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Abstract: (1) Background: Schistosomiasis remains a public health issue in Cameroon. Snail control
using Niclosamide can prevent schistosome transmission. It is safe to determine lethal concentrations
for the population. This study aimed at assessing the toxicity of Niclosamide on different develop-
mental stages of snail populations; (2) Methods: Snails were collected, identified, and reared in the
laboratory. Egg masses and adult snails were exposed to Niclosamide, at increasing concentrations
(0.06, 0.125, 0.25, 0.5, 1 mg/L for egg embryos and 0.06, 0.08, 0.1, 0.12, 0.14, 0.16, 0.18, 0.2 mg/L
for adults). After 24 h exposure, egg masses and snails were removed from Niclosamide solutions,
washed with source water and observed; (3) Results: Snail susceptibility was species and popula-
tion dependent. For egg embryos, Biomphalaria pfeifferi was the most susceptible (LC50: 0.1; LC95:
6.3 mg/L) and Bulinus truncatus the least susceptible (LC50: 4.035; LC95: 228.118 mg/L). However,
for adults, B. truncatus was the most susceptible (mortality rate: 100%). The LC50 and LC95 for
Bi. camerunensis eggs were 0.171 mg/L and 1.102 mg/L, respectively, and were higher than those
obtained for adults (0.0357 mg/L and 0.9634 mg/L); (4) Conclusion: These findings will guide the
design of vector control strategies targeting these snail species in Cameroon.

Keywords: schistosomiasis; snail control; Niclosamide; lethal concentrations; Cameroon

1. Introduction

Schistosomiasis is an acute and chronic parasitic disease, which constitutes a public
health problem in poor and rural communities. Indeed, this disease is responsible for
growth retardation and a delay in learning among children, as well as decreased ability to
work among adults, thus representing an impediment to development. Schistosomiasis
is endemic in 78 countries, and about 24,000 deaths and 2.5 million of DALY (disability-
adjusted life years) have been reported in 2016. In 2018, the total number of people in
need of preventive chemotherapy was 229.2 million, of which 124.4 million were school-
aged children [1]. The major WHO strategy to eliminate schistosomiasis as a public
health problem focuses on periodic and targeted treatment with praziquantel of affected
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populations, especially at-risk groups [1]. This repeated mass treatment campaigns have
led to a significant decrease in infection prevalence in many countries.

In Cameroon, surveys conducted in 2010–2012 revealed hotspots for transmission of
schistosomiasis, despite the high impact of preventive chemotherapy on prevalence and
intensities of infection [2,3]. This situation prompted the Ministry of Public Health, with
the support of its partners, to broaden chemotherapy to all age groups and implement
and/or reinforce water, sanitation and hygiene (WASH) measures [4]. These intensified
control measures contributed to further reduce the prevalence of the infection, though the
transmission of the disease is still ongoing [5] (Kengne et al., unpublished data). Indeed, the
pattern of reinfestation of villagers is quite high because of their extensive reliance on the
infected water for daily activities and the presence of parasite reservoirs in human and snail
populations, as infected humans are not systematically diagnosed and treated in endemic
localities [6]. Additionally, infected snails are able to release the parasite continuously
during one year in water bodies where humans attend to their daily activities [7,8]. This
epidemiological situation calls for the implementation of alternative approaches to tackle
the transmission of schistosomiasis and accelerate its elimination as a public health problem.

