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Abstract: Sample-efficient exploration is crucial not only for discovering reward-
ing experiences but also for adapting to environment changes in a task-agnostic
fashion. A principled treatment of the problem of optimal input synthesis for
system identification is provided within the framework of sequential Bayesian ex-
perimental design. In this paper, we present an effective trajectory-optimization-
based approximate solution of this otherwise intractable problem that models op-
timal exploration in an unknown Markov decision process (MDP). By interleaving
episodic exploration with Bayesian nonlinear system identification, our algorithm
takes advantage of the inductive bias to explore in a directed manner, without
assuming prior knowledge of the MDP. Empirical evaluations indicate a clear ad-
vantage of the proposed algorithm in terms of the rate of convergence and the final
model fidelity when compared to intrinsic-motivation-based algorithms employ-
ing exploration bonuses such as prediction error and information gain. Moreover,
our method maintains a computational advantage over a recent model-based active
exploration (MAX) algorithm, by focusing on the information gain along trajec-
tories instead of seeking a global exploration policy. A reference implementation
of our algorithm and the conducted experiments is publicly available1.
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1 Introduction

Learning agents are expected to constantly adapt to changing environments without an otherwise
explicit task specification. A subclass of such changes relates to predicting the consequences of
the agent’s own actions, as captured by the forward model of the environment, which is of crucial
importance for the purposes of planning and task-solving. When the forward model parameters are
unknown, what sequence of actions should the agent take to reveal the most about the system, i.e.,
what course of action facilitates the most sample-efficient exploration? To answer this question, the
information content in the observations needs to be quantified, which becomes possible if the agent
maintains a probability distribution over the model parameters. The sequential decision making
problem with such a probabilistic model whose parameters are not directly observable is known as
the partially observable Markov decision process (POMDP) [1].

Finding an exact solution of continuous-state/action POMDPs is intractable in general [2].
Therefore, various approximations are commonly employed [3]. In particular, one-step greedy
heuristics—exploration bonuses—have gained prominence recently due to the ease of implemen-
tation, wide range of applicability, and good empirical performance in game domains [4]. However,
they neglect long-term effects of control actions and therefore struggle in underactuated continuous
control domains, focusing on immediate curiosity satisfaction [5]. As a remedy, it was proposed that
the agent should plan exploration [6], purposefully driving the system to the states that provide the
largest information gain, thus performing active exploration.

Many active exploration approaches have been proposed in the past [7, 8, 9, 10, 11, 12], differing
chiefly in how the model is represented and how it is used for planning. The most recent representa-
tive from this family of approaches is the model-based active exploration (MAX) algorithm [5], that
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represents the uncertainty in the dynamics via an ensemble of deterministic networks, and uses a
model-free reinforcement learning (RL) algorithm to find an exploration policy optimal with respect
to the ensemble. Such approach is computationally demanding because it solves a full RL problem
in the inner loop to only use the optimized policy for performing a few exploratory steps.

In this paper, we present a principled model-based active exploration method, which contrasts with
the recent computationally expensive RL-based approaches. The proposed exploration algorithm
represents the uncertainty in the model by a distribution over the parameters in a shallow Bayesian
network and finds optimally explorative actions via trajectory optimization based on the learned
model. Since rigid-body dynamics can be written as a dot product between a vector of state-action
features and a vector of physics parameters, we adopt a similar model structure with generic feature
functions and a Gaussian vector of unknown parameters. Due to the linear-Gaussian structure,
belief space dynamics can then be obtained in closed-form and incorporated into the trajectory
optimization formulation, capturing the effect of current actions on future information gain.

