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Abstract— Assistive robots can potentially improve the qual-
ity of life and personal independence of elderly people by
supporting everyday life activities. To guarantee a safe and in-
tuitive interaction between human and robot, human intentions
need to be recognized automatically. As humans communicate
their intentions multimodally, the use of multiple modalities
for intention recognition may not just increase the robustness
against failure of individual modalities but especially reduce
the uncertainty about the intention to be predicted. This is
desirable as particularly in direct interaction between robots
and potentially vulnerable humans a minimal uncertainty about
the situation as well as knowledge about this actual uncertainty
is necessary. Thus, in contrast to existing methods, in this
work a new approach for multimodal intention recognition
is introduced that focuses on uncertainty reduction through
classifier fusion. For the four considered modalities speech,
gestures, gaze directions and scene objects individual inten-
tion classifiers are trained, of which all output a probability
distribution over all possible intentions. By combining these
output distributions using the Bayesian method Independent
Opinion Pool [1] the uncertainty about the intention to be
predicted can be decreased. The approach is evaluated in a
collaborative human-robot interaction task with a 7-DoF robot
arm. The results show that fused classifiers which combine
multiple modalities outperform the respective individual base
classifiers with respect to increased accuracy, robustness, and
reduced uncertainty.

I. INTRODUCTION

A prevalent challenge for our society is an increasing
number of elderly people in need of care facing a shortage of
nursing staff [2]. A promising reaction to this is to investigate
in technical solutions that can improve the quality of life of
elderly people, not just by supporting caregivers but also
by directly providing assistance to affected elderly people.
Assistive robots are a potential answer to this. By facilitating
harmful or arduous everyday life tasks they may enable even
physically handicapped people to stay longer in their own
habitual environments.
In order to guarantee trouble-free cooperation between hu-
man and robot, it is necessary that the robot automatically
recognizes human intentions. Since humans make use of
multiple modalities like speech, body language and situa-
tional clues for understanding intentions [3], it is reasonable
to also take advantage of multimodal data in automatic
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Fig. 1. Assistive robots can potentially be applied to support elderly people
in their daily lives, for which reliable intention recognition is necessary. In
this work, we introduce a multimodal intention recognition system that fuses
the modalities speech, gestures, gaze directions and scene objects. For all
modalities individual classifiers are learned. Their output distributions are
fused with the method Independent Opinion Pool in order to reduce the
overall system’s uncertainty.

intention recognition.
Multimodal intention recognition is beneficial in two kinds
of ways. On the one hand, it offers the possibility to
compensate for limited or missing modalities, e.g. a speech
disorder as a consequence of a stroke. On the other hand,
through the integration of information of several modalities
the uncertainty about the true intention to be predicted
can be decreased [4]. This is particularly important in the
interaction between elderly and potentially vulnerable people
and robotic systems to ensure safety. However, the reduction
of uncertainty through the use of multiple modalities for
intention recognition was not the focus of previous works.
We propose a multimodal intention recognition system that
focuses on uncertainty reduction (Fig 1). Thereby, we con-
sider the four modalities speech, gestures, gaze directions
and scene objects as part of the situational context. For all
modalities an individual classifier is trained that returns a cat-
egorical probability distribution over all possible intentions.
The resulting distributions are then fused with a Bayesian
method for cue integration called Independent Opinion Pool
[1]. Through the application of this method for classifier
fusion the uncertainty about the intention to be predicted can
be lowered even if the classifiers for the single modalities
are individually inaccurate or uncertain. This is shown in
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a collaborative task where the human is supported by a 7-
DoF robot arm in preparing some food in a kitchen scenario
while human intentions are recognized online using the four
considered modalities.
The rest of the paper is structured as follows. In Section
II related work is discussed. Section III explains the cho-
sen approach for multimodal intention recognition including
methods for classifier fusion and intention recognition from
the four considered modalities. In Section IV we show eval-
uations on multimodal data from a collaborative task with a
7-DoF robot and present corresponding results. Finally, we
conclude with Section V and discuss possible future work.