Control of intermediate snail hosts from local habitats may be efficient for the prevention
of Schistosoma infection and/or reinfection [9,10]. In Cameroon, human schistosomiasis is fo-
cally distributed and transmitted by seven species of snail hosts widely distributed throughout
the country [11], Bulinus and Biomphalaria intermediate host species being the most repre-
sented. Bulinus truncatus (Audouin, 1827), Bulinus globosus (Morelet, 1866), Bulinus senegalensis
Muller, 1781 and Bulinus camerunensis Mandahl-Barth, 1957 transmit Schistosoma haematobium
(Bilharz, 1852) (urinary schistosomiasis), whereas Biomphalaria pfeifferi (Krauss, 1848) and
Biomphalaria camerunensis (Boettger, 1941) are intermediate hosts of Schistosoma mansoni
Sambon, 1907 (intestinal schistosomiasis) and Bulinus forskalii (Ehrenberg, 1831), the inter-
mediate host of Schistosoma guineensis (Pages, 2003) responsible of the rectal schistosomiasis.
One approach to fight these hosts includes the use of Niclosamide (Bayluscide WP 70),
which until now has been the mollusciciding strategy recommended by WHO [12]. In-
deed, Niclosamide is quite efficient against snails and their egg embryos, and also against
all parasite stages, including both schistosome eggs and free schistosome larvae found
in infected water [11]. Specific Niclosamide concentration should be previously defined
for a given population since variability of snail susceptibility to Niclosamide has been
demonstrated [13].

It, therefore, appears necessary to assess the toxicity of Niclosamide on different devel-
opmental stages (egg embryos and adults) of snail populations, in order to determine the
lethal concentrations before implementing snail control. Here, we aimed to experimentally
test (i) specific lethal concentrations of Niclosamide on egg embryos from three snail species
(ii) specific lethal concentrations of Niclosamide on adult snails from three species and
(iii) investigate the avoidance behaviour of adult snails exposed to Niclosamide. This
experimental study will provide valuable data necessary for a safe implementation of
targeted snail control in Cameroon.

2. Materials and Methods
2.1. Study System

Snails were harvested from sites currently described as active foci of Schistosomiasis
and/or sites where snails were previously collected and identified using morphological and
molecular tools. Once in the molluscarium, snails were identified and natural infection was
checked by keeping snails under an artificial light. Snails emitting trematode cercariae were
removed from the studied samples. Egg embryos were collected from the uninfected wild
snails in each population to (i) test their susceptibility to Niclosamide (ii) to develop the
G1 snail generation on which susceptibility of adults snails was tested. The number of egg
masses and adult snails tested was identified by convenience, based on WHO guidelines
for laboratory and field testing of molluscicides for snail control in schistosomiasis [12].
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2.2. Collection and Rearing of Snails

Malacological surveys were carried out on February 2021 in Makenene Mock River
(04◦53.123′N 10◦47.206′ E) (Centre Region); in Petpenoun male and female lakes (05◦38.087′ N;
10◦38.139′ E), Monoun Njindoum Lake (05◦34.895′ N; 10◦35.382′ E) and Mangoun River
(05◦29.955′ N; 10◦36.504′ E) (West Region). Makenene Mock River is a currently active focus
of schistosomiasis where transmission is ongoing despite many years of chemotherapy [4,5]
(Kengne-Fokam et al., unpublished data), where a target snail control is thought to be
applied. Petpenoun, Monoun Njindoum Lakes and Mangoun River are previously visited
snails habitats where molecular tools were used to identify Biomphalaria snail species [8,14];
Bulinus snail species of these sites have been identified using shell morphology. Snails were
sampled by two collectors per hour, using a 2 mm-latticed steel sieve mounted on a 1.5 m
wooden handle used to comb aquatic vegetation, or by hand picking from the mud with
soft forceps [8]. Collected snails were identified using shell morphological keys defined by
Chappell [15] and transported to a molluscarium at the Faculty of Science of the University
of Yaoundé 1. Depending on their species and sampling sites, snails were organised into six
populations: (i) Biomphalaria pfeifferi from Mock River, (ii) Biomphalaria camerunensis from
Petpenoun Female Lake and Mangoun River and (iii) Bulinus truncatus from Petpenoun
Male Lake, Monoun Njindoum Lake and Mangoun River. The room was thermoregulated
with a portable air conditioner at 26 ± 1 ◦C and snails were maintained under a 12 L/12 D
photoperiod throughout the experiment.

