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A B S T R A C T

Catch and distribution of tuna in the ocean are typically investigated with ocean basin-scale models. Due to
their large scale, such models must greatly simplify tuna behaviour occurring at a scale below ∼100 km, despite
interactions at this level potentially being important to both catch and distribution of tuna. For example, the
associative behaviour of tuna with man-made floating objects, that are deployed by fishers to improve their
catch rates (Fish Aggregating Devices; FADs), are usually ignored or simplified. Here we present a model that
can be used to investigate the influence of tuna dynamics below the ∼100 km scale on larger scales. It is an
Individual-Based Model (IBM) of a hypothetical, tuna-like species, that includes their interactions with each
other, free-floating FADs and prey. In this IBM, both tuna and FADs are represented by Lagrangian particles that
are advected by an ocean flow field, with tuna also exhibiting active swimming based on internal states such
as stomach fullness. We apply the IBM in multiple configurations of idealized flow and prey fields, alongside
differing interaction strengths between agents. When tuna swimming behaviour is influenced equally by prey
and FADs, we find that the model simulations compare well with observations at the ≲ 100 km scale. For
instance, compared to observations, tuna particles have a similar stomach fullness when associated or non-
associated to a FAD, tuna colonize at similar timescales at FADs after their deployment and tuna particles
exhibit similar variations in continuous residence times. However, we find large differences in emergent
dynamics such as residence and catch among different flow configurations, because the flow determines the
time scale at which tuna encounter FADs. These findings are discussed in the context of directing future
research, and an improved interpretation of tuna catch and other data for the sustainable management of
these economically important species.
1. Introduction

Tropical tuna species provide some of the largest catches of high-
trophic fish in the world, and as such the assessment and management
of the fisheries they support are critical to ensuring sustainable stocks,
food security, and livelihoods (Sharma et al., 2020; Langley et al.,
2009) (FAO SOFIA). In the case of tropical tunas, the use of drifting
Fish Aggregating Devices (FADs) by industrial purse seiner fisheries has
markedly changed the efficiency within fishing grounds (Maufroy et al.,
2017; Fonteneau et al., 2013). FADs are floating objects (i.e. drogued
buoys) that aggregate pelagic fish around them. Tens of thousands of
FADs are deployed in the equatorial regions of the world’s oceans annu-
ally (Escalle et al., 2021). They usually include a GPS tracking system
and generally an echo sounder to measure the biomass of surrounding
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fish. This increases the knowledge of where fish are most abundant.
Therefore, FADs act as a peculiar trait of a predator by attracting tuna
and other fish, where-after tuna are caught by purse seiners on or near
the FADs. While it remains unclear whether tuna species are directly or
indirectly attracted towards FADs (Castro et al., 2002), it is clear that
they impact tuna behaviour and distribution (Girard et al., 2004; Leroy
et al., 2013; Dagorn et al., 2000; Hallier and Gaertner, 2008; Moreno
et al., 2007).

To predict the distribution and abundance of tuna biomass in the
oceans, models are often used, typically integrating catch and other
fisheries data, and they are even coupled to ocean-biogeochemical
models in some cases (Lehodey et al., 2008; Hampton and Fournier,
2001; Fournier et al., 1998; Petrik et al., 2019; Kearney et al., 2021).
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These population dynamics models use density-dependent functions
as an abstraction of individual tuna behaviour, such as their forag-
ing behaviour (Lehodey et al., 2008; Petrik et al., 2019), predator–
prey equations, or trophic functions, that describe how the density
of multiple species grows or declines in relation to one predating
the other (Lotka, 1925; Volterra, 1926; Holling, 1959), or density-
dependent catchability, describing the relationship between the abun-
dance of a fish population and how easy it is to catch them for a given
effort (Arreguín-Sánchez, 1996).

Although FADs have a substantial impact on tuna behaviour, distri-
bution and catch (Leroy et al., 2013), most tuna distribution models do
not consider the direct interaction of tuna with FADs (Lehodey et al.,
2008; Hampton and Fournier, 2001; Fournier et al., 1998; Petrik et al.,
2019; Kearney et al., 2021). In contrast, these models simplify this
effect of FADs through separated fisheries with differing units of effort,
an assumed catchability and selectivity parameters. Moreover, these
assumptions cannot be tested due to a lack of observations at the sub-
grid scale of the tuna models (i.e. ≲ 100 km), at which FADs introduce
relevant dynamics for the distribution of tuna.

Observations of individual tuna (Pérez et al., 2020; Schaefer and
Fuller, 2010; Scutt Phillips et al., 2017; Robert et al., 2013) and
aggregated biomass (Baidai et al., 2018; Precioso et al., 2021; Lopez
et al., 2017) show variable patterns of colonization and residence
around FADs, and some of these dynamics have been replicated in
simulation experiments of individual-based models (Dagorn and Fréon,
1999; Dagorn et al., 2000), which can have included the interaction
between fish and FADs (Dagorn et al., 2000). In contrast to Eulerian
models (Lehodey et al., 2008; Hampton and Fournier, 2001; Fournier
et al., 1998; Petrik et al., 2019; Kearney et al., 2021), Individual-Based
Models (IBMs) allow for an individual-based quantification of tuna be-
haviour that can be compared to individual-based observed data (Scutt
Phillips et al., 2018). Although often computationally more expensive
compared to Eulerian models, IBMs provide a ‘bottom-up’ approach,
which implements the behaviour of individuals below the ∼100 km
scale to obtain a better understanding on the emergence of complex
predator–prey dynamics at large spatial scales (Grimm et al., 2005;
Grimm and Railsback, 2012). Furthermore, trophic functions have been
shown to emerge from individual predator–prey dynamics (Tyutyunov
et al., 2008; Arditi et al., 2001), and be responsible for complex and
chaotic behaviour when involving multiple groups (Castellanos and
Chan-López, 2017).

Recent development of particle–particle and particle–field interac-
tion functionalities in the Parcels Lagrangian framework (Kehl et al.,
2021) allows us to extend the approach of previous tropical tuna
IBMs (Dagorn and Fréon, 1999; Kirby et al., 2004; Scutt Phillips et al.,
2019), to include the interaction of tuna with prey, FADs and ocean
flow. Here we present a specific type of IBM, where the individual
represents a group of tuna organisms (Becher et al., 2014; Meyer et al.,
2017). The IBM considers those dynamics that impact the distribution
of tuna below the ≲ 100 km scale, and we apply the IBM in idealized
configurations. The IBM enables us to test whether these interactions
are relevant to explain specific observations that occur at this scale,
such as the colonization and residence times at FADs, and tuna stom-
ach fullness, and the extent to which their observed variability can
be caused by ocean flow, prey dynamics and fishing strategies. This
information could be used to improve population dynamics models
and the decisions that managers base on their simulations. We explore
potential mechanisms that lead to the simulated emergence of these
dynamics.

