop systems exists. Therefore, we currently do not dare to
apply a real-time closed-loop network policy to the physical system where the network is expected
to execute accelerations of up to 8g.

Instead we are using an open-loop policy consisting of a desired position trajectory and a tracking
controller. This representation is sufficient for the task as well trained jugglers can juggle basic
patterns blindfolded and prior literature [9, 11, 17] has shown the stability of open-loop juggling
robots. A naive but sufficient safety verification of this policy can be achieved by the stability of the
tracking controller and by enforcing tight box constraints in joint space for the desired trajectory.
For the juggling setup the box-constraints prevent self-collisions and hitting the joint limits. Hybrid
approaches that adapt the desired trajectory in closed-loop w.r.t. to ball observations exist. We also
tried a naive local adaption of the desired trajectory using a task-space controller but this adaptation
even reduced system performance. The system would adapt to the balls during catching but could
not throw straight afterwards. As the open-loop policy already achieved high repeatability and long
juggling duration, we did not investigate more complex hybrid policies further.

4 System Implementation
4.1 Policy Representation
The probabilistic policy is defined by a normal distribution N (θ;µ,Σ) over via-points in joint
space. Each parameter θ = [q0, . . .qN , q̇0, . . . , q̇N , t0, . . . , tN ] corresponds to a possible juggling
movement consisting of a via-point sequence. Each via point is defined by the position qi, velocity
q̇i and duration ti. To execute the movement, the via-points are interpolated using cubic splines
and tracked by a PD controller with gravity compensation. Therefore, the motor torques at each
time-step are computed by,

τ = KP(qref − q) + KD(q̇ref − q̇) + g(q)

with qref(t) =

3∑
j=0

ai,j (t− ti,0)j , q̇ref(t) =

3∑
j=1

j ai,j (t− ti,0)j−1, ti,0 =

i−1∑
k=0

tk

the control gains KP and KD and the jth parameter of the ith spline aij . The gains are set to be
low compared to industrial manipulators to achieve smooth movements. The spline parameters are
computed using the via points by

ai,0 = qi, ai,1 = q̇i, ai,2 = 3 (qi+1 − qi) t2i − (q̇i+1 + 2q̇i) ti,

ai,3 = 2 (qi − qi+1) t
3
i + (q̇i+1 + q̇i) t

2
i .

We initialize the parameters with expert demonstrations to reduce the sample complexity. Especially
in the case of binary rewards, such initialization is required as the reward signal is sparse. Most
random initialization would not make any contact with the balls. Hence, the rl algorithm could not
infer any information about the desired task. Instead of using kinesthetic demonstrations [36, 35, 18,
37, 38], we directly initialize the interpretable via points manually. This initialization is preferable
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for robot juggling because the human demonstrator cannot achieve the necessary accelerations using
kinesthetic teaching.

The desired juggling movement for two balls consists of four repeated movements, i.e., (a) throwing
the first ball, (b) catching the second ball (c) throwing the second ball, and (d) catching the first ball
(Fig. 1). We define the switching points between these movements as the via-points of the policy and
to achieve a limit-cycle, we keep repeating these via-points. The cyclic pattern is prepended with
an initial stroke movement that quickly enters the limit cycle without dropping a ball. Applying
the limit cycles PD-references from the start would result in a bad first throw. Furthermore, we
enforce symmetry of cyclic pattern and zero velocity at the via point. Thus reducing the effective
dimensionality from 48 open parameters to only 21.