II. RELATED WORK

Since the combined utilization of multiple modalities can
improve the performance and robustness of a system [5]–
[7], there are several approaches that have already dealt with
multimodal intention recognition in human-robot interaction.
The most popular combination of modalities in these works
is the use of speech commands together with gestures [7]–
[11], sometimes additionally combined with head poses [8],
[9] or otherwise face information and movement speed of the
respective person [10]. Gaze was considered as a modality
for intention recognition in two previous approaches, used
either in combination with body pose [12] or with speech
and buttons [13]. Scene objects were only considered in
relation to the human, not as passive parts of the scene [14]–
[17]. Once they were additionally combined with body poses
[15], once with the considered objects’ states [16], [17].
Two further proposed systems that considered completely
different modalities are [18], who combined force sensor
and laser rangefinder data for recognizing motion intentions,
and [19], who employed multiple physiological signals such
as blood volume pressure for the automatic recognition of
human approval of a robot’s actions. As can be seen, there
are several systems that consider multiple modalities for
intention recognition. However, none of the works has com-
bined the four modalities speech, gestures, gaze directions
and scene objects as it is done in this work.
Among all the works discussed so far, there are some that
not only deal with intention recognition in human-robot
interaction but especially address elderly assistance, which
is of particular interest in this work. Vaufreydaz et al. [10]
worked on the automatic detection of the intention to interact
with a robot. Considered data were face size and position,
speech, shoulder pose rotation and movement speed. These
data were concatenated to form a single feature vector
which was classified either by a Support Vector Machine
or a Neural Network. Thus, feature fusion was conducted
instead of classifier fusion which would fuse the outputs of
individual classifiers. Mollaret et al. [8] also dealt with the
recognition of an intention for interaction with an assistive
robot. Using head and shoulder orientation and voice activity
the corresponding intention could be inferred with a Hidden
Markov Model. Here, raw data instead of features were used
for fusion but again not the outputs of individual classifiers.

Xu [18] proposed a walking-aid robot and in this context fo-
cused on recognizing human intentions in terms of intended
walking velocities. Data were captured from force sensors
and a laser rangefinder and the estimated velocities were
fused with a Kalman filter. Even though here, outputs of
individual estimators were fused, the study only dealt with
a continuous size instead of category labels.
Rodomagoulakis et al. [7], on the other hand, fused out-
puts of classifiers working on discrete categories. In order
to enable people with limited mobility to interact with
a robotic rollator, they recognized intentions considering
speech and gestures. The respective classifiers’ output scores
for all possible intentions were fused by a weighted lin-
ear combination with tunable weights while the intention
with the highest fused score was predicted. Another work
operating on classifier outputs for fusion by Zlatintsi et
al. [11] proposed an intention recognition system for an
assistive bathing robot based on speech and gestures. They
applied a late fusion scheme meaning that an intention was
chosen as the detected one if it was ranked highest by the
speech classifier and among the two highest ranked intentions
according to observed gestures. Although these two works
fuse discrete classifiers’ outputs, these outputs are not treated
probabilistically, so uncertainty reduction is not possible.
In fact, all approaches regarded so far perform modality
fusion for intention recognition. Some even do so by fusing
outputs of individual classifiers. However, none of them
considers uncertainty for fusion or attempts to reduce the
uncertainty of the final decision. Instead, they are exclusively
concerned with improving the system’s accuracy and robust-
ness. This is also the case for works about multimodal inten-
tion recognition in other contexts than elderly assistance [12].
Some specialized approaches for audio-visual speech recog-
nition [20], [21] considered uncertainty by performing
uncertainty-based weighting for the fusion of multiple classi-
fiers’ outputs. In these works, the respective two categorical
probability distributions returned by two individual classifiers
for audio and visual input were combined by a weighted sum.
The respective weights were computed from the individual
distributions’ uncertainties, quantified e.g. with entropy [20].
Consequently, the more uncertain distribution got the lower
weight and by this had a lower influence on the fused
distribution. Whereas it is desirable to consider uncertainty
for determining the individual distributions’ impact on the
fusion result, a weighted sum of categorical distributions
cannot reduce uncertainty, because it results in an average
of the distributions which is less or equal certain per defi-
nition. However, uncertainty reduction in one of the biggest
advantages of fusing different classifiers’ distributions [6].
Consequently, another method is needed that not only de-
termines each distribution’s impact on the fused resulting
distribution based on its uncertainty but also reduces the
uncertainty of this fused distribution. A suitable method
that meets this requirement is Independent Opinion Pool
[1], [22] which we use in our approach (Sec III-A). It
basically multiplies the individual probability distributions
for fusion. The method has already been applied for different



fusion tasks, among them the fusion of geological data from
different measurement locations [23], of laser rangefinder
data for semantic labeling of places [24] and of camera
data for robust robot navigation [25]. However, Independent
Opinion Pool has not been used for multimodal intention
recognition so far in order to explicitly reduce uncertainty.
All in all, to the best of our knowledge there is no work that
uses the four modalities we consider for intention recognition
together with a method that targets uncertainty reduction.