2. Methods

2.1. Biological assumptions

The temporal and spatial scales of observed tuna-FAD interactions
are typically days to weeks and sub ∼1◦ × 1◦, respectively (Robert
2
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et al., 2013; Cabral et al., 2014; Capello et al., 2012). It is there-
fore not necessary to include all dynamics that are relevant for the
distribution of tuna in the ocean-basin scale, but rather to capture
the local-scale interactions that may be responsible for the patterns
observed. To create a minimally-appropriate behavioural model for a
tuna-like species around floating objects, we have drawn on in-situ
observations and assumed that tuna are motivated by feeding and
avoiding predators (Stephens and Krebs, 1978).

Tropical tuna, at the size-classes that typically associate with FADs,
are a schooling and aggregating species (Leroy et al., 2013). Here
we consider only those species and size classes of tuna that interact
with FADs in the surface, epipelagic layer, and hence do not in-
clude their vertical behaviour. Schooling provides fitness benefits from
increased foraging success, genetic diversity and protection from preda-
tors (Pitcher, 2012). Rather than include schooling dynamics directly,
here we include attraction between tuna particles as a mechanism by
which aggregations of schools may form in the absence of other drivers.

Tuna foraging behaviour and its dependence on the temporal evo-
lution of their stomach fullness are complex (Dagorn et al., 2000).
However, alongside survival and reproduction, feeding is a fundamen-
tal driver of animal movement (Viswanathan et al., 2011), potentially
impacting tuna-FAD dynamics at the school level (Leroy et al., 2013),
and so simple foraging and hunger-driven mechanisms are included
in our model. For foraging, we assume that tuna are attracted by
the presence of their prey, following local gradients of prey den-
sity (Scutt Phillips et al., 2018; Okubo and Levin, 2001). Prey are
consumed by tuna, allowing density-dependent feedback mechanisms.
Every tuna particle has a stomach fullness, which represents the aver-
age stomach fullness of the tuna organisms that a particle represents.
We assume that tuna particles forage when their stomach fullness is
less than approximately 40%. Their stomach fills with a linear rate
of 1

2h−1 if food is available and their linear gastric evacuation rate is
1
12h−1, which broadly matches controlled experiments on tropical tuna
species (Magnuson and Magnuson, 1969; Brill, 1996).

Likewise, tuna association near any type of object is complex and
their mechanisms have so far remained unclear (Leroy et al., 2013).
However, empirical indications exist that FADs attract tuna particles
when their distance is below ∼10 km (Moreno et al., 2007; Girard et al.,
2004). Therefore, we simplify and base the attraction of our tuna to
FADs on this value. Moreover, we neglect the potential association of
tuna with swimming objects (Edwards, 1992).

Apart from prey, the model presented in this paper does not include
the effect of abiotic habitat on the tuna behaviour. This implies that
we assume that habitat (such as temperature) is suitable for the tuna
to survive throughout the studied domain. Moreover, we assume that
tuna birth and mortality do not play a relevant role at the simulation
timescale (i.e. 100 days) applied here. The size of tuna may have an
influence at these scales (i.e. 100 days), since different sizes of tuna
may have a different attraction strength towards FADs. Although FAD
attraction strength is a parameter in the model, for simplicity, we
assume that there are no ontogenetic changes to tuna behaviour during
the course of a simulation.

2.2. Model

In the two-dimensional model, we use a rectangular domain 𝛺 =
0, 𝐿𝑥] × [0, 𝐿𝑦]. We consider two types of particles (representing tuna
nd FADs) and one type of field that represents prey. The tuna particles
nteract with the prey field, the FADs and with each other. The prey
ield passively interacts with tuna particles through depletion. FAD
articles interact with tuna particles through attraction and depletion.

In order to reduce computational costs of simulations, a tuna parti-
le is not an individual tuna fish, but rather a so-called super-individual:
n entity representing a minimum group of tuna (Scutt Phillips et al.,
018). Similarly, we abstract individual prey to a Eulerian field to min-

mize computational overhead. This field drives the active searching
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behaviour of individual tuna through random and directed movements,
which have been shown to result in similar density evolution through
time to diffusion- and taxis-like processes used to model the movement
of animals (Lehodey et al., 2008; Faugeras and Maury, 2007; Scutt
Phillips et al., 2018; Okubo and Levin, 2001).

Each FAD particle 𝑗 (𝑗 = 0,… , 𝐹 ) is passively advected by horizontal
ocean currents. It is displaced every time step 𝛥𝑡:

�⃗�𝐹
𝑗,𝑡+1 = �⃗�𝐹

𝑗,𝑡 + 𝑣𝐶𝛥𝑡, (1)

where �⃗�𝐹
𝑗,𝑡 is the two-dimensional location of FAD 𝑗 at time 𝑡 (𝑡 =

1,… , 𝑇 ) and 𝑣𝐶 is the ocean flow velocity. Every tuna particle 𝑖
𝑖 = 1,… , 𝑁) is also advected by ocean currents, similarly to the
ADs. However, tuna particles also swim. Overall, their trajectories are
overned by:

�⃗�𝑁
𝑖,𝑡+1 = �⃗�𝑁

𝑖,𝑡 +

(

𝑣𝐶 +
𝑣𝑁
𝑖,𝑡

‖𝑣𝑁
𝑖,𝑡 ‖

𝑣0

)

𝛥𝑡, (2)

where �⃗�𝑁
𝑖,𝑡 is the location of tuna particle 𝑖 at time 𝑡. Similarly to

augeras and Maury (2007), the magnitude of the swimming velocity
s deterministic, given by 𝑣0 = 𝑣0(𝑥𝑁𝑖,𝑡 ) = 𝑣𝑚𝑎𝑥

(

1 − ℎ(�⃗�𝑁
𝑖,𝑡 )

)

, where 𝑣𝑚𝑎𝑥
determines the maximum magnitude of the swimming velocity and ℎ(𝑥)
is the prey index at location 𝑥, which is nearest-interpolated from the
prey index field ℎ ∶ 𝛺 × [0, 𝑇 ] → [0, 1], having a resolution of 𝛥𝑥. As
a result of this implementation, tuna particles swim faster if the prey
abundance index ℎ is lower.

The swimming direction of tuna particles is determined by:

𝑣𝑁
𝑖,𝑡 = 𝜅𝐼𝑣 𝐼

𝑖,𝑡 + 𝜅𝐹 𝑣𝐹
𝑖,𝑡 + 𝜅𝑃 𝑣𝑃

𝑖,𝑡 + 𝜅𝑇 𝑣 𝑇
𝑖,𝑡, (3)

where 𝑣 𝐼
𝑖,𝑡 =

(

𝑥𝑁𝑖,𝑡−𝑥
𝑁
𝑖,𝑡−1

)

‖𝑥𝑁𝑖,𝑡−𝑥
𝑁
𝑖,𝑡−1‖

represents inertia (Tyutyunov et al., 2008): tuna
re more likely to keep swimming in the same direction compared to
ther directions. The parameter values 𝜅𝐼 , 𝜅𝐹 , 𝜅𝑃 , 𝜅𝑇 ≥ 0 determine

the relative contributions to the tuna swimming direction from inertia,
FADs, prey and other tuna particles, respectively. Hence, the most
dominant dynamics that determine the swimming direction of tuna can
be easily tuned with these four parameters, of which the latter three are
described below.

