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Abstract

Nowadays, students often practice problem-solving skills in online learning environ-

ments with the help of examples and problems. This requires them to self-regulate their

learning. It is questionable how novices self-regulate their learning from examples and

problems and whether they need support. The present study investigated the open

questions (1) to what extent students' (novices) task selections align with instructional

design principles and (2) whether informing them about these principles would improve

their task selections, learning outcomes, and motivation. Higher education students

(N = 150) learned a problem-solving procedure by fixed sequences of examples and

problems (FS-condition), or by self-regulated learning (SRL). The SRL participants

selected tasks from a database, varying in format, complexity, and cover story, either

with (ISRL-condition) or without (SRL-condition) watching a video detailing the instruc-

tional design principles. Students' task-selection patterns in both SRL conditions largely

corresponded to the principles, although tasks were built up in complexity more often in

the ISRL-condition than in the SRL-condition. Moreover, there was still room for

improvement in students' task selections after solving practice problems. The video

instruction helped students to better apply certain principles, but did not enhance learn-

ing and motivation. Finally, there were no test performance or motivational differences

among conditions. Although these findings might suggest it is relatively ‘safe’ to allow

students to independently start learning new problems-solving tasks using examples and

problems, caution is warranted: It is unclear whether these findings generalize to other

student populations, as the students participating in this study have had some experi-

ence with similar tasks or learning with examples. Moreover, as there was still room for

improvement in students' task selections, follow-up research should investigate how we

can further improve self-regulated learning from examples and practice problems.
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1 | INTRODUCTION

Problem-solving is an important part of curricula at many schools and

colleges, for example in courses involving physics, technology, engi-

neering, or mathematics (Van Gog et al., 2020). Many of the problem-

solving tasks that students encounter in these courses are algorithmic,

meaning that students have to learn to perform a procedure that

takes them from a described initial situation to a described goal situa-

tion (Newell & Simon, 1972). Solving these tasks requires conceptual

and procedural knowledge of what actions to perform, why, and how

to perform them. Research on instructional design has resulted in sev-

eral principles for optimizing the acquisition of problem-solving skills

for novices (i.e., students with little if any prior knowledge of the task at

hand). These principles are concerned with how to ensure that novices

work on problem-solving tasks that provide an optimal level of instruc-

tional support and complexity given their current level of knowledge

(4C/ID Model; Van Merriënboer, 1997; Van Merriënboer &

Kirschner, 2013). For an overview of all the principles, see Table 1.

1.1 | Instructional design principles to support
acquisition of problem-solving skills

The example-based-learning-principle postulates that replacing all or a

substantial number of practice problems with worked examples (i.e., a

written step-by-step explanation of how to solve a problem; e.g., Van

Gog et al., 2011) or video modelling examples (i.e., a person demon-

strating and/or explaining a problem-solving procedure on video;

e.g., Kant et al., 2017) helps novices to learn more (i.e., is more

effective) with less time and effort investment (i.e., is more efficient)

than solving practice problems without any instructional support (e.g.,

Sweller et al., 2011; Van Gog et al., 2019). Moreover, recent findings

show that studying examples also increases students' self-efficacy

during learning compared to only solving practice problems (e.g., Van

Harsel et al., 2019, 2020; Coppens et al., 2019). When alternating

examples and problems, research has shown that novices should start

with an example (instead of practice problem-solving), as this is more

efficient for learning than starting with problem-solving only (e.g., Van

Harsel et al., 2019, 2020; Van Gog et al., 2011). We refer to this as

the example-first-principle.

These principles should be considered in relation to task complex-

ity. Students should ideally be working on tasks that are at an optimal

level of complexity given their current level of expertise (4C/ID

Model; Van Merriënboer, 1997; Van Merriënboer & Kirschner, 2013).

The lowest-level-first-principle postulates that novices should start

with a task at the lowest level of complexity. From there, the level of

complexity should gradually increase as their knowledge increases:

the simple-to-complex-principle (cf. 4C/ID model). According to the

4C/ID model, students should receive a high level of instructional sup-

port (like an example) at the start of each new complexity level: The

start-each-level-with-example-principle.

Following these principles should thus make novices' learning

process more effective and efficient, and make them feel more self-

efficacious. However, these principles have been derived mainly from

research with fixed (or adaptive) sequences of examples and problems

(at different complexity levels), where the learning environment soft-

ware or the experimenter determined whether, when, and for how

long a learner should study examples or solve practice problems.

TABLE 1 Effective, efficient, and motivating principles derived from instructional design research on learning new problem-solving skills

Principle Explanation References

Example-based-learning-principle Replacing all or a substantial number of

practice problems with examples helps

novices to learn more (i.e., is more

effective) with less time and effort

investment (i.e., is more efficient) than

solving practice problems without any

instructional support.

e.g., Sweller et al. (2011), Van Gog

et al. (2019)

This is also more motivating in terms of self-

efficacy and perceived competence.

Authors et al., (2019, 2020)

Example-study-first-principle Novices should start the learning phase

with an example instead of a practice

problem, as this was found to be more

efficient than starting with problem-

solving only, and also more motivating.

e.g., Van Gog et al. (2011)

Authors et al., (2020)

Lowest-level-first-principle Novices should start with a task at the

lowest level of complexity

Van Merriënboer (1997), Van Merriënboer

and Kirschner (2013)

Simple-to-complex-principle Novices should gradually increase the level

of task complexity as their knowledge

increases

Van Merriënboer (1997), Van Merriënboer

and Kirschner (2013)

Start-each-level-with-example-principle Novices should receive a high level of

instructional support (like an example) at

the start of each new complexity level

Van Merriënboer (1997), Van Merriënboer

and Kirschner (2013)
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Nowadays, students often learn new problem-solving tasks via online

learning environments, in which examples and practice problems

(at different complexity levels) are made available (e.g., Roll

et al., 2011). These online environments usually require students to

self-regulate their learning (e.g., when doing homework or studying

for a test). Self-regulated learning requires students to plan, execute,

monitor, evaluate, and control their learning (e.g., Nelson &

Narens, 1990; Winne & Hadwin, 1998; Zimmerman, 1990). In the

context of learning new problem-solving tasks, self-regulated learning

requires students to decide which task they want to perform, monitor

their progress while performing the task (and possibly adjust their

strategies while working on the task), judge their performance after

the task is completed, and to use this judgement as input for deciding

what subsequent task to work on (i.e., decide what learning task fits

their learning needs best, e.g., Van Gog et al., 2020; De Bruin & Van

Gog, 2012).

It is as yet unclear (a) to what extent novices' task selections dur-

ing self-regulated learning of examples and problems align with the

instructional design principles that have found to be effective, effi-

cient, and motivating for acquiring new problem-solving skills, and

(b) whether informing students about such principles would improve

their task selections, motivation, and learning outcomes. This study

addresses those questions.

1.2 | Self-regulated learning of problem-solving
tasks with examples and problems

Self-regulated learning of problem-solving tasks is notoriously difficult

for novices, because they need to be able to accurately assess their

understanding or performance on the just completed task and subse-

quently select a new task with the right level of complexity and sup-

port (Van Gog et al., 2020; De Bruin & Van Gog, 2012). Research has

shown that novices often experience difficulties in accurately

assessing their performance (e.g., Dunning et al., 2004; Koriat &

Bjork, 2005) and mostly overestimate (though sometimes underesti-

mate) their own performance (e.g., Hacker & Bol, 2019; Kostons

et al., 2010, 2012). Consequently, tasks might be selected that are too

complex or too simple, or do not provide the necessary instructional

support (e.g., Dunlosky & Rawson, 2012). Moreover, novices do not

always seem to be aware which task aspects influence how much they

learn (e.g., Kostons et al., 2010; Nugteren et al., 2018), and therefore

tend to select tasks based on irrelevant (e.g., cover stories) instead of

relevant task aspects (i.e., complexity and support; e.g., Corbalan

et al., 2008).

Based on these findings, one might expect that novices experi-

ence difficulties when self-regulating their learning from examples and

problems. Indeed, a recent study conducted by Foster et al. (2018)

found that novices make suboptimal choices when they are in control

of selecting tasks to work on. In their study, university students had

to learn how to solve probability problems and were repeatedly given

the choice of whether to study a worked example or to practice solv-

ing a (completion) problem. Results showed that on average, students

opted more often for (completion) problems than examples and rarely

started the learning phase with example study. These choices are at

odds with the example-based-learning-principle and the example-

first-principle, as studying examples, especially at the start of the

learning phase, is more efficient (and effective), and motivating for

learning than (starting with) problem-solving only (e.g., Van Harsel

et al., 2020; Van Gog et al., 2011).

In contrast, Van Harsel et al. (submitted) found other results.

Higher education students learned how to solve a math problem by

selecting six learning tasks from a database that consisted of 45 learn-

ing tasks that differed in format (worked examples, video modelling

examples, and practice problems), complexity (three levels), and cover

story. Results showed that most of the learners' choices matched with

the instructional design principles: the vast majority of students

selected many examples during the learning phase, as they started the

learning phase with an example at the lowest complexity level and

often started a new complexity level with example study as well.

