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Abstract— Learning motions from human demonstrations
provides an intuitive way for non-expert users to teach tasks
to robots. In particular, intelligent robotic co-workers should
not only mimic human demonstrations but should also be
able to adapt them to varying application scenarios. As such,
robots must have the ability to generalize motions to different
workspaces, e.g. to avoid obstacles not present during original
demonstrations. Towards this goal our work proposes a unified
method to (1) generalize robot motions to different workspaces,
using a novel formulation of trajectory optimization that
explicitly incorporates human demonstrations, and (2) to locally
adapt and reuse the optimized solution in the form of a
distribution of trajectories. This optimized distribution can be
used, online, to quickly satisfy via-points and goals of a specific
task. We validate the method using a 7 degrees of freedom (DoF)
lightweight arm that grasps and places a ball into different
boxes while avoiding obstacles that were not present during
the original human demonstrations.

I. INTRODUCTION

Future generations of collaborative robots will not only
change production paradigms in human-robot shared work
spaces, but also address the unprecedented growth of the
elderly population. Such robots will inevitable face a variety
of unforeseen tasks; rendering manual pre-programming of
motions unrealistic in practice. While methods such as kines-
thetic teaching can be time-consuming or even infeasible
for non-expert workers and non-backdriveable robots, a very
natural and intuitive way to teach robots is to provide
observations of human movements. However, complex tasks
in dynamic environments require robots to go beyond simply
mimicking the human. Robots must adapt their motions
to unforeseen changes in the work space, different human
partners or varying task constraints.

We propose a method which provides two main advantages
compared to similar approaches from the fields of trajectory
optimization and motion planning. First, our algorithm is able
to optimize a distribution of trajectories (as opposed to a
single trajectory), preserving the temporal and spatial corre-
lation of human demonstrations. The use of demonstrations
reduces the need for prior assumptions such as trajectory
smoothness, actuator usage, and jerkiness, which are usually
hand-coded in a cost function. Second, our algorithm is
able to generalize the demonstrated motions not only for
workspace changes such as obstacles, which were not present
during the original demonstrations, but can also quickly adapt
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Fig. 1. (Left) As human movements are inherently stochastic,
multiple demonstrations allow us to reveal the temporal and spatial
correlations that govern the motion to achieve human-like robot
motions. (Right) When the application workspace differs from the
demonstrated scenario, e.g by obstacles not present during the
demonstrations, the robot should be able to adapt the learned
movements.

the robot motions to changing task specific constraints, such
as different goals or via points. A probabilistic representation
of the trajectories allows us to do the latter by encoding the
optimized distribution as a movement primitive.

While path planning and trajectory optimization have been
topics of research for many years, existing algorithms mainly
focus on robot issues such as feasibility, joint constraints
or energy minimization [1], [2]. Common to most standard
trajectory optimization approaches is the fact that human
demonstrations are not taken into account during the opti-
mization process. Incorporating human demonstrations can
provide means for the generation of more human-like mo-
tions [4], in particular in human-robot shared environments.

Moreover, trajectory optimization, even in stochastic set-
tings, is mostly limited to generate a single optimal solution.
Here, we optimize an entire distribution over trajectories,
rather than a single optimal trajectory. As it will be clear
in the next sections, this will be key to generalize human
demonstrations to different robot workspaces and task spe-
cific constraints.

The contributions of this paper are twofold. First, we intro-
duce an offline optimization algorithm for motion planning
that optimizes trajectory distributions. Within this optimiza-
tion the temporal and spatial correlations of the trajectories
are extracted directly from human movements. Collision-
free trajectories for obstacles not present during the human
demonstrations can then be sampled from the optimized
distribution over trajectories. Second, we show how to repre-
sent this optimized distribution as a probabilistic model such
that the learned robot motions can be additionally general-
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ized to satisfy different via points. To this end, statistical
modeling methods offer temporal and spatial generalization
and account for e.g. different desired via points during the
robot movement [5], [6], [7], [8]. As our proposed trajectory
optimization yields not only a single optimal trajectory
but an optimized distribution of trajectories, it allows for
a straightforward connection to those existing probabilistic
movement modeling approaches.

II. RELATED WORK

The idea of learning from demonstration has been a recent
research topic [9], [10]. While methods such as kinesthetic
teaching tend to constrain the demonstrators movement and
might not even be feasible depending on the robot model or
the task, a very natural and intuitive way of teaching is learn-
ing directly from unconstrained human demonstrations [11].