The proposed method, termed receding horizon curiosity (RHC), addresses several challenges in-
volved in the design and implementation of actively exploring agents. First, the agent’s beliefs must
be represented and propagated in time to estimate the information gain. A combination of approx-
imations is needed and it is not clear a priori if the resulting algorithm will work. RHC employs
Gaussian beliefs and a maximum likelihood observation assumption to represent and propagate the
beliefs. Second, the information gain objective needs to be evaluated and optimized. Again, a num-
ber of approximations are involved, that require empirical evaluation. RHC exploits the Gaussian-
linear model structure to evaluate the information gain and it relies on trajectory optimization to
maximize it. Finally, a key feature of RHC is the interleaved optimal exploration and model up-
dating, which turns out to be sufficient for promoting efficient model-learning, as shown by the
experimental evaluations. On the whole, RHC compares favorably with state-of-the-art model-free
intrinsic motivation approaches in terms of the model error and downstream task performance in
classical continuous control environments, and compared to MAX, it is computationally far less
demanding and has lower variance over runs.

2 Foundations

In this section, the background on active learning, Bayesian linear regression, random Fourier fea-
tures, model-based reinforcement learning, and multiple shooting methods is provided.

2.1 Active Learning

In supervised learning, a training set is predefined and fixed. However, if an agent is allowed to
choose the instances to train on, learning can potentially progress faster and require fewer samples.
Active learning [13], also known as optimal experiment design [9], is an area of statistical learning
that addresses exactly the question of how to choose the data points for learning. Choosing an opti-
mal subset of points involves a combinatorial number of possibilities. Therefore, approximations of
the optimal value function, known as acquisition functions, are employed for query point selection.

Perhaps the most straightforward and common query framework is uncertainty sampling [13]. In
this framework, an active learner queries the instance x ∈ X for which the model output y ∈ Y
is least certain. With the entropy of the output H(y|x) as the measure of uncertainty, the following
acquisition function needs to be maximized

αus(x) = H(y|x).
Compared to other approaches, uncertainty sampling is computationally relatively light, and if the
likelihood belongs to an exponential family, the entropy can even be obtained in closed-form. A
drawback of uncertainty sampling is that it fails if the underlying system is stochastic, as it cannot
distinguish between aleatoric and epistemic uncertainty.

To fix the shortcomings of uncertainty sampling, expected variance reduction [13] was proposed,
that explicitly takes into account the model variance, by minimizing the acquisition function

αevr(x) = var (M |D ∪ (x, y)) ,

where var (M |D ∪ (x, y)) denotes a measure of variance of the modelM trained on the extended
dataset D∗ = D ∪ (x, y). For Bayesian linear regression, the posterior entropy and the predictive
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variance are commonly used as measures of the model variance—both are available in closed-form
and correspond to well-known alphabetic optimal design criteria [14]. Under mild assumptions [15],
closed-form expressions for the output variance can also be obtained for more flexible models, such
as neural networks, Gaussian mixture models, and locally-weighted linear regression [13].

2.2 Bayesian Linear Regression

Linear regression [16] assumes that the output y ∈ R is given by a linear function θTφ(x) in the
features φ(x) ∈ Rm of the input x ∈ Rn and parameters θ ∈ Rm. The output uncertainty is
captured by a probability distribution, most commonly—the normal distribution,

p(y | x;θ) = N
(
y | θTφ(x), β−1

)
.

In Bayesian linear regression [16], not only the output y but also the parameters θ are assumed to
be uncertain. Conveniently, given a Gaussian prior p(θ | D) = N (θ | µ,Σ), the posterior after
observing a data point (x, y) is also Gaussian, p(θ | D ∪ (x, y)) = N (θ | µ∗,Σ∗), with parameters

µ∗ = Σ∗

(
Σ−1µ+ βΦTY

)
,

Σ−1∗ = Σ−1 + βΦTΦ,
(1)

where the features and targets corresponding to the new data point (x, y) are aggregated into the
design matrix Φ and the vector of targets Y, as described in [16]. Along with the posterior, the
predictive distribution plays an important role,

p(y∗ | x∗;D ∪ (x, y)) = N (y∗ | µT∗ φ(x∗), σ2
∗(x∗)),

where σ2
∗(x∗) = β−1 + φ(x∗)

TΣ∗φ(x∗).

If data arrives sequentially, the posterior can be updated incrementally, taking the current posterior
as the prior for the next data point. This procedure, known as iterative least squares [16], enables
efficient processing of sequential data.