First, the tuna swimming direction towards FADs is given by:

𝑣𝐹
𝑖,𝑡 =

∑

𝑗
𝐼𝑅𝑏
𝑖𝑗 𝑙(𝑛𝑗 ;𝐶𝑃 , 𝑘𝐹 , 𝑛𝐹0 , 𝐿

𝐹 )
�⃗�𝑗,𝑡 − �⃗�𝑖,𝑡

‖�⃗�𝑗,𝑡 − �⃗�𝑖,𝑡‖
, (4)

here 𝑛𝑗 is the number of tuna that are closer than a distance 𝑅𝑎 to FAD
𝑗 (these tuna particles are ‘associated with’ FAD 𝑗). 𝑙(𝑛;𝐶, 𝑘, 𝑛0, 𝐿) =
𝐶 + 𝐿

1+𝑒−𝑘(𝑛−𝑛0)
is the logistic function. Hence, the more tuna particles

re associated with a FAD 𝑗, the stronger the swimming direction of
una particles is determined by FAD 𝑗 compared to other neighbouring

FADs, creating a positive feedback for attraction to FADs (Robert et al.,
2014). The value of 𝑅𝑏 is the interaction distances between tuna and
FAD particles:

𝐼𝑅𝑚,𝑛 =

{

1 if ‖�⃗�𝑚,𝑡 − �⃗�𝑛,𝑡‖ ≤ 𝑅
0 otherwise.

Second, the trajectories of tuna particles depend on the interactive
prey index field ℎ. The interaction between tuna particles and the
prey field imply that tuna depletes the prey field every time step if
prey is locally available, with the value 𝐼 = min

(

𝜖𝑃𝛥𝑡, ℎ(�⃗�𝑁
𝑖,𝑡 )

)

. The
total number of prey in the domain remains constant, since depleted
prey is redistributed at another location in the domain. This location
is determined by a probability density function, such that it is more
likely that prey is added at a location where the prey index was large
at 𝑡 = 0. As a tuna particle 𝑖 depletes the prey field, it reduces the
tomach emptiness 𝑆𝑡𝑖,𝑡 ∈ [0, 1] at time 𝑡 (Dagorn et al., 2000):

𝑡 = 𝑆𝑡 − 𝛽𝐼 + 𝐸. (5)
3

𝑖,𝑡 𝑖,𝑡−1 e
ere 𝐸 = min
(

𝜖𝐸𝛥𝑡, 1 − 𝑆𝑡𝑖,𝑡
)

is the evacuation rate of the stomach.
Tuna swim towards high concentrations of the prey field through a

axis behaviour according to (Faugeras and Maury, 2007)

𝑣𝑃
𝑖,𝑡 = 𝑙(𝑆𝑡𝑖,𝑡;𝐶𝑃 , 𝑘𝑃 , 𝑛𝑃0 , 𝐿

𝑃 )

(

cos(𝜃𝑃𝑖,𝑡)
sin(𝜃𝑃𝑖,𝑡)

)

. (6)

Here 𝜃𝑃𝑖,𝑡 is drawn from the ‘von Mises’ distribution, with mean 𝜃0
(which has the same direction as the gradient of the prey field, ∇ℎ) and
concentration parameter 𝜅𝑀 = 𝛼 ‖∇ℎ‖. Hence, the standard deviation
of the von Mises distribution is lower if ∇ℎ is higher. The logistic
function 𝑙(𝑆𝑡𝑖,𝑡) in Eq. (6) implies that the swimming direction of tuna
s more strongly determined by the prey index gradient if their stomach
s emptier (Dagorn et al., 2000).

Third, tuna particles are attracted towards each other if 𝜅𝑇 > 0:

𝑣 𝑇
𝑖,𝑡 =

(

cos(𝜃𝑇𝑖,𝑡)
sin(𝜃𝑇𝑖,𝑡)

)

, (7)

here 𝜃𝑇𝑖,𝑡 is drawn from the von Mises distribution with mean the
irection of 𝑑𝑖,𝑡 =

∑

𝑘 𝐼
𝑅𝑐
𝑖,𝑘

(

�⃗�𝑘,𝑡 − �⃗�𝑖,𝑡
)

and concentration parameter
‖

‖

‖

𝑑𝑖,𝑡
‖

‖

‖

, where 𝑅𝑐 determines the interaction distance between tuna
articles.

To summarize, stochasticity is included to the model in three ways.
irst, the level of stochasticity of the tuna swimming towards high
rey abundance is controlled by 𝜅𝑚. Second, stochasticity of the tuna

swimming direction towards other tuna is determined by 𝛾. Third, the
initial location of both FADs and tuna particles is random.

2.3. Fishing strategies

To examine the effect of differing model configurations on an
idealized catch of tuna, fishing effort was kept constant at a single
fishing event each day in the simulations. If a tuna particle is caught
during such an event, it is removed and released at a random location
in the domain, in order to keep the tuna density constant in the
domain (Tyutyunov et al., 2008). Four contrasting fishing strategies
were implemented (Table 1). The first strategy (FS1) is based on fishing
of FAD unassociated tuna. In this strategy, fishers have no information
about any FAD, but they use sonar and sometimes helicopters to locate
tuna (Tolentino-Zonderva et al., 2018). Hence, we assume for our
simulations that they simply search the domain to locate schools of
tuna, performing a single fishing event near a random tuna particle
each day (i.e. all tuna particles are caught with a probability 𝜖𝑇 , if their
distance with the randomly picked tuna particle is lower than 𝑅𝑎).

The second type of fishing strategy assumes that fishers know the
location of all FADs. They choose a FAD to set their nets and catch every
associated tuna particle with a probability 𝜖𝑇 . A parameter 𝑝 ∈ [0, 1]
determines the extend of the fisher’s information on which FAD has
most tuna associated with it. We order the FADs 𝑗 = 0,… , 𝐹 from high
to low number of associated tuna. The probability that a fishing event
occurs at FAD 𝑗 is given by the geometric distribution:

𝑃𝑗 =
(1 − 𝑝)𝑗𝑝

∑𝐹
𝑗=0(1 − 𝑝)𝑗𝑝

. (8)

Hence, for 𝑝 = 1, fishers have complete information on the number
of associated tuna at all FADs, and always set at the FAD that has
most associated tuna. For 𝑝 = 0, the fishers have no information about
the number of associated tuna at FADs, and choose a FAD with equal
(i.e. uniform) probability. In this paper, we test fishing strategies 𝑝 = 0
FS2) and 𝑝 = 0.95 (FS3).

We also use a reference fishing strategy (FS0). In FS0, no fishing

vents occur and no tuna particles are caught in the simulations.
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Table 1
Overview of tested flow configurations and fishing strategies.

