
Astronomy
&Astrophysics

A&A 665, A106 (2022)
https://doi.org/10.1051/0004-6361/202243760
© E. Alei et al. 2022

Large Interferometer For Exoplanets (LIFE)

V. Diagnostic potential of a mid-infrared space interferometer for studying
Earth analogs

Eleonora Alei1,2 , Björn S. Konrad1,2 , Daniel Angerhausen1,2,3 , John Lee Grenfell4, Paul Mollière5,
Sascha P. Quanz1,2 , Sarah Rugheimer6 , Fabian Wunderlich4, and the LIFE Collaboration⋆

1 ETH Zurich, Institute for Particle Physics & Astrophysics, Wolfgang-Pauli-Str. 27, 8093 Zurich, Switzerland
e-mail: elalei@phys.ethz.ch

2 National Centre of Competence in Research PlanetS, Gesellschaftsstrasse 6, 3012 Bern, Switzerland
3 Blue Marble Space Institute of Science, Seattle, USA
4 Department of Extrasolar Planets and Atmospheres (EPA), Institute for Planetary Research (PF), German Aerospace Centre (DLR),

Rutherfordstr. 2, 12489 Berlin, Germany
5 Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
6 Department of Physics, University of Oxford, Oxford OX1 3PU, UK

Received 12 April 2022 / Accepted 14 June 2022

ABSTRACT

Context. An important future goal in exoplanetology is to detect and characterize potentially habitable planets. Concepts for future
space missions have already been proposed: from a large UV-optical-infrared space mission for studies in reflected light, to the Large
Interferometer for Exoplanets (LIFE) for analyzing the thermal portion of the planetary spectrum. Using nulling interferometry, LIFE
will allow us to constrain the radius and effective temperature of (terrestrial) exoplanets, as well as provide unique information about
their atmospheric structure and composition.
Aims. We explore the potential of LIFE for characterizing emission spectra of Earth at various stages of its evolution. This allows us
(1) to test the robustness of Bayesian atmospheric retrieval frameworks when branching out from a modern Earth scenario while still
remaining in the realm of habitable (and inhabited) exoplanets, and (2) to refine the science requirements for LIFE for the detection
and characterization of habitable, terrestrial exoplanets.
Methods. We performed Bayesian retrievals on simulated spectra of eight different scenarios, which correspond to cloud-free and
cloudy spectra of four different epochs of the evolution of the Earth. Assuming a distance of 10 pc and a Sun-like host star, we
simulated observations obtained with LIFE using its simulator LIFESIM, considering all major astrophysical noise sources.
Results. With the nominal spectral resolution (R = 50) and signal-to-noise ratio (assumed to be S/N = 10 at 11.2 µm), we can identify
the main spectral features of all the analyzed scenarios (most notably CO2, H2O, O3, and CH4). This allows us to distinguish between
inhabited and lifeless scenarios. Results suggest that O3 and CH4 in particular yield an improved abundance estimate by doubling
the S/N from 10 to 20. Neglecting clouds in the retrieval still allows for a correct characterization of the atmospheric composition.
However, correct cloud modeling is necessary to avoid biases in the retrieval of the correct thermal structure.
Conclusions. From this analysis, we conclude that the baseline requirements for R and S/N are sufficient for LIFE to detect O3 and CH4
in the atmosphere of an Earth-like planet with an O2 abundance of around 2% in volume mixing ratio. Doubling the S/N would allow
a clearer detection of these species at lower abundances. This information is relevant in terms of the LIFE mission planning. We also
conclude that cloud-free retrievals of cloudy planets can be used to characterize the atmospheric composition of terrestrial habitable
planets, but not the thermal structure of the atmosphere. From the inter-model comparison performed, we deduce that differences in
the opacity tables (caused by, e.g., a different line wing treatment) may be an important source of systematic errors.
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1. Introduction

Temperate terrestrial exoplanets are predicted to be very abun-
dant in our galaxy (Bryson et al. 2021). These planets are ideal
candidates when searching for life beyond our Solar System. A
powerful way to characterize a terrestrial exoplanet in the con-
text of its habitability is by detecting and studying its atmosphere
with the goal of constraining its surface conditions. Atmospheric
spectra are influenced by many parameters and processes, such
as the chemical composition, the temperature structure of the

⋆ www.life-space-mission.com

atmosphere, the presence of clouds, and emission and scattering
from the surface.

The detection and characterization of potentially habitable,
rocky exoplanets is challenging with current facilities. For this
reason, there is widespread interest in the community to build
new instruments for the search for life in the universe, as reported
in the White Paper series in the context of the ESA “Voyage
2050” process1, as well as the US Astro 2020 Decadal survey
(National Academies of Sciences, Engineering, and Medicine
2021). Space missions that aim at characterizing terrestrial

1 https://www.cosmos.esa.int/web/voyage-2050
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exoplanets have been proposed, such as the Habitable Exo-
planet Observatory (HabEx; Gaudi et al. 2020) and the Large
Ultraviolet Optical Infrared Surveyor (LUVOIR; Peterson et al.
2017), which focus on the reflected (visible and near-infrared)
portion of the planetary spectrum, as well as the Large Inter-
ferometer for Exoplanets (LIFE; Quanz et al. 2022, hereafter
Paper I), which will characterize terrestrial planets in the ther-
mal (mid-infrared) emitted portion of the planetary spectrum.
Using nulling interferometry, LIFE will allow us to constrain
the radius and effective temperature of (terrestrial) exoplanets,
as well as provide unique information about their atmospheric
structure and composition (Dannert et al. 2022; Konrad et al.
2022, hereafter Papers II and III, respectively).

Due to the current lack of high-quality observational data,
we must rely for now on simulated observations of terrestrial
planets to create and improve the analysis algorithms, but also
to provide scientific and technical requirements when planning a
mission. This effort is currently ongoing within the LIFE Initia-
tive; in a previous study (Paper III), we built a Bayesian retrieval
routine to estimate the planetary and atmospheric parameters of
a simulated modern Earth twin at a distance of 10 pc as it would
be observed by LIFE. In this work, we extend this exercise to
other stages in the evolution of Earth’s atmosphere.

Our planet has been habitable for about 4.4 billion years
(see, e.g., Heller et al. 2021, and references therein). In this con-
text, we define a planet as habitable if its physical and chemical
conditions would allow water, if present, to be liquid on the
surface.

In the prebiotic stage of Earth’s evolution, the atmosphere
lacked O2 (currently about 21% of the atmospheric composi-
tion by volume). It was instead a CO2–N2–H2O-rich atmosphere,
with traces of CH4 from volcanism. Early forms of life developed
under a reducing environment and survived under anaerobic
conditions (Olson et al. 2018, and references therein). Methano-
genesis was thought to be a dominant metabolism at this stage
(around 3.5 Ga), which would explain the increase in CH4 in the
atmosphere (see, e.g., Wolfe & Fournier 2018).

Around 3 Ga, life-forms that could use carbon dioxide to
produce oxygen (via oxygenic photosynthesis) appeared (Marais
2000). This eventually led to a significant increase in O2, max-
imally up to ∼1% PAL2 (see Gregory et al. 2021; Lyons et al.
2014, 2021, and references therein) around 2.33 Ga (Luo et al.
2016), during the so-called Great Oxygenation Event (GOE).
There is also evidence pointing to a second increase in the
O2 abundance (up to ∼10% PAL) that occurred around 0.8 Ga,
during the “Neoproterozoic Oxygenation Event” (NOE; Shields-
Zhou & Och 2011; Campbell & Squire 2010).

The high abundance of carbon dioxide in the early Earth’s
atmosphere would have enhanced the atmospheric greenhouse
effect, allowing Earth to be habitable despite the fainter solar
irradiation (see, e.g., Feulner 2012, and references therein). The
positive feedback between the carbon-silicate cycle and the
increase in irradiation would have then allowed temperatures
conducive to liquid water to be maintained over the last 4 Ga.
The increase in irradiation from the Sun over the eons has made
the weathering of CO2 more efficient, decreasing the amount
of carbon dioxide in the atmosphere and thus dampening the
atmospheric greenhouse effect (see, e.g., Graham 2021, and ref-
erences therein). The appearance of photosynthetic life-forms
and the onset of plate tectonics also contributed to the depletion
of atmospheric CO2.

Numerous processes, including biology and geology, have
driven the wide-ranging evolution of Earth’s atmosphere during
2 Present atmospheric level.

the various epochs of its development. Our modern atmosphere
represents only a small fraction of Earth’s evolutionary states.
It is therefore important to simulate a suitable range of differ-
ent atmospheric epochs from Earth’s history when investigating
Earth-like atmospheres. For this study, we simulated obser-
vations obtained by LIFE starting from theoretical spectra of
four distinct epochs of Earth’s atmospheric evolution, produced
from a self-consistent one-dimensional climate and photochem-
istry model coupled with a line-by-line radiative transfer model
(Rugheimer & Kaltenegger 2018). The observed spectra were
simulated using the LIFE noise simulator LIFESIM (for details
on the simulator, see Paper II). We then used the Bayesian
retrieval routine presented in Paper III to characterize the dif-
ferent atmospheres.

We aim to address a number of research questions. The
science-driven questions are: (1) how well LIFE will be able to
characterize atmospheres of habitable planets; (2) whether LIFE
will be able to differentiate between different atmospheres, and
with what confidence; (3) what the impact of clouds on this
assessment will be; and (4) what the most promising (combi-
nations of) detectable biosignatures are.

Technology- and computationally driven questions include:
(1) whether the combination of the spectral resolution (R =
λ/∆λ), signal-to-noise ratio (S/N), and wavelength range defined
in Paper III are still adequate for this case study; (2) what the
caveats and limitations of the Bayesian retrieval routine are;
and (3) what systematics may arise when comparing two differ-
ent models (e.g., in terms of differences in line lists, scattering
treatment, and identification of biomarkers).

We discuss how we adapted the input spectra to simulate
LIFE observations and describe the grid of scenarios in Sect. 2.
We show and describe the results in Sect. 3. A thorough discus-
sion of our findings and of the potential systematic uncertainties
of the retrieval routine is provided in Sect. 4. In Sect. 5, we
report the main takeaway points from this study, and in Sect. 6
we provide an overview of ongoing and future studies.

2. Methods

We start by discussing the details of the input spectra that were
used in this study (Sect. 2.1). We then discuss the updates on the
Bayesian retrieval routine (Sect. 2.2). We describe the assump-
tions that our model takes into account and the main potential
source of systematic errors in the retrievals in Sect. 2.3.

2.1. Input spectra and scenarios

We considered spectra corresponding to four different evo-
lutionary epochs of Earth: the prebiotic Earth (3.9 Ga), the
Earth shortly after the GOE (2.0 Ga), the NOE (0.8 Ga), and
modern Earth. All considered Earth spectra were produced by
Rugheimer & Kaltenegger (2018). These self-consistent spec-
tra were produced using a one-dimensional convective–radiative
transfer model loosely coupled with a one-dimensional cli-
mate model and a one-dimensional photochemistry model. The
authors accounted for the thermal chemistry and photochemistry
of more than 55 species. The atmospheres were modeled up to
10−4 bar and split into 100 layers. The radiative forcing of clouds
was included by adjusting the surface albedo of the planet.

The results of the photochemistry-climate-radiative model
were then fed to a line-by-line radiative transfer model to pro-
duce emission spectra. The line lists and the pressure broadening
coefficients were from the HITRAN 2016 database (Gordon
et al. 2017). Surface scattering was included in the calculations,
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Table 1. Model description, identifiers, and colors.

Identifier Color Model description

MOD-CF Modern Earth, cloud-free sky
MOD-C Modern Earth, cloudy sky
NOE-CF Neoproterozoic Oxygenation Event Earth, cloud-free sky
NOE-C Neoproterozoic Oxygenation Event Earth, cloudy sky
GOE-CF Great Oxygenation Event Earth, cloud-free sky
GOE-C Great Oxygenation Event Earth, cloudy sky
PRE-CF Prebiotic Earth, cloud-free sky
PRE-C Prebiotic Earth, cloudy sky

Notes. The identifier “CF” denotes “cloud-free” (meaning “clear sky”). The identifier “C” denotes “cloudy.” See main text for details.

assuming 70% ocean, 2% coast, and 28% land. In some sce-
narios, a partial cloud coverage was directly included in the
calculation of the emission spectrum. In these cloudy cases, the
authors assumed a 60% cloud coverage (split into 40% water
clouds at 1 km altitude, 40% water clouds at 6 km altitude, and
20% ice clouds at 12 km altitude) consistent with an averaged
Earth cloud model. Aerosol was not included in the calculation.
The model has been validated from the visual to the mid-
infrared (MIR) wavelength ranges with observations of Earth
(Kaltenegger et al. 2007; Kaltenegger & Traub 2009; Rugheimer
et al. 2013). For further details, we refer the reader to Rugheimer
& Kaltenegger (2018).