2.3 Random Fourier Features

Random Fourier features provide a powerful representation by approximating a Gaussian process
with an exponentiated quadratic kernel [17]. Given an input x ∈ Rn, following [18], the i-th feature
is defined as φi(x) = sin(

∑n
j=1 Pijxj/νj +ϕi) where Pij ∼ N (0, 1) are normally distributed real

numbers and ϕi ∼ U [−π, π) are uniform random phase shifts. The bandwidth parameter ν ∈ Rn
scales the inputs, and must be chosen with care. A rule of thumb suggested in [18] is to set it equal
to the average pairwise distance between observed input vectors. An even better approach is to fit
the bandwidth parameter through marginal maximum likelihood optimization.

2.4 Model-Based Reinforcement Learning

The distinction between model-free and model-based reinforcement learning is not precisely de-
fined, but for the purposes of this paper, under model-based reinforcement learning we will
understand trajectory optimization using a dynamics model obtained through system identifica-
tion. In detail, having learned a forward model s′ = fθ(s, a), the agent plans a trajectory
τ = {s0, a0, s1, a1, . . . , aT−1, sT } from a given starting state s0 with the goal of minimizing a
pre-defined trajectory cost J(τ). Variations are possible in how exactly the model is learned, what
model representation is used, whether the cost function is learned or given, etc.

2.5 Shooting Methods for Trajectory Optimization

Direct shooting methods are a class of optimal control algorithms aimed at solving planning prob-
lems with deterministic continuous dynamics models [19]. Depending on whether the dynamics are
imposed as a constraint or included in the objective itself, one discerns between single shooting and
multiple shooting methods. In single shooting, the dynamics are included in the objective function,

minimize
a0:T−1

J(s0, a0, f(s0, a0), a1, . . . , aT−1, f(f(. . . f(s0, a0), aT−2), aT−1)),

and the optimization is performed only with respect to the actions a0:T−1. Note the iterated applica-
tion of the dynamics function f . When performing gradient descent on this objective, the problem
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known as exploding/vanishing gradients hinders efficient first-order optimization. The reason for
that is the ill conditioning of the problem: the actions in the beginning of the trajectory have a
bigger impact on the final state than the actions at the end.

Multiple shooting methods aim to improve the problem conditioning by splitting the trajectory into
smaller chunks, subsequently glueing them together by constraints. To enable that, the dynamics are
imposed as a constraint, and the optimization is performed with respect to both actions and states,

minimize
a0:T−1,s1:T

J(s0, a0, s1, a1, . . . , aT−1, sT )

subject to st = f(st−1, at−1), t = 1, . . . , T.

Multiple shooting methods converge faster and are numerically more stable than single shooting
because they are better conditioned thanks to the breaking up of long-term dependencies into shorter
chunks [20]. Moreover, state constraints can be straightforwardly incorporated in multiple shooting
since states are optimization variables. The price for such benefits is a significant increase in the
problem size and, as a consequence, in the memory requirements. This drawback, however, is offset
by the fact that the problem becomes much sparser [20].

3 Receding Horizon Curiosity

Consider a dynamical system with state space S ⊂ Rn and action space A ⊂ Rk. Denote a prob-
abilistic model of the dynamics that an agent maintains about this system byM. The probabilistic
nature of the model enables the agent to reason about the information content in observations. The
agent wants to find a sequence of actions a0:T−1 which, when executed open-loop on the real sys-
tem, provides the most informative sequence of observations s0:T in the sense of being useful for
learning the model. This setting is an active learning problem in which the sequence of actions plays
the role of a query point. Therefore, we can utilize active learning approaches from Sec. 2.1 based
on uncertainty sampling and expected variance reduction to solve the exploration problem.