However, the complexity of tasks was built up less well by only half of

the sample: Particularly those who performed poorly on the posttest

kept selecting examples or practice problems at the lowest complexity

level. It is, however, an open question whether self-regulated learning

would be as effective as fixed sequences of tasks based on those prin-

ciples, as research has shown that fixed learning paths are often more

effective for novices' learning than self-chosen learning paths (see

e.g., Azevedo et al., 2008; Lawless & Brown, 1997; Niemiec

et al., 1996). Moreover, as there still might be room for improvement in

novices' task selections (based on their test performance scores), they

might benefit from instructional support to help them self-regulate their

learning, for instance by explicitly informing learners prior to self-

regulated learning about the principles derived from instructional

design research.

1.3 | Strategy instruction to support self-regulated
learning of problem-solving tasks

Explicitly informing students about learning strategies has been found

to be successful for increasing learners' metacognitive beliefs and/or

knowledge (e.g., Endres et al., 2021; Lineweaver et al., 2019;

McCabe, 2011; Yan et al., 2016) and their use of these strategies

(e.g., Biwer et al., 2020). Ariel and Karpicke (2017) even found that

explicitly informing students about learning strategies also improved

their learning outcomes They asked university graduates to learn

Lithuanian-English word-pairs. Students could decide for themselves

whether to restudy word-pairs, whether to retrieve already learnt

word-pairs from memory (i.e., retrieval practice, a proven effective

study strategy for word-pair learning; Rowland, 2014), or to stop

learning. The experimental condition received a short written instruc-

tion with information about the effectiveness and mnemonic benefits

of repeated retrieval practice and how to use it, while the control con-

dition did not receive this information. Results showed that students

in the experimental condition used the repeated retrieval practice

strategy more often than those in the control condition, and

van HARSEL ET AL. 21
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subsequently outperformed the control group on an immediate cued-

recall test. Students in the experimental condition even (spontane-

ously) used retrieval practice to learn novel materials a week later

more often than the control condition.

A possible explanation for why informing students about effective

learning strategies can improve the use of such strategies and learning

(cf. Ariel & Karpicke, 2017) could be that this information helps

learners become (more) aware of the value of a strategy and increases

their metacognitive knowledge (i.e., knowledge about why and which

strategies are [not] beneficial for learning). In turn, this could increase

the likelihood that an individual will search for, modify, and apply that

strategy (e.g., Tullis et al., 2013; Yan et al., 2014).

These findings are promising, given that this approach of info-

rming students about effective strategies would be relatively easy to

use across a variety of learning materials and contexts. However, it is

an open question whether this approach would also be effective for

improving self-regulated learning of problem-solving skills with exam-

ples and problems.

1.4 | The present study

As the results of Authors (submitted) are rather surprising in light of

other related research showing that novices, especially at the start

of the learning phase, make suboptimal choices when they are in

control of selecting tasks to work on (e.g., Foster et al., 2018), the first

research question of this study reads: Does the finding that students'

choices during self-regulated learning align quite well with the instruc-

tional design principles for optimizing the acquisition of new problem-

solving skills for novices (cf. Authors, submitted) replicate? To shed fur-

ther light on the quality of students' task selections, the present study

also explored what tasks learners select after solving a practice prob-

lem, which was not possible in Authors (submitted) as practice

problem performance data were unavailable.

The second research question of this study reads: Is self-regulated

learning as effective, efficient, and motivating as a fixed task sequence

based on the principles derived from instructional design research? We

consider this an open question. It is possible that self-regulated learn-

ing would have motivational benefits over a fixed task sequence,

given that related research suggests that allowing students to have

(some) freedom of choice during learning might improve motivational

variables such as interest or task involvement (e.g., Corbalan

et al., 2008). However, it is questionable whether this also applies to

motivational variables such as self-efficacy and perceived competence.

At the same time, self-regulated learning might be less conducive to

learning outcomes than a predetermined sequence, as novices often lack

the necessary knowledge to make effective educational decisions

(e.g., Merrill, 2002) and focus on irrelevant instead of relevant task

aspects (e.g., Corbalan et al., 2008). Indeed, self-regulated learning has

been found to impair learning outcomes relative to teacher- or

computer-controlled fixed or personalized instruction (see e.g., Azevedo

et al., 2008; Lawless & Brown, 1997; Niemiec et al., 1996).

Thirdly, given that there still was room for improvement in

learners' task selections and test performance scores in the study of

Authors (submitted), the third research question of this study was:

Does explicitly informing learners about instructional design principles

enhance their self-regulated learning of examples and problems

(at different complexity levels), performance, and motivation compared to

self-regulated learning without such information? Assuming that

students in the ‘informed self-regulated learning condition’ actually

adopt these principles after receiving explicit instruction (cf.,

studies on other learning strategies: Ariel & Karpicke, 2017; Biwer

et al., 2020), one could expect their choices to be better aligned with

the principles than students' choices in the self-regulated learning

condition and therefore show higher test performance (i.e., on con-

ceptual questions, isomorphic tasks, and procedural transfer tasks),

attained with lower effort investment and time-on-task in the learning

and posttest phase. As for the comparison between the informed self-

regulated learning and fixed sequences condition, we consider this an

open question. If informing students about effective principles for

learning from examples and problems would help students select bet-

ter tasks, they might show similar performance as the fixed sequences

condition. Effects on self-efficacy and perceived competence are

explored.

2 | METHOD

2.1 | Participants and design

Participants were 241 students from a Dutch university of applied

sciences (Mage = 18.84, SD = 1.76; 232 male), enrolled in the first

year of an electrical and electronic mechanical engineering pro-

gram. Participants had to learn how to approximate the definite

integral of a function using the trapezoidal rule. They were ran-

domly allocated to one of three conditions, namely the (1) informed

self-regulated learning condition (ISRL; n = 109), (2) self-regulated

learning condition (SRL; n = 60), and fixed sequences condition (FS;

n = 72). More participants were assigned to the ISRL-condition to

increase the chances of having a sufficiently large subset of stu-

dents who would follow the advice and to be able to explore differ-

ences between students who did and did not follow the advice. The

experiment consisted of three phases: (1) pretest, (2) learning

phase, and (3) posttest. Participants who did not finish the isomor-

phic (and transfer) items on the posttest on time were excluded

from further analysis (n = 42). Moreover, we also excluded 49 par-

ticipants with too much prior knowledge (indicated by a score of

5 or more out of 9 on the prior knowledge test), because we were

specifically interested in the selection behaviour of novice learners.

Therefore, the final sample consisted of 150 participants

(Mage = 18.68, SD = 1.57; 143 male) divided over the ISRL-condi-

tion (n = 66), SRL-condition (n = 32), and FS-condition (n = 52).

Students could earn study credits for participation. All participants

gave informed consent in the learning environment.

Descriptive statistics of demographic variables are presented in

Table 2. There were no differences among conditions regarding age

(H(2) = 0.53, p = 0.768). As one of the assumptions of the

Chi-squared test was not met, we could not analyze whether groups

22 van HARSEL ET AL.
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differed on the ordinal variables (gender, highest preliminary educa-

tion level). Therefore, we computed correlations to determine

whether there was a relation among the ordinal variables and

the main outcome variables. There were no significant correlations

(see Table 3), except for a positive correlation between highest level

of preliminary education (i.e., university of applied sciences) and self-

efficacy measured after the learning phase (r = �0.182, p = 0.026).

However, as the three conditions did not differ in self-efficacy mea-

sured after the learning phase, it is unlikely that a potential difference

in distribution of preliminary education levels among conditions would

have affected the results.

2.2 | Materials

All materials were based on the materials developed by Van Harsel

et al. (2019, 2020) and Authors (submitted), and presented in a web-

based learning environment.

2.2.1 | Pretest

The pretest consisted of five conceptual knowledge questions

that measured participants' understanding of the trapezoidal rule

(α = �0.73). These questions consisted of a multiple-choice part with

four answer options and an explanation part where participants had

to explain their answer (see Appendix A for an example of a pretest

question). Note that a possible reason for the poor reliability of the

pretest is that students had (very) low prior knowledge but a 25%

chance to guess the right answer.

2.2.2 | Instructional video

The instructional video that was used to inform students in the ISRL-

condition on effective instructional design principles started with a

brief explanation of the procedure of the experiment. Students were

informed that they were going to select learning tasks themselves and

would receive help on how to select the most effective and efficient

learning task, based on well-established findings from scientific

research. Then, a total of four ‘rules’ were presented: (a) ‘At the start

of the learning phase, choose a task at the lowest complexity level’,
(b) ‘When you mastered a complexity level, choose a task one com-

plexity level higher’, (c) ‘Start each new complexity level with example

study and alternate with practice problems when you want to check

whether you understand how to solve the problem’ (d) ‘Start the

learning phase with a video modelling example and continue with

written examples when more example study is necessary’. We added

the fourth rule as there are some indications that a video modelling

example is preferred at the start and worked examples later in the

training phase (e.g., Authors, submitted; Hoogerheide et al., 2014).