Flow Fishing strategies

No fishing (reference configuration) (FS0)
Random Walk (RW) Set near a random tuna particle (FS1)
Double Eddy (DE) Set at a random FAD (FS2)
Bickley Jet (BJ) Set likely at FAD with most associated tuna (FS3)

2.4. Particle–particle interaction in Lagrangian simulations

Parcels is a framework for computing virtual Lagrangian particle
trajectories in ocean flow (Delandmeter and van Sebille, 2019). For this
study, we developed a novel IBM method with the Lagrangian particle
advection for physical oceanography, which includes the interaction
between these virtual particles (i.e. tuna and FADs).

Inspired by established procedures for smoothed particle hydrodynam-
ics (SPH) for particle-based fluid-flow (Müller et al., 2005; Liu and Liu,
2010), a specialized procedure of three-dimensional kD-Tree construc-
tion (Kehl et al., 2021), as is common also for SPH simulations (Linsen
et al., 2008), was integrated into the Parcels framework. The focus
of the developed method is on rapid rebuild- and particle indexing
in a three-dimensional geospatial coordinate frame. In global ocean
simulations over long time spans, the arbitrary timestamp of particle
insertion or removal makes fixed-periodic tree rebuilding impractical.
Parcels thus performs smart local-branch rebuilds at the time where
particle indices in the ordering tree change. Specific challenges are the
change of particle coordinates (and therefore indices) in a chain of per-
particle kernels, as well as the proper construction of an unambiguous
hitlist of closest particles. In short, the first challenge is addressed
with the design decision to evaluate all advective kernels prior to any
interaction, thus preventing index changes amid a single-pass kernel
evaluation. The second challenge is addressed by the decision of sym-
metric ordering, i.e. 𝑀0(𝑞𝑖) = 𝑞𝑗 ⟺ 𝑀0(𝑞𝑗 ) = 𝑞𝑖 with 𝑀𝑦(𝑞𝑧) being
th closest neighbour of particle 𝑞𝑧. Those conditions are mandatory to
esolve for particle–particle interaction to work in the oceanographic
etting.

This specialized kD-Tree, which manages particle association in
he background, facilitates relatively fast adjacency queries of parti-
les without excessive memory overhead. This, in terms, enables us
o model interactive behaviour between homogeneous- and heteroge-
eous types of particles, such as the FAD’s and tuna ‘super-individuals’
n this study. Additionally, the computational method would in prin-
iple also facilitate direct predator–prey behaviour through using par-
icles for both the tuna and their prey. However, the modelling and
valuation of prey as a field-quantity reduces the computational de-
and to a tenable level. As the presented study interest is the tuna,

heir prey is just consumed and thus requires no IBM or tracing in itself.
uture studies can exploit the technical interaction possibilities even
urther by modelling dedicated swarm intelligence and group-aware
ehaviour, which is beyond the scope of this study.

In terms of constraints, the method as designed so far still requires
ree rebuilding after each particle integration step with a 𝑂(3 × 𝑛 log 𝑛)

complexity, where 𝑛 represents the number of particles, hence imposing
significant computational costs for massive particle sets (𝑛 > 105). In
a parallel- and distributed computing setup, the kD tree construction
and management needs to be globally consistent and thus needs to
remain in-full on one individual (computing) node. Implementation-
wise, the method currently does not support multi-processing or dis-
tributed computing. Related method extensions need to address the
significant communication overhead at each integration step, which is
unavoidable due to the non-local nature of the algorithm. Lastly, the
flexible particle definition and its various possible coordinate systems
in oceanography makes a fast, 𝐶∕𝐶++-style implementation infeasible,
hence all interaction-related kernels are evaluated in a computational
setting based on Python and SciPy (Virtanen et al., 2020) exclusively.
4

2.5. Ocean flow configurations

Our model framework was run in several configurations across
different, idealized flow fields (Table 1). Although these flow fields
are idealized, they contain specific properties of realistic flows. First,
we use a configuration where the flow is given by a Random Walk
(RW): 𝑣𝐶 = 𝜅𝑅𝜉. Here 𝜉 is a unit random vector, such that the
value of 𝜅𝑅 (constant throughout the whole domain) determines the
variance of the random walk. In this configuration, we use reflective
boundary conditions for the particles. The initial prey field is uniformly
distributed and with a value of 0.4. Depleted prey is redistributed at a
uniformly random location. The RW flow represents an isotropically
diffusive process.

Second, we use a Double Gyre flow (Shadden et al., 2005), which
we here refer to as the Double Eddy (DE) flow due to the scale at
which it is applied (Fig. 1a). The Double Eddy flow has closed boundary
conditions and we use reflective boundary conditions for the particles.
Prey abundance is initialized as being large in the middle of one of
the two eddies. The initialized prey field also provides the probability
density function for the redistribution of depleted prey (depleted prey
is more likely to be redistributed in the middle of this eddy). The DE
flow has the property that passively advected particles accumulate in
the middle of the two eddies over time, and hence represent meso-scale
eddies that occur in the ocean.

Third, we use the Bickley Jet (BJ) flow (Bickley, 1937) (Fig. 1b).
At the spatial scale that is used here, the Bickley jet flow resembles
an oceanic front. The Bickley jet has a zonal periodic boundary and
a meridional closed boundary, which are also imposed as boundary
conditions on the particles. The prey field is initialized to be large in
the middle and low in the North and South of the domain.

The latter two flow configurations are often used when studying
the dispersion of advected Lagrangian particles (Conti and Badin, 2017;
Del-Castillo-Negrete and Morrison, 1992). The flow was scaled in these
configurations, such that it fits on the fixed domain that we use in this
paper, and the maximum flow velocity was set to the 𝜅𝑅 value of the
random walk configuration (Nooteboom, 2022).

In every configuration, the average prey index per grid box is set to
the value 𝑃𝑎𝑣𝑔 = 0.1, the simulations are run for 100 days, 𝜅𝐼 = [0.01]
and one tuna density (𝑁 = 500). Hence, we do not consider any tuna-
FAD dynamics that may act on longer timescales than 100 days. See
Supporting Information table S1 for other parameter values that are
fixed in this paper. We will present the sensitivity of simulations on
four different types of parameters. First, we will test the effect of tuna
behaviour: 𝜅𝑇 = [0, 0.01], 𝜅𝐹 = [0, 0.5, 1] and 𝜅𝑃 = [0, 0.5, 1]. For
larity we summarize those parameter values under four behaviour
ypotheses: (1) 𝜅𝐹 = 𝜅𝑃 and 𝜅𝐹 ; 𝜅𝑃 > 0 (i.e. FAD and prey attraction
ehaviour are equal), (2) 𝜅𝐹 > 𝜅𝑃 and 𝜅𝐹 ; 𝜅𝑃 > 0 (i.e. FAD-

dominant attraction behaviour), (3) 𝜅𝐹 < 𝜅𝑃 and 𝜅𝐹 ; 𝜅𝑃 > 0 (i.e. prey
ominant attraction behaviour), (4) 𝜅𝐹 = 0, or 𝜅𝑃 = 0 (i.e. one

attraction behaviour switched off). Second, we test the four fishing
strategies (i.e. FS0, FS1, FS2, FS3). Third, we test the outcomes for
different FAD densities 𝐹 =[0, 2, 5, 10, 15, 20, 30, 40]. Fourth, we
compare differences between the RW, DE and BJ configurations. The
total number of simulations presented in this paper is 1728.