Wild snails (G0) from each population were kept together in 1.5 L plastic boxes
containing water for acclimatization. A natural source water, which emerged from the
rocks in the neighbouring area of the university, was used for rearing. Once in the laboratory,
this water was filtered with a 12 L bench top water purifier system. After being screened
for cercarial production, mature individuals from each population and each species were
randomly chosen and isolated per group of three individuals in at least 15 waterproof plastic
boxes of 300 mL for rearing purpose. Small white pieces of polystyrene were introduced in
the rearing boxes for egg capsules laying [16]. Egg masses were then collected from each of
the plastic boxes for susceptibility assay or for the production of adults (G1). During the
rearing process, snails were fed ad libitum with fresh lettuce (Lactuca sativa) and cleaned
beforehand with filtered source water; water and lettuce were changed every day in rearing
boxes containing very young snails (≤three weeks of age), or every two days in those with
juveniles and adults (≥four weeks of age).

2.3. Susceptibility of Snail Egg Embryos to Niclosamide

Egg masses aged 1 to 6 days were collected from each box for each population by
cutting out small circles of polystyrene onto which they had attached and examined a
stereo zoom microscope SMZ-161 binocular from Motic (SMZ-161-BLED (R2LED) type) to
enumerate the number of viable embryos and the extent of embryonation. Only viable eggs
containing living embryos were used to assess the susceptibility to Niclosamide (Bayluscide
WP 70) (Suzhou Luosen Auxiliaries Co. Ltd., Suzhou, China). Increasing Niclosamide
concentrations (0.06, 0.125, 0.25, 0.5 and 1 mg/L) were chosen based on the minimal lethal
dose of 0.5 mg/L obtained by Adenusi and Odaibo [17] on Biomphalaria eggs species. Egg
masses (10 per Niclosamide concentration) were immersed during 24 h in petri dishes,
each containing 20 mL of Niclosamide at one of the five concentrations (0.06, 0.125, 0.25,
0.5 and 1 mg/L); egg masses immersed in source water were used as controls. Three
replicates of this experiment were used to test any potential variability in the susceptibility
to Niclosamide. Overall, a total of 4184 egg embryos were exposed to Niclosamide, and
a total of 3849 egg embryos were used as control.

After 24 h exposure, egg masses were removed from Niclosamide solutions and
thoroughly washed with source water as recommended by [12] and transferred in 100 mL
plastic boxes containing source water. Individual embryos in each egg mass were examined
daily for development and hatching during the three following weeks. An embryo was
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considered dead if its cells became opaque, dull or desegregated [18] or if unhatched at the
end of the three weeks experiment.

2.4. Susceptibility of Adult Snails to Niclosamide

Two to four egg capsules were collected from each of the 15 isolated boxes for each
population and incubated separately in 100 mL boxes. After hatching, juveniles of the first
generation (G1), fed ad libitum with lettuces and cleaned beforehand with filtered source
water, were reared for 6–8 weeks. G1 adults that have started laying eggs were randomly
chosen from each box, and a sample of at least 250 G1 snails was constituted for each
population. Groups of 20 snails were randomly immersed in 1 L beakers containing either
source water (control groups) or different Niclosamide concentrations (0.06, 0.08, 0.10, 0.12,
0.14, 0.16, 0.18, 0.20 mg/L) (experimental groups); these concentrations were chosen based
on the median lethal dose (LC50) of 0.076 mg/L for a Biomphalaria pfeifferi population from
Nigeria [19]. The beakers were covered with a plastic lid and snails’ avoidance behaviours
were observed in the space left between Niclosamide solutions and the lid. After 24 h
exposure, snails found at the bottom of the beakers retracted in their shells with or without
excretion of reddish haemolymph, which could not move further were considered as dead.
Snails still moving were rinsed and placed individually in 100 mL glass vials containing
source water and fresh lettuce and checked for mortality for the following two days, since
Niclosamide is believed to be degraded within two days post exposure [12]. Since mortality
was assessed based on movement of the very tiny snails (about 5 mm), hand lens was used
to better appreciate the movements of the snails.

