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ABSTRACT
Resources can affect plant productivity and biodiversity simultaneously and thus are key drivers of their
relationships in addition to plant–plant interactions. However, most previous studies only focused on a
single resource while neglecting the nature of resource multidimensionality. Here we integrated four
essential resources for plant growth into a single metric of resource diversity (RD) to investigate its effects
on the productivity–biodiversity relationship (PBR) across Chinese grasslands. Results showed that
habitats differing in RD have different PBRs—positive in low-resource habitats, but neutral in medium- and
high-resource ones—while collectively, a weak positive PBR was observed. However, when excluding direct
effects of RD on productivity and biodiversity, the PBR in high-resource habitats became negative, which
leads to a unimodal instead of a positive PBR along the RD gradient. By integrating resource effects and
changing plant–plant interactions into a unified framework with the RD gradient, our work contributes to
uncovering underlying mechanisms for inconsistent PBRs at large scales.
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INTRODUCTION
Therelationshipbetweenplant productivity andbio-
diversity is a central topic in ecology, but has re-
mained controversial in past decades [1–6]. One
hotspot of debate is whether a positive or uni-
modal productivity–biodiversity relationship exists
at large scales (i.e. regional and global scales)
[1,2,5–8]. Many studies suggested that inconsis-
tent productivity–biodiversity relationships proba-
bly stem from environmental variables that drive
biodiversity and productivity simultaneously [1,9].
This is particularly the case for resources, which
strongly affect both plant productivity [10] and
biodiversity [11]. However, previous studies on
the shape of productivity–biodiversity relationships
have mostly focused on a certain type of resource,

e.g. climatic resources [12,13], while neglecting the
multidimensionality of plant resources. As such,
controversial conclusions might be presented at
large scales across habitats,wheredifferent resources
do not always match with each other (e.g. nutrient-
rich habitats are found in water-deficient sites).

The neglect of the multidimensionality of re-
sources is probably partly due to the challenge of
quantifying it [14]. Specifically, the relative impor-
tance of different resources to plant communities
canbehabitat dependent, leading todifficulties in es-
tablishing comparable resource gradients across var-
ious habitats in the field. Globally, productivity and
biodiversity of grassland are both directly affected by
climatic resources such as water and energy [9,15–
18], and indirectly mediated by their influences on

C©TheAuthor(s) 2022. Published byOxfordUniversity Press on behalf of China Science Publishing&Media Ltd.This is anOpen Access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original
work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/advance-article/doi/10.1093/nsr/nw

ac165/6671596 by U
trecht U

niversity Library user on 15 N
ovem

ber 2022

https://doi.org/10.1093/nsr/nwac165
https://orcid.org/0000-0001-5666-9289
mailto:yfwang@ucas.ac.cn
https://creativecommons.org/licenses/by/4.0/


Natl Sci Rev, 2022, Vol. 9, nwac165

a b

Bi
od

ive
rsi

ty 
/ p

ro
du

cti
vit

y

Resource diversity

Biodiversity
Productivity

Competitive strategy

Facilitative strategy

Bi
od

ive
rsi

ty

Low
resource

Medium
resource

High
resource

Productivity

Figure 1. Outline of the RD hypothesis. (a) Theoretical effect of RD on productivity and biodiversity. A plateauing trend
is assumed for both plant diversity and productivity, whereas the peak of diversity appears earlier than productivity.
(b) Theoretical relationships between plant diversity and productivity along the resource gradient; dashed lines represent
uncertain relationships. In low-resource habitats, both biotic (plant strategies) and abiotic resource effects lead to a pos-
itive productivity–biodiversity relationship. In medium-resource habitats, the biotic effect is neutral or inconsistent, and a
weak positive productivity–biodiversity relationship may exist due to the abiotic resource effects. In high-resource habitats,
biotic and abiotic resource effects lead to opposing relationships, resulting in either a plateauing or a negative productivity–
biodiversity relationship depending on the relative effect size between the interspecific competition and the resource effect.

soil fertility [19–22]. However, soil nutrients can
also be important at smaller scales [23]. Thus, con-
troversial results of resource effects on plant com-
munities are expected, as the resources investigated
in each study are not always the same. For instance,
elevated precipitation can increase plant diversity
within certain boundary conditions [12,24], while
increasing soil nutrient abundance usually decreases
plant diversity [11,23,25].The types of nutrient limi-
tations may also affect the productivity–biodiversity
relationship [26], and therefore, focusing on a sin-
gle resource gradient might be insufficient to ex-
plore the effects of resources on plant communities.
Moreover, plant communities are shaped by multi-
ple resource limitations [10,23,27–29]. Co-limiting
resources may behave as a single collective index
[27], as a smooth transition from one type of limita-
tion to another is assumed [28].Therefore, an index
that captures the multidimensionality of resources,
the analogy to multifunctionality [30] and multi-
diversity indices [31], may help to reveal patterns
and processes linking productivity and biodiversity
across habitats or ecosystems, especially at large spa-
tial scales (i.e. regional scales).

The multidimensionality of resources should
contain two aspects: the average abundance of each
resource (similar to plant species richness (SR))
and the evenness among them (similar to plant
evenness) [32]. In contrast to plant SR, resource
richness (RR) is not the total number of all necessary
resources, but the overall quantity of the important
resources, since most plant species have similar re-
source demands [33]. However, plant communities
may not benefit from the high average abundance
of each resource that is enhanced by only a few

resources, while other resources become limiting
factors. Thus, the evenness among the abundance
of all resources (resource evenness (RE)) is also
important to reduce the potential overestimation
of resource abundance that may result from using
RR alone. RE represents the ratio of all essential re-
sources in a given habitat and is highest when a plant
community is simultaneously limited by all essential
resources. The ecological meaning of RE is likely an
expression of the resource-related niche dimension-
ality [23,34,35].Therefore, themultidimensional re-
source abundance should integrate both the average
abundance of all resources and the evenness among
them, which can be used to quantify how many re-
sources a habitat can provide for plant communities.
As such, high resource abundance signifies that all
essential resources at a given habitat are abundant,
while low resource abundance signifies that all
essential resources are extremely low at a given
habitat; and in between are habitats with moderate
abundances of all resources, or habitats with low
abundances formost resources but high abundances
for a few others (unevenness or resource inequity).