2.6. Data

We present the results of our simulations across a suite of metrics,
ranging from the internal state of individuals to the emergent dynamics
of aggregated individuals within the domain. The patterns we compare
our simulations with are: First, relative trends in numbers of tuna
accumulated at FADs over time, prior to fishing events and there-
after, compared to observations of tuna biomass made by echo-sounder
equipped FADs (Escalle et al., 2021). Second, the fullness of individuals’
stomachs, comparing to those from tuna caught and examined in the
western central Pacific Ocean (Machful et al., 2021). Third, the length
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Fig. 1. Streamlines of the (a) Double Eddy (DE) and (b) Bickley Jet (BJ) flow at 𝑡 = 5 days. Solid (dashed) lines represent positive (negative) values and (anti-)clockwise rotation.
The background colour represents the initialized prey field. Both flow fields are often used to study so-called Lagrangian coherent structures, that tuna tend to track in the real
ocean (Prants et al., 2021; Kai et al., 2009). (c) and (d) snapshots at 𝑡 = 5 days of example simulations in the DE and BJ configurations, respectively. See the Supporting Information
animations S1-S4 for the evolution of (a)–(d) in time.
of time that tuna spend associated with FADs, comparing to electronic
tagging experiments of tuna around FADs (Scutt Phillips et al., 2019;
Pérez et al., 2020). We have chosen these metrics so as to permit
comparison to observed patterns and test the configurations of our
model at multiple ecological scales, both spatiotemporal and hierar-
chical, simultaneously. Such an approach helps to constrain the high
degrees of freedom inherent in individual-based models, for example by
eliminating model configurations or structures that fail to produce the
observed properties of a system at all levels (Grimm et al., 2005). Since
we applied the IBM only in idealized and not in realistic configurations,
we cannot set specific criteria on model performance. Therefore, we
only compare whether these measures are of similar order of magnitude
and represent similar patterns compared to observations.

3. Results

3.1. Colonization of FADs by tuna

Unsurprisingly, more tuna become associated at FADs when tuna
behaviour was FAD dominant compared to prey dominant (Fig. 2),
since tuna are less likely to move away from FADs to forage. Tuna–
tuna attraction had little influence on these dynamics (Supporting
Information Fig. S1).

Fishing strategies had a major influence on the distribution of tuna
particles among FADs, as it governs how fish are depleted and redis-
tributed throughout the domain. For a given behavioural configuration,
fishing strategies that catch tuna more efficiently (e.g. FS3 compared
to other fishing strategies), generally reduce the number of associated
tuna at FADs during their initial colonization (Fig. 2a, c, e). In the
days leading up to fishing events, there was generally a larger number
of associated tuna at the targeted FAD under fishing strategy FS3
compared to FS2 under the RW and BJ configurations (Fig. 2b, f),
5

due to its more consistent targeting of large associations. This strategy
prevents a buildup of large tuna numbers at several FADs at the same
time. Before the number of associated tuna can grow substantially, a
fishing event takes place at the FAD, resulting in a sudden halving of
the number of associated tuna. In the case of the DE flow configuration,
where both tuna and FAD particles tend to accumulate in the centre
of the eddies, this can result in many tuna associated at FADs close
to each other. Such associations can be repeatedly targeted for fishing
under FS3, which results in an apparent decrease of biomass through
time prior to fishing (see below), when averaged across the duration
of a simulation. The distribution of tuna among FADs does not change
much in the days after a fishing event, in part driven by the reduction in
density-dependent, negative feedback from prey depletion (Fig. 2d,f),
of which the strength is partly controlled by the relative 𝜅𝑃 and 𝜅𝐹

values.
Colonization dynamics only weakly depend on FAD density (Sup-

porting Information Fig. S2). On average, it takes longer for tuna
particles to get near a FAD if the FAD density is relatively low. As
a result, it also takes longer for the colonization of tuna at FADs
to stabilize after their deployment. Moreover, at relatively low FAD
densities, less instances of large aggregations switch from one FAD to
another prior to fishing, resulting in a smaller buildup of tuna particles
at FADs before a fishing event.

FAD colonization and association dynamics differed strongly be-
tween different flow configurations (Fig. 2). In the RW configuration,
tuna associate with nearby FADs in a few days after deployment
(Fig. 2a). The distribution of the number of associated tuna at FADs
does not change afterwards, even if large associations could be expected
to build up under FS0 where no fishing events occur. This implies
that tuna swim towards FADs if their stomach is full, where they
subsequently deplete the local prey field. When the prey field gets
depleted near the FAD due to the presence of many tuna particles and



Ecological Modelling 475 (2023) 110188P.D. Nooteboom et al.

t
t
a
g
i
(
b
g

l
D
e
t
F
8
e
a
a
l
a

S

Fig. 2. Colonization of tuna at FADs after FAD deployment (left) and in the days before and after a fishing event (right; day 0 of fishing event is indicated with vertical dashed
line). Median values of the number of associated tuna particles at FADs are shown for the (a), (b) Random Walk (c), (d) Double Eddy and (e), (f) Bickley Jet flow, averaged over
parameter values with FAD (𝜅𝐹 > 𝜅𝑃 ), prey (𝜅𝐹 < 𝜅𝑃 ) and without dominant tuna behaviour and for different fishing strategies. Notice the logarithmic axis in (a)–(d). The FAD
is density is 𝐹 = 15 and tuna–tuna attraction is included (𝜅𝑇 = 0.01; see Supporting Information Fig. S1 for the same figure with 𝜅𝑇 = 0).
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heir stomach becomes empty, tuna start foraging and move away from
he FAD. While this process repeats, the average number of tuna that
ssociate with the FADs does not change, as the distribution of FADs is
overned by a Brownian motion-like random walk. If tuna behaviour
s FAD dominant, the build up of tuna at FADs takes somewhat longer
∼10 days) since tuna are less likely to swim away from a FAD. If tuna
ehaviour is prey dominant, few tuna associate with FADs, as a nonzero
radient of prey density can be easily found throughout the domain.

For the directed flow configurations DE and BJ, FADs are more
ikely to meet tuna particles compared to the RW flow. Under the
E flow, FADs are rapidly advected through either the westward or
astward eddy and tuna are attracted towards the prey rich area in
he westward eddy where part of the FADs accumulate. Numbers of
AD associated tuna increase after deployment and stabilize after 50–
0 days (Fig. 2c), when the FADs accumulate in the middle of the two
ddies. On average, the build-up of tuna at FADs does not occur before
fishing event in the DE configuration (Fig. 2d), because the FADs

ccumulate in the middle of the two gyres and fishing events are very
ikely to occur at the same FADs every few days, which results in little
ssociated tuna the day before these catch events.