2.5. Data Analyses

Statistical analyses were performed using the software Graph Pad Prism6 (Graph-
Pad Software Inc., San Diego, CA, USA). All the variables investigated were categorical
(hatching rate, mortality rate, etc.) and were expressed as percentages with 95% confidence
interval (CI). Chi-square test was used to compare egg embryo hatching and mortal-
ity rates at different Niclosamide concentrations between snail species and populations.
Niclosamide toxicity was expressed as LC50 and LC95, corresponding to concentrations
that killed 50% and 95% of the exposed snails, respectively. The LC50 and LC95 values
with their 95% confidence intervals were determined using probit analysis (Finney 1971) of
the mortality data from the susceptibility assay. The threshold for significance was set at
5% for all analyses.

3. Results
3.1. Susceptibility of Egg Embryos to Niclosamide

The susceptibility to Niclosamide was assessed for a total of 7562 egg embryos origi-
nating from 6 snail samples (Table 1). Significant differences were found in hatching rates
between samples (Chi-Square = 34.22; df = 5; p < 0.0001), lower rates being registered for
Biomphalaria pfeifferi collected in the Mock River and Bi. camerunensis collected in Lake Man-
goun. For all populations, the hatching rates progressively decreased with Niclosamide
concentrations (Chi-Square = 4220; df = 5; p < 0.0001), no hatching being observed from
0.25 mg/L to 1 mg/L (Table 1). Similarly, significant differences were found in the hatching
rates between species (Chi-Square = 1392; df = 2; p = 0.0009). Such variability was also
observed between populations of the same species, either for Bi. camerunensis populations
(Chi-Square = 9.584; df = 1; p = 0.002) or for B. truncatus populations (Chi-Square = 11.87;
df = 2; p = 0.003).

The LC50 and LC95 were, respectively, 0.171 mg/L and 1.102 mg/L for egg embryos
(Table 2); Bi. pfeifferi population from Mock River was the most susceptible (LC50: 0.1 mg/L
and LC95: 6.3 mg/L), whereas B. truncatus population from the Monoun Njindoum Lake
was the least susceptible (LC50: 0.20 mg/L and LC95: 1102.53 mg/L).
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Table 1. Effect of different Niclosamide (Bayluscide WP 70) concentrations on snail egg embryos
according to sampling sites and species.

Snail Sampling Sites Niclosamide Dose (mg/L)

0 0.06 0.125 0.25 0.5 1

Mock River *

No. egg masses 55 12 12 12 12

No. egg embryos 483 106 129 134 116 12

% egg embryos hatched (95% CI) 90.5 (87.5–92.8) 66.6 (56.6–74.4) 0 (0.0–3.5) 0 (0.0–2.8) 0 (0.0–3.2) 134

Lake Petpenoun Female **

No. egg masses 34 10 11 10 11 0 (0–2.8)

No. egg embryos 766 210 233 248 277 11

% egg embryos hatched (95% CI) 99.0 (98.0–99.5) 91.9 (87.4–94.9) 86.3 (81.3–90.1) 0.0 (0.0–1.5) 0.0 (0.0–1.4) 232

Mangoun River *

No. egg masses 37 4 4 4 5 0.0 (0.0–1.6)

No. egg embryos 478 83 59 85 68 5

% egg embryos hatched (95% CI) 96.7 (94.6–97.9) 65.1 (54.3–74.4) 3.4 (0.9–11.5) 0.0 (0.0–4.3) 0.0 (0.0–5.3) 111

Mangoun River ***

No. egg masses 42 15 15 16 16 0.0 (0.0–3.3)

No. egg embryos 621 141 159 186 198 16

% egg embryos hatched (95% CI) 97.9 (96.5–98.8) 83.0 (75.9–88.3) 66.7 (59.0–73.5) 0.0 (0.0–2.0) 0.0 (0.0–1.9) 218

Lake Petpenoun Male ***

No. egg masses 40 9 12 10 10 0.0 (0.0–1.7)

No. egg embryos 422 119 146 121 141 10

% egg embryos hatched (95% CI) 89.3 (86.0–91.9) 54.6 (45.7–63.3) 89.7 (83.7–93.7) 0.0 (0.0–3.1) 0.0 (0.0–2.7) 153