Based on the multidimensional resource gra-
dient, this study aims to clarify the various effects
of resources on the interactions between produc-
tivity and biodiversity. Resources can affect the
productivity–biodiversity relationship through two
pathways: one is a direct effect on productivity
and biodiversity, while the other is through their
influence on plant–plant interactions (Fig. 1a). In
low-resource habitats (i.e. desert grassland), high
stress levels limit the number of species that can sur-
vive [2].Therefore, increasing resourcesmay ormay
not increase plant diversity, but will likely increase
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plant productivity, as the species surviving such con-
ditions can efficiently utilize the elevated resources
[36,37]. As a result, in such low-resource habitats,
a positive productivity–biodiversity relationship is
expected due to (i) complementary effects of co-
existing plant species under stressful environments
[13,38]; (ii) increased productivity that enhances
biodiversity from a probability point of view [39–
41]; or (iii) a synergy of both. In medium-resource
habitats (i.e. steppes), the increasing trend of plant
diversity along the resource gradient graduallyweak-
ens as plant–plant interactions start to change from
facilitative to competitive [13,38,42].Neither the fa-
cilitative nor the competitive strategymay dominate
during this transition, probably leading to low domi-
nance of plant communities andmore opportunities
for plants with a ruderal strategy [43]. Therefore,
the biotic drivers of the productivity–biodiversity
relationship should be less pronounced, while a
resource-imposed positive relationship may still
exist, if resources increase both productivity and bio-
diversity. In high-resource habitats (i.e. meadows),
both interspecific competition [44] and negative
soil feedback effects [45,46] are strong, which could
lead to negative productivity–biodiversity relation-
ships [13,44,47,48]. Meanwhile, the response of
productivity and biodiversity to increasing resource
abundance could be asynchronous due to different
limitations beyond resources. For instance, plant
diversity might eventually be limited by the local
species pool [49,50], whereas productivity could
be limited by light [51] or temperature [17].
These uncertain direct resource effects (e.g. when
resource abundance ceases to increase productiv-
ity/biodiversity, or both) are probably the reason
why the shape of the productivity–biodiversity
relationship varies at large scales. For example, if
both productivity and biodiversity stop increasing
at the high-resource end of the gradient as resource
abundance increases, a unimodal relationship
is expected, as plant–plant interactions change
from facilitative to competitive; however, if they
keep increasing along the resource gradient, the
resource effects will impose a positive productivity–
biodiversity relationship that could override the
negative one derived from plant–plant interactions
at the high-resource end, leading to a plateauing
relationship (Fig. 1b). Decomposing the resource
effects is therefore important for understanding
why the shape of the productivity–biodiversity
relationship varies at large scales.This is of particular
significance under global environmental change, for
example, increased nitrogen deposition [52].

Integrating all these concepts, we used data from
a national survey of 97 natural grasslands across
Chinese grasslands (Fig. S1) to test the following

hypotheses: (i) the shape of the productivity–
biodiversity relationship varies at different levels of
resource abundance; and (ii) when we control for
the direct resource effect on plant productivity and
biodiversity, the productivity–biodiversity relation-
ship should be unimodal across different levels of
resource abundance at the large scale.

RESULTS
To test our hypotheses, we first computed the re-
source diversity (RD) index to represent resource
abundance gradients, and tested their correlations
with above-ground live biomass (AGB) and SR
across different grassland types. Then, we explored
how AGB and SR change along the computed RD
gradient via the decoupling index and coupling
degree. As their changes were found to be asyn-
chronous, we conducted further analyses to com-
pare the field-observed AGB–SR relationships and
the partial AGB–SR relationships, by excluding re-
source effects in different resource scenarios. Inte-
grating all these results, we investigatedhow the rela-
tionship between AGB and SR depends on resource
abundance. Moreover, changes in plant commu-
nity composition and phylogenetic diversity along
the RD gradient were also analyzed to provide po-
tential explanations for changing AGB–SR relation-
ships. More information regarding the analyses can
be found in theMethods section.

Resource diversity across Chinese
grasslands
Mean annual precipitation (MAP; referring to wa-
ter), total organic carbon (TOC), total nitrogen
(TN) and total phosphorus (TP) were used to gen-
erate the RD index (see the Methods section for
detailed explanations; results using total or avail-
able nutrients are also compared later in this sec-
tion). Generally, RR, RE and RD increased from
desert to steppe to meadow (Fig. S2a; significant
comparisons were marked at p < 0.05), while AGB
and SR also exhibited a similar increasing trend
(Fig. S2b).

Our results suggested that RD is a better predic-
tor of both AGB and SR than individual resources.
Among all 97 grasslands, RD explained a propor-
tion of variation in both AGB and SR compara-
ble to a multiple regression using all four resources
(R2 = 0.30 vs. 0.37 for AGB, R2 = 0.31 vs. 0.39
for SR). Moreover, while the correlation between
individual resources and AGB or SR varies among
different grassland types (e.g. TN had the strongest
correlation with SR in meadows, whereas MAP was
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Table 1. Pearson correlation matrix between AGB/SR and each resource abundance index.