3.1 Uncertainty Sampling

The uncertainty sampling acquisition function proposes to query the point that the model is most
uncertain about. In our planning scenario, that means selecting the sequence of actions a0:T−1 that
results in a trajectory (a0:T−1, s0:T ) that has the highest entropy. If p(s′ |s, a) is the prediction given
by the probabilistic modelM trained on previously observed trajectories D, then the optimization
objective can be stated as

maximize
a0:T−1

∑
t=1:T

Est−1∼p(st−1 | at−2,...,a0)Vp[st | st−1, at−1],

with Vp[st |st−1, at−1] denoting the variance in the prediction of the next state, and the outer expec-
tation being taken with respect to state marginal distributions. Note that alternative formulations are
possible, e.g., where only the variance at the last time step is taken into account or where different
time steps are weighted differently. Ideally, one would only consider the variance at the last time
step; however, due to the fact that an approximate model is used, real trajectories rather quickly
diverge from the planned ones, and therefore it is desirable to reach informative states as quickly as
possible, which can be achieved by rewarding the agent for information gain at every time step.

To evaluate the uncertainty sampling objective, the state distribution needs to be propagated through
the probabilistic model, which is a non-trivial problem in general. Instead, an approximate version
of this problem can be solved, where only the mean of the state distribution is propagated,

maximize
a0:T−1

∑
t=1:T

Vp[st | ŝt−1, at−1]

subject to ŝt = Ep[st | ŝt−1, at−1], t = 1, . . . , T.

(2)

In line with the general theory of active learning, the uncertainty sampling objective (2) is easier
to optimize than the expected variance reduction objective described below. If the Bayesian linear
regression model (Sec. 2.2) is used to represent the dynamics, the posterior parameter covariance
matrix Σ∗ remains constant and does not depend on the states and actions. Thus, both the objective
and constraints in (2) are differentiable and the problem can be solved using the multiple shooting
method described in Sec. 2.5. The complete optimization procedure is summarized in Alg. 1.
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Data: number of episodes N , horizon T , initial modelM0

Result: optimized modelMN

for i← 1 to N do
find actions a0:T−1 that optimize (2) or (3) given the current modelMi;
execute a0:T−1 in the environment and observe s0:T ;
update modelMi+1 via (1) usingMi as the prior and (a0:T−1, s0:T ) as the new data;

end
Algorithm 1: Receding Horizon Curiosity. In each episode i, the most informative sequence
of actions a0:T−1 under the current model Mi is computed; after that, observations s0:T are
collected and the model is updatedMi →Mi+1.

3.2 Expected Variance Reduction

The uncertainty sampling heuristic rewards the agent for visiting uncertain states, but it ignores the
fact that the model will become more certain once those states are visited. For example, if two
states are initially equally uncertain, visiting one of them may yield a larger decrease in uncertainty
because that state is more informative. Uncertainty sampling would be insensitive to this difference,
whereas expected variance reduction allows for taking such information gain into account. In our
setting, the expected variance reduction problem can be stated as

minimize
a0:T−1

Ep [var(M |D ∪ (a0:T−1, s0:T ))] .

The operator var(M|D∗) here stands for a measure of variance of modelM trained on dataset D∗.
We take it to be the entropy of the posterior distribution over the model parameters θ ∈ Rm, which
is known as the D-optimality criterion in Bayesian experimental design [14],

var(M |D∗) = H(θ | D∗) =
1

2
ln det (Σ∗) +

m

2
ln(2πe).

Importantly, the covariance matrix Σ∗ depends on the trajectory (a0:T−1, s0:T ) through the aug-
mented datasetD∗ = D∪(a0:T−1, s0:T ). The exact relationship is given in (1), and this relationship
allows for optimization of the expected model variance with respect to the planned trajectory.

Although superior to uncertainty sampling in information-theoretic terms, expected variance reduc-
tion is quite expensive to compute and optimize in practice [13], particularly due to probabilistic
state propagation [21]. We adopt the so called maximum likelihood observations assumption [22],
which amounts to propagating only the mean of the state distribution. The crudeness of this approx-
imation is offset by the computational advantage: more frequent replanning, enabled by neglecting
the expensive state uncertainty propagation, allows the agent to compensate for unforeseen devia-
tions from the planned trajectory efficiently. The corresponding optimization problem reads

minimize
a0:T−1

var(M |D ∪ (a0:T−1, s0:T ))

subject to ŝt = Ep[st | ŝt−1, at−1], t = 1, . . . , T.
(3)

Both the objective and constraints in (3) are differentiable. Therefore, gradient-based optimization
described in Sec. 2.5 can in principle be used to solve this problem. However, evaluation of the
objective requires differentiation through matrix inversion, since matrix Σ∗ depends on the inverse
of the kernel matrix (1). Combined with the chain-like structure of state-action dynamics, gradient
computation becomes quite expensive for larger models (e. g. T > 100, M > 40).