For each epoch, we considered both clear sky and cloudy
sky spectra, which yields a total of eight scenarios. We assigned
every modeled scenario an identifier and a specific color, as
listed in Table 1. We use these identifiers throughout the remain-
der of the paper.

We simulated observations with LIFE via the LIFESIM
tool (see Paper II for a description of the simulator). LIFESIM
estimates the wavelength-dependent S/N considering all major
astrophysical noise sources (stellar leakage, local zodiacal dust
emission, and exo-zodiacal dust emission). We considered an
Earth-sized planet on a 1 AU orbit around a Sun-like star at a
10 pc distance. For our baseline analyses, we assumed the nomi-
nal simulation parameters for LIFESIM as summarized in Table 2
(see Paper I and Paper II for details). We considered an exo-
zodi level of three times the local zodiacal dust density, based
on the results from the HOSTS survey (Ertel et al. 2020). Sim-
ilarly to Paper III, we assumed that the noise does not impact
the flux. Rather, the noise calculated by LIFESIM represents
the uncertainty of each spectral point. This might lead to opti-
mistic results. However, running retrievals on non-randomized
spectra can still provide useful information, since they approxi-
mate the average retrieval behavior on randomized spectra (see
Appendix C of Paper III for a detailed discussion).

2.2. Updates on the Bayesian retrieval framework

We denote the input spectra from Sect. 2.1 as the “true spec-
tra.” To simulate a LIFE-like observation of these targets, we ran
LIFESIM on the true spectra, thus obtaining simulated “observed
spectra.” We then performed a retrieval on the observed spec-
tra using petitRADTRANS (Mollière et al. 2019) as “forward
model” in the retrieval routine, and the Bayesian sampler model
pyMultiNest (Buchner et al. 2014) as “parameter estimation
routine” (cf. Paper III).

The theoretical one-dimensional atmospheric model
petitRADTRANS (Mollière et al. 2019) applies the radiative
transfer equation to calculate spectra corresponding to a set

Table 2. Simulation parameters used in LIFESIM for the baseline
analyses.

Parameter Value

Detector quantum efficiency 0.7
Total instrument throughput 0.05
Minimum wavelength 4 µm
Maximum wavelength 18.5 µm
Spectral resolution 50
S/N (a) 10
Interferometric baseline 10–100 m
Aperture diameter 2 m
Exozodi level 3 × local zodiacal dust
Planet radius 1 R⊕
Distance to the system 10 pc

Notes. See Paper I and Paper II for details. (a)This S/N is fixed at a
wavelength of 11.2 µm and the S/N of all other spectral bins is computed
via LIFESIM.

of parameters. These parameters describe the bulk parameters
(planetary mass and radius), the pressure–temperature (P–T )
structure (approximated by a fourth-order polynomial), and the
chemical composition of the atmosphere.

Our Bayesian retrieval framework recursively draws combi-
nations of parameters from a set of “priors” that describe the
“a priori” probability distribution of each parameter (listed in
Table 3) and uses the forward model to compute the correspond-
ing spectra. Then, the Bayesian framework tests how well these
calculated spectra fit the observed one using a “likelihood” func-
tion (see Eq. (3) in Paper III). In order to sample the prior space
efficiently, our retrieval relies on the parameter estimation rou-
tine pyMultiNest (Buchner et al. 2014), which is based on
MultiNest (Feroz et al. 2009). This routine applies the Nested
Sampling algorithm (Skilling 2006) to fit the theoretical spec-
tral model to the observed spectrum and thereby yields estimates
and uncertainties for the model parameters. These estimates are
the “posterior probability distributions” (or “posteriors”). The
posteriors contain the information on which combinations of
model parameters best describe the observed spectrum. For more
details about the Bayesian retrieval framework, we refer the
reader to Paper III.

In our previous work, we argue that the effects of scatter-
ing on simulated MIR spectra are negligible at the considered
resolutions and LIFESIM noise patterns. In that study, we had
to be particularly mindful of the computing time. The version
of petitRADTRANS used in Paper III only allowed spectra at
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Table 3. Summary of the parameters used in the retrievals, their expected values, and their prior distributions.

Parameter Description Prior Expected values (1)
Modern NOE GOE Prebiotic

4
√

a4 P–T parameter (degree 4) U(0.5, 1.8) 0.694 1.117 0.999 1.189
a3 P–T parameter (degree 3) U(0, 100) 18.644 17.562 12.886 19.430
a2 P–T parameter (degree 2) U(0, 500) 110.331 72.414 59.984 71.778
a1 P–T parameter (degree 1) U(0, 500) 177.997 140.294 123.764 120.546
a0 P–T parameter (degree 0) U(0, 1000) 293.601 307.747 290.306 280.615
log10 (P0 [bar]) Surface pressure U(−4, 3) 0.007 0.017 0.008 0.008
Rpl [R⊕] Planet radius (bulk value) G(1.0, 0.2) 1.000 1.000 1.000 1.000
log10

(
Mpl [M⊕]

)
Planet mass (bulk value) G(0.0, 0.4) 0.000 0.000 0.000 0.000

log10(N2) N2 mass fraction U(−15, 0) –0.113 –0.016 –0.005 –0.073
log10(O2) O2 mass fraction U(−15, 0) –0.631 –1.623 –2.622 –6.002
log10(H2O) H2O mass fraction U(−15, 0) –2.607 –2.143 –2.498 –2.345
log10(CO2) CO2 mass fraction U(−15, 0) –3.265 –1.807 –1.806 –0.827
log10(CH4) CH4 mass fraction U(−15, 0) –6.028 -3.635 –3.035 –6.056
log10(O3) O3 mass fraction U(−15, 0) –6.436 –6.567 –7.412 –10.301
log10(CO) CO mass fraction U(−15, 0) –7.215 –6.072 –7.206 –4.915
log10(N2O) N2O mass fraction U(−15, 0) –6.343 –6.859 –7.962 –

Notes.U(x, y) denotes a boxcar prior with a lower threshold x and upper threshold y; G(µ, σ) represents a Gaussian prior with mean µ and standard
deviation σ. For a4 we chose a prior on 4√a4, which allows us to sample small values more densely, typical of a fourth-order coefficient, and
then take the fourth power to obtain a4. The expected values of the P–T parameters are generated by fitting the input P–T profiles (calculated by
Rugheimer & Kaltenegger 2018) with a fourth-degree polynomial. The expected values of the abundances are calculated considering the weighted
mean by the pressure of the input abundance profiles (calculated by Rugheimer & Kaltenegger 2018).
References. (1) Rugheimer & Kaltenegger (2018).

R = 1000 to be calculated, which were subsequently binned
down to the resolution of the input spectrum (R = 35–100 in
Paper III). Calculating a spectrum at R = 1000 excluding scatter-
ing required ≈0.5 seconds, whereas including scattering required
≈18 seconds. Since millions of spectra have to be calculated for
a single Bayesian retrieval, including scattering was prohibitive
with respect to the computing time, especially when considering
a large grid of retrieval runs. Recent updates to petitRADTRANS
have enabled us to compute spectra at any resolution, provided a
grid of correlated-k tables at that resolution is available. These
tables can be produced with petitRADTRANS by binning down
the R = 1000 opacity tables. We compiled a correlated-k opac-
ity database for R = 50 and used it to produce spectra directly at
this resolution. This reduces the computation time per spectrum
significantly and allows us to compute emission spectra in ≈0.04
seconds when excluding scattering, and in ≈0.5 seconds when
including scattering. This reduction in computing time allowed
us to include scattering in the theoretical spectral model.

Other updates on petitRADTRANS were performed. The
treatment of collision-induced absorption (CIA) was modified by
updating the interpolation of the CIA tables, originally in FOR-
TRAN, to Python. Minor variations in the interpolation options
(log-linear compared to nearest neighbor in Paper III) make the
new model not directly comparable with its previous version.
However, under Earth-like conditions, the differences in the CIA
signature on the spectrum remain negligible. Also, the CIA fea-
tures impact mostly the short wavelengths (λ < 6 µm), where
the LIFESIM noise is large. Furthermore, the treatment of scat-
tering was updated. Originally implemented in petitRADTRANS
only for gaseous planets (see Mollière et al. 2019), it was adapted
to include the scattering by a rocky surface. More informa-
tion on the new implementation of scattering can be found in
Appendix A, as well as the petitRADTRANS documentation3.
3 https://petitradtrans.readthedocs.io

This new version of petitRADTRANS is available in the main
GitLab repository4.

Using the updated retrieval framework, we ran retrievals for
the eight different spectra introduced in Sect. 2.1. We retrieved
the same parameters as in Paper III leaving most prior distribu-
tions unchanged. An exhaustive list of the parameters and priors
used, and the corresponding expected values for the different
epochs, are listed in Table 3. Most priors are represented by
a boxcar function (hereafter “uniform” priors): every value is
equally probable if within a certain range. Two notable excep-
tions are the priors for the planetary radius Rpl and the logarithm
of the planetary mass log10(Mpl), whose priors are Gaussian. The
prior we assumed on Rpl is based on the radius estimate expected
from observing a terrestrial planet with LIFE during its search
phase (see Paper II for details). The log10(Mpl) prior was inferred
from Rpl using the statistical mass-radius relation presented in
Chen & Kipping (2016; see Paper III for details).

2.3. Assumptions and discrepancies

When performing retrievals, we are limited by the maximum
number of parameters retrieved in a reasonable computing time.
For this reason, we need to make a few simplifications. First, as
in Paper III, we parameterized the P–T profile in the retrieval
by a fourth-order polynomial. Second, we assumed the abun-
dances of the considered species to be independent of altitude.
Third, our retrieval framework did not model clouds for any
of the considered scenarios. This is a strong simplification for
the cases where we retrieve cloudy input spectra. However, this
retrieval approach allows us to investigate the biases in the results
obtained when retrieving a cloudy spectrum assuming a cloud-
free atmosphere. The addition of a cloud model to our retrieval
framework will be tackled in a future study. Finally, a surface

4 https://gitlab.com/mauricemolli/petitRADTRANS
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Table 4. References for the molecular opacities used in the retrievals.

Species Line list Pressure broadening Line cutoff

CO2 HITEMP (1) γair (6)
O3 HITRAN 2012 (2) γair (7)
CH4 ExoMol 2014 (3) Eq. (15), (5) (7)
CO HITEMP (1) γair (7)
H2O HITEMP (1) γair (7)
N2O ExoMol 2021 (4) γH, γHe Eq. (6), (8)

Notes. Adapted from Mollière et al. (2019).
References. (1) Rothman et al. (2010); (2) Rothman et al. (2013); (3)
Yurchenko & Tennyson (2014); (4) Chubb et al. (2021); (5) Sharp &
Burrows (2007); (6) Burch et al. (1969); (7) Hartmann et al. (2002); (8)
Chubb et al. (2021).

reflectance of 0.1 was assumed for all the wavelength range. This
is a common value for water-rich habitable terrestrial planets,
dominated by the low infrared reflectance of oceans and ice.

In contrast, Rugheimer & Kaltenegger (2018) used P–T
profiles that were self-consistently calculated by their climate-
photochemistry model to generate the input spectra. The chem-
ical abundance profiles were also altitude-dependent and cal-
culated self-consistently by the climate-photochemistry model.
In order to compare the results of the retrievals with the input,
we approximated the input P–T and abundance profiles to cal-
culate the expected values of the parameters considered in the
retrievals. Regarding the thermal structure of the atmosphere, we
determined the expected values of the polynomial coefficients
(a4, a3, a2, a1, a0) listed in Table 3 by fitting a fourth-
order polynomial to the self-consistent P–T profiles. As for the
abundances, we assumed the weighted means over the pres-
sure grid of the altitude-dependent abundance profiles. This is
sensible, since the denser layers of the atmosphere (which corre-
sponds to higher pressures) are generally the ones that contribute
more to the spectrum. The expected values for the considered
species are listed in Table 3 as well. For what concerns the sur-
face reflectance, Rugheimer & Kaltenegger (2018) considered
a wavelength-dependent reflectance. However, the reflectance
still averaged 0.1 in the wavelength range of interest. We would
therefore not expect large variations due to this parameter.