Lake Monoun Njindoum ***

No. egg masses 48 9 8 8 9 0.0 (0.0–2.4)

No. egg embryos 483 124 109 86 94 8

% egg embryos hatched (95% CI) 93.4 (90.8–95.3) 75.0 (66.7–81.8) 63.3 (53.9–71.8) 0.0 (0.0–4.3) 0.0 (0.0–3.9) 89

No.: Number of; *: Biomphalaria pfeifferi; **: Biomphalaria camerunensis; ***: Bulinus truncatus; CI: confidence
interval.

Table 2. Lethal concentrations (LC50 and LC95) of egg embryos and adult snails to Niclosamide
(Bayluscide WP 70) according to sampling sites and species.

Snail Sampling Sites LC50 (95% CI) LC95 (95% CI)

Egg embryos

Mock River * 0.10 (0.02–0.20) 6.30 (2.50–15.60)

Lake Petpenoun Female ** 0.84 (0.47–1.49) 8.07 (4.52–14.39)

Mangoun River ** 0.11 (0.05–0.22) 2.64 (1.28–5.5)

Lake Petpenoun Male *** 0.27 (0.18–0.42) 2.10 (1.35–3.25)

Mangoun River *** 0.81 (0.38–1.72) 20.72 (9.76–44.01)

Lake Monoun Njindoum *** 0.20 (0.03–1.29) 1102.53 (174.27–6975.34)

Adult snails

River Mock * 0.14 (0.11–0.18) 0.60 (0.46–0.76)

Lake Petpenoun Female ** 0.14 (0.11–1,18) 0.56 (0.44–0.71)

Mangoun River ** 0.20 (0.13–0.30) 2.57 (1.68–3.94)
LC50: lethal concentration 50; LC95: lethal concentration 95; *: Biomphalaria pfeifferi; **: Biomphalaria camerunensis;
***: Bulinus truncatus.
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3.2. Susceptibility of Adult Snails to Niclosamide and Avoidance Behaviour

A total of 1130 adult snails aged ~6 weeks were assessed for susceptibility to Niclosamide
at a variety of concentrations (0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20 mg/L). The mor-
tality rates registered for all B. truncatus populations and for all the tested concentrations
were 100.0%, significantly higher than the mortality rates observed in Bi. pfeifferi and
Bi. camerunensis populations (Chi-Square = 64.11; df = 2; p < 0.0001). In these later two
populations, a low mortality rate at 0.06 mg/L (15.0% and 6.0% respectively) and a higher
mortality rate at 0.20 mg/L (75.0% and 25.0%, respectively) were registered (Figure 1). Mor-
tality rates increase in general along with concentrations, the peak (87.0%) being reached at
0.20 mg/L (Figure 1). For Bi. pfeifferi and Bi. camerunensis, although mortality rates were
globally increasing according to Niclosamide concentrations, an unexpected decrease was
observed for concentrations 0.12 to 0.18 mg/L (Figure 1).
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Figure 1. Mortality rates of adults to different Niclosamide (Bayluscide WP 70) doses accord-
ing to snail species. Figures on the x axis represent the different concentrations of Niclosamide,
“0” being used for controls.*: Biomphalaria pfeifferi; **: Biomphalaria camerunensis; ***: Bulinus truncatus;
n: number of tested snails.

Regarding the lethal doses, Bi. camerunensis populations displayed significant dif-
ferences in susceptibility, snail population from Mangoun being the least susceptible
(LC50: 0.20 and LC95: 2.57 mg/L) (Table 2). The LC50 for Bi. camerunensis (0.14; 95%
CI: 0.11–0.18 mg/L) was similar to the LC50 for Bi. pfeifferi (0.14; 95% CI: 0.11–0.18 mg/L).
Though slightly higher, the LC95 for Bi. camerunensis (0.68; 95% CI: 0.52–0.89 mg/L) was
similar to that of Bi. pfeifferi (0.60; 95% CI: 0.46–0.76 mg/L). Lethal doses for B. truncatus
populations were not calculated because the mortality rates were 100% for all the tested
Niclosamide concentrations.