This might be explained by the fact that in video modelling examples,

information is demonstrated step-by-step and the combination of

dynamic visual information and the model's verbal explanations take

the learner by the hand. In worked examples, information is also dem-

onstrated step-by-step, however, shown all at once. This allows for

efficiently looking up difficult problem-solving steps and therefore

TABLE 2 Descriptive statistics of demographic variables

Fixed sequences

condition (n = 52)

Informed self-regulated

learning condition (n = 66)

Self-regulated learning

condition (n = 32)

Gender

Male 49 (94.2%) 63 (95.5%) 31 (96.9%)

Female 3 (5.8%) 3 (4.5%) 1 (3.1%)

Preliminary education

Senior general secondary education 29 (55.8%) 40 (60.6%) 19 (59.4%)

Pre-university education 5 (9.6%) 11 (16.7%) 4 (12.5%)

Vocational education 11 (21.2%) 12 (18.2%) 7 (21.8%)

University of applied sciences 7 (13.4%) 3 (4.5%) 2 (6.3%)

TABLE 3 Correlation coefficients (r) from Pearson correlation
analysis (Gender) and Spearman correlation analysis. (Preliminary
education) between main outcome variables and gender and
preliminary education

Gender Preliminary education

r p r p

Learning phase

Mental effort 0.050 0.543 �0.017 0.837

Posttest

Conceptual Questions �0.099 0.230 0.151 0.065

Isomorphic Tasks 0.115 0.162 0.091 0.269

Procedural Transfer Task 0.114 0.166 0.143 0.081

Self-efficacy �0.082 0.317 0.168 0.040

Perceived Competence �0.103 0.209 0.107 0.192

Note: Significant p-values are bolded.
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might be preferred later in the learning phase. Each rule was accompa-

nied with the necessary background information about why this rule

would help students learn more and when/how to apply it (see

Appendix B). The instructional video lasted 223 s.

2.2.3 | Task database

Together with three mathematics teachers from the university of

applied sciences where the study was conducted, a task database con-

sisting of 45 learning tasks was developed (see Figure 1). The tasks

required participants to approximate a specific region under the graph

of a function using the trapezoidal rule. The trapezoidal rule is an inte-

gration method that can be used to approximate the area under a

curve by dividing that area into trapezoids or ‘strips’ (rather than

using rectangles). By adding up the surface of the ‘strips’, one can

approach the total area under that curve. The tasks varied in complex-

ity level, task format, and cover story.

Complexity level

The learning tasks were developed at three levels of complexity. Tasks

at complexity level 1 required participants to use the trapezoidal rule

to approximate the region under the graph of a polynomial function

of degree 2 (i.e., quadratic function). Moreover, functions were con-

structed in such a way that participants had to calculate more than

two intervals and calculate with fractions and positive numbers only.

Tasks at complexity level 2 were more difficult, since they asked partic-

ipants to calculate with negative numbers as well. Tasks at the highest

complexity level (i.e., complexity level 3) additionally asked participants

to use the trapezoidal rule to approximate the region under the graph

of a polynomial function of degree 3 (i.e., cubic function).

Format

The learning tasks were developed in three different formats: video

modelling examples, worked examples, and (conventional) practice

problems. Video modelling examples consisted of a screen recording

of a female model's computer screen, where she demonstrated (with

PowerPoint slides and handwritten notes) and explained step-by-step

how to solve a problem using the trapezoidal rule. The model started

with an introduction on the trapezoidal rule, followed by an explana-

tion of the problem state and an explanation of how to use the infor-

mation that was presented on the screen to solve the problem

(i.e., the graph of a function, the left border and right border of the

area, the number of intervals, and the formula of the trapezoidal rule).

Subsequently, she showed and explained how to solve the problem

by calculating four steps: (1) ‘compute the step size of each subinter-

val’, (2) ‘calculate the x-values’, (3) ‘calculate the function values for

all x-values’, and (4) ‘enter the function values into the formula and

calculate the area’, and ended the video by providing the final answer.

Worked examples were presented on one page and consisted of

a written step-by-step explanation of the solution procedure. Worked

examples also started with a short description of the problem state

and some additional information that was needed to solve the prob-

lem (i.e., the graph of a function, the left border and right border of

the area, the number of intervals, and the formula of the trapezoidal

rule). Subsequently, written explanations (and correct answers) were

given for each of four steps on how to solve the problem.

Practice problems also started with a short description of the prob-

lem state and the additional information that was needed to solve the

problem. However, it was not explained how to use the information

that was given to solve the problem. Participants received the following

assignment: ‘Approach the area under the graph using the information

that is given. Write down all your intermediate steps and calculations’.
Screenshots of the three task formats are presented in Appendix C.

Cover story

Finally, tasks varied in cover story. For example, participants could

solve a problem that asked them to approximate how many litres of

beer were tapped within a certain amount of time (i.e., drinking beer)

or approximate how often the circular platform of a carousel rotates

F IGURE 1 Screenshot of the task database
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in a given period of time (i.e., carousel). The cover stories were similar

for each task format that was provided within a complexity level

(e.g., drinking beer could be selected as video modelling example,

worked example, and practice problem), yet the numbers used dif-

fered per task format.

2.2.4 | Task sequences and task selection

During the learning phase, participants in the two SRL conditions

could select six tasks from the task database (see Figure 1; each task

could be selected only once). They were instructed that the posttest

would include tasks at all three complexity levels. Participants in the

FS-condition received six tasks from the task database in the follow-

ing order: (1) video modelling example at complexity level 1, (2) worked

example at complexity level 1, (3) practice problem at complexity level

1, (4) worked example at complexity level 2, (5) practice problem at

complexity level 2, and (6) worked example at complexity level 3. The

cover stories of these tasks were randomly chosen.

2.2.5 | Posttest

The posttest consisted of five tasks. The first three tasks concerned a

level 1, 2, and 3 task; these were isomorphic to the learning phase tasks

(α = 0.81). The fourth task was a procedural transfer task that required

participants to use the Simpson rule to approximate the definite integral

under a graph. Simpson's rule is also a numerical integration method,

however, uses quadratic polynomials (instead of the straight-line seg-

ments) to approximate the region under a graph. The final task consisted

of five questions that aimed to measure participants' understanding of

the trapezoidal rule (α = 0.48), and these were isomorphic to the pretest

questions. Examples of test tasks are shown in Appendix A.

2.2.6 | Mental effort

Mental effort was measured using a 9-point rating scale (Paas, 1992),

asking participants to rate how much mental effort they invested in

studying an example or solving a practice problem. Answer options

ranged from (1) ‘very, very low mental effort’ to (9) ‘very, very high

mental effort’. Mental effort was rated after each learning and post-

test task, with the exception of the five conceptual posttest questions

(where it was rated only once after the final item).

2.2.7 | Self-efficacy

Self-efficacy was measured by asking participants for their confidence

in that they could approximating the definite integral of a graph using

the trapezoidal rule. Answer options ranged from (1) ‘very, very

unconfident’ to (9) ‘very, very confident’ (Van Harsel et al., 2019;

adapted from Hoogerheide et al., 2016).

2.2.8 | Perceived competence

Perceived competence was measured using an adapted version of the

Perceived Competence Scale for Learning (Van Harsel et al., 2019, 2020;

based on Williams & Deci, 1996), consisting of three items (instead of

the 4 items), such as ‘I feel confident in my ability to learn how to

approximate the definite integral of a graph using the trapezoidal

rule’. Participants had to rate on a scale of (1) ‘not at all true’ to

(7) ‘very true’ to what degree the items applied to them (α = 0.95).

2.3 | Procedure

Fourteen single sessions (with 9 to 24 participants per session) that

lasted 102 min on average were run in a computer classroom at par-

ticipants' university of applied sciences. Before each session, a head-

set, pen, and scrap paper were placed on the tables. After participants

arrived, the experimenter first explained the aim and procedure of the

experiment. Then, participants were told that they could work at their

own pace (with a maximum of 135 minutes), and that they had to

write down as much as possible and to write an ‘X’ if they really did

not know what to answer. Students could use a calculator (different

from Authors, submitted).

After the instructions, participants entered the online learning

environment. Each task and questionnaire were presented on a sepa-

rate page. Participants were unable to go to the next page before

completing the current task/questionnaire and were unable to go

back to any previously completed pages. Time-on-task was logged.

Participants were first provided with a short demographic ques-

tionnaire (e.g., age, gender, highest preliminary education level), the

pretest, and self-efficacy and perceived competence questionnaires.

Next, the learning environment provided written instructions about

the learning phase. For the SRL conditions, these instructions

explained that six tasks had to be selected from the task database and

how to select a task to work on. Participants in the ISRL-condition

additionally were told that they had to watch an instructional video

that explained how to select tasks to learn most effectively and effi-

ciently. In the FS-condition, participants were told that they had to

study or solve the tasks that were provided to them. In all conditions,

participants had to rate their mental effort and self-efficacy after each

task in the learning phase. After the learning phase, participants

had to turn their scrap paper upside down and were provided with a

new scrap paper. Then, participants completed the self-efficacy and

perceived competence questionnaires and the posttest. After the

posttest, participants handed in their materials and left the classroom.