There are also differences between the opacity tables that
the two models use. We used the default set of opacities for
petitRADTRANS as presented in Mollière et al. (2019). We added
the N2O opacity from the ExoMol database (Chubb et al. 2021).
The CIA opacities were taken from the HITRAN database.
Details and reference papers corresponding to the opacity line
lists are shown in Tables 4 and 5. In contrast, the input spectra
were calculated using HITRAN 2016 opacities (Rugheimer &
Kaltenegger 2018). Differences in line lists and broadening coef-
ficients are therefore to be expected and may cause biases in the
results.

Due to these differences in the atmospheric models, we
would imagine finding some small discrepancies between the
spectra that were published in Rugheimer & Kaltenegger (2018)
and the ones that our framework can calculate. We discuss this
particular aspect in Sect. 4.4.

3. Results

In this section, we show the results from the retrievals on the grid
of different input spectra (see Table 1) assuming the baseline

Table 5. References for the CIA and Rayleigh opacities used in the
retrievals.

CIA References Rayleigh References
N2 – N2 HITRAN (1) N2 (2,3)
O2 – O2 HITRAN (1) O2 (2,3)
O2 – N2 HITRAN (1) CO2 (4)
CO2 – CO2 HITRAN (1) H2O (5)

CH4 (4)
CO (4)

Notes. Adapted from Mollière et al. (2019).
References. (1) Karman et al. (2019); (2) Thalman et al. (2014); (3)
Thalman et al. (2017); (4) Sneep & Ubachs (2005); (5) Harvey et al.
(1998).

parameters listed in Table 2. We start by analyzing the retrieved
spectra (Sect. 3.1) to offer a broad overview of the retrieval per-
formance. Then, we study the retrieved P–T profiles (Sect. 3.2),
the planetary parameters (Sect. 3.3) and abundances (Sect. 3.4).
We also ran additional retrievals of the same scenarios (shown in
Table 1) by varying R and S/N. We compare the results of these
retrievals in Sect. 3.5.

3.1. Retrieved emission spectra

The main outputs of the Bayesian retrieval framework are the
posterior distributions of the parameters, necessary to produce
theoretical spectra, that best match the data. The posteriors can
be visualized as an N-dimensional space that is a subset of
the larger N-dimensional prior space, N being the number of
parameters. Each point included in the posterior space has N
coordinates and represents a combination of N parameters that, if
fed to the theoretical spectral model, would produce a spectrum
that was determined by the Bayesian framework to resemble the
observed spectrum.

From the available sets of parameters within the posteri-
ors that the routine has calculated, we can therefore produce
“retrieved spectra.” These are shown in Fig. 1. Each subplot
presents the results for a specific model, compared to the input
spectrum binned down to R = 50. Similarly, Fig. 2 shows the
logarithm of the ratio between the retrieved emission spectrum
and the input emission spectrum for each scenario.

The retrieved spectra are generally in good agreement with
the input spectra (within 1σ) for all considered cases. This shows
that our retrieval framework can reproduce the simulated input
spectra, regardless of the complexity of the input model (in terms
of thermal and abundance profiles, and cloud coverage). How-
ever, we notice regions with larger uncertainties, especially at
wavelengths shorter than ≈8µm. Here, the ratio between the
retrieved spectra and the input spectrum (as shown in Fig. 2)
reaches up to a few orders of magnitude. Such differences are,
however, still within the noise uncertainty (gray-shaded areas).
Smaller differences can be noticed in the main CO2 band at
≈15µm. Since the noise is not as high as it is in the short wave-
length range, these differences are probably due to discrepancies
in the opacity tables (see Sect. 4.4).

The parameter estimation routine included in the Bayesian
retrieval framework has the task of minimizing the difference
between model output and data. For this, no detailed parameteri-
zation of the relevant physical processes is required. Many of the
relevant physical and chemical parameters are correlated (e.g.,
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the planetary mass and the pressure; the pressure and the chemi-
cal abundances), often in a nonlinear way. It is therefore possible
for the parameter estimation routine to produce similar spectra
as the full (physical) input model over a diverse set of parame-
ters, as a result of such correlations. Hence, it is appropriate to
question whether the parameter estimation routine results are on
the one hand physically representative, or whether degeneracies
and systematics between the retrieved parameters could be influ-
encing the results. The next sections will explore these issues in
more detail.

3.2. Retrieved P–T profiles

In Fig. 3, we show the retrieved P–T profiles compared to the
input profiles for all combinations of the four epochs (columns)
and the two cloud coverages (rows).

The vertical shape of the retrieved P–T profiles in the lower
atmosphere (pressures ≥10−2 bar) roughly follows that of the true
P–T profiles. In most cases, the true profiles are contained within
the 1σ uncertainty envelope. As in Paper III, the uncertainties
grow larger at higher altitudes (pressures ≤10−2 bar). This indi-
cates that, for the quality of the input spectra we consider for this
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Fig. 3. Retrieved P–T profiles compared to the input profiles (solid black line) for the various scenarios, ordered by epoch (columns) and cloud
coverage (rows). The scenarios are color-coded according to Table 1. In each subplot, we also show an inset plot with the two-dimensional histogram
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study, it is not possible to distinguish atmospheres with a strato-
spheric temperature inversion (i.e., the modern Earth scenario)
from those with an isothermal stratosphere (i.e., the NOE, GOE,
and prebiotic scenarios). This retrieval limitation is a result of
the small overall contribution of the upper atmospheric layers to
the planet’s MIR emission spectrum.

A few additional inconsistencies between the retrieved and
input P–T profiles are also apparent in the lower altitudes (high
pressures). A general feature in the three biotic epochs (modern,
NOE, and GOE Earth) is the retrieval of underestimated val-
ues for the ground pressure P0 (∼0.1 bar as opposed to the true
value of ∼1 bar). This occurs for both the cloud-free and cloudy
spectra. Such an offset could be explained by systematic differ-
ences between the radiative transfer models used to produce and
retrieve the simulated spectra. We discuss this in more detail
in Sect. 4.4. The ground temperatures T0 are on average well
retrieved for all clear sky scenarios. In contrast, the retrievals
performed for the cloudy spectra systematically underestimate
T0, with differences between the retrieved and true value ≲25 K.
These results have an impact on assessing the habitability of the
simulated exoplanets, which will be discussed in more detail in
Sect. 4.

For the prebiotic Earth input spectra, the retrievals provide
estimates for P0 and T0 that are in agreement with the true
parameter values. Furthermore, the overall uncertainties on the
retrieved P–T profile are generally smaller than for the other
epochs. However, for the cloudy prebiotic Earth (PRE-C) spec-
trum, the retrieved P–T profile is a few tens of kelvin warmer
than the true value in the intermediate layers of the atmosphere
(∼10−1 to ∼10−3 bar). This effect is likely related to the much
weaker emission features in the PRE-C scenario compared to the
other epochs. We discuss the impact of neglecting clouds in the
retrievals in Sect. 4.2.

3.3. Retrieved planetary parameters

Figure 4 shows the posterior density distributions we retrieve
for the planetary parameters (Rpl, Mpl) and surface conditions
(P0, T0) for all considered input spectra. Rpl, Mpl, and P0 are

directly retrieved by our framework, while the T0 posterior is
calculated from the P–T parameters (polynomial coefficients ai)
and P0 posteriors. The results are color-coded based on Table 1
and grouped by epoch (rows) and planetary parameters (column).
The retrieved parameters for the clear and cloudy input spectrum
of the same epoch are shown in the same subplot to facilitate
comparison.

We obtain good estimates for all of the parameters con-
sidered, especially for the cloud-free scenarios. The posterior
distributions roughly follow a Gaussian distribution and are
typically centered on the true values.

By comparing the retrieved posteriors for Rpl to the cor-
responding Gaussian prior range (shown in Fig. 4 as a dotted
line), we observe that we manage to better constrain the planet
radius Rpl with respect to the prior distribution. For the GOE and
modern Earth scenario, the retrieved posteriors do not signifi-
cantly depend on the cloud coverage. For the NOE and prebiotic
input we underestimate Rpl in the retrievals of the cloudy spec-
tra (retrieved as ∼0.8–0.9 R⊕ instead of 1 R⊕). This difference is
more pronounced in the prebiotic scenario.

For what concerns Mpl, the retrieval analysis does not add
further constraints on the estimates for the planet’s mass. Also,
there is no noticeable difference in the retrieval results for Mpl
between the four epochs. This finding holds for both the clear
and cloudy scenarios and is in agreement with the results we pre-
sented in Paper III. It is important to note that, in contrast to the
prior assumption (see Sect. 2.2), Mpl is not linked to Rpl through
a mass-radius relationship during the retrieval, but it is instead
a free parameter. This means that both Mpl and Rpl are indepen-
dently drawn from their respective prior. In the retrieval, we use
both parameters to calculate the planet’s surface gravity, which is
required to compute the theoretical emission spectrum. In addi-
tion to the surface gravity calculation, we also use Rpl to scale
the flux emitted per unit area at the top of the atmosphere (as
calculated by petitRADTRANS) to the observed exoplanet flux
at a distance d from the observer (generally well known, 10 pc
in our study). We do so by multiplying the flux at the top of the
atmosphere by the factor (Rpl/d)2.
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Fig. 4. Posterior density distributions for the retrieved exoplanet parameters (columns) for the different epochs (rows) and cloud coverages. We
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The dotted lines in the Rpl and Mpl plots indicate the assumed Gaussian priors. For P0 and T0 we assume broad, flat priors, which are not plotted.

Since the surface gravity is typically not directly constrain-
able due to the gravity-abundance degeneracy (see Sect. 3.5),
the retrieval struggles to further constrain Mpl. In contrast, the
retrieval does manage to constrain Rpl further, as it does not only
depend on the surface gravity, but also on the distance-scaling of
the spectrum.

The retrieved posteriors for the surface pressure P0 are sig-
nificantly smaller than the assumed prior distribution (10−4 to
103 bar), meaning that we manage to pose strong constraints on
P0 with respect to the assumed prior knowledge on the param-
eter. However, the retrieval tends to underestimate the value of
P0 in all cases except for the prebiotic one. The retrieved posteri-
ors in these cases are not well represented by a Gaussian, which
indicates that the retrieval results for P0 could be degenerate. We
discuss this in more detail in Sect. 4.3.

As shown in Sect. 3.2, the retrieved posteriors for the surface
temperature T0 are centered on the true values for the cloud-
free retrievals. For the cloudy input spectra, the retrievals tend
to underestimate the surface temperature. The standard deviation
of the retrieved T0 posteriors is roughly ±20 K for all biotic sce-
narios. This is in agreement with the findings made in Paper III.
The spread of retrieved posteriors could potentially be reduced
by increasing the R or S/N of the input spectra (see Sect. 3.5).
Observing strategies for the trade-off between R and S/N will be
addressed in Sect. 4.3.

3.4. Retrieved chemical abundance parameters

Figure 5 shows the retrieved posterior distributions for the main
atmospheric gases. We again arrange the various scenarios by
epoch (row), and atmospheric species (column) and use the
color-coding from Table 1. The results for the clear and the
cloudy retrievals of one epoch are shown in the same subplot
to facilitate comparison.

We plot our expected abundances (listed in Table 3), which
are the weighted means (with respect to the pressure) of the

original abundance profiles, as black vertical lines. If no true
value is plotted, the molecule is not present in the input spec-
trum. We further indicate the range of variability of the true,
pressure-dependent abundance profiles (minimum to maximum)
via the shaded gray area in each subplot.

We adopt the same posterior classification scheme that was
introduced in Paper III, for an easier comparison of the results.
This scheme divides the retrieved posteriors into the following
four classes. The first is the constrained (C) class: the poste-
rior is best described by a Gaussian distribution. This implies
that abundances both significantly lower and higher than the true
value can be ruled out. The second is the sensitivity limit (SL):
the abundance is at the retrieval’s detection limit for the species.
The posterior exhibits a distinct peak. However, low abundances
are not ruled out. The posterior is best described by the convo-
lution of a soft-step function with a Gaussian. The third is the
upper limit (UL): the posterior resembles a soft-step function.
Large abundances can be excluded, low ones cannot. The last is
unconstrained (UC): we cannot retrieve information on the atmo-
spheric abundance. The posterior resembles a constant function
over the full prior range. For further details on the specifics of
the posterior classification, we refer the reader to Appendix B of
Paper III.