3.3. Avoidance Behaviour of Adult Snails Exposed to Niclosamide

Adult snails exposed to Niclosamide, in particular Bi. pfeifferi and Bi. camerunensis
species, tended to escape the Niclosamide solutions. This avoidance behaviour included
crawling out (distress syndrome) from the walls of the beakers, aggregation at the water–air
interface or surfacing behaviour and partial retraction of their head foot. These behaviours
were particularly striking in beakers containing the highest concentrations of Niclosamide
(≥0.10 mg/L).

4. Discussion

This study aimed to assess the susceptibility of six snail samples to increasing Niclosamide
concentrations. Snails in these samples reproduce by laying eggs which hatch between
7–10 days [16]. These eggs constitute the dispersal stage for the snail population as they
are believed to be the most resistant developmental stage of snail [20,21].

The exposition of egg embryos to Niclosamide revealed an acute toxicity, the latter
killing more than 70% of all exposed egg embryos from Biomphalaria pfeifferi, Biomphalaria
camerunensis and Bulinus truncatus, even at sub-lethal doses (<0.25 mg/L). Moreover, suscep-
tible embryos never developed beyond the stage they were before exposure, Niclosamide
being able to thwart mechanisms involved in the developmental and hatching processes.
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Higher concentrations are needed for other molluscicide formulations, based on plant
extracts, to be lethal for snail egg embryos [22]; in some cases, such molluscicide was
proven ineffective to arrest the embryo development in eggs [17]. The Niclosamide ovicidal
action was concentration dependent for all exposed populations of the three species. Some
eggs exposed to the lowest Niclosamide concentrations hatched, while all those exposed
to the highest concentrations (≥0.25 mg/L) did not hatch and contained dead embryos.
This observation was already reported in previous studies [23,24] and reveals that a cer-
tain threshold concentration of Niclosamide is needed to penetrate the protective coat,
made of gelatin-like substance, around egg masses and reach the embryos. This study
revealed an important variability in egg embryos susceptibility to Niclosamide within and
among species. For example, Bi. pfeifferi egg embryos were significatively more susceptible
than Bulinus truncatus egg embryos, likely because of the genetic differences between
these species.

Niclosamide remains the recommended synthetic molluscicide by WHO, as it displays
an acute toxicity on all developmental snail stages. In this study, this acute toxicity was
observed with adult snails aged approximately 6 weeks, even at low concentrations. A
mortality rate of 100% was noticed for Bulinus truncatus snails for all tested Niclosamide
concentrations. Indeed, it was demonstrated that cell structure defects, inhibition of neuro-
humoral transmission and energy metabolism caused by the Niclosamide are responsible
of the death of another snail species, Oncomelania hupensis [25]. The lethality rate in young
adults was significantly higher for Niclosamide concentrations ≥ 0.10 mg/L.

A fluctuation in mortality rates was observed for Niclosamide concentrations between
0.14 and 0.20 mg/L in Bi. pfeifferi and Bi. camerunensis; this could be explained by the
avoidance behaviour exhibited by these exposed Biomphalaria individuals. Many of them
were able to escape the Niclosamide solution by shelving on beaker walls for many hours.
This behaviour, which is a response to loss of water balance [26,27], hinders the action of
molluscicide and likely increases the snail’s chance of survival [22,28]. In addition, it was
demonstrated that this water-leaving behaviour may be responsible for the recolonization
of transmission foci by Biomphalaria straminea [13] and Biomphalaria glabrata [29,30] after
mollusciciding. This avoidance behaviour should be considered for future mollusciciding
campaigns against Biomphalaria sp. populations in Cameroon.