III. MULTIMODAL INTENTION RECOGNITION

In this work, an approach for multimodal intention recog-
nition is introduced which focuses on reducing the uncer-
tainty about the intention to be predicted. Since we repre-
sent intentions as discrete categories, recognizing them can
be seen as a classification problem. Our approach applies
classifier fusion which fuses the outputs of individual and
independent base classifiers instead of e.g. fusing directly
the raw data or respective feature vectors. For this reason,
for each of the four considered modalities, a classifier was
trained on its own data from the respective modality. Each
individual classifier returns a categorical probability distri-
bution over all possible intentions as output, which contains
a probability for each possible intention. All of these base
classifiers could perform intention recognition on their own.
However, their output distributions are fused in order to
decrease uncertainty and improve performance. An overview
of the proposed approach is shown in Figure 1.

A. Classifier Fusion with Independent Opinion Pool

Our principal motivation for combining multiple modal-
ities is uncertainty reduction. First, the fusion of two non-
conflicting distributions, in the most extreme case two equal
distributions, should result in a fused distribution with a
lower entropy than those of the respective base distributions.
Second, the uncertainty of each base distribution, e.g. in
terms of its entropy, should determine the influence of the
distribution on the fused result in a way that an uncertain
distribution’s influence is lower.
In order to achieve uncertainty reduction as it is described
above, we apply Independent Opinion Pool [1] for fusion
of the n categorical probability distributions P (y|xi) over
intentions y given modality data xi. This method assumes
conditional independence of the base classifiers given the
true class label which is the true underlying intention in our
case. Furthermore a uniform distribution over all possible
classes P (y) is assumed a priori. By applying Bayes rule
with these assumptions, the fusion can be conducted by
simply multiplying the underlying base distributions returned
by each classifier and renormalizing the resulting categorical
distribution so that it sums to one,

P (y|x1, ..., xn) ∝
n∏

i=1

P (y|xi). (1)

Two advantages of this method for fusion are reinforce-
ment and mitigation [22]. Reinforcement describes the first
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Fig. 2. (a) When used for classifier fusion, Independent Opinion Pool
leads to reinforcement, which means that two non-conflicting distributions
result in a more certain fused distribution. (b) It also leads to mitigation,
meaning that the fusion of two conflicting distributions causes an increased
uncertainty. Meanwhile, the more certain distribution 1 has a higher impact
on the fused distribution and is thus decisive.

criterion for uncertainty reduction we set in the previous
paragraph. In case the distributions returned by the individual
base classifiers are non-conflicting and thus predict the same
class, the uncertainty and with it the entropy of the resulting
fused distribution is reduced compared to those of the
base distributions (Fig 2a). Mitigation means that conflicting
base distributions cause a fused distribution with a higher
uncertainty (Fig 2b). This might seem to be a contradiction
to this work’s goal of uncertainty reduction but is indeed
desirable as in case that cues from different modalities are
conflicting the resulting fused distribution should reflect this.
The second criterion for uncertainty reduction is also ac-
complished. Using Independent Opinion Pool for fusion,
each base distribution’s uncertainty determines its impact on
the fusion result. The fusion impact of an uncertain base
distribution is lower than that of a more certain one (Fig 2b).
Hereby, the fusion impact of each base distribution is only
dependent on its current uncertainty and is thus recomputed
online for every new multimodal data example.

B. Classifiers for Single Modalities

The individual classification methods we use for intention
recognition from the four modalities speech, gestures, gaze
directions and scene objects are presented in the following.
However, it is not the focus of this work to develop new
methods for classifying intentions from the different single
modalities’ data. Instead, the power of multimodality for
uncertainty reduction is demonstrated. Thus, the base clas-
sifiers for the considered modalities are designed as simple
as possible and build upon existing methods. In fact, they
can be easily replaced by any other classifiers which output
categorical distributions, and additional classifiers might be
added sequentially in order to further improve the system.