We obtain UC posteriors for the abundances of N2 and O2
in all retrievals performed. In accordance with the findings pre-
sented in Paper III, these molecules are not detectable in any of
the considered scenarios. This finding indicates that the corre-
sponding CIA spectral signatures are too weak to be detectable
in the considered input spectra with R = 50 and S/N= 10.
To increase readability, we choose not to show the retrieval
results for N2 and O2 in Fig. 5. The posterior distributions of
these molecules can however be found in the corner plots in
Appendix B. Similarly, the trace gases N2O and CO are not
detected in any of our retrievals, obtaining unconstrained pos-
teriors for all epochs. The MIR absorption features of these
molecules at the considered abundances are also too weak in the
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Fig. 5. Posterior density distributions for the retrieved species (columns), the different epochs (rows), and the different cloud coverage scenarios.
Results from the various scenarios use the color-coding from Table 1. The solid black lines indicate the expected values for each species, which
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compute the input spectra.

considered input spectra to be constrained in our retrievals. This
can be seen by the flat posterior distributions for both species in
all considered cases (see Fig. 5).

We detect CO2 in all retrievals and the received posterior dis-
tributions are generally Gaussian-like (C-type posteriors). Our
results suggest that the median abundances of the different pos-
terior distributions are higher than the true value for all the
epochs. However, in the prebiotic, GOE, and NOE scenarios the
true abundances still lie within the 1σ envelope of the retrieved
abundances. For the modern Earth scenarios, the true value lies
within the 3σ range of the retrieved posterior. This is consistent
with a “compensation effect” whereby the retrieval framework
is correcting for the underestimated pressure. The degeneracy
between chemical composition and atmospheric pressure is well
known and it was already encountered in Paper III (see Sect. 4.1).
All retrieved CO2 posteriors span about three orders of mag-
nitude (3 dex). They all appear very similar even though the
expected values of CO2 span from roughly 0.01% (modern
Earth) to the order of 10% (prebiotic Earth). This forbids the
use of CO2, one of the major absorbers in the atmosphere, as a
discriminator between the considered epochs. To reduce the vari-
ance in the retrieved abundances, an increase in R and/or S/N
might be recommended (see Sect. 3.5).

For the remaining species (O3, CH4, and H2O), the retrieval
results depend on the considered epoch: O3 is retrieved accu-
rately in both the modern Earth and NOE Earth scenarios
(C-type posteriors). These are the two cases where O3 is more
abundant (∼10−6 in mass fraction). In contrast, for the prebiotic
and GOE scenario, we only retrieve upper limits (UL-type poste-
riors) for the O3 abundance. This means that we can rule out high
abundances of O3 (≳10−6 in mass fraction), but cannot exclude
abundances below the retrieved upper limit.

We manage to detect CH4 in the NOE and GOE Earth spectra
(C-type posterior), which have a higher CH4 abundance. For the

modern and prebiotic Earth spectra, where the abundances are
lower, we retrieve an SL-type posterior, which is characterized
by a peak in the distribution roughly at the true value and a non-
negligible tail toward low abundances. Similar to CO2, CH4 is
generally overestimated when detected. However, the true value
still lies within the 2σ envelope of the retrieved posterior distri-
bution. The conditional retrieval of O3 and CH4 is particularly
significant when discussing the detectability of biosignatures
in Earth-like planets with LIFE, which will be discussed in
Sect. 4.5.

H2O is constrained in both the modern and prebiotic scenar-
ios, as well as the clear NOE Earth (NOE-CF) model, and the
retrieved posteriors are centered on the true value. In contrast,
we only detect SL-type posteriors for both the GOE Earth spec-
tra and the cloudy NOE model. In this case, such a difference
in retrieval performance cannot be explained by a difference in
the abundance of the species, which is fairly constant throughout
all the epochs (around ∼10−2 in mass fraction). This is likely to
be related to the overestimation of CH4, a species that is much
more abundant in the GOE and NOE scenarios (10−3 in mass
fraction compared to 10−6 for the modern and prebiotic epochs).
The spectral signature of H2O overlaps with that of CH4 between
5 and 7µm, which is where the noise level is very high and the
flux levels are low. Therefore, the retrieval framework favors a
higher abundance of CH4 at the expense of a larger uncertainty
on H2O in these scenarios.

Finally, our results suggest only modest differences in the
retrieved abundances obtained from the clear and cloudy input
spectra. The presence of clouds in the spectrum does not seem
to deteriorate the abundance estimation capabilities for most
molecules. In contrast, as seen in the previous subsection, the
characterization of a cloudy atmosphere with a cloud-free model
will likely result in biases in the retrieved physical parameters.
We discuss this topic further in Sect. 4.2.
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3.5. Runs at higher resolution and/or signal-to-noise ratio

In this section, we investigate whether our retrieval results can
be improved by increasing the quality (R and/or S/N) and thus
the information content of the input spectra. We ran ancillary
retrievals for the eight scenarios and chose the following combi-
nations of R and S/N5: (1) R = 50 and S/N = 10 (the reference
case); (2) R = 100 and S/N = 10; (3) R = 50 and S/N = 20; and
(4) R = 100 and S/N = 20.

We provide a summary of the results obtained from these
additional retrieval runs in Figs. 6 (planetary parameters) and 7
(abundances). Results from the different ancillary runs are rep-
resented using different markers. The results for the different
epochs are color-coded according to Table 1. Here, we only show
the results for the clear input spectra. The plots corresponding to
the cloudy scenarios can be found in Appendix C.

We are particularly interested in significant increases in accu-
racy (i.e., the retrieved values agree better with the input “truth”)
or in precision (i.e., the posterior’s variance is reduced). For
higher S/N we expect more precise results since the uncertainty
in the input spectrum is lower. This yields stronger constraints
on the model parameters. An increase in R should allow for a
more robust identification and characterization of the spectral
features and thus more accurate retrieval results. Both increased
accuracy and/or precision could allow us to differentiate between
the different epochs (and generally between different planets)
more clearly. This will be of great importance, especially when
searching for signatures of life in exoplanetary atmospheres (see
Sect. 4.5). We should point out that in our current simulation

5 We remind the reader that the S/N refers to the value at a reference
wavelength of 11.2 µm.

setup, which ignores (systematic) instrumental noise terms, dou-
bling R at a constant S/N means doubling the integration time,
while doubling S/N at a constant R means, roughly, quadrupling
it6. This information is crucial for the mission planning and will
be further discussed in Sect. 4.3.

In Fig. 6, we notice that increasing the S/N to 20 while
keeping R = 50 (square markers) generally results in a narrower
posterior for Rpl. We observe a reduction in the variance of the
Rpl posterior by up to a factor of 2 compared to the reference
case (R = 50, S/N = 10; the circular markers). An increase in
R (R = 100, S/N = 10; the diamond markers) causes the vari-
ance of the Rpl posterior to shrink to about 70% of the reference
case variance. In contrast, we observe no noticeable gain in the
accuracy of the retrieved value for Rpl when increasing S/N
and R at the same time. On the other hand, the precision of
the measurement at R = 100, S/N = 20 improves significantly,
with the variance of the Rpl posterior shrinking up to three times
compared to the reference case.

We further find that the retrieval of the planetary mass Mpl
does not improve significantly when moving to higher R and S/N
input spectra. We observe no significant increase in both accu-
racy and precision. This finding is consistent with the results
shown in Paper III. The underlying reason for this observation
is the degeneracy between the surface gravity (and thus also
Mpl) and the abundances of trace gases (see, e.g., Paper III,
Mollière et al. 2015; Feng et al. 2018; Madhusudhan 2018; Quanz
et al. 2021). Since gravity and abundances are involved in the
hydrostatic equilibrium, it is possible to reproduce the same
spectral feature using different combinations of these parame-
ters. This broadens the variance of the posteriors of Mpl and of
the atmospheric species.

Increasing the quality of the input spectrum does improve
the accuracy of the retrieval for P0 in the clear modern Earth
(MOD-CF) case. The results for the other epochs do not exhibit a
similar trend with increasing input quality. This failure to retrieve
accurate ground pressure estimates is likely rooted in differences
between the opacity tables used by the retrieval framework and
the ones used to calculate the input spectra (see Sect. 4.4 for
more details). Additionally, no noticeable decrease in the vari-
ance of the retrieved P0 estimate is present for higher values
of R or S/N. This is likely a result of the pressure-abundance
degeneracy, which has already been described in Sect. 3.4.

For the surface temperature T0, we do not notice any substan-
tial improvements in the accuracy of the retrieved values when
increasing R or S/N. However, as for Rpl, we observe a significant
reduction in the variance of the posteriors when increasing S/N
and R. Compared to the reference case, the uncertainty in T0 is
reduced by a factor of 2 for the runs with S/N = 20 and to about
70% of the reference variance for the runs with R = 100. These
improvements in temperature accuracy could be crucial when
assessing the potential habitability of an observed exoplanet.

In Fig. 7, we summarize the retrieved posterior distribu-
tions in the abundances for the reference case (R = 50 and
S/N = 10, circular markers) and all other R and S/N combina-
tions. The abundance posteriors are classified according to our
classification scheme (see Sect. 3.4 and Paper III).

Generally, we observe that increases in both S/N and R
do not significantly improve the accuracy nor the precision
of the retrieved posteriors for the majority of the scenarios.
This is again the result of the pressure- and gravity-abundance

6 We refer the reader to the appendix of Paper I, where we show a
breakdown of the typical noise contributions for planets detected around
solar-type stars.
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at the same time. On the other hand, the precision of the mea-
surement at R = 100, S/N = 20 improves significantly, with the
variance of the Rpl posterior shrinking up to three times com-
pared to the reference case.

We further find that the retrieval of the planetary mass Mpl
does not improve significantly when moving to higher R and
S/N input spectra. We observe no significant increase in both ac-
curacy and precision. This finding is consistent with the results
shown in Paper III. The underlying reason for this observation is
the degeneracy between the surface gravity (and thus also Mpl)
and the abundances of trace gases (see, e.g., Paper III, Mollière
et al. 2015; Feng et al. 2018; Madhusudhan 2018; Quanz et al.
2021). Since gravity and abundances are involved in the hydro-
static equilibrium, it is possible to reproduce the same spectral
feature using different combinations of these parameters. This
broadens the variance of the posteriors of Mpl and of the atmo-
spheric species.

Increasing the quality of the input spectrum does improve the
accuracy of the retrieval for P0 in the clear modern Earth (MOD-
CF) case. The results for the other epochs do not exhibit a similar
trend with increasing input quality. This failure to retrieve accu-
rate ground pressure estimates is likely rooted in differences be-
tween the opacity tables used by the retrieval framework and the
ones used to calculate the input spectra (see Sect. 4.4 for more
details). Additionally, no noticeable decrease in the variance of
the retrieved P0 estimate is present for higher values of R or
S/N. This is likely a result of the pressure-abundance degener-
acy, which has already been described in Sect. 3.4.

For the surface temperature T0, we do not notice any substan-
tial improvements in the accuracy of the retrieved values when
increasing R or S/N. However, as for Rpl, we observe a signifi-
cant reduction in the variance of the posteriors when increasing
S/N and R. Compared to the reference case, the uncertainty in T0
is reduced by a factor of 2 for the runs with S/N = 20 and to about
70% of the reference variance for the runs with R = 100. These
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Fig. 7. Retrieved atmospheric abundances for the different ancillary runs. Results belonging to the various scenarios are provided using the color-
coding from Table 1. We use different markers for the runs at different R–S/N (see legend). The solid lines indicate the expected values for each
species, which vary depending on the epoch. The gray-shaded areas mark the range of values in the vertically nonconstant abundance profiles of
the input spectra. The posterior distributions were classified using our posterior classification scheme (see Sect. 3.4 for details).

degeneracies. In particular, the pressure-abundance degeneracy
is responsible for the shifts with respect to the true values,
whereas the gravity-abundance degeneracy defines the vari-
ance of the abundance posteriors. The effects of the pressure-
abundance degeneracy can be noticed for CO2 in the MOD-CF
scenario. For the reference case (circular marker) we strongly
underestimated P0, which is compensated by an overestimation
in the CO2 abundance. As we move to higher R and S/N input
spectra, our estimate for P0 improves, which results in better
accuracies for the retrieved CO2 abundance. The same connec-
tion between P0 and the retrieved abundances can be seen for all
other constrained species.