4 Experimental Results

We compare our receding horizon curiosity algorithm (RHC, Sec. 3) to state-of-the-art model-based
and model-free exploration approaches. On the model-based side, we consider MAX [5], which
optimizes a certain approximation of the information gain via model ensemble disagreement. On the
model-free side, we employ soft actor-critic (SAC) [23] with popular exploration bonuses: squared
prediction error (SAC PE) and information gain in the form of parameter entropy difference between
successive steps (SAC IG). Two acquisition functions for RHC are considered: uncertainty sampling
(RHC US, Sec. 3.1) and expected variance reduction (RHC EVR, Sec. 3.2). Additionally, we report
the performance of uniform random exploration (RAND) for comparison.
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Figure 1: Evaluation of exploration methods. Log-likelihood of random 10-step trajectories (eval-
uated by using the learned models) is shown on the left; the plots depict the median with the 1st
and 9th deciles over 20 runs. The grey dashed lines indicate the log-likelihood obtained by a model
trained on 104 uniform transition samples from the full state-action space and therefore approxi-
mates the best achievable log-likelihood for this model class. Our proposed approach RHC reaches
the highest log-likelihood the fastest, followed by MAX, and subsequently the model-free algo-
rithms with exploration bonuses. The plots on the right show the cumulative cost (negative reward)
of solving each respective control task using the learned model. The trend is similar to the model
log-likelihood: RHC reaches the lowest cost the fastest, then follows MAX, and after that follow the
model-free exploration approaches.
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Figure 2: Exploration progress of the RHC algorithm with the uncertainty sampling objective in the
pendulum environment. Episodes 2, 3, and 6 are shown from left to right. Note how the explored
area of the state space is growing with iterations as the agent is trying to reach more distant states.

Experiments aim to prove the feasibility and reveal advantages and disadvantages of simultane-
ous feature learning combined with approximate belief-space planning under deterministic state
propagation assumption for guiding exploration. Classical control environments—mountain car,
pendulum, and cartpole—are used for evaluation. In these environments, exploration using current
reinforcement learning algorithms with sparse rewards and random noise is insufficient. The exper-
iments were carried out as follows. For RHC, a sequence of actions was computed in each episode
using multiple shooting (Sec. 2.5) and executed open-loop in the environment (Algorithm 1). As
planning with the expected variance reduction objective is only tractable for small models (Sec. 3.2),
RHC with this objective was only applied to the mountain car problem. For MAX and SAC, instead
of open-loop actions, the respective ‘curious’ policies were applied in the environment. After each
episode, the Bayesian linear regression model (Sec. 2.2) with random Fourier features (Sec. 2.3) was
retrained using all observations from the past episodes. The quality of the learned model was eval-
uated on two metrics: (i) mean log-likelihood on a set of test points obtained by sampling random
starting states and executing random actions, and (ii) mean return (negative reward accumulated
over transitions) on downstream learning tasks, to highlight the quality of the learned model when
used in a classical planning-for-control scenario. Further experimental details can be found in the
appendix, and the implementation—in the accompanying software package.

The results are shown in Fig. 1. In each environment, RHC was the only algorithm that reached
the highest possible log-likelihood within 20 episodes, as indicated by the curves in the left column.
When applicable, RHC EVR converged faster, as expected (Sec. 3.2). Both SAC PE and SAC IG
performed on the level of random exploration (RAND), which can be traced back to their over-
commitment behaviour [5]: in the beginning, virtually any action provides high reward because the
model is uncertain, but afterwards the agent has to ‘unlearn’ it in order to go to more distant areas
of the state-action space. MAX does not suffer from the over-commitment problem and therefore
performed better than SAC and random exploration but nevertheless worse than our RHC method.
Although none of the methods is real-time capable, it is worth pointing out that MAX took sig-
nificantly longer than RHC because MAX solves an entire reinforcement learning problem in each
episode. A table with run times is provided in the appendix.