1) Speech: Speech is a meaningful modality for intention
recognition as it is effortless and intuitive for humans [26].
For intention recognition from speech, keyword spotting
is applied instead of continuous speech recognition. This
enables the recognition of simple keywords that are related to



intentions while simultaneously allowing humans to flexibly
formulate the command sentences. Since a probability dis-
tribution over all keywords is required as output, which in
many popular frameworks is not available, an open-source
framework called Honk [27] is used. Honk builds upon
a Convolutional Neural Network proposed by Sainath and
Parada [28] that consists of two convolutional layers and one
final softmax layer. As input for the network, Mel-Frequency
Cepstrum Coefficient features are used. Its implementation
is realized with PyTorch.
For training, we recorded keyword utterances from 16
people, eight of them female and eight male, while each
keyword, e.g. ”bowl” for the intention to get a bowl, was
repeated ten times. In addition to recordings of the keywords
of interest also eleven other words were recorded that are
likely to be part of possible command sentences in order
to reduce false alarms. 15% of the training data were taken
from these unknown words, another 15% were taken from
example recordings for silence, e.g. noise sounds. To increase
robustness, these noise sounds were also added to the training
examples with a probability of 0.8. 80% of all data were
taken for training and 10% each for testing and validation.
Since the network is trained on single keywords but key-
words need to be detected within complete command sen-
tences, multiple probability distributions are obtained for one
query sentence. To combine them, for each intention the
maximal probability value in all distributions is taken to
constitute the final probability distribution. This is motivated
by the assumption that each sentence contains only one
keyword to which the highest probability should be assigned.
The device for recording speech is a USB microphone (Klim)
that captures mono sound with a sample rate of 16000 Hz.
The recorded data are saved in 16-bit little-endian PCM-
encoded wave format.

2) Gestures: Since a majority of human communication
is nonverbal, gestures provide valuable information about
intentions, especially when referring to objects [29]. Here,
we realize intention recognition from gestures based on
the method Mixture of Interaction Primitives [30]. In this
method, gesture trajectories are represented with Probabilis-
tic Movement Primitives (ProMPs) [31] which approximate
each trajectory position by a linear combination of Gaussian
basis functions and weights w. Using this representation one
can learn a probability distribution over multiple demon-
strated trajectories. Mixture of Interaction Primitives [30]
extends ProMPs to be usable with multiple gestures and
two interacting agents, e.g. a human and a robot. For this,
a Gaussian Mixture Model (GMM) over human and robot
trajectories represented as ProMPs is learned, in which
each mixture component represents one interaction pattern
between human and robot. In addition to inferring a learned
gesture from an observed human trajectory, the method is
also able to estimate the most likely response trajectory of
the robot conditioned on an observed human trajectory. By
this, the robot’s movement can be adapted to the actually
shown human gesture, e.g. with respect to a common end
position in a handover task. For more details on the used

approach the interested reader is referred to [30].
We apply Mixture of Interaction Primitives for intention
recognition by representing gestures together with corre-
sponding robot reaction trajectories as ProMPs and learning
a respective GMM with one mixture component for every
intention. Thus, in addition to recognizing intentions from
human gestures, we can also generate a corresponding robot
trajectory as a reaction to the intention recognized by the
fused classifier considering all four modalities.
The parameters of the GMM are originally learned from
unlabeled data with the Expectation Maximization algorithm
[30]. However, as we work with labeled data, we estimate the
GMM’s parameters with Maximum Likelihood Estimation.
In addition, just the last point of the observed trajectory
is taken for gesture classification which is sufficient for
differentiating the gestures in our experiment.
For training of the gesture classifier, 30 examples of reaching
motions were demonstrated by one human subject. The
resulting trajectories were captured with the motion tracking
system Optitrack which uses cameras and passive reflective
markers attached to the human wrist. For training of the robot
reaction movements, kinesthetic teaching was applied.