In contrast, the variance of the CO2 posterior does not
decrease significantly with increases in R and S/N since it is
limited by the variance of the Mpl posterior (due to the gravity-
abundance degeneracy), which is the same for all considered
cases. While this behavior describes the results for most species
well, there are some noteworthy exceptions that we will discuss
here.

Firstly, there could be a tentative detection of O3 (an SL pos-
terior) in the clear GOE Earth (GOE-CF) epoch when increasing
the S/N to 20 (square marker). If also the resolution is increased

to R = 100 (triangular marker), we could better constrain the O3
abundance. Purely increasing R to 100 would not improve the
accuracy or the precision of O3 (diamond marker). Similarly,
increasing the S/N would allow for detection of CH4 in all four
epochs, which was not possible for the reference case (circular
marker). However, the retrieved CH4 abundances are one to two
orders of magnitude higher than the truths. Results suggest sim-
ilar, but less pronounced, systematic offsets with respect to the
true values for the other constrained species. These offsets are
likely the result of a combination of the degeneracy between P0
and the abundances and systematic errors, such as differences in
the molecular line lists (see Sect. 4.4). Both O3 and CH4 are of
particular interest for astrobiology, since they are indicative of
disequilibrium chemistry in the atmosphere and could indicate
the presence of biological activity on the planet. We discuss this
in more detail in Sects. 4.3 and 4.5.

Furthermore, an increase in S/N would enable robust detec-
tion of H2O in the GOE-CF epoch (a C- instead of an SL-type
posterior). On the contrary, increasing the resolution alone does
not have the same effect.

Finally, CO is unconstrained for all epochs and R–S/N pairs,
which indicates that this species could not be detected in an
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Earth-like atmosphere with LIFE. Similarly, none of the runs
were able to fully constrain the N2O abundance. The retrieval can
only provide upper limits on the N2O abundance, which often
only manage to rule out atmospheric abundances greater than 1%
in mass fraction. The retrieval is therefore not sensitive to these
molecules – their spectral signatures are too small compared to
the LIFESIM noise to be detected even in the best considered
scenario. An exception would be the GOE-CF at R = 100 and
S/N = 20 scenario, for which we retrieve a wrong estimate of
N2O (around 1% in mass fraction), about six orders of magnitude
larger than the true value. The retrieval is most likely fitting the
noise and/or spectral signatures of most of the other species at
shorter wavelengths (λ ≲ 8µm). Hence, when analyzing obser-
vations of potentially habitable terrestrial planets, we should be
mindful not only of the false positive mechanisms that may be
active in the atmosphere, but also of the false positives that the
retrieval routines can infer. One could try to solve this issue by
averaging over multiple retrieval runs, or by reducing the prior
space with inferred knowledge from independent observations.

The retrievals of the ancillary cloudy input spectra (shown
in Appendix C) do not show any noticeable improvement in
either accuracy or precision for all scenarios with increased R
and S/N. The values of Rpl and T0 are still underestimated for
all the scenarios. However, all considered R and S/N combina-
tions still allow for an atmospheric abundance characterization
for the cloudy input spectra. This analysis is subject to similar
limitations as those already discussed for the subset of clear input
spectra. The impact of clouds in retrievals will be discussed in
more detail in Sect. 4.2.

4. Discussion

In Sect. 4.1, we compare the results we obtain for the cloud-
free modern Earth twin with the results from a similar study
performed in Paper III. As previously mentioned, we retrieved
spectra of cloudy exoplanets, while neglecting clouds in the for-
ward model of the retrieval framework. We describe this effect in
Sect. 4.2. We discuss the impact of the quality of the data on the
retrievals in Sect. 4.3 and the systematic effects of the retrieval
runs in Sect. 4.4. Finally, we quantify the potential that LIFE has
in differentiating the various epochs (Sect. 4.5).

For completeness, we mention that we also tested the impact
of varying complexity of the theoretical spectral model on
retrievals, by including and excluding scattering and/or CIA in
the calculation. Through the analysis and comparison of ancil-
lary retrieval grids, we confirm that including or neglecting
scattering and CIA in the calculation does not influence the
quality of the results. We show the results in Appendix D.

4.1. Comparison with Paper III

To allow for a proper comparison, we selected the model from
Paper III that uses the same R, S/N, and wavelength range
(4−18.5µm, R = 50, and S/N = 10). The major difference
between these two retrieval studies is that in Paper III retrievals
were performed using the same theoretical atmospheric model
that was also used to generate the input spectra. In contrast,
in this work we used an atmospheric model in the retrieval
that is different than the one that was used to generate the
spectrum. Further, in our previous study, we assumed abun-
dance profiles that were vertically constant while the spectra
calculated by Rugheimer & Kaltenegger (2018) were based on
a self-consistent, altitude-dependent atmospheric composition.
In Fig. 8 we compare the retrieval results for the constrained
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Fig. 8. Comparison of retrieval results for constrained planetary param-
eters and atmospheric abundances in the MOD-CF case (blue, square
marker) with results from Paper III (brown, circular marker) for input
spectra with the same properties (wavelength coverage 4–18.5µm,
R = 50, S/N = 10). The vertical black lines indicate the true values
assumed for the parameters in each study. For parameters where we
assumed a non-flat prior, we indicate the prior range (black, pentag-
onal marker). The error bars on the constrained posteriors denote the
68% confidence intervals.

planetary parameters and abundances from Paper III to our
findings for the MOD-CF case.

In the upper panel of Fig. 8, we plot the retrieval results
for the planetary parameters. The planetary radius Rpl is well
constrained with respect to the assumed prior distribution and
both posteriors are roughly centered on the corresponding truths.
However, the spread of the MOD-CF Rpl posterior is larger than
in Paper III, which indicates that the radius is slightly less well
constrained. For Mpl our results are comparable to Paper III. Our
results for the surface pressure P0 and surface temperature T0
agree less well with the results presented in Paper III. This is
probably caused by small differences in the input P–T profiles,
as well as potential systematic errors, which we discuss in more
detail in Sect. 4.4.

In the lower panel of Fig. 8, we show the results obtained for
the abundances of the trace gases that are constrained (C- or SL-
type posteriors) by our retrieval analysis. We observe that the
MOD-CF retrieval tends to overestimate the true abundances,
while the estimates from Paper III appear more accurate. The
retrieved posterior types match for all of the atmospheric gases
considered. Additionally, for CO2, O3, and H2O, the spread of
the posteriors for the MOD-CF runs is comparable to the results
from Paper III. The larger spread in our CH4 abundance is
the result of a slightly reduced sensitivity, which is most likely
evoked by differences in the atmospheric scenarios used to gen-
erate the input spectrum and in the retrievals. These differences
will reduce the accuracy overall of the retrieval results.

4.2. Impact of clouds on retrieval results

As pointed out in Sect. 3, using a cloud-free atmospheric model
in our retrievals will likely have introduced biases into our results
for the cloudy scenarios. The presence of clouds in an atmo-
sphere will reduce the MIR continuum emission of the observed
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exoplanet. The emission spectra of terrestrial exoplanets are typi-
cally dominated by the lowest, nonopaque atmospheric layers. In
cloudy exoplanets, part of this thermal emission is hidden below
the clouds. Thus, the atmospheric layers above the clouds con-
tribute more to the overall spectrum. Because the atmospheric
temperature at the top of the clouds is typically lower than the
surface temperature of the planet, cloud coverage will generally
lead to a cooler retrieval temperature with reduced continuum
flux. This reduction in continuum flux can be clearly seen when
comparing the clear to the cloudy spectra in Fig. 1.

Since the theoretical spectral model we use for our retrievals
assumes a cloud-free atmosphere, the continuum emission must
be reduced in other ways to achieve a satisfactory fit to the
input spectrum. This reduction can be obtained by reducing the
radius (and thus the emitting surface) and/or the surface tem-
perature of the exoplanet. Due to these compensation effects,
most of our retrievals of cloudy input spectra yield smaller radii
and/or cooler surface temperatures than the cloud-free inputs
(see Fig. 4). This is also valid at higher spectral resolutions and
signal-to-noise ratios, showing that the compensation effects are
independent of the quality of the data (see Fig. C.1).

In addition to the surface conditions, the thermal structure
of the layers and the chemical composition of the atmosphere
also play a major role in shaping the emission spectrum, espe-
cially in the absorption and emission features. This could yield
biased retrieval results for other parameters, such as the ai coef-
ficients of the polynomial P–T profile. In our results, the PRE-C
model shows the clearest signature of this compensation effect
(see Fig. 3). This degeneracy between cloud coverage and ther-
mal structure in retrievals has also been found in other studies
(see, e.g., Mollière et al. 2020, and references therein).

Such biased results could be misleading, especially when try-
ing to analyze the habitability of an observed exoplanet. If, by
neglecting clouds in our theoretical spectral model, we underes-
timate the surface temperature, we could therefore misclassify
habitable exoplanets. A clear example is the cloudy modern
Earth (MOD-C) scenario: using our cloud-free forward model to
retrieve this cloudy spectrum causes the retrieved ground tem-
perature to be colder than 275 K. Such low temperatures suggest
a potentially uninhabitable planet, which we know is not the
correct interpretation for the MOD-C spectrum.

On the other hand, when looking at the retrieved chemical
abundances (see Fig. 5), we observe only minor variations in
the shape of the posteriors for all the major absorbing gases
in the atmosphere. This indicates that, despite having a major
impact on the retrieved physical parameters (Rpl and T0), retriev-
ing cloudy spectra with a cloud-free model does not significantly
impact the chemical characterization of the atmosphere.

It is important to mention that the clouds included in
Rugheimer & Kaltenegger (2018) act purely as continuum
absorbers or emitters, with no specific cloud spectral features.
Assuming a more complex treatment of clouds in the input spec-
tra might still cause degenerate results, especially in the retrieval
of a correct water abundance.

Therefore, including a cloud model in the theoretical spectral
model that we use for retrievals could improve the quality of the
results. However, this depends on the goal of the analysis. If we
aim to characterize the chemical composition of the atmosphere,
it may be sufficient to use cloud-free retrievals. This would be
a smart strategy considering that including a somewhat realis-
tic cloud treatment in the theoretical spectral model significantly
increases the number of retrieved parameters and subsequently
the running time. Performing retrievals on input spectra that
include visible and near-infrared data in addition to the MIR

observations will likely provide additional information about the
cloud composition and structure. In this sense, coupling with
data acquired by HabEx or LUVOIR and LIFE may significantly
improve retrieval results. We will compare the retrieval perfor-
mance for different cloud models and discuss the capabilities
of joint reflected light and thermal emission retrievals in future
publications.

4.3. Increasing the quality of the input spectra

The results of the retrievals performed assuming other combina-
tions of R and S/N, described in Sect. 3.5, show that increasing
the S/N to 20 will allow us to detect both O3 and CH4 in more
cases. Increasing to R = 100 would also improve our results,
especially when combined with an increase in S/N. This is an
interesting finding for multiple reasons.

From the scientific point of view, simultaneously detect-
ing O3 (which can provide an indirect estimate of O2) and
CH4 would be a strong indicator of chemical disequilibrium in
the atmosphere possibly hinting at the existence of biological
activity. Such a detection would make the respective exoplanet
a high-priority target for the search for life beyond the Solar
System. This concept will be further explored in Sect. 4.5.

From the technical point of view, it would mean that one
needs to consider longer integration times while maintaining a
stable architecture of the interferometer array. For the assump-
tions in our baseline case (see Table 2), doubling the resolution
would roughly correspond to a doubling of the integration time
(from ∼50 to ∼100 days) while doubling the S/N would trans-
late in integration times roughly four times longer (from ∼50
to ∼200 days). This poses challenges in terms of mission tech-
nical feasibility as well as mission scheduling. Increasing the
instrument throughput, for which we assumed a conservative
value (cf. Paper I), or the aperture size would bring the required
integration times down. Also, the nearest rocky exoplanets orbit-
ing within the habitable zone (HZ) of their solar-type host stars
may not be 10 pc away. Bryson et al. (2021) estimate that with
95% confidence the nearest HZ planet around G and K dwarfs
is ∼6 pc away and they predict ∼4 HZ rocky planets around G
and K dwarfs within 10 pc of the Sun. Taking all this together,
we would therefore recommend to stick to the baseline require-
ments for LIFE of R = 50 and S/N = 10, as proposed in Paper III,
since they allow for a reliable and quantitative characterization
of the most important physical and chemical properties of the
considered atmospheres. The most promising targets could then
be observed further to increase the S/N, thus allowing a more
precise characterization of the atmosphere.