For an overview of the procedure, see Figure 2.

2.4 | Data analysis

To answer our first research question, we used the same approach

as Authors (submitted). We first analyzed what tasks participants

selected in the SRL conditions and coded the task format
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(video modelling example, worked example, practice problem) and com-

plexity level (1, 2, or 3) of the selected learning tasks, and converted the

scores into percentages. We then coded to what degree participants'

task-selection behaviour matched with the evidence-based instructional

design principles (i.e., example-based-learning, example-first, simple-to-

complex, lowest-level-first, and start-each-level-with-example-principle).

For each principle, participants could earn 1 point in total. Following the

example-first-principle and lowest-level-first-principle was awarded with

1 point and 0 points were assigned when the principle was not followed.

For the example-based-learning-principle, simple-to-complex-principle,

and start-each-level-with-example-principle, 1 point was granted when

the principle was followed entirely, 0.5 points when the principle was

followed partially, and 0 points when the principle was not followed at

all (same scoring protocol as used in Authors, submitted). For each partic-

ipant, a total score was computed that represented how well all princi-

ples were followed (maximum: 5 points).

Then, we scored participants' performance on the practice

problems. A maximum of 8 points could be earned for each practice

problem, with 2 points for calculating each step correctly: (1) the

step size of each subinterval, (2) all x-values, (3) the function values

for all x-values, and (4) using the correct formula for the area under

the graph and providing the correct answer. In step two, three, and

four, 2 points were given when all solution steps were correct,

1 point was given if half or more of the steps were correct, and

0 points when less than half of the steps were correct. To explore

how well students' task-selection behaviour matched with their

performance on the practice problems, we scored whether students

selected a new task (i.e., video modelling example, worked example,

or practice problem) on a higher complexity level when a practice

problem was graded with 6 or more out of 8 points (75% or more

correct). We also scored whether students selected a new task

(i.e., video modelling example, worked example, or practice prob-

lem) on a similar (or lower) complexity level when a practice prob-

lem was graded with less than 6 out of 8 points (less than 75%

correct).

To answer our second and third research question, we also used

the same approach as Authors (submitted). We first scored perfor-

mance on the conceptual pretest and posttest items. On the concep-

tual pretest questions and conceptual posttest questions, participants

could earn a maximum of 9 points. One point could be earned for the

first open-ended question (correct answer: 1 point; incorrect answer:

0 points) and 2 points for the other open-ended questions. Partici-

pants were only rewarded with the maximum of 2 points when they

got the answer right and provided correct explanations. Only 1 point

was awarded when the answer was correct but the explanation was

incorrect or missing and 0 points were given when the answer and

explanation were incorrect. With regard to performance on the post-

test, the isomorphic posttest items (i.e., three tasks, max. score = 24

points) and procedural transfer item (i.e., 1 task, max. score = 8 points)

were scored similarly to the learning tasks. Averages of mental effort

invested in the learning tasks and posttest tasks were calculated, as

well as the averages of participants' self-efficacy and perceived com-

petence ratings before, during (only self-efficacy), and after the learn-

ing phase.

F IGURE 2 Overview of the procedure
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3 | RESULTS

Descriptive statistics were used to evaluate the first research ques-

tions on how students behaved in the SRL conditions, how well their

behaviour matched with evidence-based principles from instructional

design research, and whether students made the right choices in the

learning phase according to their performance on the practice prob-

lems. Percentages are only mentioned in the text if they cannot be

found in the tables.

Non-parametric tests were used to answer the second and third

research question because the main variables were not normally dis-

tributed (i.e., the kurtosis and/or skewness values, divided by their SE,

were below �1.96 or above +1.96; cf. Field, 2009). The effects of

Test Moment (Pretest and Posttest) were tested with Wilcoxon

signed-rank tests. Differences between the SRL conditions in follow-

ing the instructional design principles were tested with Mann–

Whitney U tests. Differences between the ISRL-Condition, SRL-Con-

dition, and FS-Condition regarding cognitive (i.e., performance on the

conceptual tests, isomorphic test, procedural transfer test, as well as

mental effort and time-on-task in learning and posttest phases) and

motivational aspects of learning (i.e., self-efficacy and perceived com-

petence) were tested with Kruskal–Wallis tests. For post-hoc tests,

we used Mann–Whitney U tests, with a Bonferroni corrected signifi-

cance level of p < 0.017 (i.e., 0.05/3) for the Wilcoxon signed-rank

tests and a Bonferroni-corrected alpha level of p < 0.017 (i.e., 0.05/3)

for the Kruskal–Wallis tests. For the post-hoc tests, the effect size of

Pearson's correlation (r) is reported (i.e., Z/√N), with values of 0.10,

0.30, and 0.50 representing a small, medium, and large effect size,

respectively (Cohen, 1988).

Before non-parametric analyses were conducted, we checked for

pre-existing differences among the three conditions. Kruskal–Wallis

tests showed no significant differences among conditions on pretest

performance H(2) = 2.60, p = 0.273, nor on self-efficacy H(2) = 0.73,

p = 0.696, or perceived competence H(2) = 1.70, p = 0.919. We also

checked whether participants in the ISRL-Condition actually watched

the instructional video detailing the instructional design principles.

Results showed that 57.6% of the participants watched the entire

video (i.e., n = 38), 21.2% watched between half and three quarter of

the video (n = 14), and 21.2% watched less than half of the video

instruction (n = 14). Additionally, we explored whether there were

differences between these three subgroups in terms of following the

instructional design principles and cognitive and motivational aspects

of learning (see Appendix D).

3.1 | To what extent do novices' task-selection
patterns match with the findings from example-based
learning research?

We first checked the percentages of selected examples and problems

(see Tables 4 and 5) and complexity levels (Table 6), and analyzed how

well students' choices matched with the instructional design principles

(Table 7) in the ISRL and SRL-Condition. Almost all participants in both

conditions started the learning phase with an example instead of a

practice problem. On the second learning task, the percentage of

selected examples rapidly decreased whereas the percentage of prac-

tice problems increased in both conditions. In de ISRL-Condition,

problem-solving was preferred over example study on the second and

third learning task, however, example study became most popular

again on the fourth and fifth learning task. In the SRL-Condition,

example study remained most popular up to and including the fifth

learning task. Only on the last learning task, practice problems were

preferred over example study in both conditions. With regard to our

first research question, findings of the SRL-condition seems to be in

line with the findings of Authors (submitted).

Moreover, participants in the SRL-Condition preferred video

modelling examples (37.4%) over worked examples (27.0%), however,

formats were almost equally preferred in the ISRL-Condition (video

modelling examples: 29.6%; worked examples: 28.8%). In both condi-

tions, participants clearly preferred a video modelling example as the

first learning task compared to a worked example (or a practice prob-

lem). These percentages dropped considerably on the second learning

task, as worked examples became more popular. Nevertheless, the pop-

ularity of the video modelling examples rose again on the third and

fourth learning task (especially in the SRL-Condition); however, these

percentages dropped again on the last two learning tasks. The selection

of worked examples remained fairly stable in the ISRL-Condition from

the second learning task onwards, with an outlier on the fifth learning

task. In the SRL-Condition, the selection of worked examples dropped

after the second learning task, yet increased again on the last two learn-

ing tasks. Considering our first research question, findings of the SRL-

condition again replicate the results of Authors (submitted).

TABLE 4 Percentages of selected
examples and practice problems in the
informed self-regulated learning
condition (n = 66) and self-regulated
learning condition (n = 32)

Informed self-regulated learning condition Self-regulated learning condition

Example Practice problem Example Practice problem

Learning task 1 95.5% 4.5% 100% 0%

Learning task 2 43.9% 56.1% 56.3% 43.7%

Learning task 3 46.2% 53.8% 59.4% 40.6%

Learning task 4 57.6% 42.4% 58.1% 41.9%

Learning task 5 66.7% 33.3% 71.0% 29.0%

Learning task 6 40.6% 59.4% 41.9% 58.1%
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Findings also showed that the level of complexity was gradually

built up in both conditions. The lowest complexity level was selected

most on the first two learning tasks, the second complexity level was

selected most on the third and fourth learning task, and the most diffi-

cult complexity level was selected most on the last two learning tasks.

With regard to our first research question, the results of the SRL-

condition are again in line with the findings of Authors (submitted).