4.2 Policy Optimization
The policy optimization is framed as an episodic reinforcement learning problem, sampling a single
policy parameter θi ∼ N (µ,Σ) per roll-out and evaluating the episodic reward. This framing is
identical to a bandit setting with high-dimensional and continuous actions. For the physical system,
the episodic exploration is favorable over step-based exploration because this exploration yields
smooth and stable action sequences given the previous policy representation. To optimize the policy
parameters, we use a variant of the information-theoretic policy search approach episodic Relative
Entropy Policy Search (eREPS) [41, 42]. Our eREPS variation not only limits the Kullback-Leibler
(KL) divergence when computing the sample weights but also enforces the reverse KL divergence
when updating the policy parameters. This optimization can be solved in closed form for Gaussian
distributions as described in Abdolmaleki et al. [43]. We use eREPS instead of EM-based [36, 35]
or gradient-based [44, 45] policy search as the KL constraint prevents premature convergence and
large, possibly unsafe, jumps of the policy mean.3

Let the optimization problem of eREPS be defined as

πk+1 = argmax
π

∫
π(θ)R(θ)dθ, s.t. dKL(πk+1||πk) ≤ ε

with the updated policy πk+1, the episodic reward R, and the KL divergence dKL. With the addi-
tional constraint of π being a probability distribution, this optimization problem can be solved by
first optimizing the dual to obtain the optimal Lagrangian multiplier η∗ and fitting the new policy
using weighted maximum likelihood. The sample-based optimization of the dual is described by

η∗ = argmin
η

ηε+ η log

N∑
i=0

πk(θi) exp (R(θi)/η).

The optimization of the weighted likelihood L to obtain the updated policy is described by

µk+1, Σk+1 = argmax
(µ,Σ)

N∑
i=0

wi log(L(µ,Σ|θi)) s.t. dKL(πk||πk+1) ≤ ε.

with the weights wi = exp (R(θi)/η
∗)/
∑
i exp (R(θi)/η

∗). We incorporate the reverse KL con-
straint to the optimization to guarantee that the policy parameters adhere to the KL constraint. In the
original eREPS formulation only the KL divergence between the evaluated samples is constrained
but not the KL divergence between the parametrized policies. Especially for high-dimensional prob-
lems and few sample evaluations, the KL divergence between policies is larger than ε without this
explicit constraint. The reverse KL divergence is used as this formulation enables solving the policy
update in closed form for Gaussian distributions. For the multivariate Gaussian policy distribution
this update is described by

µk+1 =
ξ∗µk + µs
1 + ξ∗

, Σk+1 =
Σs + ξ∗Σk + ξ∗ (µk+1 − µk) (µk+1 − µk)T

1 + η∗

µs =

N∑
i=0

wi θi Σs =

N∑
i=0

wi (θi − µk+1) (θi − µk+1)
T

3Further information about reinforcement learning for robotics can be found in the surveys Kober et al. [46]
and Deisenroth et al. [41].
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(a) (b)

Figure 2: (a) Mechanical design of the juggling end-effector, the Russian style juggling balls, and
the ball launcher. The end-effector consists of a funnel to achieve precise control of the throwing
movement. The Russian juggle balls are partially filled with sand to avoid bouncing. (b) The
MuJoCo juggling environment used for simulating the rigid-body-dynamics.

with the optimal Lagrangian multiplier ξ∗. This optimal multiplier can be obtained by solving

ξ∗ = argmax
ξ

[
− log(|Σk+1|)−

N∑
i=0

wi (θi − µk+1)
T

Σ−1
k+1 (θi − µk+1)

]
+ξ

[
2ε− tr

(
Σ−1
k+1Σk

)
− n+ log

(
Σk+1

Σk

)
+ (µk+1 − µk)T Σ−1

k+1 (µk+1 − µk)
]
.

The complete derivation can be found in the appendix and the source code of eREPS is available at
https://github.com/hanyas/rl.