4.4. Systematics and current challenges

Thus far, we can confidently conclude that our Bayesian
framework can retrieve consistent and robust results. This
is not only valid for simulated observations generated with
petitRADTRANS (see Paper III), but also for input spectra pro-
duced by other radiative transfer models (here by Rugheimer
& Kaltenegger 2018). These results are highly promising in the
context of analyzing real observational data in the future. How-
ever, as we mentioned in the previous sections, our work has
identified some aspects that may lead to biased results. Some
issues are linked to the intrinsic limitations of the Bayesian
retrieval routine we described in Sect. 2.3. Ideally, these can be
mitigated to improve the results, for example by choosing a dif-
ferent P–T profile parametrization, or by adding a cloud model
to the retrieval. Further, we purposely chose to perform our
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Fig. 9. Comparison of the R = 50 MIR spectra of the four clear-sky epochs (MOD-CF, NOE-CF, GOE-CF, and PRE-CF; solid lines following the
color scheme of Table 1) produced with petitRADTRANS with the results from Rugheimer & Kaltenegger (2018) (black dots) assuming the same
input parameters (i.e., P–T profile, abundances, planetary dimensions). The error bars indicate the LIFESIM uncertainty assumed for the main grid
of retrievals (S/N = 10 at 11.2µm).

retrievals assuming uniform priors for most parameters where
all values were possible if within a specified, wide range (see
Sect. 2 for details). However, for future observations, the prior
space might already be constrained (e.g., if one or more parame-
ters are already measured by independent observations) and this
would likely improve our retrieval results.

Despite these possibilities, we will eventually be limited
by two factors. The first is the number of parameters that
the Bayesian framework can handle within reasonable comput-
ing time. This limit on the number of parameters will remain
unless novel parameter estimation algorithms emerge. An exam-
ple would be the use of machine-learning retrieval routines (e.g.,
Waldmann 2016; Márquez-Neila et al. 2018; Cobb et al. 2019).
Second, for a given resolution the information content of the
spectrum is limited. Therefore, considering additional parame-
ters in the retrieval framework could bias the results, for example
causing a false positive inference of an atmospheric species.

However, the most relevant issues are independent of the
parameter estimation routine. They are rooted in the intrinsic
differences between individual radiative transfer models used
to produce the MIR input spectra and the theoretical spec-
tra in the retrievals. Such discrepancies may be caused by a
slightly different treatment of physical or chemical processes,
or differences in the assumed opacity tables. To investigate
these issues, we computed the MIR spectra for the four clear-
sky scenarios (MOD-CF, NOE-CF, GOE-CF, and PRE-CF)
using petitRADTRANS. We assumed exactly the same input
parameters (i.e., P–T profile, abundances, planetary dimen-
sions) that Rugheimer & Kaltenegger (2018) used to produce
their spectra. We show the results for R = 50 in Fig. 9. The
petitRADTRANS spectra are plotted as solid lines using the color
scheme from Table 1. The input spectra from Rugheimer &
Kaltenegger (2018) are shown as black dots. The error bars indi-
cate the LIFESIM uncertainty used in the main grid of retrievals
(S/N = 10 at 11.2 µm).

We observe that the petitRADTRANS spectra deviate (mostly
within the LIFESIM uncertainty) from the spectra calculated by
Rugheimer & Kaltenegger (2018), despite both models assum-
ing the exact same input. While the absorption features are
generally in agreement with each other, the spectra produced
by petitRADTRANS show a higher continuum flux, especially
around 8–12µm. This discrepancy is likely linked to differences
in the opacity tables used by the two radiative transfer models.
As stated in Sect. 2.3, these differ with respect to the wing cutoff,
the line list databases, and the pressure broadening coefficients.

To prevent the wings of the pressure-broadened lines from
extending to infinity (nonphysical), it is necessary to intro-
duce a wing cutoff. However, different radiative transfer models
assume different cutoff thresholds (see the comparisons per-
formed by, e.g., Lee et al. 2019; Baudino et al. 2017; Barstow
et al. 2020). Rugheimer & Kaltenegger (2018) used a wing cut-
off at 25 cm−1 from the line center. In contrast, the line cutoff
used for the petitRADTRANS opacity tables assumes an expo-
nential line wing decrease (for details, see Mollière et al. 2019).
This may explain the higher continuum emission observed for all
petitRADTRANS spectra.

Regarding the line list databases, the default opacity tables
used by petitRADTRANS stem from different sources. They were
calculated from the HITEMP, HITRAN 2012, or ExoMol line
lists (see Table 4). In contrast, the spectra from Rugheimer &
Kaltenegger (2018) were computed using only the HITRAN 2016
line lists, which in some cases are more recent than the ones
adopted in our study. At the pressures and temperatures of inter-
est in the study, we would not expect large variations in the
line lists, provided all the databases are synchronous. The use
of different versions of the same database (e.g., HITRAN 2012
versus HITRAN 2016) might cause variations in the opacities
since databases more recently updated generally include more
transition lines (see, e.g., Gordon et al. 2017). Furthermore, the
default petitRADTRANS opacities only account for transitions of
the main isotope, while the opacity tables used in Rugheimer &
Kaltenegger (2018) can account for additional isotopes.

For the pressure broadening coefficients: to compute the line
profiles, it is necessary to account for collision-driven line broad-
ening. This depends on the pressure and composition of each
atmospheric layer. For most molecules, both models assumed
air broadening, which is based on a modern-Earth-like atmo-
spheric composition. However, for CH4, the petitRADTRANS
opacity table assumed a theoretical broadening model based on
Eq. (15) in Sharp & Burrows (2007), which was experimentally
validated. Another exception is N2O, for which H-He broadening
was assumed (see Chubb et al. 2021). However, at the pressures
and temperatures of interest, we do not expect large differences
due to pressure broadening (Sharp & Burrows 2007; Mollière
et al. 2019; Gharib-Nezhad & Line 2019; Chubb et al. 2021). We
mention it here for completeness.

These differences likely also account for a substantial part of
the offsets we find in the retrieved parameter values. Future inter-
comparison studies could help us define a “best practice” upon
which to agree, as a community, to compute opacity tables for
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retrievals in order to minimize these systematic effects. Further-
more, ongoing experimental work will be necessary to improve
the completeness of the transition line databases and reduce
discrepancies.

4.5. Differentiating the epochs

A quantitative approach to differentiate between the various
scenarios is through the results of the retrieval analyses. We
performed a first qualitative step in this direction in Sects. 3.2,
3.3, and 3.4, where we visually compared the retrieved P–T
profiles and the posteriors for the planetary parameters and
abundances. Through visual comparison, we find that differen-
tiating the epochs via the retrieved P–T structure and planetary
parameters is challenging. By studying the retrieved abundance
posteriors, we find that the best candidates to perform such dif-
ferentiation are O3 and CH4. This finding is especially interesting
since the O2–CH4 pair is generally considered the strongest
biosignature (see Lovelock 1965; Lederberg 1965) and O2 can
be constrained from O3 through atmospheric chemistry mod-
els. Thus, the detection of one or both of these molecules will
likely trigger follow-up observations and could allow us to sep-
arate between potentially alive and lifeless planets. However, a
more in-depth characterization of the atmospheres is limited by
the large variance in the posteriors of all these species, which
typically exceeds one order of magnitude.

A more quantitative separation between the retrieved pos-
terior distributions for the various epochs can be achieved
by considering the difference between the cumulative poste-
rior distribution functions of two epochs for a model parame-
ter. This approach is similar to the Kolmogorov-Smirnov test
(Kolmogorov 1933; Smirnov 1939), which is generally used to
assess whether two samples are drawn from the same underly-
ing distribution. Given a model parameter M with prior range
X = [Xmin, Xmax], we calculated the cumulative distribution
GM(x) for x ∈ X of the retrieved posterior P(x) as follows:

GM(x) =
∫ x

Xmin

P
(
x′
)

dx′ ·
(∫ Xmax

Xmin

P
(
x′
)

dx′
)−1

. (1)

We then compared the cumulative distribution functions GM
a (x)

and GM
b (x) of two different epochs, a and b, by considering the

maximum difference ∆ := ∆M
a−b ∈ [0, 1] between them:

∆ = max |GM
a (x) −GM

b (x)|. (2)

Thus, small values of ∆ indicate that the compared posterior dis-
tributions only show small differences relative to each other. In
this case, it is hard to differentiate between the retrieved pos-
teriors. On the other hand, larger values of ∆ indicate that the
differences between the two posteriors are likely to correspond
to different underlying true values of the considered parameter.

We can calculate ∆ for all the combinations of the vari-
ous scenarios and all parameters. We get particularly interesting
results for CH4 and O3. Figure 10 shows the cumulative distribu-
tion functions for all the combinations of the clear sky scenarios
(MOD-CF, NOE-CF, GOE-CF, and PRE-CF) calculated from
the posteriors of CH4 and O3, for R = 50 and S/N = 10. In each
subplot of the corner plot we annotate the values of ∆ (percent-
age) corresponding to each combination. On the diagonals, the
retrieved posteriors for every scenario are shown for reference.
We keep the color scheme defined by Table 1. Regarding CH4,
we can fairly confidently distinguish between the clear prebi-
otic Earth (PRE-CF) and the Earth after the GOE (GOE-CF),

for which ∆ = 95%, as well as between PRE-CF and the Earth
after the NOE (NOE-CF), for which ∆ = 90%. The distinction
between the prebiotic Earth and the modern Earth (MOD-CF),
as well as between the NOE and the GOE Earth is more difficult
(∆ ≤ 31%). For O3, we observe a clear division into two sub-
groups: on the one side the modern and NOE Earth, where we
have a clear detection of O3, and on the other hand, the GOE
and prebiotic Earth, where we only retrieve an upper limit on
the abundance. The high value of ∆ ∼ 90% between all com-
binations of MOD-CF or NOE-CF versus GOE-CF or PRE-CF
clearly allows such a distinction. This is in agreement with what
we concluded from Fig. 5 in Sect. 3.4. However, in contrast to
the qualitative discussion based on the appearance of the poste-
riors, ∆ provides a promising metric to quantify the magnitude
of these differences.

In Fig. 11, we summarize the calculated ∆ values for all com-
binations of cloud-free input spectra and the different R–S/N
pairs considered in Sect. 4.3, for a total of four tables. Within
the tables, each cell shows the ∆ value (percentage) for a given
parameter (columns) and a comparison of two specific scenarios
(rows). The cells are also colored according to the value of ∆,
with darker hues for larger values of ∆. As mentioned above, the
biggest differences between the posteriors at R = 50, S/N = 10
can be observed for the molecules CH4 and O3. Furthermore,
we observe some differences for CO2 and H2O, as well as for
the P0 posteriors. However, as discussed previously, these differ-
ences are rooted in degeneracies between the pressure and the
abundances (see Sect. 4.1) and are not caused by large phys-
ical differences in the underlying atmospheres. These findings
are generally still valid as we move to higher R and S/N. Sim-
ilar conclusions can also be drawn for the cloudy inputs (see
Appendix C).

Since we are able to confidently detect O3 for a clear Earth
after the NOE and for the modern Earth and we can distinguish
these two epochs from earlier scenarios (prebiotic and GOE
Earth), we can infer that LIFE would be able to detect traces
of life as we know it in an Earth-like atmosphere when the abun-
dance of O2 has passed the 10% PAL threshold. This is consistent
with other studies that focused on different wavelength ranges,
such as the work by Kawashima & Rugheimer (2019) based on
LUVOIR. The biosignature pair CH4–O3 might be even easier
to detect when the abundance of O2 is around 10% PAL (NOE
Earth), rather than on modern Earth. The NOE Earth scenario
is particularly favored since the atmosphere is filled with enough
O3 to be detectable, but a low enough abundance of O2 to deplete
the CH4 in the atmosphere. These results are also consistent with
the results shown in Kawashima & Rugheimer (2019). In other
words, if LIFE were to observe the Earth at various stages of its
evolution orbiting the Sun at a 10 pc distance, it would be able to
detect strong indicators of life starting from around 0.8 Ga (NOE
Earth). The detection of CH4 with an upper limit on O3 would
also allow a tentative detection of potential biological activity up
to 2.0 Ga (GOE Earth).