Analyzing how well students' choices matched with the instruc-

tional design principles revealed that participants' choices in both the

ISRL and SRL condition matched very well with these principles (see

Table 7),1 replicating the findings of Authors (submitted) considering

the SRL condition. Moreover, results revealed that in both SRL condi-

tions, many participants followed (almost all of) the principles entirely

(as their total score was between 4.5 and 5 out of a maximum of

5 points; ISRL: 57.6%, SRL: 46.0%) or partially (as their total score was

between 3 and 4.5 out of a maximum of 5 points; ISRL: 37.9%, SRL:

50.1%). As a result, there were no significant differences between the

ISRL-Condition and the SRL-Condition on the ‘total score’ (U = 930,

p = 0.294, r = 0.106), nor in the degree to which both conditions

followed the example-based-learning-principle (U = 1022.5, p = 0.570,

r = 0.057), example-study-first-principle (U = 1104, p = 0.223,

r = 0.123), lowest-level-first-principle (U = 956, p = 0.068, r = 0.184),

or start-each-level-with-example-principle (U = 1170, p = 0.209,

r = 0.127). There was, however, a significant difference between

conditions in following the simple-to-complex-principle (U = 838.5,

p = 0.042, r = 0.205), which was followed entirely by 77.3% of the par-

ticipants in the ISRL-Condition and only by 53.1% of the participants in

the SRL-Condition.

3.2 | To what extent do novices make effective
task selections after a practice problem-solving
attempt?

To shed further light on the quality of students' task selections, we cat-

egorized the type of decisions students made after problem-solving

practice, taking into account whether they performed well on the prac-

tice problem (75%–100% correct; ‘standard achieved’) or not (less than
75% correct, ‘standard not achieved’). The results are presented in

Table 8. The ISRL-Condition made many more task selections after a

practice problem than the SRL-Condition (i.e., 125 vs. 48, respectively).

Both conditions made more effective task-decisions (i.e., moving up a

complexity level after achieving the standard, or not moving up a com-

plexity level after failing to achieve the standard) than ineffective task-

decisions (all other choices, classified as ‘other task-selection deci-

sions’). However, there was definitely room for improvement in both

conditions, as approximately 40% of the task selections were likely clas-

sified as ineffective for learning.

TABLE 5 Percentages of selected video modelling examples, worked examples, and practice problems in the informed self-regulated learning
condition (n = 66) and self-regulated learning condition (n = 32)

Informed self-regulated learning condition Self-regulated learning condition

Video modelling
example

Worked
example

Practice
problem Video modelling example

Worked
example

Practice
problem

Learning task 1 84.8% 10.6% 4.6% 81.3% 18.7% 0.0%

Learning task 2 9.1% 34.8% 56.1% 18.8% 37.5% 43.7%

Learning task 3 20.0% 26.2% 53.8% 43.8% 15.6% 40.6%

Learning task 4 34.8% 22.7% 42.4% 41.9% 16.1% 41.9%

Learning task 5 18.2% 48.5% 33.3% 29.0% 42.0% 29.0%

Learning task 6 10.9% 29.7% 59.4% 9.7% 32.3% 58.1%

TABLE 6 Percentages of selected complexity levels (Level 1, 2, and 3) in the informed self-regulated learning condition (n = 66) and self-
regulated learning condition (n = 32)

Informed self-regulated learning condition Self-regulated learning condition

Complexity
level 1

Complexity
level 2

Complexity
level 3

Complexity
level 1

Complexity
level 2

Complexity
level 3

Learning task 1 97.0% 0.0% 3.0% 87.5% 6.3% 6.2%

Learning task 2 89.4% 4.5% 6.1% 75.0% 18.8% 6.2%

Learning task 3 47.7% 46.2% 6.1% 40.6% 40.6% 18.8%

Learning task 4 18.2% 60.6% 21.2% 22.6% 45.2% 32.2%

Learning task 5 15.2% 30.3% 54.5% 16.2% 29.0% 54.8%

Learning task 6 14.1% 15.6% 70.3% 16.1% 19.4% 64.5%
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3.3 | Do the fixed sequence, informed self-
regulated learning, and self-regulated learning
condition differ on cognitive and motivational aspects
of learning?

Then, we analyzed whether the three conditions differed on cognitive

and motivational aspects of learning (see Table 9). Note that we explored

whether the results would change if we excluded those participants in

the ISRL-Condition who did not watch the entire video detailing the

instructional design guidelines. It was decided to keep these students in

the sample, because removing them would not change the findings.

3.3.1 | Cognitive aspects of learning

Performance on test tasks

Analyses revealed that conceptual knowledge increased from pretest to

posttest (Z = 5.86, p < 0.001, r = 0.478). Post-hoc analyses showed sig-

nificant increases in the FS-Condition (Z = 3.94, p < 0.001, r = 0.547)

and ISRL-Condition (Z = 1.97, p = 0.001, r = 0.482), but not in the

SRL-Condition (Z = 5.86, p = 0.049, r = 0.348). There were, however,

no differences among conditions regarding students' performance on

the conceptual knowledge posttest, (H(2) = 0.21, p = 0.900), the iso-

morphic posttest tasks (H(2) = 1.34, p = 0.511), or the procedural

transfer task (H(2) = 0.97, p = 0.616).

Mental effort

There was no significant difference among conditions on the (average)

self-reported mental effort invested in the learning tasks, (H(2) = 3.16,

p = 0.206), nor on the average invested mental effort in the conceptual

knowledge posttest questions (H(2) = 3.23, p = 0.199), isomorphic

posttest tasks (H(2) = 5.87, p = 0.053), or procedural transfer task (H

(2) = 0.50, p = 0.780).

Time-on-task

There was also no significant difference among conditions on average

time-on-task invested in the learning tasks, (H(2) = 4.22, p = 0.121),

conceptual knowledge questions (H(2) = 0.08, p = 0.961), or

TABLE 7 Percentages of example-based learning principles applied in the informed self-regulated learning condition (n = 66) and self-
regulated learning condition (n = 32)

Informed self-regulated learning condition Self-regulated learning condition

Principle
followed
entirely

Principle
followed
partially

Principle
followed
not at all

Principle
followed
entirely

Principle
followed
partially

Principle
followed
not at all

Example-based-learning-principle 93.9% 4.6% 1.5% 90.6% 9.4% 0.0%

Example-first-principle 95.5% X 4.5% 100.0% X 0.0%

Lowest level-first-principle 97.0% X 3.0% 87.5% X 12.5%

Simple-to-complex-principle 77.3% 6.0% 16.7% 53.1% 28.1% 18.8%

Start-each-level-with-example-principle 77.3% 18.2% 4.5% 87.5% 12.5% 0.0%

Note: X, not a scoring option for this principle.

TABLE 8 Percentages of task-selection decisions after practice
problem solving in the informed self-regulated learning condition
(n = 66) and self-regulated learning condition (n = 32)

Informed self-
regulated learning
condition

Self-regulated
learning condition

125 task-selection
decisions after
practice problem
solving

48 task-selection
decisions after
practice problem
solving

Effective task-selection

decisions

Standard achieved, video

modelling example on

higher complexity level

16.8% 18.7%

Standard achieved, worked

example on higher

complexity level

18.4% 12.5%

Standard achieved,

practice problem on

higher complexity level

7.2% 2.1%

Standard not achieved,

video modelling example

on similar or lower

complexity level

4.0% 14.6%

Standard not achieved,

worked example on

similar or lower

complexity level

8.0% 6.3%

Standard not achieved,

practice problem on

similar or lower

complexity level

5.6% 8.3%

Ineffective task-selection

decisions

Other task-selection

decisionsa
40.0% 37.5%

Note: Standard achieved = performance 75% or higher.
aOther task-selection decisions concern ineffective decisions, such as

selecting a task at a higher complexity level when the standard was not

achieved (performance lower than 75%) or selecting a task at a similar or

lower complexity level when the standard was achieved.
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procedural transfer task (H(2) = 5.92, p = 0.052). Conditions differed

in the average time-on-task invested in the isomorphic posttest tasks,

H(2) = 7.86, p = 0.020. Follow-up analyses revealed that the ISRL-

Condition invested less time in the isomorphic posttest tasks com-

pared to the FS-Condition (U = 1247.5, p = 0.011, r = 0.234). No dif-

ferences were found between the ISRL-Condition and SRL-Condition

(U = 1326, p = 0.041, r = 0.207), nor between the SRL-Condition and

FS-Condition (U = 812.5, p = 0.857, r = 0.020).

3.3.2 | Motivational aspects of learning

Self-efficacy

We found a main effect of Test Moment on students' self-efficacy

from before to after the learning phase (at a sample level), (Z = 10.45,

p < 0.001, r = 0.853), indicating that the self-efficacy medians signifi-

cantly increased over time in the ISRL-Condition (Z = 7.09, p < 0.001,

r = 0.873), SRL-Condition (Z = 4.73, p < 0.001, r = 0.836), and FS-

Condition (Z = 6.09, p < 0.001, r = 0.845). Self-efficacy after the

learning phase did not differ among conditions (H(2) = 4.67,

p = 0.097). We did, however, find a significant difference among con-

ditions regarding average self-efficacy ratings during the learning

phase (H(2) = 7.86, p = 0.020). Post-hoc analyses revealed that

average self-efficacy ratings were higher in the ISRL-Condition than

the SRL-Condition (U = 702.5, p = 0.007, r = 0.271). No significant

differences were found between the ISRL-Condition and FS-Condi-

tion (U = 1881.5, p = 0.369, r = 0.083), nor between the SRL-Condi-

tion and FS-Condition (U = 680.5, p = 0.162, r = 0.129).