The BJ domain-averaged flow has a clear eastward component.
imilarly to the RW configuration, a rapid build up of associated
6

a

una occurs in the first few days after deployment (Fig. 2e). How-
ver, the distribution is still changing until day 60, after which it
tabilizes.

Observations from echo-sounder biomass estimates indicate that
una colonization at FADs after their deployment follows a log-normal
istribution, where the amount of FAD associated tuna increases up to
pproximately 60–80 days after deployment (Fig. 12 in Escalle et al.
2021)), after which it stabilizes. This number reduces again on a time
cale longer than the 100 day simulations presented in this paper. Both
he BJ and DE configurations (Fig. 2c, e) compare better with these
bservations of tuna accumulation around FADs compared to the RW
onfiguration, because the flow has a clear direction in BJ and DE,
hich is also often the case in reality. In the RW case on the other hand,

he time-mean flow direction is 0⃗ everywhere in the domain. Moreover,
bservations indicate a buildup of tuna at FADs before a fishing event
nd a stable number of associated tuna afterwards (Fig. 13 in Escalle
t al. (2021)), similar to the RW and BJ configurations (Fig. 2b, f).
verall, we find that the ocean flow configuration has a major influence
n the colonization of tuna particles at FADs, chiefly due to FADs
overing more distance over a given time within the domain, which
ids in their ‘collection’ of tuna.
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Fig. 3. Tuna stomach fullness: associated versus not associated with FAD for the (a)
Double Eddy (DE) and (b) Bickley Jet (BJ) flow configurations. Tuna stomach fullness
is averaged over time, tuna particles and over parameter values with a specific tuna
behaviour, for several fishing strategies and 𝜅𝑇 values. The FAD density is 𝐹 = 30.
Observed stomach fullness (Machful et al., 2021) for bigeye (BET), skipjack (SKJ) and
yellowfin (YFT) tuna are the same in (a) and (b). The black dashed line shows the
one-to-one comparison where stomach fullness is the same for FAD associated and
non-associated tuna. See Supporting Information Fig. S3 for the same figure with FAD
density 𝐹 = 5.

3.2. Stomach fullness

Tuna behaviour has implications for simulated stomach fullness. As
more tuna particles become associated with a FAD due to FAD domi-
nant behaviour, they deplete the prey locally (Fig. 3). As a consequence,
the competition among tuna for food near them results in a lower
stomach fullness of FAD associated tuna compared to unassociated
tuna. When tuna particle swimming direction is only determined by
the prey field (𝜅𝐹 = 0), tuna either associate with FADs incidentally if
the FAD is located in the prey rich area (e.g. western eddy in the DE
flow), or if the flow field is responsible for the accumulation of both
FAD and tuna particles in the same area (if no prey is available; e.g. in
the eastern eddy in the DE flow). Unsurprisingly, stomach fullness
is high if the tuna behaviour is not influenced by FADs (𝜅𝐹 = 0),
indicating that tuna particles are more likely to end up in prey rich
areas when their swimming behaviour is only determined by prey.
Although absolute stomach fullness does not change much when this
is the case (𝜅𝐹 = 0 compared to 𝜅𝐹 > 0), almost no difference exists
between FAD associated and unassociated tuna. In contrast, when tuna
swimming behaviour is only determined by FADs (𝜅𝑃 = 0), those tuna
that associate with a FAD, stay near the FAD until they are caught at a
fishing event.

Tuna–tuna attraction increases tuna stomach fullness (𝜅𝑇 = 0.01
versus 𝜅𝑇 = 0; on average a difference of ∼0.02 and ∼0.20 for DE
and BJ configurations, respectively). Tuna–tuna attraction may lead to
a ‘snowballing’ effect (Castro et al., 2002), where tuna may end up near
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a prey rich area by following other tuna. For instance, if tuna particles
are located in the north or south of the domain in the BJ configuration,
in the absence of any prey gradient or FADs, their swimming direction
is arbitrary for 𝜅𝑇 = 0, and they are likely to remain here with an empty
stomach. If 𝜅𝑇 > 0 on the other hand, it increases their ability to move
to a prey rich area in the middle of the domain by following other tuna.
As a result, tuna–tuna attraction results in less tuna particles near the
northern or southern boundary of the domain, where prey abundance
is low. Hence, tuna stomach fullness is generally higher if tuna–tuna
attraction is included.

While FAD density has no clear effect on the stomach fullness
(Supporting Information Fig. S3), the influence of fishing strategies
on stomach fullness is only weak: on average tuna stomach fullness
is ∼0.02 and ∼0.14 lower for fishing strategy FS0 compared to other
fishing strategies for the DE and BJ configuration, respectively. Fishing
strategies determine the amount of depletion and subsequent redistri-
bution of tuna particles. More efficient fishing strategies imply that
more tuna are caught and redistributed at a location without the
presence of a FAD, which relieves the tuna density-dependent reduction
of prey near the FAD. As a result, stomach fullness is generally higher
for these efficient fishing strategies.

In the BJ flow configuration, stomach fullness is generally higher
and its difference between FAD associated and non-associated tuna is
more sensitive to tuna behaviour compared to the DE configuration
(Fig. 3). The dominant flow direction in this configuration also helps to
continuously transport FAD-associated tuna through the richest areas
of the prey field, reducing local depletion and resulting in generally
higher stomach fullness. We also tested the tuna stomach fullness in
the RW flow configuration (not shown). In this configuration, stomach
fullness is generally low (∼3%). Any tuna swimming behaviour results
in a heterogeneous distribution of tuna particles, which focuses the
depletion of the homogeneously distributed prey field. As a result,
tuna particles are more often located in areas where the prey field is
locally depleted. Since no dominant flow direction exists, this situation
does not change. Hence, the tuna stomachs are generally low in this
configuration.

Observations of tuna stomach contents indicate a lower stomach
fullness for tuna that are caught near a FAD compared to tuna that
are caught while not associated to a FAD (Fig. 3; ∼15%) (Hallier and
Gaertner, 2008; Ménard et al., 2000; Allain and Leroy, 2006; Machful
et al., 2021). Note that it is mainly the comparison of the relative
difference between FAD associated and non-associated tuna stomach
fullness that is of importance here, since the observed stomach fullness
itself is an indirect measure, varying with a number of covariates, and
difficult to compare with the stomach fullness in our simulations. Both
absolute and relative stomach fullness match well with observations in
both the DE and BJ configuration (Fig. 3), especially for equal FAD-
and prey-driven behaviour (𝜅𝑃 = 𝜅𝐹 ).