A core question is how to quickly adapt the learned motion
to different and even unseen situations. Trajectory optimiza-
tion and path planning and are long-standing research fields
in robotics and have been studied extensively [12], [13],
[14]. The basic problem is to find a solution for driving a
robot from an initial configuration to a goal configuration
while obeying certain constraints and avoiding obstacles in
the robot’s environment [15].

The adaptation and generalization of robot motions have
been successfully achieved by local trajectory optimization
methods [2], [1], [16]. Common to all these approaches
is the fact that human demonstrations are not taken into
account during the optimization process and smoothness is
achieved by artificial prior assumptions such as penalizing
accelerations [2], smooth kernels [1], [16] or temporally
correlated noise [2]. Extracting information for motion plan-
ning and trajectory optimization out of few human tra-
jectories has been used for different applications such as
helicopter control [17], automatic constraint extraction [18]
and early prediction of human motions [19]. However, these
approaches do not use generalizable representation of mo-
tions and therefore the optimization needs to be run again
whenever goals or via points change.

To obtain generalizable robot motions from human demon-
strations a number of frameworks employ the concept of
movement primitives [20], [21], [22]. Movement primitives
enable the decomposition of complex movements to compact
parametrization of robot policies [23]. The main idea is to
encode a recorded trajectory in a way that can be used to
generate different variations of the original movement in
temporal as well as in spatial context.

Since human movements are inherently stochastic, multi-
ple demonstrations allow us to reveal the temporal and spatial
correlations that govern the motion. It is desirable to employ
representations which are able to capture this variance in
the motion such as extensions of Hidden Markov Models
[5], Probabilistic Movement Primitives (ProMPs) [8] and
Probabilistic Flow Tubes [7].

The particular aspect of motion planning and obstacle
avoidance in combination with movement primitives and
human demonstrations has been addressed for specific cases

such as, Dynamic Movement Primitives [24], [25], a mixture
of dynamical systems [26] or Task-Parameterized Gaussian
Mixture Models [27]. However, in this work we propose
a method for demonstration based trajectory optimization,
where the trajectory optimization for obstacle avoidance is
decoupled from the chosen movement representation. This
allows for straightforward connection to any of the prior
mentioned motion representations such as [5], [6], [7], [8].

To quickly generalize for different workspace settings,
our proposed method does not optimize a single trajec-
tory but rather a distribution over trajectories. Based on a
probabilistic movement representation, we can leverage this
distribution for online adaptation to given task constraints.
The idea to consider variance and uncertainty in the motions
is also considered in belief state planning approaches [28],
but most of those do not take human demonstrations into
account during the optimization. Another way to preserve a
distribution during the optimization process is provided by
using the Kullback-Leibler (KL) divergence as a measure to
quantify deviations between the optimized solution and the
original demonstrations [29]. In our approach we employ
the KL divergence to measure deviations from the original
demonstrated distribution.

III. GENERALIZABLE ROBOT MOTIONS
FROM HUMAN DEMONSTRATIONS

Our method comprises three main steps, which are de-
picted in Figure 2. First we collect human demonstrations
of the desired behaviour in form of multiple trajectories
(red). The second step processes these demonstrations during
stochastic trajectory optimization (green). This optimization
is performed off-line and produces a collision-free distribu-
tion that additionally is close to the empirical distribution
inferred from the demonstrations. The online phase (blue)
uses the optimized distribution, encoded as a probabilistic
representation, to satisfy task-specific constraints. Such a
probabilistic movement representation can be conditioned to
quickly satisfy e.g. different desired via points. The con-
nection of the demonstration based trajectory optimization
with such a statistical movement model is feasible, since our
proposed optimization outputs not only a single trajectory
but an optimal, collision-free distribution.

This section introduces our method for demonstration
based trajectory optimization and offers an overview of the
probabilistic movement primitive structure which was used
for the online adaptation to task constraints.

A. Demonstration Based Trajectory Optimization

We frame the trajectory optimization as a policy search
problem, in which the policy defines a distribution from
which trajectories can be sampled.