Figure 2 shows the trajectories executed by RHC US over iterations in the pendulum environment.
The background indicates the entropy of the learned forward model’s output when zero action is
substituted. Warm colors correspond to high entropy (uncertainty). RHC tries to find a trajectory
of maximum uncertainty consistent with the learned dynamics model. Driven by curiosity, the
pendulum does a full swing-up already in Episode 6 to reach further areas of the state space.

5 Related Work

In psychology, curiosity [24] is considered to be a type of intrinsic motivation [25] that drives hu-
mans to explore. In reinforcement learning, various reward signals have been proposed to promote
artificial curiosity. An early example is the prediction error [26], the idea being to reward the agent
whenever there is a mismatch between predicted and observed next states. Unfortunately, such ap-
proach suffers from the “noisy TV problem”: if the environment is stochastic, the agent gets attracted
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to the source of noise. A cure was proposed in [27], which consisted in rewarding the agent for pre-
diction improvement instead of prediction error. However, despite its theoretical appeal, prediction
improvement is hard to compute in practice, especially with general function approximators [28].

In statistics and control engineering, the problem of ‘optimal’ exploration is known as optimal input
design [7, 8] or optimal experiment design [9, 10]. A popular measure of novelty in these fields is
the information gain [29]. In computer science, the problem of ‘optimal’ exploration is addressed
by Bayesian reinforcement learning [3]. The general dual control solution [30], however, can only
be obtained in very special cases [11]. Therefore, in most applications, exploration bonuses are em-
ployed, which stem from the “optimism in the face of uncertainty” principle [31]. Bayesian explo-
ration bonuses [32] and other types of visitation counts [33] have been shown to be effective in video
games [34, 35]. If the observation space is high-dimensional, exploration bonuses can be applied
in the latent space. For example, latent-space prediction error and count-based exploration were
combined in [36], while information gain was employed in [37]. Self-supervised prediction [28] and
random network distillation [38] were proposed as different ways to compute the prediction error.
A comprehensive study of curiosity-driven exploration methods can be found in [4].

Exploration bonuses are commonly added on top of a primary RL objective function to promote
faster learning. However, such approaches do not scale to the multi-task and transfer learning set-
tings because the knowledge gained during exploration is not reused. In contrast, model-based
approaches compress the knowledge into the model and can later reuse it in any downstream task.

Our method can be seen as lying at the intersection of optimal sequential experiment design and
nonlinear system identification. In the former, info-gain-maximizing strategies are well understood
but for linear models; we use these insights by treating our model as linear in the last-layer parame-
ters. In the latter, the focus is placed on numerical approaches and structured models (e.g., grey-box
models such as Hammerstein-Wiener model); we use receding horizon control for numerical opti-
mization and basis function expansion for representing the dynamics as a black box.

We stress that trajectory optimization is essential for making the problem computationally tractable.
Approaches such as [12] and [10] rely on approximately solving the Bellman equation, which scales
exponentially with the time horizon. On the other hand, belief space trajectory optimization scales
polynomially [39], allowing for much longer horizons (e.g., we used 150 ≤ T ≤ 200, whereas
horizons of length T ≤ 4 were considered in [12]).

6 Conclusion

A principled algorithm for trajectory-based active exploration in the model-based reinforcement
learning setting has been proposed (Sec. 3). Two acquisition functions from active learning have
been adapted to guide episodic exploration (Sec. 2.1): uncertainty sampling (US, Sec. 3.1) and
expected variance reduction (EVR, Sec. 3.2). Since the acquisition functions cannot be straightfor-
wardly evaluated due to intractability of the belief propagation over time, an approximation has been
proposed, which led to a novel algorithm, called receding horizon curiosity (RHC, Algorithm 1).

The proposed RHC approach was compared to state-of-the-art model-based and model-free explo-
ration algorithms on classical continuous control problems. Empirical evaluations showed that RHC
achieves higher model likelihood and collects higher reward on downstream tasks in fewer iterations.
Although not yet real-time capable, RHC was found to be computationally faster than MAX, thanks
to being trajectory-based. The US objective (Sec. 4) delivered a better computation/performance
trade-off, reaching the performance of EVR while being substantially easier to compute.