We must keep in mind that the epochs that we chose for our
study are momentary “snapshots” in the continuous evolution
of Earth, even though these four scenarios represent the major
changes in our atmosphere. Still, other evolutionary paths are
possible in the context of exoplanets, especially when consider-
ing other stellar classes. Realistically, all promising candidates
would be followed-up with additional observations within the
LIFE mission. It is beyond the scope of this work to conclusively
infer the presence of a biosphere from the measured spectra of
potentially habitable candidates, As discussed in other works
such as Meadows et al. (2018) or Krissansen-Totton et al. (2022),
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Fig. 10: Comparison of the cumulative distribution functions of the CH4 posteriors (left corner plot) and the O3 posteriors (right
corner plot) for all the combinations of the clear sky scenarios (MOD-CF, NOE-CF, GOE-CF, and PRE-CF). The retrieved posteriors
for each scenario are shown on the diagonal. Following the color scheme in Table 1, we show the posteriors and cumulative
distribution functions as: solid blue lines (MOD-CF); dotted red lines (NOE-CF); dashed green lines (GOE-CF); and dash-dotted
purple lines (PRE-B).

subgroups: on the one side the modern and NOE Earth, where
we have a clear detection of O3, and on the other hand, the GOE
and prebiotic Earth, where we only retrieve an upper limit on
the abundance. The high value of ∆ ∼ 90% between all com-
binations of MOD-CF or NOE-CF versus GOE-CF or PRE-CF
clearly allows such a distinction. This is in agreement with what
we concluded from Fig. 5 in Sect. 3.4. However, in contrast to
the qualitative discussion based on the appearance of the poste-
riors, ∆ provides a promising metric to quantify the magnitude
of these differences.

In Fig. 11 we summarize the calculated ∆ values for all com-
binations of cloud-free input spectra and the different R-S/N
pairs considered in Sect. 4.3, for a total of four tables. Within
the tables, each cell shows the ∆ value (percentage) for a given
parameter (columns) and a comparison of two specific scenarios
(rows). The cells are also colored according to the value of ∆,
with darker hues for larger values of ∆. As mentioned above, the
biggest differences between the posteriors at R = 50, S/N = 10
can be observed for the molecules CH4 and O3. Furthermore,
we observe some differences for CO2 and H2O, as well as for
the P0 posteriors. However, as discussed previously, these differ-
ences are rooted in degeneracies between the pressure and the
abundances (see Sect. 4.1) and are not caused by large phys-
ical differences in the underlying atmospheres. These findings
are generally still valid as we move to higher R and S/N. Similar
conclusions can also be drawn for the cloudy inputs (see Ap-
pendix C).

Since we are able to confidently detect O3 for a clear Earth
after the NOE and for the modern Earth and we can distinguish
these two epochs from earlier scenarios (prebiotic and GOE
Earth), we can infer that LIFE would be able to detect traces
of life as we know it in an Earth-like atmosphere when the abun-
dance of O2 has passed the 10% PAL threshold. This is con-

sistent with other studies that focused on different wavelength
ranges, such as the work by Kawashima & Rugheimer (2019)
based on LUVOIR. The biosignature pair CH4-O3 might be even
easier to detect when the abundance of O2 is around 10% PAL
(NOE Earth), rather than on modern Earth. The NOE Earth sce-
nario is particularly favored since the atmosphere is filled with
enough O3 to be detectable, but a low enough abundance of O2
to deplete the CH4 in the atmosphere. These results are also
consistent with the results shown in Kawashima & Rugheimer
(2019). In other words, if LIFE were to observe the Earth at var-
ious stages of its evolution orbiting the Sun at a 10 pc distance,
it would be able to detect strong indicators of life starting from
around 0.8 Ga (NOE Earth). The detection of CH4 with an upper
limit on O3 would also allow a tentative detection of potential
biological activity up to 2.0 Ga (GOE Earth).

We must keep in mind that the epochs that we chose for our
study are momentary "snapshots" in the continuous evolution
of Earth, even though these four scenarios represent the major
changes in our atmosphere. Still, other evolutionary paths are
possible in the context of exoplanets, especially when consider-
ing other stellar classes. Realistically, all promising candidates
would be followed-up with additional observations within the
LIFE mission. It is beyond the scope of this work to conclusively
infer the presence of a biosphere from the measured spectra of
potentially habitable candidates, As discussed in other works
such as Meadows et al. (2018) or Krissansen-Totton et al. (2022),
we would require a thorough discussion of the context informa-
tion available for the observed planetary system before claiming
a “life detection.” However, the presented retrieval results are
certainly an important piece of information for the development
of frameworks for systematically assessing biosignature detec-
tions (e.g., Catling et al. 2018; Walker et al. 2018, see also the
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Fig. 11. Maximum difference, ∆, between the cumulative posteriors for the different model parameters for each combination of input spectra
(cloud-free subset) and different R–S/N pairs. The background of each cell in the tables is related to the value of ∆ (darker hues for larger ∆).

we would require a thorough discussion of the context informa-
tion available for the observed planetary system before claiming
a “life detection.” However, the presented retrieval results are
certainly an important piece of information for the development
of frameworks for systematically assessing biosignature detec-
tions (e.g., Catling et al. 2018; Walker et al. 2018, see also the
NFoLD Community Report from the Biosignatures Standards of
Evidence Workshop7).

7 https://www.nfold.org/_files/ugd/c2389f_
0c4f70db847e4e838ea301f52815eec4.pdf

5. Conclusions

The Bayesian retrieval framework introduced in Paper III and
extended here has delivered insightful answers to the questions
introduced in Sect. 1. These can be summarized as follows:
1. LIFE can characterize prebiotic and biotic worlds. We

can constrain the surface temperatures with an uncertainty
of around 20 K. We can confirm, exclude, or give upper
limits on the presence of several astrobiologically rele-
vant molecules that show signatures in the MIR bands. In
particular, LIFE can detect O3 in the atmosphere if the
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O2 mass fraction is on the order of ∼10% PAL. In terres-
trial atmospheres CH4 can be constrained if its abundance
is ∼0.1% in mass fraction. For lower abundances (around
10−6 in mass fraction), LIFE will detect an upper limit on
CH4 (SL-type posterior). Simultaneously constraining O3
and CH4 will be possible in atmospheres with an O2 abun-
dance of around 10% PAL. This is in agreement with other
studies based on a different wavelength range (Kawashima
& Rugheimer 2019). Such a result is relevant in terms of the
detection of biosignatures in the atmospheres of habitable
exoplanets.

2. Neglecting clouds in the retrievals could cause biases in the
determination of the thermal structure of the atmosphere of
cloudy exoplanets. However, cloud-free retrievals of cloudy
spectra can still yield accurate results for what concerns the
atmospheric composition.

3. We confirm that the minimum requirements in spectral res-
olution and S/N for a MIR mission such as LIFE found in
Paper III are also sufficient for the scenarios considered here.
Improving the S/N would allow for a clearer detection of O3
and CH4 even when these species are less abundant (until
∼10−7 in mass fraction). Therefore, a better characteriza-
tion could be obtained by observing promising targets longer
during the characterization phase of the mission (or by
increasing the instrument throughput and/or aperture size).

4. We are able to demonstrate that inter-model comparison
and retrieval is possible, with the caveats and limitations
detailed in Sect. 4.4. The most important discrepancies in the
retrievals are caused by the use of different opacity tables, in
particular for what concerns the line wing cutoff treatment.
Degeneracies and correlations in the posteriors appear as a
result of the various relations among various parameters.

6. Next steps

Several new interesting questions and opportunities for more
detailed studies arise from this work. First of all, we plan to
work on a study that will take advantage of the model selec-
tion potential that Bayesian retrievals have to offer, for example
by comparing retrievals including and excluding non-retrieved
parameters (e.g., the CO abundance). We are also perform-
ing retrievals assuming various cloud models (Konrad et al., in
prep.). Retrievals of hazy planets (see, e.g., Arney et al. 2016),
as well as ocean worlds, might also help us further quantify the
science potential of LIFE for a variety of different planet types.

Another interesting study would be to increase S/N and R
to even higher values. This will not only evaluate the extreme
limits of a concept such as LIFE but also help us better under-
stand if retrievals are limited by R rather than S/N (e.g., due
to unresolved narrow features at low R). It would also be use-
ful to compare different R–S/N combinations, this time fixing
the observing time. This would help us quantify the best R–S/N
combination needed to optimize the characterization of a terres-
trial atmosphere. Further work is needed to optimize the yield
in the characterization phase of the LIFE mission concept. The
estimates of the observation time needed to establish knowledge
about the habitability and the presence of biologically relevant
molecules in the atmosphere that we derived here are crucial
pieces of information for these follow-up studies.

In this work, we only used simulated data obtained with the
LIFE mission. However, in the future there will likely be more
information available for each system and planet. Therefore, it
will be important to put this study in context with other observa-
tions. For instance, joint retrievals of reflected light data obtained

with LUVOIR or HabEx at optical-to-near-infrared wavelengths
and thermal emission spectra as obtained by LIFE would provide
useful insight into the synergies between the various missions.

One of the most important open questions regarding the ulti-
mate goal of detecting extrasolar life will require us to put our
results in the context of life detection frameworks (e.g., Green
et al. 2021; Catling et al. 2018; Walker et al. 2018). Our ongoing
retrieval efforts could be useful for the fine-tuning of such frame-
works. These frameworks, in turn, would provide insight into
the meaning and the likelihood of a potential biosignature detec-
tion, which would allow us to infer the presence of life-forms on
another planet and justify such inferences.
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Appendix A: Scattering of terrestrial exoplanets

As discussed in Mollière et al. (2020), petitRADTRANS was
updated to treat scattering. This was done using the Feautrier
method (Feautrier 1964). This is a third-order method that allows
the treatment of the radiative transfer equation in the diffusive
regime.

The Feautrier method solves the angle- and frequency-
dependent radiative transfer equation for both the planetary and
the stellar radiation field. These can be treated separately, since
the radiative transfer equation (Eq. A.1) depends only linearly
from the intensity I:

µ
dI
dτ
= −I + S . (A.1)

Here, µ = cos θ where θ is the angle between a light ray and the
surface normal, τ is the optical depth, I is the intensity, and S is
the source function.

Conceptually, for any direction µ of a ray, there also exists a
ray in direction −µ, where µ ∈ [−1, 1]. It is possible to instead
let µ run from 0 to 1 only, and define rays I+ and I− parallel and
antiparallel to this direction. For one of these, the projection onto
the atmospheric normal vector (defined by the scalar product)
will be positive (going upward), while for the other one it will
be negative (that is, going downward). Eq. A.1 can be therefore
rewritten as

dI+
dτ
= S − I+ (A.2)

dI−
dτ
= −S + I−. (A.3)

To solve these, it is convenient to define other two variables,

IJ =
1
2

(I+ + I−) (A.4)

IH =
1
2

(I+ − I−), (A.5)

such that Eqs. A.2 and A.3 become

dIJ

dτ
= −IH (A.6)

dIH

dτ
= S − IJ . (A.7)

Replacing IH as defined by Eq. A.6 into Eq. A.7, we obtain
Feautrier’s equation:

d2IJ

dτ2 = IJ − S . (A.8)

In this paper we only take thermal scattering (i.e., scattering
of the planetary radiation) into account. We, therefore, neglect
the scattering of the direct stellar contribution. However, since
the radiative transfer equation depends only linearly on Iν, the
contribution of the stellar radiation can be treated as an addi-
tional term in the calculation (see Mollière et al. 2017). This
term is also included in the latest version of petitRADTRANS

and we refer to the online documentation for a more detailed
description8.