Given a robot trajectory τ = {x[1], ...,x[T ]}, where x[t]

denotes a state vector, of Cartesian or joint states, at time step
t, the proposed optimization addresses two main objectives.
First, it minimizes the deviation of the current policy p from
the distribution of human demonstrations d measured as the
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Fig. 2. The flowchart shows the structure of our framework.
The proposed method builds on human demonstrations, collected
as multiple trajectories (red). To process those demonstrations we
introduce an off-line optimization algorithm for motion planning
(green) that outputs a trajectory distribution whose temporal and
spatial correlations are extracted directly from human movements.
Collision-free trajectories for obstacles not present during the hu-
man demonstration can be sampled from this optimized distribution.
Subsequently, we encode the result as a probabilistic representation.
This allows to reuse the optimized distribution and quickly satisfy
task constraints, such as via points, in an online fashion (blue).

KL-divergence between p and d

costKL =

∫
τ

p(τ ; Θ)log
(
p(τ ; Θ)

d(τ ; ΘD)

)
dτ . (1)

Here, Θ denotes the policy parameters of the policy p and
ΘD denotes the policy parameters of an empirical distri-
bution, inferred from the demonstrated trajectories. Respec-
tively p(τ ; Θ) and d(τ ; ΘD) can be seen as the probability
of τ under the policy p and under the demonstrations. The
formulation can be used for arbitrary distributions, but for our
experiments we assumed the distribution over demonstrated
trajectories, as well as the policy, to be Gaussian.

As a second objective we maximizes a reward function
R(τ ). For obstacle avoidance, a reward similar to the defi-
nition presented in STOMP [2] is used

R(τ ) = −
T∑
t=1

max{εdist −∆(x[t]), 0}, (2)

where εdist denotes a safety radius around the obstacle, that
should not be touched by the trajectory, and ∆(x[t]) denotes
the Euclidean distance of x[t] to the closest obstacle. Note
that the policy p can start in an uninformed manner, that is,
the initial guess on trajectories does not need to be smooth
neither correlated. The optimization of (1) and (2) will
naturally approximate d while trading off with the necessary
deviations to satisfy the obstacle avoidance objective.

To optimize the policy, our method extends Relative
Entropy Policy Search (REPS) [30] and incorporates (1) and
(2) as

argmax
p

∫
τ

[
p(τ ; Θ[k])R(τ )−Bp(τ ; Θ[k])log

(
p(τ ; Θ[k])

d(τ ; ΘD)

)]
dτ

s.t.
∫
τ

p(τ ; Θ[k])log

(
p(τ ; Θ[k])

p(τ ; Θ[k−1])

)
dτ ≤ ε,∫

τ

p(τ ; Θ[k])dτ = 1,

(3)

where ε denotes the upper bound for the deviation of the
updated policy p(τ ; Θ[k]) at the k-th iteration from the
previous policy, p(τ ; Θ[k−1]). As proposed in the original
version of REPS, this constraint prevents huge jumps in
the policy update step. The coefficient B is a scalar that
trades off between minimal deviation from the demonstrated
distribution and obstacle avoidance.

With the method of Lagrange multipliers, as explained
in more detail in the Appendix, we obtain a closed form
solution for the update rule of the policy

p(τ ;Θ[k]) ∝ exp
(
R(τ )

B+η

)(
d(τ ;ΘD)

p(τ ;Θ[k−1])

) B
B+η

p(τ ;Θ[k−1]), (4)

where η is the Lagrange multiplier of the upper bound
constraint. Note that (4) differs from the original solution
in [30] as it explicitly incorporates the distribution of human
demonstrations within the optimization.

In each iteration we use N samples τ 1, ..., τN from the
current policy p(τ ; Θ[k−1]). In particular, if the policy is
assumed to be Gaussian with Θ[k−1] = (µ[k−1],Σ[k−1]),
we obtain a new mean µ[k] and a new covariance matrix Σ[k]

with a weighted Maximum Likelihood update as follows

µ[k] =

∑N
i=1 wiτ i∑N
i=1 wi

, (5)

Σ[k] =

∑N
i=1 wi(τ i − µ[k+1])(τ i − µk+1)T

z
, (6)

z =

(∑N
i=1 wi

)2
−
∑N
i=1 w

2
i∑N

i=1 wi
.

Here, the weightes wi are defined by the update rule (4)

wi = exp
(
R(τ i)

B + η∗

)(
d(τ i; ΘD)

p(τ i; Θ
[k−1])

) B
B+η∗

i = 1...N,

where η∗ minimizes the dualfunction (13).
After the convergence of the optimization to a locally

optimal policy p∗, we can connect p∗ to any probabilis-
tic movement primitive representation. This connection is
straightforward as the proposed optimization outputs not only
a single trajectory but a distribution over trajectories.