AGBa MATb MAPc TOCd TNe TPf NH4-Ng NO3-Nh APi RRj REk RDl

Meadow − 0.22 0.80∗∗ 0.79∗∗ 0.64∗∗ 0.4 0.77∗∗ 0.29 0.73∗∗ 0.76∗∗ − 0.22 0.79∗∗

Steppe 0.05 0.31∗ 0.29∗ 0.26∗ 0.25∗ 0.29∗ 0.32∗∗ 0.29∗ 0.31∗ 0.2 0.34∗∗

Desert grassland 0.41 0.51 0.69 − 0.24 0.23 − 0.03 − 0.26 0.43 0.56∗ 0.17 0.52
Overall − 0.01 0.53∗∗ 0.54∗∗ 0.47∗∗ 0.34∗∗ 0.52∗∗ 0.35∗∗ 0.43∗∗ 0.55∗∗ 0.18 0.56∗∗

SRm MAT MAP TOC TN TP NH4-N NO3-N AP RR RE RD
Meadow 0.24 0.37 0.50∗ 0.58∗ 0.36 0.38 − 0.31 0.25 0.51∗ − 0.22 0.53∗

Steppe 0.31∗∗ 0.46∗∗ 0.50∗∗ 0.51∗∗ 0.19 0.07 − 0.26∗ − 0.09 0.47∗∗ 0.33∗∗ 0.50∗∗

Desert grassland 0.66∗ 0.73∗∗ 0.13 0.1 0.05 0.25 − 0.26 0.09 0.65∗ 0.27 0.63∗

Overall 0.30∗∗ 0.55∗∗ 0.48∗∗ 0.55∗∗ 0.28∗∗ 0.23∗ − 0.11 0.05 0.48∗∗ 0.36∗∗ 0.56∗∗

aAGB, above-ground biomass. bMAT, annual mean temperature. cMAP, annual mean precipitation. dTOC, total organic carbon. eTN, total nitrogen.
fTP, total phosphorus. gNH4-N, ammonium nitrogen. hNO3-N, nitrate-nitrogen. iAP, plant-available phosphorus. jRR, resource richness. kRE, resource
evenness. lRD, resource diversity. mSR, species richness. ∗ , p< 0.05; ∗∗ , p< 0.01.

more influential onSR indesert grasslands;Table1),
the correlations between RD and AGB or SR were
at least comparable, if not higher, in most grassland
types (mostly no less than 10%of the correlation co-
efficient; Table 1 and S1). For instance, RD showed
strong and consistent correlation with SR in both
temperate and alpine grasslands (r= 0.62, p< 0.01
for both; Table S1), while it had the strongest cor-
relation with AGB in alpine grasslands (r = 0.81,
p< 0.01; Table S1).

Regarding the two aspects of RD, RR was posi-
tively correlated with both AGB and SR, regardless
of grassland types; while RE was only significantly
positively correlatedwithSR in steppes andacross all
grasslands (Table 1). Inmost cases, RDhad a higher
correlation coefficient with both AGB and SR than
RR (Table 1). Moreover, our results suggested that
in habitats with similar RR, the SR of habitats with
lower RE was significantly lower than that of habi-
tats with higher RE, while the AGB is similar. For
instance, seven sites in our study had higher TP but
lowerMAP,TOCandTN, comparedwith themean
values for all 97 grasslands.Comparedwith the other
25 sites with similar RR (0.098 ± 0.012 for the 7
sites vs. 0.104 ± 0.005 for the 25 sites, F = 0.27,
p = 0.61) and much higher RE (0.670 ± 0.013 vs.
0.853 ± 0.012, F = 59.34, p < 0.001), the former
had a significantly lower SR (8.43± 1.36 vs. 13.84±
0.84, F = 9.55, p < 0.01) and a slightly but non-
significantly lower AGB (40.18± 15.19 vs. 48.38±
9.16, F= 0.18, p= 0.67).

We further compared the regression results for
AGB and SR when using total or available nutrients.
Available nutrients (ammonium, nitrate and plant-
available phosphorus) were generally slightly less
correlated with AGB compared with total nutrients
(TOC,TNandTP),while they had almost no corre-
lationswithSR(Table1).Thecorrelation coefficient
between SR and RD calculated from total nutrients
was twice as high as calculated from available nutri-

ents (r = 0.56 vs. 0.27, p < 0.001 for both), while
similar correlations were found between AGB and
RDusing either total or available nutrients (r= 0.56
for total nutrients vs. 0.67 for available nutrients,
p < 0.001 for both). Nevertheless, ammonium and
plant-available phosphorus were significantly corre-
lated with RD calculated from total nutrients across
all grasslands (r = 0.64, p < 0.001, for ammonium;
r= 0.46, p< 0.001, for plant-available phosphorus;
Table S2).

Changing AGB and SR along
the RD gradient
We first tested how AGB and SR change along the
computed RD gradient. Although both increased
along the RD gradient (Fig. 2a), a plateauing rela-
tionship was found between RD and SR based on
model comparisons (Table S3; R2 = 0.33 vs. 0.31,
Akaike Information Criteria (AIC) = 300.58 vs.
304.28 for the logistic and linear relationships, re-
spectively). The decoupling changes of AGB and
SR along the RD gradient were solved by using the
derivative and decoupling index of the best-fitted
functions. These results further supported that SR
first increases with RD, peaking atmedium-resource
sites, and then gradually flattens (Fig. 2b). The de-
coupling index also revealed a decoupling of the re-
lationship between AGB and SR along the RD gra-
dient (Fig. 2c).The tipping point where RD became
more influential on AGB than SR occurred at the
intermediate resource level (RD = 0.25, which was
slightly lower than its median of 0.28).