Purely considering the planetary radiation, we define the
boundary conditions at the top of the atmosphere:

I+(P = 0, µ) = 0 ∀µ, (A.9)

meaning that there is no planetary radiation coming downward
from the top of the atmosphere, and at the surface

I−(P = Psur f , µ) = esur f B(Tsur f ) + asur f J scat(Psur f ). (A.10)

The constraint on I− at the lower boundary is composed of
the thermal emission of the surface itself (blackbody radiation
scaled by the surface emissivity esur f ) and by a portion of the
incoming planetary radiation that is reflected by the surface.
The wavelength dependence of the effectiveness of the reflec-
tion depends on the “surface albedo" or “reflectance" asur f . The
average scattered intensity J scat is the integral of I+ over all the
possible angles (θ ∈ [− π2 , π2 ], which corresponds to the light that
comes from the top layers):

J scat(Psur f ) =
∫ 1

0
I+(Psur f )dµ. (A.11)

The boundary conditions translate, in terms of IH and IJ , in

IJ(0) = − I−(0)
2

(A.12)

and

IJ(Psur f ) =
1
2

[
I+(Psur f ) + esur f B(Tsur f ) + asur f J scat(Psur f )

]
.

(A.13)

It is possible to thus solve Eq. A.8 for i , 1, i , N by
discretization:

−
( IJ,i+1−IJ,i

τi+1−τi

)
−

( IJ,i−IJ,i−1

τi−τi−1

)(
τi+1+τi

2 − τi+τi−1
2

) + IJ,i = S i, (A.14)

which can be expressed in matrix form by extracting the coeffi-
cients ai, bi, and ci:



b1 c1 0 · · · 0

a2 b2 c2
. . . · · ·

0
. . .

. . .
. . . 0

...
. . . aN−1 bN−1 cN−1

0 · · · 0 aN bN


·



IJ,1

IJ,2

...

IJ,N−1

IJ,N


=



S 1

S 2

...

S N−1

S N


. (A.15)

To take into account the boundary conditions, at i = 1 the
value of a1 is 0, while at i = N both cN and aN will be 0, since
there is no dependence from the (N − 1)th layer in the boundary
condition A.13; bN , as a consequence, will be equal to 1.

8 https://petitradtrans.readthedocs.io/en/
latest/content/notebooks/emis_scat.html#
Scattering-of-stellar-light
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The tridiagonal matrix can be inverted to retrieve the corre-
sponding values of IJ through multiple iterations. This iterative
process is needed to correctly take into account the scattering
contribution into the source function terms S i. During the first
iteration of the Feautrier’s routine, the scattering contribution
has yet to be properly calculated. The source function at this step
corresponds to the thermal blackbody radiation produced by the
atmospheric layer i at temperature Ti:

S i = Bi = B(Ti). (A.16)

For any other iteration, the model will consider the previ-
ous solution for IJ to calculate the new source function, which
will then include the contribution of the photons that have been
scattered in the previous steps. In the case of i = N, the source
function must correspond to the right term in Eq. A.13, com-
puted using the most recent estimate of I+(Psur f ) and J scat(Psur f ).
This process can be accelerated through the accelerated lambda
iteration and Ng methods (see Mollière et al. 2017, p. 75)).

From that value, it is possible to calculate IH using Eq. A.6.
The emergent flux at the top of the atmosphere can be then
calculated as follows:

F =
∫ 2π

0

∫ π/2

0
I(P = 0) cos θ sin θdϕdθ

= 2π
∫ π/2

0
I(P = 0)µdµ = −4π

∫ 1

0
IH(P = 0)µdµ.

(A.17)

The iterations stop once the estimate of the flux has reached a
convergence value.

Appendix B: Corner plots

Corner plots for the retrieval runs at the reference R and S/N
are shown in this section. We grouped both the cloudy and the
clear sky retrievals for each epoch in the same figure, in order
to compare the results. Namely: Fig. B.1 shows the corner plots
of the two modern Earth scenarios (MOD-CF and MOD-C);
Fig. B.2 shows the NOE Earth scenarios (NOE-CF and NOE-C);
the GOE Earth scenarios (GOE-CF and GOE-C) are in Fig. B.3;
finally, the prebiotic scenarios (PRE-CF and PRE-C) are shown
in Fig. B.4.

The models are color-coded according to Table 1. Also, the
results for the clear sky retrievals are shown using dashed con-
tour lines, while the cloudy models are represented using solid
lines. The table on the top right of each figure shows the expected
values for each parameter, together with the estimates and the 1σ
uncertainty for the two scenarios.
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Fig. B.1: Corner plot for the posterior distributions from the retrievals of the MOD-CF (dashed contour lines) and MOD-C (solid
contour lines) scenarios. The black lines indicate the expected values for every parameter. The retrieved values (median and 1σ
uncertainties) are shown in the table in the top-right corner, together with the expected values. The scenarios are color-coded
according to Table 1.
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Fig. B.2: As for Fig. B.1 but for the NOE-CF and NOE-C scenarios.
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Fig. B.3: As for Fig. B.1 but for the GOE-CF and GOE-C scenarios.
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Fig. B.4: As for Fig. B.1 but for the PRE-CF and PRE-C scenarios.
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Appendix C: Cloudy scenarios: Additional figures

In this section we provide additional plots for the cloudy sce-
narios. In Figs. C.1 and C.2 we show the retrieved exoplanet
parameters and abundances for the different scenarios with vary-
ing R and S/N values. Finally, we plot in Fig. C.3 the maximum
difference ∆ between the cumulative posteriors for the different
model parameters, for each combination of the cloudy scenarios
and different R-S/N pairs.
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Fig. C.1: As for Fig. 6 but for the cloudy scenarios.
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Fig. C.2: As for Fig. 7 but for the cloudy scenarios.

P 0 R p
l

M
pl

N 2 O 2 CO
2

CH
4

H 2
O

O 3 CO N 2
O

R = 50, S/N = 10

MOD-C vs. NOE-C
MOD-C vs. GOE-C
MOD-C vs. PRE-C
NOE-C vs. GOE-C
NOE-C vs. PRE-C
GOE-C vs. PRE-C

2
8
62
8
61
53

54
17
97
38
81
91

4
8
13
3
9
6

4
3
4
2
4
3

3
4
6
2
3
4

29
35
73
7
49
46

70
82
6
34
75
87

55
58
16
7
52
56

14
82
83
89
90
3

2
3
5
2
3
3

6
9
6
14
9
9

P 0 R p
l

M
pl

N 2 O 2 CO
2

CH
4

H 2
O

O 3 CO N 2
O

R = 50, S/N = 20

24
26
86
49
69
97

72
22
99
77
78
99

4
14
4
10
4
12

2
1
4
2
3
3

3
2
3
4
6
3

10
66
69
57
61
4

47
93
36
75
80
99

58
24
39
33
32
18

6
81
97
81
97
27

2
1
4
1
5
5

3
43
5
43
5
42

R = 100, S/N = 10

MOD-C vs. NOE-C
MOD-C vs. GOE-C
MOD-C vs. PRE-C
NOE-C vs. GOE-C
NOE-C vs. PRE-C
GOE-C vs. PRE-C

54
6
76
49
23
70

55
4
62
55
10
62

3
4
3
1
2
2

1
1
1
1
1
1

3
2
2
1
4
2

12
45
73
54
81
39

31
83
53
73
77
97

74
60
9
14
69
55

30
86
94
80
91
12

2
2
1
3
2
3

10
15
9
25
3
22

R = 100, S/N = 20

39
14
34
24
73
48

75
46
96
87
51
98

4
5
2
4
4
3

1
2
2
2
2
1

5
1
3
4
6
2

77
72
98
6
70
75

92
95
12
30
91
96

4
16
41
14
43
52

53
71
91
93
97
42

1
5
4
4
5
6

8
62
16
68
7
72

0

20

40

60

80

100
 [%

]

Fig. C.3: As for Fig. 11, but for the cloudy scenarios.
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Fig. C.2: As for Fig. 7 but for the cloudy scenarios.
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Fig. C.3: As for Fig. 11, but for the cloudy scenarios.
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Appendix D: Bayes factor analysis: Other epochs

As described in Sect. 2, the theoretical spectral model was
updated with respect to Paper III and it now takes into account
additional physical processes. For the results presented in Sect. 3,
we ran retrievals using the most updated version of the Bayesian
framework.

The additional flexibility of petitRADTRANS now allows us
to quantify the impact of CIA and scattering in retrievals. We ran
additional retrievals on the clear sky scenarios for R = 50 and
S/N = 10. In these retrievals, we altered the number of physical
processes that were treated in the petitRADTRANS theoretical
spectral model as follows: (1) including both CIA and scattering
(setup used in Sect. 3); (2) excluding both CIA and scattering;
(3) including scattering and excluding CIA; and (4) including
CIA and excluding scattering.

In the runs where scattering is included, we consider self-
scattering, surface scattering of the thermal radiation, and
gaseous Rayleigh scattering (see Table 5 for references). We do
not include aerosol and cloud scattering in the calculation. Since
our theoretical spectral model neglects clouds, in this analysis
we considered only the cloud-free scenarios. The effect of mod-
eling cloudy spectra using a cloud-free retrieval model will be
discussed in detail in Sect. 4.2.

To determine the theoretical spectral model configuration
that best reproduces the input spectra we performed a Bayes
factor analysis. The Bayes factor is defined as

K = ZM1 (D)/ZM2 (D), (D.1)

whereM1 andM2 represent two different model configurations,
each with their corresponding Bayesian evidenceZMi (D) given
the input dataD. In the case of Eq. D.1, the Bayes factor provides
an indication whether M1 or M2 better describes the data. We
can use the Jeffreys scale (see Table D.1) to interpret the values
of the Bayes factor K. This approach was extensively described
and used in Paper III, to which we refer for more details.

We calculate the Bayes factor corresponding to every possi-
ble combination of the four different setups previously outlined.
We summarize the results obtained for the MOD-CF epoch in
Fig. D.1.

Here, the diagonal shows the values of the Bayesian evidence
ZMi (D) of each of the four setupsMi. The triangular matrix of
six boxes below the diagonal is instead filled with the logarithm
of the Bayes factors K (see Eq. D.1) for each combination of
theoretical spectral model setups, as well as their interpretation
according to the Jeffreys scale (Table D.1). The cells are color-
coded according to the color bar in the lower panel, whose edges
are determined by the Jeffreys scale.

Table D.1: Jeffreys scale (Jeffreys 1998).

log10 (K) Strength of evidence
(−∞,−2] Decisive support forM2
(−2,−1] Strong support forM2

(−1,−0.5] Substantial support forM2
(−0.5, 0] Very weak support forM2
(0, 0.5) Very weak support forM1
[0.5, 1) Substantial support forM1
[1, 2) Strong support forM1
[2,∞) Decisive support forM1

Notes. Scale for the interpretation of the Bayes factor
K =ZM1 (D)/ZM2 (D). Adapted from Paper III.

The blue and red color range adopted in the color bar was
chosen deliberately in order to illustrate that, for any pair of
models M1 and M2, a redder shade would mean that M1 is more
likely to reproduce the data compared to M2, while a bluer shade
would instead prefer M2 over M1. Our results show colors that
lie somewhere in the middle of the range of the color bar, which
corresponds to a value of log10(K) generally very close to 0, as
confirmed by the text within the cells. This means that there is
no clear preference for any of the tested setups: we find no evi-
dence that one of the considered setups outperforms the others
in describing the input data. Including or excluding CIA and
scattering (one or both) results in negligible differences in the
retrieval results. This means that CIA in the spectra or/and spec-
tral features induced by scattering are not detectable in retrieval
studies at the considered R and S/N of the input. This analy-
sis shows us that it is justifiable to neglect CIA and scattering
in MIR retrievals of spectra with R = 50 and S/N = 10 (the
minimum requirements for LIFE determined by Paper III), with
negligible loss in the quality of the retrieval results.

The results for the remaining epochs exhibit similar behav-
ior. In Fig. D.2 we show the results for the NOE Earth, Fig. D.3
shows the ones for the GOE Earth, and the results for the
prebiotic Earth are shown in Fig. D.4.
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Fig. D.1: Bayesian evidence, ZMi , for each setup for the MOD-CF scenario (on the diagonal) and the Bayes factor for every pair
of retrieval setups for the MOD-CF scenario (lower triangle). The cells in the lower triangle are color-coded according to the color
bar, whose limits are determined by the Jeffreys scale (see Table D.1).
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Fig. D.2: As for Fig. D.1 but for the NOE-CF scenario.
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Fig. D.3: As for Fig. D.1 but for the GOE-CF scenario.
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Fig. D.4: As for Fig. D.1 but for the PRE-CF scenario.
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