3) Gaze Directions: Previous studies revealed fixations to
be strongly task-dependent and predictive for future actions
and intentions [32]–[35], which motivates us to infer human
intentions from gaze directions. For this, we apply a Support
Vector Machine (SVM) that is inspired by two existing
approaches about intention recognition from gaze [32], [33].
Considered features are the distances between the human’s
3D gaze vector and all locations of interest in the scene,
which are mainly object locations. The mean gaze vector
is computed from the last 900 samples of the recorded gaze
directions during a trial. The motivation for working with this
mean here is that it indirectly includes information about the
most recently fixated location and the number and duration
of fixations towards this location, which were all stated
to be important features for intention recognition in [33].
Additionally considering the distances between locations of
interest and the gaze vector is an idea presented in [32].
While using the described features, a multiclass SVM with
linear kernel was trained using the package sklearn. In
contrast to just the predicted class label, which is the usual
output of an SVM, this package also provides a probability
distribution over all possible labels as output.
The used training data included 30 labeled examples per
intention, each with a duration of five seconds and consisting
of 1250 samples. For recording, one person was seated in the
scenario setup described in Section IV and asked for several
robot assists, e.g. a handover of an object, while shifting its
gaze towards the location of interest, i.e the object itself.
Gaze direction is recorded monocular by a head-mounted
eye tracker (Pupil Labs) which uses infrared lights and eye
cameras for inferring the pupils’ positions and computing
the gaze vector. The device is additionally equipped with
reflective markers in order to be trackable by the Optitrack
system also used for gesture tracking, because we need the
gaze vector in scene coordinates rather than just related to



the eye tracker itself. For integration of the eye tracker in
the overall system an open-source ROS plugin is used [36].

4) Scene Objects: Scene objects are objects that are
passive parts of the scene but can still give hints about what
the intention of the human could be [37]. For estimating
intentions from such objects we build upon an approach
that deals with scene classification from observed objects
[38]. The reason for this choice is that other approaches
which directly deal with intention recognition only consider
objects that are manipulated by a human [14]–[16] rather
than passive scene objects. Thus, an SVM was chosen
as classifier type with input feature vectors containing
the horizontal distances of all available scene objects to
a pre-defined center point on a working area in front of
the human, which is basically the front part of a table.
Objects that are positioned outside this working area are
set to the same pre-defined value. Other possible features,
such as the raw positions of objects on the working area
or just Boolean values indicating whether an object is in
the working area or not, performed worse than the chosen
approach. The multiclass SVM is again implemented using
the package sklearn and again a probability distribution
over all intentions is returned instead of just one predicted
intention.
Training was conducted on 50 recordings of different
scene object placements for each intention, e.g. a glass
for the intention to get some coke. Object positions are
gathered with the camera-based motion tracking system
Optitrack. For this, each scene object is equipped with
four markers in a unique geometric pattern that enables
the system to distinguish between objects and record
their position. Used scene objects in our human-robot
interaction scenario are a cutting board, a tomato, a bowl,
a bottle of each coke and water, a sponge, a glass and a knife.

IV. EXPERIMENTAL EVALUATION

For evaluation of the proposed multimodal intention recog-
nition system we chose a kitchen scenario in which a 7-
DoF robot arm assists a human in preparing some food,
e.g. a salad (Fig 3). The human sits at a table with several
task-relevant objects placed around him that are not easily
reachable from a seated position. The robot can assist by
handing over requested objects or helping to stand up by
reaching out his arm as a prop. The nine recognizable
intentions are to receive a cutting board, a tomato, a potato,
a roll, a bowl, a bottle of dressing or coke or a towel and to
get support for standing up. These intentions are deliberately
chosen to be ambiguous, e.g. with respect to their positioning
or sound, in order to obtain uncertain results when using
the individual base classifiers only. For all intentions ten
example data sets were recorded, each consisting of a speech
recording, the last point of the shown hand gesture, a list of
the shown gaze directions and the positions of the scene
objects of interest. Consequently, 90 multimodal examples
from one human subject are available for evaluating the
proposed intention recognition system.

Fig. 3. The kitchen scenario the fusion system was evaluated in. The human
can request different actions from the robot by displaying intentions through
the four considered modalities. For capturing gestures and scene objects the
human’s hand (1) and the scene objects (e.g. 4) are equipped with markers.
Speech is captured with a microphone (2) and gaze with a head-mounted
eye tracker (3). The ten recognizable intentions are the handover of the
board (A), tomato (B), potato (C), roll (D), bowl (E), dressing (F), coke
(G) or towel (H). Additionally, there is the intention to stand up for which
location (J) is fixated.