Algorithm 1 describes the proposed optimization of a
trajectory distribution in pseudo code. In line 2 we initialize
the mean µ[0] with the mean of the demonstrations and the
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Fig. 3. The distribution over trajectories (illustrated as mean and two times standard deviation) is shown at different stages of the
algorithm. The distribution of demonstrated trajectories (red) is optimized for obstacles not present during the demonstrations (green).
Using a probabilistic representation the optimized distribution can be quickly adapted for task-specific constraints such as via points (blue).

covariance matrix Σ[0] with the diagonal from the covariance
matrix of the demonstrations, enlarged by a factor α. Using
the diagonal of the covariance matrix of the demonstrations
provides exploration noise that is on the same order of
magnitude of the human variance and the independence
among time steps gives the trajectory the flexibility to deviate
from obstacles. While we noticed that this heuristic provides
good convergence, an arbitrary initialization is also possible
as the objective in (1) incorporates the full correlation of the
demonstrations during the optimization in either case.

The proposed optimization can be applied for multiple
trajectory dimensions, either independently parallelized or
coupled over the obstacle cost (2).

B. Online Adaptation to Task Constraints

As our proposed optimization results in an optimized
distribution of trajectories, the robot motion can be easily
encoded by statistical modeling methods. For the experi-
ments in this paper we used the ProMP method [8], but other
representations such as [7], [6] or [5] can also be considered.

Only the basic concepts are mentioned here, details of the
ProMP method can be found in [8].

Algorithm 1 Demonstration Based Trajectory Optimization
1: procedure DEBATO(µD, ΣD, B)
2: µ, Σ ← initialize (e.g as µD and diag(ΣD)+αI )
3: repeat
4: for i = 1 : N do
5: τ i ∼ N (µ,Σ)
6: li=log(N (τ i,µ,Σ))
7: l̃i=log(N (τ i,µD,ΣD))
8: r(i) = R(τ i) Eq.(2)
9: ηopt ← minimize dualfunction Eq.(13)

10: for i = 1:N do
11: w(i)=exp( 1

B+ηopt
((ri)+B (l̃i-li))

12: µ ← ML update(w,τ ) Eq.(5)
13: Σ ← ML update(µ,w,τ ) Eq.(6)
14: until sufficient convergence of µ and Σ
15: return µ, Σ

A set of trajectories, obtained from a certain number of
demonstration trials, is modeled using a set of basis functions
Ψt and a weight vector w

yt =

[
xt
ẋt

]
= Ψtw + εy; with εy ∼ N (0,Σy). (7)

In this equation Ψt = [ψt, ψ̇t] denotes the time-dependent
basis matrix with positions xt and velocities ẋt and εy
defines zero-mean i.i.d. Gaussian noise.

To learn the weights of the basis functions linear ridge
regression is used on multiple trajectories sampled from p∗

w = (ΨTΨ + λI)−1ΨT
t y, (8)

where λ denotes a small regularization factor.
Encoding a movement with the learned weight vector w,

the probability distribution of a trajectory can be written as

p(y|w) =
∏
t

N (yt|Ψtw,Σy). (9)

To obtain a probability distribution over multiple trajectories
the respective weight vectors are represented as a Gaussian
distribution with mean µw and covariance matrix Σw.

The framework offers fast adaptation of the motion to
changing via points by conditioning on a certain state y∗

t at
time point t. Therefore, an observation o∗t = y∗

t ,Σ
∗
y , where

Σ∗
y can be seen as the observation noise, is used to obtain a

posterior distribution over the weights. This posterior is also
Gaussian with mean µnew

w and covariance matrix Σnew
w

K = ΣwΨt(Σ
∗
y + ΨT

t ΣwΨt)
−1 (10)

µnew
w = µw +K(y∗

t −ΨT
t µw) (11)

Σnew
w = Σw −KΨT

t Σw. (12)

Figure 3 summarizes the steps performed on the distribution
of human demonstrations. It illustrates the original distribu-
tion (red), the optimized distribution after the demonstration
based trajectory optimization (green), and the distribution of
the probabilistic representation (blue), which can be reused
e.g. for conditioning on a certain end point. The colors
correspond to the steps, illustrated in Figure 2.
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Human demonstrations Optimized distribution Obstacle Probabilistic representation conditioned via points Desired via point