Plant AGB–SR relationships
at and across different levels of RD
Inconsistent plant AGB–SR relationships were re-
vealed across different levels of RD (see Methods
section for details on grouping and sensitivity test).
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Figure 2. Changing effects of RD on productivity and SR. (a) Non-linear relationship between RD and productivity or SR. (b) The derivative of the
two fitted functions for productivity and SR. Colored shading represents the RD range in terms of mean ± standard error (SE) of each grassland type
(yellow, green and red stand for desert, steppe and meadow, respectively). (c) Decoupling of the relationship between productivity and SR along the RD
gradient. The decoupling index above or below 1 indicates a relatively stronger resource effect on SR or productivity, respectively. Gray dots represent
the calculated decoupling index, while the red line stands for the quadratic regression. The tipping point is marked as a red pentagram.

Generally, as RD increased, the AGB–SR relation-
ship gradually changed from positive to negative,
and only low-resource groups exhibited significant
relationships (both positive; Fig. 3a). By incorporat-
ingmore grasslandswithhigherRD into the groupof
grasslands with the lowest RD, a unimodal relation-
shipwas observed across siteswith relatively low and
medium resources,while such a positive relationship
faded away as more high-resource grasslands were
included (Fig. 3b). Nevertheless, a significant but
weak linear relationship was detected with all data
(R2 = 0.05, p< 0.05).

Overall, RD had a comparable positive partial
effect on both AGB (excluding effects of SR) and
SR (excluding effects of AGB) across the studied
Chinese grasslands (standard regression coeffi-
cient = 0.60 vs. 0.61; Fig. 4a and b). Partial effects
of RD on SR were positive across different resource

levels, with most having confidence intervals above
or slightly below zero (exceptions found at 60%–
80% level; Fig. 4b); however, the partial effects
of RD on AGB were only significantly positive at
20%–40% and 80%–100% levels (Fig. 4a). Notably,
the partial resource effect size on AGB and SR was
similar at the high RD level (80%–100%) (standard
regression coefficient = 0.57 vs. 0.49). As RD in-
creased, the AGB–SR relationship was significantly
positive across all grasslands and was gradually
changing from significantly positive to neutral
to non-significantly negative (Fig. 4c). However,
by excluding RD effects, changing relationships
from significant positive (0%–20%) to negative
(80%–100%) were found, resulting in an overall
non-significant negative relationship across all sites
(Fig. 4d). These partial relationships were obtained
from multiple regression analysis using RD and
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Figure 3. Plant productivity–richness (P–R) relationships at and across different levels of RD. (a) P–R relationships at different
levels of RD. (b) P–R relationships from the least 20%, least 40%, 60%, 80%, to all (100%).
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Figure 4. Estimated relationships among RD, plant productivity and SR across different
levels of RD. (a) Partial resource effects on productivity excluding SR effects. (b) Partial
resource effects on SR excluding productivity effects. (c) Observed P–R relationships.
(d) Partial P–R relationships excluding resource effects. Dots represent the mean value
of themodel predictors (slope for sub-plots a–c; standard regression coefficient for sub-
plot d), while error bars represent 95% confidence intervals. Results are considered
significant if error bars do not overlap with zero and are colored red.

AGB to predict SR. However, such patterns were
not detected across different levels of AGB(Fig. S3).
Together with the decreasing coupling degree be-
tween AGB and SR (p < 0.05; Fig. S4), our results
showed that as RD increased, the AGB–SR relation-
ship gradually changed from significantly positive
to neutral and then to significantly negative, which
resembles the pattern of the unimodal relationship.

In addition to the analyses based on predefined
resource groups, a moving windowmethod was also
used to gradually detect the changing partial re-
lationship between AGB and SR by excluding re-
source effects. Our results suggested that the par-
tial AGB–SR relationship gradually changed from
positive to negative along the RD gradient (Fig. 5).
Furthermore, a significant positive partial effect of
AGB on SR was found for the lowest 20% to 60%
of sites sorted by RD, whereas a significant nega-
tive effect existed in the highest 20% to 50% of sites
(Table S4). Overall, the strength of both positive
and negative relationships decreased from the low-
est/highest RD to the intermediate level, and finally

became non-significant, which reinforces the above
results of a unimodal AGB–SR relationship. More-
over, the changing AGB–SR relationship from pos-
itive to negative was generally found along different
resource gradients (e.g. TOC, TN, TP, ammonium
andnitrate; Fig. S5),while collectively, the trendwas
quite clear and robust along the RD gradient.

Plant community change along the RD
gradient
Plant community composition in terms of the four
functional groups varied at different levels of RD
(stress = 0.1164, R2 = 0.13, p < 0.01; Fig. S6a).
The R2 group (RD ranging from 0.21 to 0.25), in
which the tipping point of the changing resource
effects between AGB and SR was found, had the
highest proportion of ruderals (Fig. S6b and c),
which was a different community composition char-
acter compared with other groups (p = 0.047 vs.
R3; p < 0.01 for others; Fig. S6a). Plant commu-
nity composition also differed between the lowest-
and highest-resource groups (R1 vs. R5, p = 0.057;
Fig. S6a), where R1 had a significantly higher
proportion of shrubs and higher Simpson’s dom-
inance than R5 (p < 0.05 for shrubs; p < 0.01
for Simpson’s dominance; Fig. S6c). No signif-
icant differences were found for other pairwise
comparisons (p > 0.1). In general, plant commu-
nity composition changed from being character-
ized by shrubs, to more ruderals, to more peren-
nial herbs with increasing RD, although the rela-
tive abundance of perennial grasses and forbs was
not significantly higher in the relatively low-resource
groups (R4 and R5 in Fig. S6c). Moreover, Simp-
son’s dominance decreased along the RD gradi-
ent (R2 = 0.19, p < 0.001; Fig. S6b), while a
quadratic relationship was revealed between RD
and phylogenetic diversity (R2 = 0.28, p < 0.001;
Fig. S7).