3.3. Continuous residence times

Tuna leave a FAD either when they are caught, when another FAD
pulls them away, or when they are foraging and move away towards
an area with high prey abundance. Hence, we find that stronger FAD
dominant behaviour increases Continuous Residence Times (CRT) and
prey dominant behaviour decreases CRT, since the former increases the
attraction strength of the FADs, and the latter causes abandonment of
the FAD to hunt prey.

The impact of tuna–tuna attraction (𝜅𝑇 > 0) on CRT is weak. Tuna–
tuna attraction only has a relevant influence on CRT under fishing
strategy FS0 (no fishing) in the BJ configuration (Fig. 4d). For FS0,
where no tuna is caught and redistributed, the median CRT depends
on how many tuna particles end up in the middle of the domain at
the beginning of the simulation where prey abundance is high and
cause the tuna to leave FADs while foraging. Tuna–tuna attraction
may result in a higher tuna abundance in the middle of the domain
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Fig. 4. Median of the tuna Continuous Residence Times (CRT) at FADs in simulations with the Random Walk (left) Double Eddy (middle) and Bickley Jet (right) flow, averaged
over parameter values with FAD (𝜅𝐹 > 𝜅𝑃 ), prey (𝜅𝐹 < 𝜅𝑃 ) and without (𝜅𝐹 = 𝜅𝑃 ) dominant behaviour. (a)–(c) Median CRT at different FAD densities (fishing strategy FS2 and
𝜅𝑇 = 0; notice the logarithmic vertical axis). (d)–(f) Median CRT for different fishing strategies and values of 𝜅𝑇 (FAD density 𝐹 = 20). Notice the logarithmic colour scale.
through a ‘snowballing’ effect, and subsequent greater depletion of
local prey (Castro et al., 2002).

Fishing strategies decrease CRT in our simulations, as removal of
individuals from around FADs necessarily cuts short their residence at
that FAD (Fig. 4d–f). However, this effect is distinctly different between
ocean flow configurations. In the case of the BJ configuration, median
CRT can be relatively long in the absence of fishing (FS0). CRTs are
shorter in FS3 compared to FS2, because fishing is more efficient in
FS3 and more fish are caught, which shortens the median CRT. Fishing
strategies FS1 and FS2 do not deviate much, because clustering of
tuna mostly occurs near FADs, and hence the fishing events also often
occur near FADs under both strategies. There appeared to be little
impact of fishing strategy on CRTs under the DE configuration, where
resident times remained very short due to the accumulation of tuna and
FADs in small areas, driving frequent switching between FADs by tuna
(Supporting Information Fig. S4).

CRT decreases at higher FAD densities (Fig. 4a–c), in particular
when tuna behaviour is either prey or FAD dominant (𝜅𝐹 ≠ 𝜅𝑃 ). This
pattern occurs because the increasing probability that groups of tuna
particles move from one FAD to another. This switching of tuna from
one FAD to another can occur either (a) because the other FAD, which
has more associated tuna, is located nearby and is more attractive or
(b) the prey field is locally depleted near the current FAD and tuna
decide to look for prey elsewhere due to a low stomach fullness, and
associated with a new FAD in a nearby and more prey rich area.

CRTs varied by flow field, being the longest in the BJ configuration
compared to the RW and DE configurations, where the flow has a clear
eastward direction, keeping tuna associated while continually moving
into prey rich areas. As a consequence, tuna are unlikely to move away
from a FAD to forage, as they move into prey rich areas while remaining
associated with a FAD. RW is the configuration with shortest CRT,
because tuna are most often forced to forage away from FADs in this
configuration.

Median absolute CRT of tuna at FADs are mostly between 1–10 days
in the simulations (Fig. 4), but can be several tens of days in some con-
figurations (e.g. Fig. 4c, f), which conforms to observations (Pérez et al.,
2020; Scutt Phillips et al., 2019; Scutt Phillips et al., 2017) (Supporting
Information Fig. S5). Observations in drifting (Supporting Information
Fig. S5) and coastal, anchored FAD arrays (Pérez et al., 2020) show an
increasing CRT at higher FAD densities. In our simulations, increasing
CRT for higher FAD densities only occurs for a few FAD densities in the
DE and BJ configurations (Fig. 4b,c), although these do broadly match
with FAD densities present in CRT observations. CRT can increase with
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FAD density, first because more FADs cover a larger part of the domain
and will associate more tuna particles. Second, the same number of
fishing events is distributed among more FADs. Hence, the probability
reduces that a fishing event occurs at a specific FAD if the FAD density
is higher, and the CRT of tuna associated with this FAD increases.

3.4. Tuna catch

We find that tuna catch is also sensitive to different behavioural pa-
rameters, flow configurations and fishing strategies in our simulations
(Fig. 5). Catch is generally higher in those configurations that result
in a more heterogeneous distribution of tuna particles, as our fishing
strategies generally target aggregations. This is particularly the case
for FAD dominant tuna behaviour (Fig. 5). Hence, FAD dominant be-
haviour results in a higher catch compared to prey dominant behaviour,
if it adds to the heterogeneity of the tuna distribution (especially for the
RW flow; Fig. 5d). However, tuna–tuna attraction influenced catch only
weakly.

The effect of fishing strategy varies markedly with ocean flow
configuration. Within the BJ and RW flow, targeting of FADs with many
associated tuna (FS3) always results in higher catch than targeting of
random FADs (FS2). However, this relationship is reversed in the DE
simulations (Fig. 5e), due to the concentration of particles in the centre
of the eddies, and the density-dependant attraction towards FADs with
many associated tuna becomes very strong. Since, the FS3 strategy
reduces the number of associated tuna at densely populated FADs
before associations can grow to a substantial number, the attraction
strength of FADs is reduced compared to the attraction strength of
the prey field. As a result, mean catch actually decreases compared to
evenly targeting FADs throughout the domain.

Interestingly, the targeting of random tuna particles in the domain
(FS1) often results in a higher catch than random FAD fishing (FS2).
Since FS1 picks a tuna particle at random to determine the fishing
location, when tuna are heterogeneously distributed, it is likely that
the fishing event occurs in an area with a lot of aggregated tuna,
independently of whether those fish are associated with a FAD or not.

An optimal FAD density often exists where catch is maximized under
the FS2 strategy (Fig. 5a, c). When FAD density is very low, only a
fraction of the available tuna particles in the domain associate and are
exposed to fishing, with the maximum possible aggregation limited by
local depletion of prey. At very high FAD densities on the other hand,
all available tuna particles are likely to associate with a FAD, but will
be distributed over more FADs and the probability that a fishing event
occurs on a large aggregation is reduced.
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Fig. 5. Average catch of tuna particles per day in simulations with the Random Walk (left), Double Eddy (middle) and Bickley Jet (right) flow, averaged over parameter values
with FAD (𝜅𝐹 > 𝜅𝑃 ), prey (𝜅𝐹 < 𝜅𝑃 ) and without (𝜅𝐹 = 𝜅𝑃 ) dominant behaviour. (a), (b), (c) Catch at different FAD densities and 𝜅𝐹 , 𝜅𝑃 values (fishing strategy FS2 and 𝜅𝑇 =
0). (d), (e), (f) Catch for different fishing strategies and values of 𝜅𝑇 (FAD density 𝐹 = 10).
This optimum FAD density does not occur under the DE flow
configuration. As this scenario results in very dense accumulation of
FADs between which tuna switch frequently, targeting any FAD in the
domain is likely to yield the same catch. As with our other results,
the impact of tuna having generally emptier stomachs in the RW
configuration reduces the time they associate and aggregate at FADs
due to their increased need for foraging under greater competition,
which subsequently reduces the total catch (Fig. 5a, d).