Perceived competence

Analyzing whether perceived competence increased from pretest to

posttest revealed a main effect of Test Moment (Z = 10.54,

p < 0.001, r = 0.861). Perceived competence significantly increased in

the ISRL (Z = 7.07, p < 0.001, r = 0.870), SRL (Z = 4.94, p < 0.001,

r = 0.874), and FS-Condition (Z = 6.11, p < 0.001, r = 0.847). No dif-

ferences were found among conditions, however, with regard to per-

ceived competence rated after the learning phase, H(2) = 5.34,

p = 0.069.

4 | DISCUSSION

This study investigated higher education students' self-regulated

learning of problem-solving tasks in an online learning environment.

We investigated whether the findings of Authors (submitted) that

students regulate their learning from examples and practice

TABLE 9 Mean (M), standard deviation (SD), and median (med) of conceptual questions (range 0 to 9), isomorphic tasks (range 0 to 24),
procedural transfer task (range 0 to 8), mental effort (range 1 to 9), self-efficacy (range 1 to 9), and perceived competence (range 1 to 7) for the
informed self-regulated learning condition (n = 66), self-regulated learning condition (n = 32), and fixed sequences condition (n = 52)

Informed self-regulated learning condition Self-regulated learning condition Fixed sequences condition

M SD Med M SD Med M SD Med

Pretest

Conceptual questions 2.50 1.13 3.00 2.66 1.23 3.00 2.25 1.25 2.00

Self-efficacy 3.09 1.65 3.00 2.91 1.97 2.00 3.04 1.86 3.00

Perceived competence 2.62 1.50 2.33 2.49 1.40 2.17 2.65 1.47 2.17

Learning phase

Self-efficacy 6.71 1.00 6.83 6.14 1.16 6.08 6.42 1.45 6.67

Mental effort 3.20 0.99 3.33 3.71 1.04 3.50 3.45 1.50 3.33

Time-on-task 8.28 2.43 8.50 7.38 2.32 8.00 7.50 2.17 7.25

Posttest

Conceptual questions 3.73 2.23 3.00 3.63 2.49 3.50 3.77 2.21 4.00

Isomorphic tasks 14.62 7.84 16.50 13.41 7.05 14.50 13.38 7.67 15.50

Procedural transfer task 3.29 3.48 2.00 2.41 3.12 0.00 2.77 2.95 2.00

Mental effort conceptual questions 3.70 1.62 3.00 4.09 1.73 4.00 3.46 1.78 3.00

Mental effort isomorphic tasks 3.66 1.87 3.33 4.60 2.01 4.33 3.66 2.03 3.00

Mental effort procedural transfer task 4.59 2.78 3.00 4.81 2.82 4.00 4.35 2.52 3.00

Time-on-task conceptual questions 4.92 2.15 5.00 4.88 2.88 5.00 5.15 2.99 5.00

Time-on-task isomorphic tasks 8.82 3.29 8.33 10.17 3.15 10.00 10.51 3.61 9.67

Time-on-task procedural transfer task 4.64 2.99 5.00 5.59 4.11 6.00 6.56 4.23 6.00

Self-efficacy 7.27 1.22 7.00 6.72 1.11 6.50 7.06 1.65 7.00

Perceived competence 5.86 0.89 6.00 5.52 0.77 5.33 5.62 1.23 6.00
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problems quite well (i.e., in alignment with what we know to be

effective task sequences from instructional design research) would

replicate (Research Question 1), whether self-regulated learning of

examples and problems would be as effective as fixed sequences of

examples and problems (Research Question 2), and whether info-

rming learners prior to self-regulated learning about the principles

for effective task sequences derived from instructional design

research would enhance their task selections, and thereby learning

and motivation compared to self-regulated learning without such

information and studying fixed sequences of tasks (Research

Question 3).

Regarding the first research question, our results replicated the

findings of Authors (submitted), as task selections of students in the

self-regulated learning condition (and informed self-regulated learning

condition) largely aligned with the instructional design principles.

Almost all students followed the example-first-principle and lowest-

level-first-principle by starting the learning phase with an example

(predominantly a video modelling example) at the lowest complexity

level. Also, the majority of students started each new complexity level

with example study (and therefore selected more examples than prob-

lems) and built up the level of complexity of the learning tasks reason-

ably well, adhering to the start-each-level-with-example-study,

example-based-learning, and simple-to-complex-principle. When

exploring in more detail what task selections learners make after hav-

ing solved a practice problem, we found that students made more

effective (e.g., selecting a task at a higher complexity level when suffi-

ciently high performance was achieved) than ineffective task selec-

tions (e.g., selecting a task at a higher complexity level when

sufficiently high performance was not yet achieved), however, there

seemed to be room for improvement.

As for the second research question, we found that self-regulated

learning as effective, efficient, and motivating as a fixed task sequence

based on the principles derived from instructional design research,

since there were no performance or motivation differences between

the self-regulated learning and fixed sequences condition. This is

somewhat surprising in light of previous findings that fixed learning

paths are often more effective for novices' learning than self-

regulated learning (see e.g., Azevedo et al., 2008; Lawless &

Brown, 1997; Niemiec et al., 1996). That self-regulated learning did

not have additional motivational benefits might also seem surprising,

as previous research suggests that providing learners with control

over task selection can increase their motivation in terms of interest

and involvement (e.g., Corbalan et al., 2008). However, self-regulated

learning might not foster students' motivation in terms of perceptions

of their own abilities (e.g., self-efficacy and perceived competence),

possibly because this is much more related to learning outcomes

(e.g., Collins, 1982), where we also found no effect.

With regard to the third research question, we found that explic-

itly informing learners about instructional design principles did

enhance their self-regulated learning of examples and problems

(at different complexity levels). That is, no significant differences were

found between the two self-regulated learning conditions in how their

task selections matched with the instructional design principles,

except that students in the informed self-regulated learning condition

followed the simple-to-complex-principle more often than students in

the self-regulated learning condition did spontaneously. However, this

facilitative effect did not enhance the informed self-regulated learning

condition's learning or motivation compared to the self-regulated

learning condition. There were two exceptions: relative to the self-

regulated learning condition, the informed self-regulated learning

condition showed more confidence in their own abilities during the

learning phase (but this effect was not found after the learning phase)

and invested less time in the posttest tasks isomorphic to the tasks in

the learning phase. Finally, we did not find any differences on cogni-

tive and motivational aspects of learning between the informed self-

regulated learning condition and fixed sequences condition.

These findings raise an important question: Why did we (and

Authors, submitted) find that students were already quite good at reg-

ulating their learning of examples and problems, while other studies

found that having control over what information to study or what

tasks to work on is not (entirely) effective for novices' self-regulated

learning (e.g., Foster et al., 2018), and often less effective than learn-

ing from computer pre-structured or personalized sequences of tasks

(e.g., Azevedo et al., 2008; Lawless & Brown, 1997; Niemiec

et al., 1996)? A possible explanation is that our sample may have had

substantial prior experience with learning from examples (cf. Authors,

submitted). Although we cannot corroborate this idea with data, our

students were likely quite experienced with example-based learning,

because their electrical and electronic mechanical engineering pro-

grams rely heavily on mathematics. Example-based learning indeed is

a very common strategy for learning mathematical problem-solving

skills (Hoogerheide & Roelle, 2020). If students were accustomed to

studying examples when learning new math problem-solving skills,

this would explain why examples were selected more early and often.

By contrast, Foster et al. (2018) tested a mixed student population

(from the university's participant pool) that possibly had less experi-

ence with mathematics in their curricula and therefore with example-

based learning. If true, this could explain why students in that study

chose example study less early and often.

An alternative explanation is that the design of our task database

helped students to rely more heavily on example study and lowest

complexity level first, because it was displayed as an organized table

left to right, starting with a video modelling example and lowest level

task on the left side. Research has shown that in left-to-right lan-

guages, users often exhibit a viewing pattern that favours the left (and

towards the top) of (web) pages or images (e.g., Afsari et al., 2016;

Djamasbi et al., 2011). This ‘viewing strategy’ might have influenced

students' task selections in such a way that it would lead one to gen-

erally select an example and low level task first and then a practice

problem. This was different from the study of Foster et al. (2018),

where each item in the SRL-condition was preceded by an description

on screen that explained what a problem-solving and worked-example

format looked like. Participants clicked on a button marked ‘PS’ or

‘WE’ to select the format for the subsequent assignment. In principle,

future research could control for this by randomizing or counter-

balancing the position of the task types and complexity levels in the
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task database. However, from an educational practice perspective,

this would not be recommendable as it would disrupt learners' intui-

tive understanding of the task database layout (e.g., the buildup in

complexity and support levels) which is information they need to be

able to make their decisions.