Fig. 4. The demonstrations are given as multiple drawings of a handwritten letter (a). Unlike other trajectory optimization methods
for motion planning, such as STOMP (b), the proposed demonstration based trajectory optimization (c) preserves a distribution over
trajectories, rather than a single optimized trajectory. Applying the optimization on segments of the trajectories (d) results in deformations
of the trajectory parts in the vicinity of the obstacle, but preserves the variance of the demonstrations in the other parts. Statistical modeling
methods for movement representation (e) offer fast adaptation by conditioning on different desired via points.

IV. EXPERIMENTS

This section presents the results of experiments, in which
we evaluate a 2D example of redrawing a handwritten letter
and a pick-and-place setup for a 7-DoF robot arm.

A. Drawing a Letter in a Constrained Workspace

In the first experiment the demonstrations are given as
a set of multiple drawings of a handwritten letter “a”.
As illustrated by Figure 4(a), the demonstrations include
variance and can be represented as a Gaussian distribution as
explained in Section III. The algorithm attempts to reproduce
this demonstrated distribution, however, with an obstacle
placed at different locations.

Figure 4(c) presents a representative result of our method
on this 2D example. We compared this result with the result
of a standard trajectory optimization method, here based
on STOMP, a stochastic trajectory optimization method for
motion planning [2], depicted in Figure 4(b). The figures
illustrate that our demonstration based trajectory optimiza-
tion is able to operate with the full distribution as an input,
and preserves a distribution during the optimization, whereas
a standard trajectory optimization reduces the final solution
to a single trajectory. In terms of further generalization of
trajectories this means that the solution of STOMP is specific
to the defined start and end point, whereas our solution
provides variance.

In Figure 4 (c), note that the optimization achieves obstacle
avoidance and captures the correlation of the demonstrations,
but the variance of the original distribution is reduced even in
areas not effected by the obstacle. This result stems from the
fact that the demonstrated trajectories are strongly correlated
in the temporal axis, and therefore, local deviations, for
example to deviate from an obstacle at the beginning of
the motion, propagates until the end of the trajectory. In

certain applications, however, it may be desirable to preserve
the full variance in areas not affected by the obstacle. One
alternative is to assume that the demonstrated trajectories are
not correlated in time, as it was done in [29]. However, this
may generate excessively jerky trajectories. A compromise
between full correlation and no correlation is to run (3)
on a sliding window along the time axis, using only the
corresponding segment of the demonstrations for each win-
dow. To improve efficiency, this process can be computed in
parallel. The solution of each segment must be reconnected
afterwards, to generate the whole trajectory distribution.

Figure 4(d) shows a result for this optimization of trajec-
tory segments. The plots reveal that with this approach the
demonstrated distribution (red) gets deformed only in regions
in direct vicinity to the obstacle, and the optimized solution
(green) still contains the full variance of the demonstrations
in the other parts of the trajectories. For this experiment,
segments with 1/5 of the whole trajectory length were used.
Automating this procedure, either by adaptive tuning of
the window size, or by decreasing the correlation of the
demonstrations only at the areas that need to avoid the
obstacle, is part of future research.

B. Adaptation For Different Via Points

As the proposed method results in a distribution over
trajectories, it can be used in combination with statistical
modeling methods for online adaptation to task constraints,
such as via points.

We encode the optimized distribution as a probabilistic
movement primitive and condition on different desired via
points as explained in Section III-B. The results in Fig-
ure 4(e) illustrate the demonstrations (red), the optimized so-
lution (green) and the remaining distribution after condition-
ing with the probabilistic movement representation (blue).



Fig. 5. We consider a pick-and-place scenario with a ball and five boxes as illustrated on the left. Human demonstrations, as shown on
the right, are recorded using an OptiTrack motion capturing system for the wrist position. The proposed algorithm is evaluated on a 7DoF
Kuka Lightweight arm to achieve robot motions that are similar to the demonstrated motions, while generalizing to different work space
settings, such as obstacles, not present during the original demonstrations, and deliveries to different boxes.
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Fig. 6. The plots illustrate the average reward over 300 sampled
trajectories during the demonstration based trajectory optimization.
The two objectives of the optimization, obstacle avoidance and
minimal deviation from the demonstrated distribution, are shown,
as well as the combined reward. Each curve represents a different
obstacle setting. The results reveal how the optimization converges
to a distribution of trajectories that avoids obstacles and at the same
time deviates as least as possible from the original demonstrations.