4.3 Reward Function
The reward function assigns a positive binary reward as long as the robot is juggling. Juggling is
defined as keeping both balls at least 60cm above the floor, which is measured using the external
marker tracker OptiTrack. Therefore, the step-based reward is described by

r(t) =

{
1 if mini(bi,z) ≥ 0.6
0 otherwise

with the ith ball height bi,z . This reward signal maximizes the juggling duration and is not engi-
neered to incorporate any knowledge about the desired ball- or manipulator trajectory. This choice
of reward function is intuitive but also uninformative as a bad action only causes a delayed negative
reward. For example, a bad action within the throwing will cause a zero reward - a drop - seconds
after the action. This delay between action and reward, i.e., ’credit assignment’, is a challenge in
many RL problems. The choice of the binary reward functions is in stark contrast to prior work as
most of the previously proposed approaches use more informative dense rewards [30, 8, 36, 25].

The binary rewards are favorable as these rewards do not require tuning a dense reward function. To
specify the dense reward function one would need to predict the optimal ball trajectory and compute
the distance to the optimal trajectory. Especially as the optimal ball trajectory depends on the robot
capabilities and end-effector this prediction is challenging. Furthermore, one would need to align
the initialization of the juggling movement with the optimal ball trajectory. One could possibly
initialize a good juggling movement but that might not fit with the specified dense reward, e.g., the
dense reward prefers higher throws than the initialization. With the binary reward one only needs to
provide a good initialization and does not need to tune the reward parameters. Besides the reward
tuning aspect, evaluating the dense reward is also more challenging compared to evaluating the
binary reward in the real world. For evaluating the dense reward one would require precise tracking
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Figure 3: (a) Mean juggling duration of final policies learned with varying batch sizes N. The
maximal juggling duration is 10s. (b) Comparison of the learned and hand-tuned policy on each
30 episodes with a maximum duration of 120s on the real system. The learned policy achieves an
average juggling duration of 106.82s while the hand-tuned policy achieves 66.52s.

which is non-trivial to frequent occlusions by the end-effector. Even though we used OptiTrack to
track the balls, we had a hard time achieving good tracking performance during the experiments due
to the wear and tear on the reflective tape and the frequent occlusions. Every time a ball is in the
end-effector, the ball is not observable.

5 Experiments
5.1 Experimental Setup
The experiments are performed with a Barrett WAM to achieve the high accelerations required for
robot juggling. The 4 degrees of freedom (DoF) variant is used rather than the 7 DoF version to allow
for more precise control at high velocities and to save weight. To achieve high repeatability, we use
75mm Russian style juggling balls that dissipate the kinetic energy of the balls and prevent them
from bouncing out of the end-effector. These balls consist of a hollow plastic shell partially filled
with 37.5g of sand (Figure 2a). The hard ball shells also result in more accurate throws compared to
traditional beanbag juggling balls [21, 20], as they do not deform. As successfully described in prior
toss juggling approaches [24, 23, 21, 20], the funnel-shaped end-effector passively compensates for
minor differences in ball trajectories by sliding the balls from the edge of the 170mm opening to
the center. The second ball is released via a launching mechanism 3m above the floor, shown in
Figure 2a, to achieve consistent height, velocity, and timing. This mechanism releases the ball by
pushing the ball to an opening using a piston attached to a pulley system. The release of the ball is
detected using Optitrack to start the episode.

5.2 Simulation Studies
The initial validation of the proposed learning system is performed in MuJoCo to evaluate the con-
vergence of different numbers of roll-outs per episode over seeds. Figure 3a shows the juggling
duration distribution of the final policy averaged over 60 different seeds at 10, 25 and 50 roll-outs
per episode. For 10 roll-outs per episode, the learning system frequently converges to a sub-optimal
final policy, which does not achieve consistent juggling of 10 seconds. The probability of converg-
ing to a good policy is the highest for 25 roll-outs per episode and hence, we use 25 roll-outs per
episode on the physical system. It is important to point out, that learning juggling in the simulation
is actually more challenging compared to the real world as the stabilizing passive dynamics of the
system could not be modeled accurately.