Another important question is: Why did our intervention only

show a minimal effect on students' task selections and why did it

not enhance their learning and motivation? One possible explana-

tion could be that approximately 40% of the students in the

informed self-regulation condition did not watch the entire

instructional video. However, additional exploratory analyses rev-

ealed no significant performance or motivational differences

among conditions when those who did not watch the entire video

were excluded (see Appendix D). A more likely explanation is that

there was not that much room for students' task-selection skills to

improve (with the exception of the simple-to-complex-principle,

which those who studied the video did follow more often), as the

self-regulated learning condition already did quite a good job in

selecting tasks that matched with most of the instructional design

principles.

A second potential explanation, given that there was still room

for some improvement, is that informing students about the principles

only once may not have been sufficient to improve task-selection

behaviour to such an extent that it enhances students' learning and

motivation. For example, students received a lot of information they

had to both understand and memorize in order to apply it during the

learning phase later. Although we provided a short review/reminder

at the end of the instructional video, it is possible they forgot some of

the principles and/or how/when to use them during the learning

phase. A solution might be to allow students to go back to the

description and explanation of the principles during the learning

phase. It is also questionable whether ‘merely’ informing students

about instructional design principles and how to apply them would

improve task-selection behaviour to such an extent that it enhances

students' learning and motivation. To achieve those changes, it is con-

sidered important to ensure that learners also experience what the

‘planned behaviour’ actually brings them (i.e., to enhance their beliefs

and commitment; McDaniel & Einstein, 2020). This might be achieved

by additionally having students practice with and/or reflect on the

information that is provided to them (e.g., Biwer et al., 2020; Endres

et al., 2021). Finally, it would be interesting in this respect to also

explicitly test whether students' (metacognitive) knowledge has actu-

ally been improved after watching such a video instruction. As

increasing metacognitive knowledge could increase the likelihood an

individual will modify and apply a strategy (e.g., Tullis et al., 2013; Yan

et al., 2014), it is interesting to know whether this knowledge is actu-

ally enhanced after watching the instructional video.

Finally, results showed that more than one-third of the task selec-

tions made after problem-solving practice were likely not effective for

learning. These results could suggest that students generally had a

good sense of what to do (as their task-selections matched fairly well

with the instructional design principles), but had some trouble in

making adequate judgements of their learning needs at a specific

moment and therefore did not always make relevant task-selections

after problem-solving practice opportunities. For instance, increasing

the level of complexity is a choice that generally aligns well with the

principles, yet, if a student does so too quickly (i.e., without being able

to perform the task on a lower level well enough), that would be an

ineffective choice. In other words, students might have experienced

some difficulties with self-assessing their performance after working

on a practice problem and use this information to select a suitable

follow-up task. Therefore, it might be necessary to link the instruc-

tional design principles more strongly to students' self-assessments of

their understanding and performance (e.g., emphasize what to do

when they do not yet master a task at a certain complexity level) or to

target their self-assessment ability in the intervention (cf. Kostons

et al., 2012; Raaijmakers et al., 2018).

4.1 | Limitations

This study does have several important limitations. First, it is an open

question to which extent our findings are generalizable, because our

sample –despite being novices– might have had prior experience with

example-based learning and/or similar types of (math) tasks. Less

experienced samples would likely show different (i.e., worse) task-

selection behaviour. Therefore, it is unclear whether our instructional

video intervention would have a more pronounced effect (i.e.,

improve task-selection, and thereby motivation and learning) under

different circumstances, such as with less experienced samples. A par-

ticularly interesting avenue for future research would be to test this

intervention with a sample that has previously been shown to show

suboptimal task-selection behaviour when learning from examples

and problems (e.g., Foster et al., 2018).

A second limitation is that, although our students had more

responsibility and control over their learning relative to most

example-based learning research, they still did not have full control

over their learning. This choice was made to ensure that all three con-

ditions would be comparable in all other respects (e.g., that all condi-

tions studies 6 learning tasks). Yet in real learning settings there

would likely be much more variation in the number (and type) of tasks

selected, because an ideal task sequence hinges on students' prior

knowledge, speed of learning, motivation, and effort investment and

therefore varies from learner to learner. Therefore, future research

could examine what choices students make when it is entirely up to

them how many learning tasks they select.

A third limitation concerns the measurement of self-efficacy and

perceived competence. There is research showing overlap between

these two constructs, and more specifically that perceived compe-

tence may be a common core component of both self-efficacy and

self-concept (e.g., Marsh et al., 2019; Schunk & Pajares, 2005). This

idea is confirmed by the correlational analyses of these two constructs

measured after the self-regulated learning phase in our study,

r = 0.860, p < 0.001. As these measures seem to measure the same
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general feeling of competence regarding to what has been learned

and how well someone considers him/herself capable in solving a sim-

ilar task, it might be sufficient to use of one of the questionnaires in

future research.

4.2 | Conclusion and implications for practice

To conclude, the findings suggest that the higher education students

who participated in this study were relatively good at regulating their

own learning with examples and problems in online learning environ-

ments (cf. Van Harsel et al., submitted). This is an important finding

because providing students with control over their own learning is

becoming more and more common, especially in higher education.

Given that earlier studies painted a less rosy picture of students' self-

regulated learning of problem-solving skills using examples and prob-

lems (e.g., Foster et al., 2018), and that the sample used in this study

might have had some prior experience with similar mathematics

problem-solving tasks, future research is needed to uncover under

which circumstances students can and cannot regulate their learning

of new problem-solving skills. Moreover, our findings also suggest

that there is still room for some improvement in students' task selec-

tions. Informing students about evidence-based instructional design

principles via an instructional video can help them to apply the

simple-to-complex-principle more often, however, not to such an

extent that it results in performance or motivational benefits. There-

fore, future research should examine how the design and/or imple-

mentation of this intervention can be improved to (further) improve

self-regulated learning of our population and other populations of

higher education students.
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APPENDIX A. : EXAMPLES OF A CONCEPTUAL PRIOR

KNOWLEDGE TEST QUESTION, ISOMORPHIC, AND TRANSFER

POSTTEST TASKS

Conceptual prior knowledge test question

Question 6: What is the minimum required number of measurement

points needed to be able to successfully apply the trapezoidal rule?

a. 0

b. 1

c. 2

d. 3

Isomorphic posttest task

Rachel is an intern at a factory that produces different kinds of per-

fume. At one point, Rachel's supervisor asks her to examine how many

litres of perfume is produced of the brand 'Scents' in two days. Rachel

has measured this and plotted the results in a graph. The time (in days)

is plotted on the horizontal axis and the litres (litre per day) are plotted

on the vertical axis. By approaching the area under the graph, Rachel

can determine how much litre has been produced during a certain

amount of time.

Approaching the area under the graph can be done by using the

trapezoidal rule:

b�að Þ
n

1
2
f x0ð Þþ f x1ð Þþ f x2ð Þþ �� �þ1

2
f xnð Þ

� �

The trapezoidal rule divides the area under a graph into ‘strips’.
By adding up the surface of the ‘strips’, you can approach the total

area under the graph. To approach the area under the graph, you need

the following information:

a: this is the left x value of the area that has to be approached;

b: this is the right x value of the area that has to be approached;

n: this is the number of ‘strips’ in which the area is divided;

xi: this is the x-value that belongs to the left- or right border of a

‘strip’ and it is calculated using the following function:

Approach the area under the graph using the information that is

given. Write down all your intermediate steps and calculations.

Procedural transfer task

It takes energy to stop an elevator at a certain level. This energy is

proportional to the distance between the current and desired position.

Jimmy wants to determine how much energy is used to stop the lift

three levels higher by measuring the distance during a certain amount

of time. Jimmy has plotted the results in a graph. The time (in seconds)

is plotted on the horizontal axis and the distance (in metres) is plotted

on the vertical axis. By approaching the area under the graph, Jimmy

can determine the energy that is needed.
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Approaching the area under the graph can be done by using the

Simpson rule:

ðb

a
f xð Þdx≈ b�a

6
f að Þþ4f

aþb
2

� �
þ f bð Þ

� �

The Simpson rule divides the area under a graph into ‘strips’. By
adding up the surface of the ‘strips’, you can approach the total area

under the graph. To approach the area under the graph, you need the

following information:

a: this is the left x value of the area that has to be approached;

b: this is the right x value of the area that has to be approached;

n: this is the number of ‘strips’ in which the area is divided;

xi: this is the x-value that belongs to the left- or right border of a

‘strip’ and it is calculated using the following function:

Approach the area under the graph using the information that is

given. Write down all your intermediate steps and calculations.

Conceptual transfer item

Study the graph below (this is a part of a parabola):

You can approach the area under this graph with help of the trap-

ezoidal rule in two ways:

A. Left border 2 and right border 4

B. Left border 7 and right border 9

Which surface will approach the exact surface at best? Choose

one of the options and explain your answer.

APPENDIX B. : TRANSLATED SCRIPT FOR THE VIDEO

INSTRUCTION (IN ENGLISH)

Soon, you will learn all about the mathematical subject ‘the
trapezoidal rule’ in the online learning environment. You are

free to choose six tasks that will help you to learn the trape-

zoidal rule to the best of your abilities. As you know, there

are tasks at 3 levels of complexity. You can choose tasks at

each of these complexity levels in the form of video model-

ling examples, worked examples, or practice problems. Do

you already know what tasks you want to select to be able

to solve all the tasks on the posttest? Here are four tips,

derived from scientific research, that can help you learn as

much as possible.

