HOW ELECTRODE PROPERTIES DETERMINE PEMFC OPERATION

<u>Pawel Gazdzicki</u>^{*}, Qingying Zhao, K. Talukdar, K. Andreas Friedrich German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany

INTRODUCTION

Fuel Cells in heavy duty transport

- 50% of GHG emissions due to transport sector
- 25% of GHG in transport caused by HD applications; expected to increase to 40% by 2030
- Electrification of HD transport becoming focus of fuel cell applications

3

Fuel Cells in heavy duty transport

- EU Green Deal: reduce CO2 emission by 90% by 2050
- Market share of FC HDV is expected to grow from < 2% in 2027 to 17% in 2030
- Total Cost of Ownership (TCO) of FC HDVs can become competitive by 2027; in 2030 TCO can be 6-7% lower than for diesel trucks

(Note: the recently changed geopolitical situation was no present when the study was done)

Current achievements and KPIs of fuel cell applications

Scope of PEMFC activities at department of electrochemical energy technology (@DLR-TT)

- Diagnostics and application
- Component development

Catalyst synthesis

and coatings

IMPACT OF CCL STRUCTURE ON PEMFC OPERATION

Investigation of Cathode Catalyst Layer (CCL)

Establish link between CCL structure and fuel cell performance

- Obtain CCLs with unique structures but the same Pt loading
- Perform electrochemical characterization
- Determine CCL properties (porosity, ionomer distribution, ...)

Investigation of Cathode Catalyst Layer (CCL)

K. Talukdar et al., JPS, 540 (2022) 231638

	Method	MEA type	Solvent 1	Solvent 2	Mixing process	Electrode thickness/ µm	ECSA / m² g⁻¹
	Dry spray	CCM	None	none	Cryo-mill, knife mill	6.5 ± 2.2	15
	Air brush	GDE	UP water: Cat × 100	lsopropanol: Cat × 100	Ultrasonication	8.8 ± 2.2	57
	Screen printing	GDE	UP water: Cat × 5	none	Ultrasonication, roller ball mill	9.0 ± 3.7	48
	Doctor blade	GDE	UP water: Cat × 3.75	Isopropanol: Cat × 1.75	Ultrasonication	7.0 ± 0.7	42
	Drop casting	GDE	UP water: Cat × 118	none	Ultrasonication	3.2 ± 0.8	16.5
	Inkjet printing	GDE	Isopropanol: Cat × 60.8	Glycerol: Cat x 13.33	Ultrasonication	5.3 ± 0.7	12

Electrochemical Characterisation

a) b) 1.0 1.0 -O-Airbrushed GDE 0.9 0.9 Screenprinted GDE 0.8 0.8 Inkjet Printed GDE Drysprayed CCM 0.7 0.7 Charge Transfer Resistance Charge Transfer Resistance > 0.6
> 0.1 1200 Doctorbladed GDE Fotal cathode resistance / m Ohm Diffusion Resistance Ohmic Resistance 600 Dropcasted GDE 0. 1000 500 800 400 0.3 600 -P 300 80°C, 150 kPa(abs), 0.2 400 ta 200 50%RH, stoich(a/c): 0.1 Charge 200 100 1.6/2.5 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Intilet SPIRY Current Density / Acm⁻²

Kinetic region:

- ECSA is only one factor determining electrode kinetics **Ohmic/mass transport region**:
- Low slope of pol curve linked with low diffusion resistance

SEM/EDX of Different CCL Cross-Sections

AFM of CCLs (top view)

3D Reconstruction using FIB-SEM Data

	Airbrush	Screen printing	Inkjet	Dry spraying	Doctor blade
Porosity / %	55	58	60	53	50
D50 / nm	344	298	353	405	421
Diffusivity / $10^{-6} m^2/s$	5.0	5.4	5.6	5.0	4.4
Permeability / $10^{-15}m^2$	4.6	7.4	8.4	4.7	2.9

Assessment of Individual CCL Paramters

Low performances \rightarrow low Y/Ymax values

High performances → mainly high Y/Ymax and no low Y/Ymax

High current density: combination of covered Pt/C and transport properties linked to high performance

Low current density: covered of Pt/C good measure for the cell performance

CONCLUSIONS & ONGOING WORK

Conclusions

- Link between MEA performance and CCL structure
- High performance is related with homogeneous ionomer distribution in the CCL
- At low current, amount of Pt/C covered by ionomer is good measure for performance
- Fraction of ionomer covered Pt/C and transport properties relevant at high current

Ongoing

Investigation of impact of CL structure at ultralow Pt loading using ink-jet printing

Imperial College London Hochschule Esslingen iversity of Applied Sciences TOYOTA Chemours[®] UNIVERSITY OF Clean Hydrogen – 🖛 · 10% O2 in He 1.0 Partnership - 15% O2 in He 15% O₂ in N₂ - · 21% O₂ in He – 21% O₂ in N₂ 0.9 — 30% O₂ in N 50% O₂ in N₂ 0.8 [/ɯ] ^{0.7} 0.6 100% O2 in N2 0.5 0.4 0.3 i [A/cm²]

EU-Project FURTHER-FC

Acknowledgements

- Thank you for your attention
- Persons who contributed to the presented results
 - Tobias Morawietz
 - Patrick Sarkezi-Selsky
 - Khrystyna Yezerska
 - Oleg Sergeev
 - Jan-Frederik Heger
 - Thomas Jahnke
- Contact
 - Dr. P. Gazdzicki, Group Leader LTPEM at DLR-TT/ECE, Pawel.Gazdzicki@dlr.de