DISCUSSION
This study shows that, as a single collective index,RD
allows for effective and ecologically relevant inte-
gration of plant-essential resources. By representing
the multidimensional resource gradient with RD,
we are able to explain how resource effects alter the
field-observed plant productivity–biodiversity rela-
tionship under different resource scenarios. These
results mark a major advance towards reconciling
the long-standing debate about the shape of the
productivity–biodiversity relationship by revealing
its dependence on multidimensional resource
gradients.
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Figure 5. Relationships between the partial correlation coefficient and the corresponding moving average of RD. (a) Using 10 adjacent sites; (b) using
15 adjacent sites; (c) using 20 adjacent sites. For instance, the 10 adjacent sites refer to the 1 to 10, 11 to 20, etc., and 88 to 97 sites along the RD
gradient.

Based on well-established evidence that grass-
land productivity is limited by multiple resources
[10,23], we expected to find that productivity in-
creases with RD in this study. However, to the best
of our knowledge, the synergetic effects of water
and nutrients on biodiversity have not been previ-
ously reported in a single large-scale comparative
field study, although biodiversity has been shown
to decrease with increasing nutrient abundance in
experimental communities [23,25] and to increase
with increasing water availability in both experi-
mental and field studies [12,24]. Our study indi-
cates that biodiversity shows a plateauing function
in response to RD. This finding is inconsistent with
many field studies using biomass to represent a re-
source gradient, which concluded that biodiversity
peaks at medium levels of RD [13,44,47]. There-
fore, the inconsistent resource effects on productiv-
ity andbiodiversity and their potential ecological im-
plications are widely overlooked by using a biomass
gradient only. By adopting a multidimensional re-
source gradient, it is found that the relationship be-
tween productivity and biodiversity is decoupled at
medium levels of RD. Productivity exhibits a faster-
increasing trend than biodiversity after crossing this
threshold, which can be ascribed to the changing
plant strategy from colonization/stress-tolerant at
low resource levels where facilitative interactions are
important, to competition at high resource levels
where biodiversity effects may be less pronounced
[13,42].Thequadratic relationship betweenRDand
phylogenetic diversity further reinforces this shift
as ecological forces change from habitat filtering to
competitive exclusion [53,54]. Thus, the observed
relationship between RD and biodiversity may be
the result of a three-way interaction: resources
increase both productivity and biodiversity, and

increased productivity in turn gradually reduces bio-
diversity as a result of competitive exclusion [44].
Based on these insights, four types of relationships
are therefore expected along the multidimensional
resource gradient: (i) a positive relationship from re-
source effects only (mostly at low resource levels);
(ii) a plateauing or (iii) a unimodal relationship de-
pending on the relative intensity between the posi-
tive resource effects and the negative competitive ex-
clusion effect; and (iv) a negative relationship due
to competitive exclusion (mostly at high resource
levels).

At low resource levels, our results showed that
resources increase both productivity and biodi-
versity, causing a positive relationship between
them. Meanwhile, the increase in productivity and
biodiversity is expected to reinforce the increase
in both [13,38,40,55]. We thus assume that the
strong positive relationship between productivity
and biodiversity found in this study results from a
combination of these positive relationships. On
the other hand, an imposed positive productivity–
biodiversity relationship by resources is also re-
vealed at high resource levels, whereas the pres-
ence of a negative relationship is probably due to
the strong interspecific competition at high pro-
ductivity [44]. As a result of the opposing ef-
fects of the imposed positive relationship and the
biotic-induced negative relationship, no significant
productivity–biodiversity relationship was found at
high resource levels. However, no significant re-
source effects were found on either productivity or
biodiversity at medium resource levels, or on the
productivity–biodiversity relationship, leading to a
non-significant observed relationship. A similar re-
sult was also reported by using a plant biomass
gradient, with a much weaker relationship in the
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medium-biomass group compared with the low-
and high-biomass groups [13]. When removing
the resource effects, the changing productivity–
biodiversity relationship along the RD gradient can
be ascribed to shifting plant strategies as discussed
above. However, our results reveal a transition of
plant–plant interactions from low- to high-resource
habitats, which is an extension of the transition
from colonization (or stress-tolerant) to compet-
itive strategy [42] by involving the ruderal strat-
egy [43] in between. At medium resource levels,
plant communities showed a higher dominance of
a ruderal strategy. We thus speculate that no clear
productivity–biodiversity relationship is observed at
medium resource levels, because the populations
of ruderal species are highly dynamic [43]. Taken
together, studies with lower variability in RD are
supposed to exhibit three types of productivity–
biodiversity relationships: (i) a positive relationship
in the low-resource scenario; (ii) no relationship in
the medium-resource scenario; (iii) no relationship
or a negative relationship in the high-resource sce-
nario.