The plots reveal that a core advantage of optimizing a dis-
tribution over trajectories, as proposed in our demonstration
based trajectory optimization, is given by the possibility to
reuse the optimized obstacle-free distribution for adaptation
to constraints that need not necessarily be known during the
optimization process. This conditioning step is very fast and
can be used for online variation of the written letters, while
at the same time the prior optimization accounts for obstacle
avoidance in the current workspace setting.

C. Pick-And-Place Scenario on a Humanoid

In this experiment, we report our initial evaluations of
the method on a real robot task, using a 7-DoF KUKA
lightweight arm as illustrated in Figure 5.For those experi-
ments on a real robot we performed the optimization in task
space and only considered the end effector position for ob-
stacle avoidance. Evaluation of optimizing robot trajectories
in joint space and approximation of the full arm geometry
with a bounding-box approach, as well as consideration of
self-collisions, are planned as a next step.

The experiment consisted of picking a ball, at a fixed
location “6” on a table and placing it inside one of five
possible boxes, shown in Figure 5 on the left. To collect
demonstrations, a human performed multiple deliveries of the
ball to the boxes “1”, “3”, and “5” (a sequence of snapshots
is shown in Figure 5(right)). There are no demonstrations for
box “2” and “4”.

Before creating a probabilistic primitive, however, we
added a large box at different locations in the very middle
of the table, as shown for one example in Figure 8. Using
a Kinect camera to obtain a signed distance field with
Euclidean distances to the obstacles, we optimized the distri-
bution of human demonstrations with respect to the changed
workspace. The experiment was repeated with the obstacle
on a different position, leading to different contextualized
trajectories, such as the one shown at the bottom of Figure 7.

Figure 6 shows the reward improvement during the op-
timization as a function of the iterations for four different
obstacle positions. For both objectives the trajectory opti-
mization converges steadily and achieves a trade-off between
minimal deviation from the original demonstrations and
obstacle avoidance. Even though the KL metric indicates
that the optimized distribution stays close the demonstrations
and is therefore ”human-like”, a more qualitative analysis of
human-specific motion criteria remains an interesting aspect
for future work.

For the reasons explained in Section IV-A we performed
the optimization on a sliding window, with 1/5 of the full
trajectory length, along the time axis. Subsequently we
encode the optimized distributions over trajectories as proba-
bilistic movement primitives. Conditioning on via points for
those movement primitives allows to generalize the robot’s
motions to deliver the ball to different desired box locations,
even to the boxes “2” and “4”, that were not part of the
demonstrations. Figure 8 shows resulting robot motions for
one obstacle position, and illustrates deliveries to box “1”
and box “4”.

Using the proposed algorithm the main planning time
is needed in the offline optimization, whereas the average
trajectory planning time for different box locations in the
online phase is significantly faster, as illustrated in Table I
for four different obstacle settings, computed on a core i7
computer.

TABLE I
ONLINE/OFFLINE PLANNING TIME

Setting 1 Setting 2 Setting 3 Setting 4

Offline Optimization 71.97s 73.64s 72.09s 71.01s
Avg. Online Planning 0.20s 0.24s 0.18s 0.22s



Fig. 8. The proposed algorithm optimizes the demonstrated trajectories with respect to obstacles, not present during the original
demonstrations. Encoding the optimized distribution over trajectories as a probabilistic movement primitive allows for fast online adaptation
to different box locations. Not only deliveries to boxes demonstrated by the human, such as box “1” (top row), can successfully be performed
by the robot, but it is also possible to generalize for boxes, that were not included in the demonstrations, such as box “4” (bottom row).

-0.5

-0.4

0

-0.3

-0.2

-0.1

Z
 [

m
]

0

0.1

X [m]

0.5
0.20

Y [m]

-0.2-0.41 -0.6-0.8

-0.5

-0.4

0

-0.3

-0.2

-0.1

Z 
[m

]

0

0.1

X [m]

0.5
0.20

Y [m]

-0.2-0.41 -0.6-0.8

Fig. 7. (Top) Human demonstrations are recorded as multiple
trajectories. The demonstrations include trajectories for boxes “1”,
“3” and “5”. Each of those boxes was demonstrated three times
to include variance. (Bottom) During the optimization our method
preserves correlations of the original distribution such that solutions
show small deviation to the demonstrated trajectories but at the
same time avoid obstacles not present during the original demon-
strations. To determine Euclidean distances to the obstacles we use
a signed distance field (red), obtained from point clouds of a Kinect
camera.