Two measures are chosen to quantify the uncertainty of a cat-
egorical distribution. First, Shannon entropy is used, which
is a well-known measure for the uncertainty of a distribution.
It is maximal for a maximally uncertain distribution, that is
uniform over all intentions, and minimal for a maximally
certain distribution that assigns all probability mass to one
intention. Second, a measure called score difference [39] is
applied for measuring uncertainty. It computes the difference
between the highest and the second highest probability in the
distribution. Thus, in contrast to entropy, score difference
does not consider the complete distribution’s uncertainty but
quantifies the actual uncertainty in making a hard decision
for one intention. Thereby, a low score difference indicates
a high uncertainty.
Although uncertainty reduction is the focus of our approach,
it is also essential to guarantee that the intentions are
classified correctly. Thus, in addition to entropy and score
difference also the accuracy of the multimodal and unimodal
classifiers is evaluated. Figure 4 shows accuracy, entropy and
score difference of the underlying fused distributions for all
possible combinations of base classifiers as well as for the
four single base classifiers. As can be seen, the accuracy
of the fused result combining all modalities (0.94) is higher
than that of the single classifiers (speech: 0.63, gesture: 0.86,
gaze: 0.59, objects: 0.79). Only one other combination of
base classifiers, namely gesture-gaze-objects, has a slightly
higher accuracy. In general, eight out of eleven combinations
of base classifiers result in a higher accuracy than all of the
base classifiers do. This already indicates the superiority of
multimodal over unimodal intention recognition.
When additionally considering uncertainty, both measures
entropy and score difference show the lowest mean uncer-
tainty for the fusion of all four modalities compared to
all other possible combinations. Two other combinations of



0.0

0.2

0.4

0.6

0.8

1.0
A

cc
u

ra
cy

0.00

0.25

0.50

0.75

1.00

1.25

1.50

E
n

tr
o

p
y

reference to single base classifiers (light grey)

reference to fusion of all modalities (dark grey)

speech gesture gaze objects speech
gesture

speech
gaze

speech
objects

gesture
gaze

gesture
objects

gaze
objects

speech
gesture

gaze

speech
gesture
objects

speech
gaze

objects

gesture
gaze

objects

speech
gesture

gaze
objects

0.0

0.2

0.4

0.6

0.8

1.0

S
co

re
 D

if
fe

re
n

ce

Fig. 4. Comparison of all possible combinations of base classifiers
regarding accuracy, mean entropy and score difference. Corresponding
variances are plotted as error bars. It is seen that uncertainty is reduced
through classifier fusion, in particular it is lowest for the fusion of all
four modalities, according to both measures entropy and score difference.
Accuracy is also increased through fusion compared to the single classifiers.

base classifiers, namely speech-gesture-objects and gesture-
gaze-objects, show a similarly low uncertainty which yet is
still higher than that resulting from fusing four modalities.
In general, it can be seen that except from one classifier
combination the uncertainties of the fused distributions are
considerably lower than that of all single base classifiers.
The only exception is the fusion of speech and gaze classifier
which is slightly more uncertain than the most certain base
classifier, the gesture classifier. Yet, its uncertainty is reduced
in comparison to the two actually fused individual classifiers
for speech and gaze. And it needs to be taken into account
that these two classifiers are the least accurate and most
uncertain of all four classifiers. This demonstrates the power
of multimodal classifier fusion for intention recognition as
proposed here. Even inaccurate and uncertain classifiers like
speech and gaze classifier contribute to uncertainty reduction
and better performance when added to a multimodal intention
recognition system. Moreover, also combinations of base
classifiers including less than all four modalities already
improve performance and reduce uncertainty.
So far, the results convey the impression that the proposed
multimodal approach for intention recognition reduces the
uncertainty of the overall system. However, just means and
variances of entropy and score difference over all test exam-
ples were taken into consideration. We additionally need to
analyze whether uncertainty reduction is also accomplished
for individual fusion examples. For speech and gesture clas-
sifier, Figure 5 shows the uncertainties in terms of entropy of
the generated categorical distributions of all 90 test examples,
differentiated according to whether they are generated by just
the single classifier or by a fusion of multiple classifiers.