As for large-scale studies with broader levels
of RD, unimodal relationships (also including
quadratic and plateauing relationships) are more
likely to occur, which is considered as an accumu-
lation of many linear relationships from different
habitats [47]. By removing the resource effects, our
results revealed a gradually changing productivity–
biodiversity relationship from significantly positive
to significantly negative from low- to high-resource
habitats, which is in line with the stress-gradient hy-
pothesis [13,56,57], suggesting a standard unimodal
relationship along the resource gradient. However, a
linear rather than unimodal relationship is observed
at the national scale, as the resource-induced pos-
itive productivity–biodiversity relationship masked
the negative relationship arising from interspecific
competitions in high-resource habitats. Therefore,
the previous debates over the shape of this rela-
tionship at large scales [5–8] probably stem from
two resource-related aspects. Firstly, the classical
explanation (competition exclusion) for the hump-
back model is originally based on the environment
stress gradient rather than the productivity gradient
[44]. For the unimodal productivity–biodiversity
relationship, it is assumed that the productivity
gradient could represent a stress gradient. This
assumption might be true when a large number of
samples are collected with a wide range of produc-
tivity levels, as was done inHerbDivNet [2], while it
may not be the case in large-scale surveys with fewer
quadrats at one site (as in our study). Therefore,
the mostly unexplored relationship between the
productivity gradient and environmental gradient

(e.g. in terms of RD) is very likely to lead to in-
consistencies among large-scale studies. Secondly,
even if the two gradients are well-matched, the
effects of multidimensional resource abundance can
conceal the productivity–biodiversity relationship
that arises from biotic interactions. By integrating
all these concepts, our results demonstrate that a
unimodal relationship theoretically exists. Future
studies should experimentally explore the relative
dominance of different mechanisms that contribute
to productivity–biodiversity relationships. For
instance, globally distributed coordinated experi-
ments likeNutrientNetwork (NutNet) arepowerful
and promising initiatives to explore the generality
as well as context-dependencies of ecological
relationships [58].

Finally, this study aims at revealing the resource
effects on the productivity–biodiversity relationship
rather than on productivity or biodiversity respec-
tively. RD was calculated fromMAP and total nutri-
ents, which are the most influential and frequently
measured resources in the field. We did not involve
inorganic nutrients due to two reasons: (i) they are
generally slightly less correlated with productivity
compared with total nutrients, and are poorly cor-
related with biodiversity, probably because of their
pronounced temporal dynamics [32]; (ii) they are
often correlated with total nutrients, especially with
TOC.Generally, RDcouldwell represent the overall
effects of all selected essential resources in studying
how multidimensional resource abundance affects
grassland productivity and biodiversity, regardless
of which resource is more important across different
habitats. Moreover, the RD could help to reveal the
hidden effects of resources on a plant community.
For instance, in this study, no significant relationship
is found between each resource and productivity
in desert grassland, whereas a significantly positive
resource effect on productivity is revealed by using
RR, an essential aspect of RD. Moreover, consistent
with our hypothesis, RE per se is only associated
with biodiversity, which might be ascribed to the
niche dimension hypothesis that a more balanced
nutrient supply can increase the number of re-
source dimensions and benefit species coexistence
[23,34,35]. Our results reinforce such ideas by
proving that one extremely abundant resource is
probably only beneficial to a few species andnot oth-
ers, as resource-uneven habitats have much lower
biodiversity (habitats with high resource inequity)
than those habitats with similar RR butmuch higher
RE (habitats with high resource equity). Therefore,
RE shows potential as a promising measurement
of the resource dimension in field studies. Taken
together, the RD index has two advantages over a
single resource dimension or principal component
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analysis (PCA) in large-scale studies of resource
effects on productivity–biodiversity relationships.
First, it captures well the resource effects, although
the relative contribution of different resources al-
ways changes in large-scale studies due to changing
types of resource limitations [26], in which case
considering a single resource might only lead to
inaccurate conclusions. Second, it considers the
evenness among resources, an important factor
for plant SR, which is neglected in other methods
such as the PCA. Nevertheless, we are aware that
the selection of resources in computing RD may
depend on the targeted ecosystem properties (e.g.
plant or microbial biodiversity), which should be
carefully considered in the application of this index.

CONCLUSIONS
By establishing RD as an innovative collective in-
dex, the present study is able to isolate the bioti-
cally induced productivity–biodiversity relationship
by excluding the direct effects of resources on plant
communities.Our results indicate that previous con-
troversy may be partly due to neglecting the sepa-
ration of resource gradients from productivity gra-
dients at large scales, thus providing new insights
into the long-standing debate over productivity–
biodiversity relationships. Yet, environmental vari-
ables other than resources (e.g. soil pH) might af-
fect productivity–biodiversity relationships through
their direct influences on productivity and biodiver-
sity or their control over the resource availability,
which warrants further studies. Overall, the present
study suggests that it is important to consider both
the resource effects on plant productivity and biodi-
versity, as well as changing plant–plant interactions
alongmultidimensional resource gradients, to better
understand plant community dynamics in a chang-
ing world.

METHODS
Study area
Being part of the Eurasian steppe, Chinese grass-
lands were chosen for our study as they cover a
wide range of climatic conditions and soil types, as
well as diverse grassland ecosystems. Therefore, it
is an ideal region for exploring the resource effects
on productivity–biodiversity relationships. Our
sampling sites stretched all over Chinese grasslands,
from the eastern Mongolian Plateau to the western
Tibetan Plateau. In total, we collected data from 97
sampling sites (i.e. 14 desert grasslands, 37 temper-
ate steppes, 30 alpine steppes and 16 meadows),

including soil properties (TOC, TN, TP and in-
organic nutrients), plant community composition,
and plant SR and AGB at peak biomass (Fig. S1).
Generally, the larger the distribution area of a given
grassland type is [59], the more sampling sites
were included. Based on data from 1980 to 2014
from China Meteorological Data Service Center
(http://data.cma.cn/en), the mean annual temper-
ature (MAT) andMAP for desert, temperate steppe,
alpine steppe and meadow are 0.86◦C/216.70 mm,
2.60◦C/311.79 mm, −1.97◦C/282.32 mm and
0.63◦C/393.60 mm, respectively (Table S5). Tem-
perate and alpine steppes share similar resource
conditions (Table S5); therefore, desert, steppe and
meadow are roughly considered as low-, medium-
and high-resource habitats, respectively. However,
as multidimensional resource abundances can
largely vary even within the same grassland type, our
analyses are based on the calculated RD gradient
rather than grassland types.