Tip 1: First, choose a task at the lowest complexity level and

build up the complexity of the tasks.

If you start learning and you don't how to use the trape-

zoidal rule, it might be good start with a task that is not too

difficult. Therefore, choose a task at the lowest complexity

level. Do you feel you've mastered this level? Then, choose

a task at a higher complexity level. This way, you build up

the complexity of the tasks in such a way that it fits with

what you already know.

Tip 2: Start with an example at each complexity level, especially

when you feel you (still) know too little to solve the tasks.

If you don't know much about how to use the trapezoidal

rule, it is not only useful to start with a task at the lowest com-

plexity level, but also to learn more about how to solve such a

task. By choosing an example, you will learn how to use the

trapezoidal rule, because an example shows you how to solve

a problem step-by-step. This prevents you from spending a lot

of time figuring out the right solution procedure yourself.

Starting with an example is therefore also very helpful when

you want to choose a task at a higher complexity level.

Tip 3: Start at the very beginning with a video modelling exam-

ple, then choose worked examples.

You can choose two different example formats. A video

modeling example provides a lot of support during learning,

because you can hear and see the solution procedure step-
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by-step. This is very useful if you are studying the trapezoi-

dal rule for the first time. You can also opt for a worked

example. In a worked example, you can only see the entire

solution procedure. Whereas the information in a video

modeling example quickly disappears, all steps are always

visible in a worked example. This is very useful if you

already understand part(s) of the solution procedure, but

want to look up some more (difficult) steps.

Do you think you understand the solution procedure

presented in the examples and want to check whether you

do? Then, choose a practice problem so you can practice

the task.

Tip 4: Alternate examples and practice problems.

As said before, it is recommended to select an example

first before solving a practice problem when you want to

move to a higher complexity level for the first time. This

way, you can study the steps that you might find difficult.

Moreover, you get an impression of the complexity of the

task. When you think you understand the problem-solving

procedure, then select a practice problem so you can test

whether you actually understand the problem-solving task.

Before you start, here is a short summary of the tips:

Tip 1: First, choose a task at the lowest complexity level and

build up the complexity of the tasks.

Tip 2: Start with an example at each complexity level, especially

when you feel you (still) know too little to solve the problem.

Tip 3: Start at the very beginning with a video modeling exam-

ple, then choose worked examples.

Tip 4: Alternate examples and practice problems.

And now it is time to get started, good luck!

APPENDIX C.: EXAMPLES OF FORMATS

Practice problem

Jalil has bought a solar cell and wants to know how much energy the

solar cell supplies during a certain amount of time. Jalil has used an

energy meter to examine how much energy the solar cell produces

during a specific amount of time. Jalil has measured the energy at dif-

ferent time points and plotted the results in a graph. The time (in

minutes) is plotted on the horizontal axis and the power the solar cell

supplies (Joule per minute) is plotted on the vertical axis of the graph.

By calculating the area under the graph, Jalil can determine how much

energy the solar cell has produced during a certain amount of time.

Approaching the area under the graph can be done by using the

trapezoidal rule:

b�að Þ
n

1
2
f x0ð Þþ f x1ð Þþ f x2ð Þþ �� �þ1

2
f xnð Þ

� �

The trapezoidal rule divides the area under a graph into ‘strips’.
By adding up the surface of the ‘strips’, you can approach the total

area under the graph. To approach the area under the graph, you need

the following information:

a: this is the left x value of the area that has to be approached;

b: this is the right x value of the area that has to be approached;

n: this is the number of ‘strips’ in which the area is divided;

xi: this is the x-value that belongs to the left- or right border of a

‘strip’ and it is calculated using the following

function: f xð Þ¼3x2�6xþ
Approach the area under the graph using the information that is

given. Write down all your intermediate steps and calculations.
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Video modeling example

Worked example

Jalil has bought a solar cell and wants to know how much energy the

solar cell supplies during a certain amount of time. Jalil has used an

energy meter to examine how much energy the solar cell produces

during a specific amount of time. Jalil has measured the energy at dif-

ferent time points and plotted the results in a graph. The time (in

minutes) is plotted on the horizontal axis and the power the solar cell

supplies (Joule per minute) is plotted on the vertical axis of the graph.

By calculating the area under the graph, Jalil can determine how much

energy the solar cell has produced during a certain amount of time.

Approaching the area under the graph can be done by using the

trapezoidal rule:

b�að Þ
n

1
2
f x0ð Þþ f x1ð Þþ f x2ð Þþ �� �þ1

2
f xnð Þ

� �

The trapezoidal rule divides the area under a graph into ‘strips’.
By adding up the surface of the ‘strips’, you can approach the total

area under the graph. To approach the area under the graph, you need

the following information:

a: this is the left x value of the area that has to be approached,

this is a¼11
2

b: this is the right x value of the area that has to be approached,

this is b¼3

n: this is the number of ‘strips’ in which the area is divided, this

is n¼3

xi: this is the x-value that belongs to the left- or right border of a

‘strip’ and it is calculated using the following function: f xð Þ¼3x2�6xþ9

Step 1: Compute the step of each subinterval b�a
n

1. b– a¼3–11
2¼11

2

2.
11
2
3 ¼ 1

2

Step 2: Calculate the x-values:

1. xo ¼ a,so x0 ¼11
2
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2. x1 ¼ x0þ subinterval,so x1 ¼11
2þ 1

2¼2

3. x2 ¼ x1þ subinterval,so x2 ¼2þ 1
2¼21

2

4. x3 ¼ x2þ subinterval,so x3 ¼21
2þ 1

2¼3

Step 3: Calculate the function values for all x-values

1. f x0ð Þ¼ f 11
2

� �¼3:11
22 –6:1þ9¼63

4 –9þ9¼63
4

2. f x1ð Þ¼ f 2ð Þ¼3:22 – 6:2þ9¼12–12þ9¼9

3. f x2ð Þ¼ f 21
2

� �¼3:21
22�6:21

2þ9¼183
4 –15þ9¼123

4

4. f x3ð Þ¼ f 3ð Þ¼3:32 – 6:3þ9¼27–18þ9¼18

Step 4: Enter the function values into the formula and calculate the area

Formula: b�að Þ
n

1
2 f x0ð Þþ f x1ð Þþ f x2ð Þþ 1

2 f x3ð Þ� 	
Adjusted formula with step 1 and 2 included:

1
2

1
2
f x0ð Þþ f x1ð Þþ f x2ð Þþ1

2
f x3ð Þ

� �

Adjusted formula with step 3 included and calculated:

1
2

1
2
�63

4
þ9þ12

3
4
þ1
2
�18

� �
¼1
2

3
3
8
þ9þ12

3
4
þ9

� �
¼1
2
�341

8
¼17

1
16

The approached area under the graph is 17 1
16

APPENDIX D.: EXPLORATIVE ANALYSES OF DIFFERENCES

AMONG SUBGROUPS IN THE ISRL-CONDITION

We explored to which degree participants in the ISRL-Condition

followed the instructional design principles depended on whether

they watched the entire, between half and three quarter, or less than

half of the video. Results showed that these groups differed in follow-

ing the lowest-level-principle H 2ð Þ¼7:55,p¼0:023ð Þ; however, post-

hoc tests with a Bonferroni correction revealed no significant results

(ps = 0.019; adjusted level of significance = 0.017). The groups also

differed in following the simple-to-complex-principle

H 2ð Þ¼13:45,p¼0:001ð Þ, and follow-up analyses showed that

watching the entire U¼151,p¼0:002, r¼0:425ð Þ or between half

and three quarter of the video instruction

U¼45:5,p¼0:014,r¼0:556ð Þ resulted in higher scores on following

the simple-to-complex-principle than watching less than half of the

video. Finally, there was a difference among groups in the total score

on following the principles H 2ð Þ¼7:77,p¼0:021ð Þ: Post-hoc tests

showed that participants who watched the entire video instruction

scored higher on following all of the principles than participants who

watched less than half of the video instruc-

tion U¼152:5,p¼0:010, r¼0:357ð Þ.
We also explored whether there were performance and motiva-

tional differences among participants in the ISRL condition, depending

on whether they watched the entire, between half and three quarter,

or less than half of the video instruction. There were no significant dif-

ferences among these groups on any of the outcome variables

ps¼0:77ð Þ, except for participants' confidence in their own abilities

before the learning phase, as indicated by a main effect on pretest

self-efficacy H 2ð Þ¼10:46,p¼0:005ð Þ and pretest perceived compe-

tence H 2ð Þ¼7:24,p¼0:27ð Þ. Post-hoc tests only showed one signifi-

cant comparison on both motivational measures: relative to the

participants who only watched between half and three quarter of the

video, those who watched the entire video indicated lower levels of

pretest self-efficacy U¼407,p¼0:003, r¼0:413ð Þ and perceived

competence U¼380:5,p¼0:016, r¼0:334ð Þ.
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