A significant difference in mortality rates between snail species was observed, B. truncatus
individuals being significatively more sensitive to lower concentrations of Niclosamide
than Bi. camerunensis and Bi. pfeifferi individuals. The three tested B. truncatus populations
were collected from different habitat types; two lakes (Petpenoun and Monoun lakes) and
one river (Mangoun River). Snail habitat types and human water frequentation rates might
not be the only discriminative element explaining this result. Indeed, considering these
lower lethal doses, it seems that Bulinus sp. snail mollusciciding strategy will be easier
to implement since the use of lower doses of Niclosamide could be more approved by
populations [30]. To confirm this hypothesis, it will be interesting to screen more Bulinus sp.
populations, originating from diverse Cameroonian regions.

The susceptibility of Niclosamide was quite variable between populations, with
Bi. camerunensis snails collected in the Lake Petpenoun and Mangoun River being the
more resistant populations. Previous molecular studies on Bi. camerunensis populations
originating from these sampling sites revealed a high genetic diversity compared to other
Bi. camerunensis and Bi. pfeifferi populations [14]. This might explain the variable level of
susceptibility of snail hosts to Niclosamide, as it was demonstrated that it can be due to dif-
ferences in natural tolerance among geographic isolates rather than to selection of resistant
strains. This is supported by the fact that a high resistance to a strain of Schistosoma mansoni
was also observed in Petpenoun population [31]. Repeated mollusciciding in such popula-
tions, more than twice annual applications could be necessary to reduce snail population
density below a critical threshold to sustain transmission [19].

The toxicity of Niclosamide was different between developmental stages of snail species
and populations, adults being significantly more susceptible than eggs. In B. truncatus
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species, for example, 100% of adults were killed by a dose of 0.06 mg/L while their egg
embryos were only susceptible at concentrations equal and above 0.25 mg/L, the egg
protective coat being efficient to protect embryos at lower concentrations. This finding
suggests that Niclosamide concentrations to be used for mollusciciding should be estimated
from testing on egg embryos, which appeared less susceptible than adults in this study. This
decision should, however, take into account both the possible side effects of Niclosamide
on aquatic fauna (fishes, frogs and tadpoles) [12,31] and the poor community acceptability
when Niclosamide is applied at higher environmental doses, such as 1 mg/L [30].

Alternatives to molluscicides, such as biological controls, including the use of com-
petitors or predators, have also been proven efficient and less (or not) toxic compared to
Niclosamide. However, the large-scale implementation of these approaches is yet to be de-
veloped, and, until now, mollusciciding/chemical control is still the more efficient strategy
for snail control [12]. Previous studies suggested that repeated mollusciciding, if properly
done, even with lower doses (0.25 g/m3), could be efficient to kill schistosome larvae in
water [32] and reduce snail populations [9,33]. This dose (0.25 g/m3) is the optimal one
found in this study for egg embryos and could be used in combination with other control
strategies recommended by WHO [34–37], to accelerate the elimination of schistosomiasis.

5. Limitations

The main limitation of this study is the fact that the identification of snails was
performed using morphological features, which is sufficient to classify species, but might
not be enough to clearly distinguish strains, unlike molecular approaches. This is important
because the susceptibility of snails to Niclosamide can be associated with the strains of
the latter. Indeed, molecular identification has been carried out on some snails collected
in the some of the sites where our study has been conducted, and the results revealed
distinguished haplotypes among snail species [14].

The second limitation of this study is the fact that the death of snails was appreciated
based only on the movement of the latter, even if hand lens were used for more accuracy.
Histological studies and electron microscopy would have been better to reinforce and
validate our observations. However, snails suspected to be dead were put aside and
observed for two consecutive days to ascertain that they were indeed dead, thus mitigating
the logistical constrains for such confirmatory analyses.

6. Conclusions

This study revealed an important variability in the susceptibility to Niclosamide for
the six snail samples tested. Adult snails appeared to be more susceptible than eggs, and
specific concentrations at which Niclosamide is effective against both egg and adult snail
stages were identified. The ovicidal dose seems then to be the better dose for mollusciciding
of these snail populations. The high variability in susceptibility to Niclosamide displayed
by the different species, populations and developmental stages of snails suggests that
mollusciciding should not be done without appropriate pre-control studies.
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