Field sampling and measurements
All sampling sites are tens of kilometers apart. Previ-
ous studies suggested that the studied grasslands are
highly spatially heterogeneous—the spatial autocor-
relation in soils and plant communities usually ex-
ists within a few meters [60]. Therefore, these sites
are considered to be independent of each other. At
each sampling site, a 10m× 10m sampling plot was
established at a relatively homogeneous area with-
out anthropogenic disturbances such as grazing in
the sampling year, and was at least 500 m away from
highways to exclude potential disturbances caused
by traffic [61]. Five quadrats (1 m × 1 m for desert
and steppe; 0.5 m × 0.5 m for meadow) were se-
lected and investigated in the center and at the four
corners of a 10 m × 10 m sampling plot [62,63].
Species that were not found in all five quadrats but
existed in the 10 m × 10 m sampling plot were also
recorded for further analyses. Above-ground vegeta-
tion was cut to the ground and sorted to species at
peak biomass, oven-dried at 65oC for 72 h, and then
weighed for dry biomass assessments. Topsoil sam-
ples (0–5 cm from the surface) were collected with
a 7 cm auger in each quadrat after removing stones,
roots and micro-arthropods by sieving (at 2 mm),
then sealed in plastic bags and stored at −20oC un-
til further analysis. We used SR at a site (the total
number of species existing in the 10 m× 10m plot)
to characterize biodiversity, and the AGB per square
meter from all five quadrats to represent produc-
tivity. Thus, we used the AGB–SR relationship for
the study of the grassland productivity–biodiversity
relationship.
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Soil TOC was measured by a TOC Analyzer
(LiquiTOCII; ElementarAnalysensystemeGmbH,
Hanau, Germany). Soil TN was measured on an
auto-analyzer (SEAL Analytical GmbH, Norderst-
edt, Germany) using the Kjeldahl method [64]. Soil
TP was measured after wet digestion with H2SO4
and HClO4 by a Ultraviolet–visible spectropho-
tometer (UV2700, SHIMADZU, Japan). Ammo-
nium and nitrate nitrogen were extracted with 2 M
KClwhile plant-availableOlsenPwas extractedwith
0.5MNaHCO3, then measured by the colorimetric
method with a Smart Chem 200Discrete Auto Ana-
lyzer (AMS, Italy). Site averages of all corresponding
data collected from five quadrats were used for fur-
ther statistical analyses (i.e. the relative abundance
of each plant species, AGB and soil nutrients).

RD gradient
We used an index called ‘resource diversity’ to rep-
resent the multidimensional resource gradient in
grasslands based on Liu et al. [32]. Water (repre-
sented using MAP) and three main macronutrients
(TOC for carbon, TN for nitrogen and TP for phos-
phorus) were used to compute RD due to their well-
known role in driving biodiversity and productivity
[65–68]. TOCwas selected because many soil inor-
ganic nutrients, such as inorganic P, Cu, Zn, Fe and
Mn, are strongly associated with it [67,69]. These
macronutrients represent the soil fertility at a site,
which is consistent with our idea to create a multidi-
mensional resource abundance gradient. MAT was
not used, because it is not a resource that plants can
utilize directly. Furthermore, we used MAP and in-
organic nutrients (i.e. ammonium, nitrate nitrogen
andplant-availableOlsenP) to compute anotherRD
index and then compared its correlations with AGB
and SR with the former index using macronutrients.

Resourcediversitywas calculatedbasedonan im-
proved radar chartmethod [32] (Fig. S8).However,
a minor modification to the standardized method
had been made. Briefly, the relative abundances of
each essential resource across all sampling sites were
calculated by the Z-score method and all converted
to positive values by adding 2 (the smallest inte-
ger). At each sampling site, the standardized rela-
tive abundance of each essential resource was used
as the radius of one sector, together, building up a
radar chart with four sectors (Fig. S8). RR and RE
at a given locationwere then computed based on the
total area (S) and the perimeter (L) of all sectors fol-
lowing Liu et al. [32]:

Si =
n∑

j=1

S j =
n∑

j=1

πr 2j j = 1, 2, . . . , n

(1)

Li =
n∑

j=1

L j = 2 |rmax − rmin|

+
n∑

j=1

2πr j j = 1, 2, · · · , n (2)

RRi = Si /maxSi . (3)

REi = Si /
[
π(Li /2π)2

] = 4π Si /L2
i . (4)

Here, i stands for the different sites; n represents the
number of essential resources for plant communi-
ties, which is four in this study; rmax and rmin repre-
sent themaximumandminimumrelative abundance
of the four resources; and rj stands for the relative
abundance of the jth resource.

Generally, RR is defined as the average of the rel-
ative abundance of all selected essential resources.
It is normalized to 0–1 by being divided by its max
value across all sites. RE is the ratio between the total
area of the radar chart formed by all selected essen-
tial resources and the area of a circle with the same
perimeter (the evenest distribution of all selected
essential resources), which decreases as unevenness
among all selected essential resources increases. No-
tably, the doubled value of the difference between
rmax and rmin refers to the part of the perimeter other
than the total length of all arcs (the total length of all
lines between two adjacent arcs; Fig. S8).

RD was calculated as the geometric mean of RR
and RE, to reduce the potential overestimation of
resource availability by using RR alone. Weight for
different resources was not considered, because this
study aimed to investigate the effect of RD on the
AGB–SR relationship rather than AGB or SR it-
self. When focusing on AGB or SR themselves, the
weight can be set based on a variety of methods (e.g.
based on the ratios of coefficients in the multiple re-
gression models). However, as the relative effects of
each resource on AGB or SR are quite different (see
Results section for details), it is not suitable or even
possible to set the weight for the AGB–SR relation-
ship.