V. CONCLUSION AND FUTURE WORK

We introduced a method for demonstration based tra-
jectory optimization that offers adaptation of a demon-
strated distribution over human trajectories to changed
robot workspaces. The proposed method accounts for both,

minimal deviation from a demonstrated distribution and
avoidance of static obstacles, not present during the origi-
nal demonstrations. Straightforward connection to statistical
modeling methods enables fast online adaptation of the
optimized distribution to task specific constraints, such as
changing via or goal points.

In a pick-and-place scenario on a 7-DoF robot arm we
showed the algorithms suitability to create generalizable
robot motions from human demonstrations. We believe our
method is in particular suited for human-robot collaboration,
since the motion of the robot naturally resembles the motions
of the human demonstrator. In future work it could be
beneficial to incorporate the obstacle position directly as task
constraints to reduce offline optimization time.

An interesting extension of the proposed method could be
to go beyond pure trajectory optimization and incorporate
more information inferred out of the demonstrations. Ex-
tracting intentions out of human trajectories could provide
a higher level for planning inside the method. In terms of
generalization it would then be beneficial to transfer learned
motions to tasks with similar intentions.

APPENDIX

We obtain a closed form solution of (3) with the method
of Lagrange multipliers. The Lagrangian L(p, η, λ) of the
optimization problem in (3) is given by

L(p, η, λ)=

∫
τ

[
p(τ ;Θ[k])R(τ )−Bp(τ ;Θ[k])log

(
p(τ ;Θ[k])

d(τ ;ΘD)

)]
dτ

+η

ε−∫
τ

p(τ ;Θ[k]) log
(
p(τ ;Θ[k])

p(τ ;Θ[k−1])

)
dτ

+λ
1−∫

τ

p(τ ;Θ[k])dτ


s.t. η ≥ 0

where η and λ denote the Lagrange multipliers.
In order to obtain the optimal new policy the Lagrangian is

differentiated with respect to p(τ ; Θ[k]). Setting the deriva-



tive to zero results in

p(τ ;Θ[k])=exp
(
R(τ )−B−η−λ

B + η

)
d(τ ;ΘD)

B
B+η p(τ ;Θ[k−1])

η
B+η .

By constraining the probabilities p(τ ; Θ[k]) to still sum to
one, we obtain

exp
(
−B−η−λ
B + η

)
=

1∫
τ

exp
(
R(τ)
B+η

)
d(τ ;ΘD)

B
B+η p(τ ;Θ[k−1])

η
B+η dτ

.

Inserting this in a rewritten form of the Lagrangian the
dualfunction can be computed
D(τ , η) = ηε+

(B+η) log

∫
τ

exp
(
R(τ )

B+η

)
d(τ ;ΘD)

B
B+η p(τ ;Θ[k−1])

η
B+η dτ

. (13)

Rewriting the dualfunction results in

D(τ,η)=ηε+(B+η) log

∫
τ

p(τ ;Θ[k−1])exp
(
R(τ )

B+η

)(
d(τ ;ΘD)

p(τ ;Θ[k−1])

)
B
B+ηdτ

 .

We approximate the dualfunction using N samples
τ 1, ..., τN obtained from the old policy p(τ ; Θ[k−1])

D(τ,η)=ηε+(B+η) log

(
1

N

N∑
i=1

exp
(
R(τ i)

B+η

)(
d(τ i;ΘD)

p(τ i;Θ
[k−1])

)
B
B+η

)
.

Finally, computing a minimal η = η∗ from the dualfunction
results in the update rule for the new policy

p(τ ;Θ[k]) =
exp
(
R(τ)
B+η∗

)(
d(τ ;ΘD)

p(τ ;Θ[k−1])

) B
B+η∗

p(τ ;Θ[k−1])

1
N

∑N
i=1 exp

(
R(τ i)
B+η∗

)(
d(τ i;ΘD)

p(τ i;Θ
[k−1])

) B
B+η∗

.
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