5.3 Learning on the real Barrett WAM
For the learning on the physical Barrett WAM 20 episodes were performed. During each episode
25 randomly sampled parameters were executed and the episodic reward evaluated. If the robot
successfully juggles for 10s, the roll-out is stopped. Roll-outs that were corrupted due to obvious
environment errors were repeated using the same parameters. Minor variations caused by the envi-
ronment initialization were not repeated. After collecting the samples, the policy was updated using
eREPS with a KL constraint of 2. The learning progress is shown in Figure 4. Initially, the robot on
average achieves between 1 to 3 repeated catches. These initial catches are important as the robot
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Figure 4: Reward distributions while learning to juggle on the physical system. Each point corre-
sponds to a single roll-out on the system. Starting from the expert initialization, which only achieves
juggling for a few repeated catches, the robot continuously improves using only binary rewards. Af-
ter 56 minutes of training, the final policy achieves consistent juggling for more than 10s.

would otherwise not receive any meaningful information. Therefore, the rudimentary expert initial-
ization must achieve some repeated catches to ensure fast learning. After the initial episodes, the
robot rapidly improves the juggling duration. Starting from episode 10, the robot achieves consis-
tent juggling of 10 seconds and only very few balls are dropped during the start. During the next 10
episodes, the average reward oscillates as the number of dropped balls varies but the robot achieves
successful completion for the other trials. At episode 20 the robot achieves perfect juggling of all
25 randomly sampled parameters. Videos documenting the learning process and the evaluation can
be found at https://sites.google.com/view/jugglingbot.

To test the repeatability and stability of the learned policy, the deterministic policy mean of episode
20 is executed for 30 repeated roll-outs with a maximum duration of 120 seconds. The achieved
performance is compared to a hand-tuned policy in Figure 3b. Averaging at 106.82s, the learned
policy performs significantly better compared to the hand-tuned policy with 66.51s. The weaker
performance of the hand-tuned policy within the stroke-based initiation movement matches our ex-
pectations as tuning the stroke-based movement is the hardest part of the manual parameter tuning.
Both policies do not achieve perfect repeatability due to the residual stochasticity of the environ-
ment.

To test the stability of the learned policy, the juggling was repeatedly executed and the maximum
juggling duration recorded. The learned policy achieved juggling for 33 minutes, which corresponds
to more than 4500 repeated catches on the second try, after 15 minutes on the first one. The high
number of repeated catches, highlights the precision of the Barrett WAM, the end-effector design
and both policies. Once the juggling is initiated successfully, the policies can recover from minor
variations due to the passive stability induced by the end-effector design.

6 Conclusion
We described a robot learning system capable of learning toss juggling of two balls with a sin-
gle anthropomorphic manipulator using only binary rewards. We demonstrated that our system can
learn this high acceleration task within 56 minutes of experience, utilizing sufficient engineering and
task knowledge designing the robot learning system. Starting from a rudimentary expert initializa-
tion, the system consistently improves until achieving repeated juggling of up to 33 minutes, which
corresponds to more than 4500 repeated catches. Furthermore, the learned policy outperforms a
hand-tuned policy in terms of repeatability and achieves significantly higher rewards average across
30 trials. In addition, we highlighted and discussed the incorporated engineering and task expertise
to make learning on the physical system viable. This discussion should help future scientists and
practitioners to address the needs of a physical system when building future robot learning systems.
Nevertheless, this approach also pointed out the shortcomings of state-of-the-art robot learning ap-
proaches for learning dynamic tasks on the physical system. Despite the incorporated engineering
and task knowledge the learning still takes up to 5 hours and hence, reiterates the necessity for more
sample efficient representations and learning approaches for sparse and binary rewards.
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A KL Constrained Maximum Likelihood Optimization for eREPS

The standard eREPS formulation [41] solves the optimization problem described by

πk+1 = argmax
π

∫
π(θ)R(θ)dθ, s.t. dKL(πk+1||πk) ≤ ε (1)

via computing the importance weights of each sample and fitting the policy to the weighted samples.
The sample weights are described by

wi =
exp(R(θi)/η

∗)∑
i exp(R(θi)/η

∗)
with η∗ = argmin

η
ηε+ η log

N∑
i=0

πk(θi) exp (R(θi)/η).