The experiments demonstrated that Bayesian curiosity w.r.t. last-layer parameters interleaved with
nonlinear maximum likelihood feature learning can be successfully implemented and considerably
improves exploration in low-dimensional classical control environments even under relatively strong
deterministic state propagation assumption. Nevertheless, a number of obstacles need to be over-
come to scale RHC to higher-dimensional problems. For instance, cheaper trajectory optimization
methods (e.g., first-order, Hessian-free) could enable the use of larger number of features. Alterna-
tively, dimensionality reduction techniques could allow for scaling the current approach by employ-
ing the same optimization framework but with lower-dimensional feature representations. Finally,
tractable planning methods that can utilize more expressive probabilistic models, such as Bayesian
neural networks, could allow for tackling even harder problems.
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A Algorithms

Trajectory optimization for receding horizon curiosity (RHC) is implemented using CasADi [20], a control
and auto-differentiation toolbox. The number of Fourier features in the learned dynamics model varies across
environments: MountainCar 20, Pendulum 90, CartPole 80.

As a model-free baseline RL algorithm, soft actor-critic (SAC) is used [23], as implemented in Stable Base-
lines [40], with the following parameters across all environments

γ = 0.99,

τ = 0.005,

learning rate = 0.0003,

buffer size = 50000,

batch size = 64.

The exploration bonus based on the squared prediction error is defined as follows

rpe(st, at) = (st+1 − Ep[st+1 | st, at])2,

where p denotes the model trained on the data from previous episodes. The exploration bonus based on the
information gain is defined as the reduction of entropy

rig(st, at) = H(θ | Xt)−H(θ | Xt+1),

whereXt denotes the set of observations until time step t, H is the entropy, and θ denotes the model parameters.

B Environments

MountainCar. The implementation from OpenAI Gym [41] is modified as follows to accommodate the
episodic exploration setting. Car power is set to 10−3 and the speed limit is removed. Upon reset, the car starts
at the center of the valley with zero velocity. An episode ends when the car reaches the environment bounds or
after 130 time steps. The evaluation task is to drive the car on top of the mountain as dictated by the stage cost
c = 10(x− xgoal)

2 + 0.001a2, where x is the position of the car, xgoal is the goal location, and a the action.

Pendulum. The implementation from DeepMind Control Suite [42] with observations [cos θ, sin θ, θ̇] is
used with the following modifications. The pendulum is initialized handging down with zero velocity. Each
episode consists of 100 time steps of 80ms duration each. The evaluation task is to swing the pendulum up as
dictated by the stage cost c = 100(1− cos θ)2 + 0.1 sin2 θ + 0.1θ̇2 + 0.001a2.

CartPole. The implementation from DeepMind Control Suite [42] with observations [x, cos θ, sin θ, ẋ, θ̇] is
used. Each episode starts with the cart at the center and the pole hanging down, both having zero velocity. The
system is simulated at 50Hz. An episode ends when the cart reaches the state limits or after 100 time steps. The
evaluation task is to swing the pole up, c = 100x2 + 100(1− cos θ)2 + 0.1 sin2 θ + 0.1ẋ2 + 0.1θ̇2 + 0.1a2.

C Runtimes

Table 1 shows how long one run of each algorithm depicted in Fig. 1 on average takes. One run consists of 20
episodes (x-axis in Fig. 1). Evaluation of RHC EVR was only possible on the MountainCar environment due
to its high memory demands. Evaluations were run on a machine with an Intel Xeon E5-2670 processor.

MountainCar Pendulum CartPole
RHC EVR 1.51 - -
RHC US 0.03 0.80 0.54
SAC PE 0.03 0.20 0.45
SAC IG 0.03 0.21 0.48
RAND 0.01 0.09 0.30
MAX 9.49 11.17 5.84

Table 1: Average wall-clock-time (in hours) for evaluated exploration algorithms (see Fig. 1).
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