One can see that for the most uncertain classifier, the
speech classifier, for all recorded test examples the fused
distributions are always less uncertain than the single base
distribution is, no matter how many of the three other
modalities are added for fusion. In particular, the entropy of
the distribution fused from all four modalities is lowest for
nearly all examples. The only exceptions are examples from
the intentions tomato and roll. Yet, this is easily explainable
as these two intentions are often confounded by the base
classifiers, which leads to conflicting base distributions. This
in turn results in a higher uncertainty of the fused distribution
which is desirable as different opinions of base classifiers
should be reflected in the resulting fused distribution.
For the most certain one of the base classifiers, the gesture
classifier, similar results can be shown, however not as strong
as for the speech classifier. The gesture classifier is already
quite certain on its own which is seen on much smaller
overall entropy values. Apart from some exceptions, again,
the fused distributions from all possible combinations with
the other three modalities are less uncertain than the single
gesture classifier, and in a majority of cases the fusion of
all four modalities results in the lowest entropies near to
zero. In contrast to the speech classifier seen before, for
the gesture classifier there are some examples with higher
entropies for the distribution resulting from the fusion of four
modalities compared to the single classifier’s distribution, but
all these examples repeatedly come from the two ambiguous
intentions tomato and roll.
These cases are especially interesting as the examples which
are classified incorrectly by the fused distribution that com-
bines all possible modalities mostly are examples for the
intention roll. Consequently, the intention with the most un-
certain fused distributions is also the intention with the most
incorrect classifications. As an uncertain misclassification is
more desirable than a certain one, this is desirable behavior.
Our proposed intention recognition system was not just
evaluated quantitatively on recorded multimodal data but also
online in a real interaction with the 7-DoF robot arm. For
this, the kitchen task was performed cooperatively by a hu-
man and a robot. This means that in order to prepare a salad
the human expresses the different intentions using the four
modalities and after having recognized the correct intention
the robot reacts accordingly. As a reaction, the robot moves
to the respective location for this intention, e.g. the position
of a requested object, and grasps it. Subsequently, it executes
a trajectory in order to hand over the respective object or help
the human to stand up. This trajectory was learned from
demonstrations and is conditioned on the last point of the
shown human movement as was explained in Section III-
B.2. This means that the most likely robot movement given
the last point of the observed human trajectory is executed,
which leads to an adaption of the robot movement to the
human. This is especially beneficial for our handover tasks.
The complete interaction process is shown exemplarily in
Figure 6 for the intention to get a roll. The human expresses
this intention by uttering a command containing the word
”roll”, reaching out its arm in the roll’s direction, fixating it
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for the nine intentions. We see that for a large majority of examples already combinations of two or three classifiers reduce the uncertainty compared to
the uncertainty of the single speech or gesture classifier. The fusion of all four modalities causes the strongest uncertainty reduction. The intentions tomato
and roll show higher uncertainties since the base classifiers often confound them.

(a) (b) (c) (d) (e) (f)

Fig. 6. The human shows the intention roll by uttering a command containing the word ”roll”, reaching out its arm for the roll, fixating the roll and
having placed the scene objects board and knife in the working area (b). As soon as this intention is recognized, the robot moves towards the roll (c),
grasps it (d) and subsequently executes the inferred trajectory (e) to hand it over to the human (f).

and having placed the scene objects board and knife in the
working area. The robot recognizes the correct intention and
subsequently moves towards the roll, grasps it and hands it
over to the human by executing the inferred trajectory.
As well as on recorded data, also in online interaction with a
real robot it could be shown for all considered intentions that
the proposed multimodal intention recognition system using
speech, gestures, gaze directions and scene objects works.

V. CONCLUSIONS

In this work, we introduce a multimodal approach for
intention recognition to be applicable in elderly assistance. In
contrast to existing works, we focus on uncertainty reduction
in a way that the combination of modalities makes the
system more certain about the intention to be predicted.
For this, the categorical output distributions of individual

classifiers for the four different modalities speech, gestures,
gaze directions and scene objects are fused. We evaluate our
approach in a cooperative kitchen task between a human
and a 7-DoF robot arm. The results show that uncertainty
can be decreased through the use of multiple modalities.
Even very inaccurate and uncertain classifiers can contribute
to uncertainty reduction, better performance and robustness
when added to a multimodal system.
This shows that the proposed approach allows well-
performing and certain intention recognition using simple
and easily trained base classifiers that only require a low
amount of training data. Additionally, it is particularly im-
portant for elderly assistance since even if complex classifiers
are available they might be challenged by data from elderly
people, which can increase their uncertainty and error rate.



In addition to utilizing uncertainty information for an optimal
fusion of multiple modalities, for future work we plan to
exploit the knowledge of the decision uncertainty in a way
that the robot reacts according to its uncertainty about the
situation. Another interesting line for future work we cur-
rently investigate is the inclusion of a reliability measure into
the fusion mechanism. Because, although it is desirable that
for every new decision the uncertainty of all base classifiers
determines their impact on the fused result online, some
additional knowledge about the individual performance of
the classifiers could further improve the system.
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