Based on thewide range of RD, all data were clas-
sified from low to high by RD and then divided into
five groups in a roughly equalmanner (19 for thefirst
four subgroups and 21 for the last one) to create re-
source levels ranging at the lowest 20%, 20%–40%,
40%–60%, 60%–80% and 80%–100%. We used five
groups instead of the three shown in Fig. 1 to assess
potential shifts in plant AGB–SR relationships along
the RD gradient. Nevertheless, to test the sensitiv-
ity of grouping on our results, we used more groups
starting from the lowest 20% sites, to the lowest 30%,
then to the lowest 40%, etc., andeventually to all sites
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to explore whether the positive AGB–SR relation-
ship widely exists in low-resource habitats and grad-
ually fades out along the RD gradient; conversely,
tests on whether the negative relationship widely ex-
ists in high-resource habitats were carried out from
the group of the highest 20% sites to all sites.

Additionally, the partial correlation coefficient
between AGB and SR (excluding the effect of RD)
was gradually calculated along the RD gradients via
a moving window method [48], providing com-
parable results of the changing AGB–SR relation-
ships that were not based on the predefined resource
groups. Similar to the moving average, we gradu-
ally calculated the partial correlation coefficient be-
tweenAGB and SRwithin the 10 to 20 adjacent sites
from the lowest RD to the highest RD, and plot-
ted them against the corresponding moving average
of RD. The relationships between the partial cor-
relation coefficient and the moving average of RD
were quite similar, independent of how many adja-
cent sites were used. Therefore, we only presented
results using 10, 15 and 20 adjacent sites.

Statistical analyses
The differences of RR, RE, RD, AGB and SR among
the four grassland types were analyzed by one-way
analysis of variance (ANOVA), and the statistical
significance between groups was based on p values
from the least significant differences (LSD) test. Lin-
ear regression was generally used in fitting the RD–
AGB and RD–SR relationships within each grass-
land type, whereas peak function (i.e. logistic) was
also used for the same variables but along the RD
gradient to test our hypothesis (Fig. 1). Linear,
quadratic and unimodal functions were fitted for
the AGB–SR relationships across different levels of
RD. Model comparisons were made based on the
explained variances and the significance of the cor-
responding coefficients (slope for linear regression,
quadratic term for quadratic regression and k for lo-
gistic regression). The observed AGB–SR relation-
ship within each resource subgroup was calculated
and presented by the slope of the corresponding lin-
ear regression. The partial effect size of RD on AGB
(excluding SR effects) and SR (excluding AGB ef-
fects), and the partial AGB–SR relationship (exclud-
ing resource effects) were calculated and presented
by the standard regression coefficient from multi-
ple regression. All statistical significances were set at
p < 0.05. All statistical tests above were performed
in SPSS v. 27 (IBMCorp., Armonk, NY, USA).

Coupling and decoupling degree
The derivative of fitted AGB–SR functions, decou-
pling index (DI) and coupling degree (CD) were

used to investigate the asynchronous change of AGB
and SR along the RD gradient. Coupling and decou-
pling describe the interactions among two or more
systems. They are originally used in physics, then
applied in studies of climate change and economy–
environment interactions [70]. The DI was calcu-
lated from the fitted function to investigate the
decoupling of the relationship between AGB and
SR along the RD gradient. DI refers to the ra-
tio of the changing rate per unit increasing RD
of the fitted S-shape functions for SR and AGB
(DI= �SRRD/�PRD). With the increase of RD, DI
is higher than 1 when the changing rate of SR is
higher than that of AGB, and it ranges from 0 to 1
when the situation reverses.

The method used in computing DI is based on
continuous functions of SR and AGB (fitted curve);
thus, the interactions among raw data cannot be ex-
plored. Therefore, the coupling degree was intro-
duced to study the coupling relationshipbetweenSR
and AGB with raw data. It was calculated following
Lu et al. [70]:

C = {S Ri × Pi /[(S Ri + Pi )/2]2}1/2, (5)

where C is the coupling degree between SR and
AGB, and SRi and Pi represent the pairwise values
of SR and AGB along the RD gradient, respectively.

Plant community composition
This part of analysis aims at providing evidence
for the assumed changing plant–plant interactions
along the RD gradient. No species-sorted biomass
data were available at six sampling sites, so 91 sites
were used for the analysis of plant community
composition. All plant species were sorted into four
functional groups, namely, perennial grasses, peren-
nial forbs, ruderals (annual and biennial grasses and
forbs) and shrubs. Then, the relative abundance
of each functional group at a site was calculated.
Based on Grime’s Three Primary Strategies [43],
perennial grasses and forbs are characterized by the
competitive strategy, ruderals represent the ruderal
strategy, and shrubs stand for the stress-tolerant
strategy as most shrubs in our study were Artemisia,
which is drought tolerant [71–73]. Therefore, the
present studywas able to explore the change in plant
strategy along the RD gradient. Only eight sites
have unidentified species, whose relative abundance
ranges from 0.002 to 0.079 with a mean value of
0.032. The non-metric multidimensional scale
analysis (NMDS) was performed to explore the
differences in the composition of the four functional
groups across different levels of RD.TheAdonis test
was used to reveal statistical significance. One-way
ANOVA with the Tukey Honestly Significant
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Difference (HSD) test was used to explore the dif-
ferences in the relative abundance of each functional
group and Simpson’s dominance across different
levels of RD. Data sets were transformed by using
square root before the ANOVA test. All related
analyses for plant community composition were
performed in R× 64 3.5.0 with the package of vegan
[74]. Additionally, phylogenetic diversity was also
calculated using Phylocom [75].

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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