The fitting of the policy to the weighted samples is described by

µk+1, Σk+1 = argmax
(µ,Σ)

N∑
i=0

wi log(L(µ,Σ|θi)).

In the case of Gaussian policies this optimization can be solved in closed form and the updated
parameters are described by

µk+1 =

N∑
i=0

wi θi Σk+1 =

N∑
i=0

wi (θi − µk+1) (θi − µk+1)
T
.

For an in-depth derivation of this approach please refer to [41]. This approach to updating the policy
works well if N � n with the parameter dimensionality n. In this case the KL divergence between
two consecutive parametrized policies is smaller than ε. If N ≈ n the KL divergence between
two consecutive parametrized policies must not necessarily be smaller than ε. In this case the KL
divergence between the weighted and unweighted samples is bounded by ε but the KL divergence
between the parametrized policies is not. To ensure that the KL divergence between parametrized
policies is bounded after the maximum likelihood optimization, we change the optimization problem
to include a KL constraint. The constrained objective is described by

µk+1, Σk+1 = argmax
(µ,Σ)

N∑
i=0

wi log(L(µ,Σ|θi)) s.t. dKL(πk||πk+1) ≤ ε.

Please note that the order of the KL divergence is switched compared to Equation 1 and that the
KL divergence is not symmetric. We switch from the I-projection to the M-projection because
otherwise this optimization has no closed form solution for Gaussian policies. For bounding the
distance between two consecutive policies the reverse KL divergence can be used as for small KL
divergences both projections are comparable. The constrained optimization problem can be solved
using Lagrangian multipliers as initially derived by [43]. The Lagrangian L for a Gaussian policy is
described by

L =

N∑
i=0

wi log(L(µ,Σ|θi)) + ξ(ε− dKL(N (µk, Σk) || N (µk+1, Σk+1)))

=
1

2

[
− n log(2π)− log(|Σk+1|)−

N∑
i=0

wi (θi − µk+1)
T

Σ−1
k+1 (θi − µk+1)

]
+
ξ

2

[
2ε− tr

(
Σ−1
k+1Σk

)
− n+ log

(
Σk+1

Σk

)
+ (µk+1 − µk)T Σ−1

k+1 (µk+1 − µk)
]
.

The updates for the mean and covariance can be computed in closed form by setting ∇µk+1
L := 0

and ∇Σk+1
L := 0, i.e.,

∇µt+1
L = Σ−1

k+1

[
N∑
i=1

wi θ + ξ µk − (ξ + 1) µk+1

]
:= 0

∇Σt+1
L = Σ−1

k+1

(
Σs + ξΣk + ξ (µk+1 − µk) (µk+1 − µk)T − (ξ + 1) Σt+1

)
Σ−1
k+1 := 0
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The resulting update rule for the mean and covariance is described by

µk+1 =
ξ∗µk + µs
1 + ξ∗

, Σk+1 =
Σs + ξ∗Σk + ξ∗ (µk+1 − µk) (µk+1 − µk)T

1 + η∗

µs =

N∑
i=0

wi θi Σs =

N∑
i=0

wi (θi − µk+1) (θi − µk+1)
T

with the optimal multiplier ξ∗. The optimal multiplier cannot be obtained in closed form as µk+1

and Σk+1 depend on ξ. Hence, ξ∗ must be obtained by solving

ξ∗ = argmax
ξ

[
− log(|Σt+1|)−

N∑
i=0

wi (θi − µk+1)
T

Σ−1
k+1 (θi − µk+1)

]
+ξ

[
2ε− tr

(
Σ−1
k+1Σk

)
− n+ log

(
Σk+1

Σk

)
+ (µk+1 − µk)T Σ−1

k+1 (µk+1 − µk)
]

with gradient based optimization.
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