We do not compare the catch in our simulations with observations,
because the number of tuna particles themselves cannot directly be
compared to caught tuna biomass. Hence, if these simulations are
compared to catch data, it can only be compared to the relative catch
in different configurations. However, observed catch data represents
many configurations of e.g. ocean flow, FAD density at the same
time, and tuna catch is highly variable as a result. Moreover, general
catch dynamics (e.g. the dependence of catch on FAD density as with
Continuous Residence Times; CRT) are not known.

4. Discussion and outlook

Using the new particle–particle and particle–field interaction func-
tionalities of the Parcels framework, we have developed an Individual-
Based Model (IBM) of tuna behaviour. In this IBM, tuna is advected
by ocean flow while interacting with drifting Fish Aggregating Devices
(FADs), prey and other tuna.

The IBM presented here can be described by a small number of rules,
but which allow for both direct and indirect interactions between com-
ponents in the system to occur. The model was able to simultaneously
produce many of the dynamics observed in the real ocean, such as
the distribution of tuna among different FADs, their stomach fullness
and the tuna continuous residence time near FADs. These emergent
properties most consistently matched observations when simulated
tuna behaviour was driven equally by both FADs and prey (𝜅𝐹 = 𝜅𝑃 ).

However, testing the IBM in several idealized configurations of
oceanic regime, we found that the flow and prey field configuration has
a major impact on these emergent metrics. For instance, the dominant
flow direction in the Bickley Jet scenario helps to reduce local prey
depletion by large associated aggregations of tuna, allowing for a longer
residence in the area around FADs without hunger causing dispersal
due to foraging. Conversely, when there is an accumulation of particles
due to flow as is the case in our Double Eddy scenario, concentration
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of both tuna and FADs occurs, with high levels of prey depletion and
switching by aggregations in the centre of these eddies. Hence, the
flow configuration determines the timescales at which tuna get close
enough to a FAD to associate with it. In contrast, our simulations
under a null, random-walk flow configuration, unrepresentative of the
equatorial areas where tuna interact with FADs, resulted in far fewer
of the real world patterns being replicated.

Great variability has been observed in the dynamics of tropical tunas
around fish aggregating devices, causing suggestions of behavioural
modes switching (Robert et al., 2013), high day-to-day variability in
biomass detected by echosounder-equipped buoys (Escalle et al., 2021),
and mass abandonment of FADs by fish at the same time (Moreno
et al., 2007). Here we have shown that such variation can occur at
similar magnitudes purely as a function of changes to the flow field in
which tuna and FADs find themselves, an oceanographic feature rarely
incorporated into fisheries analyses (Vidal et al., 2020).

The highly interactive nature of our agents mean that many of
the emergent properties are highly sensitive to the fishing strategy.
Beyond simply the depletion of tuna causing a reduction in the num-
ber of associated particles at a FAD, fishing events also relieve the
density-dependent negative feedback of those associations, which de-
plete their surrounding prey field, whilst simultaneously reducing the
positive feedback of FAD attraction caused by those large associa-
tions. This leads to counter-intuitive dynamics, such as targeting of
tuna-associating with FADs for fishing actually increasing the mean res-
idence time of fish, as it supports the remaining fish to stay associated
for longer with lesser depletion of local prey around the FAD forcing a
large association to fragment away from the FAD in search of food.

The IBM we have presented in this study remains idealized and with
few parameters directly informed by data. However, such simulation
models could be considered opaque thought-experiments (Di Paolo
et al., 2000), capable of exploring the potential mechanisms that lead
to observed patterns and bracketing their uncertainty. Here we have
shown that, for the set of biologically plausible assumptions we have
structured our model on, realistic flow and prey fields are a require-
ment for observed dynamics to emerge. However, we also include
a considerable flexibility in the behavioural parameters that can be
used to examine more specific cases. Similarly, the real-world data
that we have used for comparison of these dynamics have likely been
observed across a range of ocean flow fields, tuna prey distributions,
FAD densities and possibly even behavioural modes. Our IBM remains
a hypothesis testing tool, where each of these components can be
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controlled. For example, tropical tuna behave differently among dif-
ferent species and size classes. Bigeye tuna (Thunnus obesus) associate
with FADs during their small, juvenile stage, and slowly spend less
time doing so as they grow and develop physiological adaptations to
feed at depth. Although our IBM does not directly distinguish between
different tuna types, several parameters (e.g. 𝜅𝐹 , 𝜅𝑃 ) in the IBM deter-

ine the relative strength of different dynamics on the tuna behaviour.
ence, different of these parameter values may apply to these different
lasses or species, changing through time with the age of the fish.

We have chosen idealized flow and prey fields at the 1◦ scale to com-
are simulations across. This is typically the minimum scale at which
una populations are modelled, and below which model processes are
ssumed to be homogeneous. Since these configurations are idealized,
he distribution of tuna and their catch can be explained by known
roperties of the flow, prey, and interactions with FADs at this sub-
rid scale. However, a question remains how these dynamics could be
ncorporated into ocean basin-scale tuna models (Senina et al., 2020).
or instance, these ocean basin-scale tuna models could use sub-grid
cale parameterizations that are informed by similar IBM simulations
f this paper. Identifying important sub-grid scale mechanisms, such as
he impact of flow or FAD density on catch, then allows development
f their incorporation into population-level models. This could be ex-
lored through alternate function responses, or as covariates in analyses
hat use catch per unit effort (CPUE) as an indication for popula-
ion size. Furthermore, output from state-of-the-art hydrodynamic and
iogeochemical models, or tuna species-specific habitat fields (Senina
t al., 2020), could be incorporated to further test the ability of this
r existing tuna IBMs (Scutt Phillips et al., 2018) to replicate tuna-FAD
ynamics in a more realistic scenario. In such an application, the prey
ield could be based on the underlying Eulerian model simulation and
ill be more compatible to the flow. Such a realistic setting may be
pplied to simulations in a future scenario, in order to test the influence
f climate change on the distribution of FADs and its implication on
heir interaction with tuna (Bell et al., 2021). Applying the IBM in a
ealistic setting may require different fishing strategies. FS2 and FS3 are
ather extreme cases where fishers either have no or almost complete
nowledge on where the tuna is located. In reality however, their
nowledge about the locations of tuna is likely somewhere in between
ishing strategies FS2 and FS3.

The variability in simulated catch shown in this study highlights
nteresting questions regarding the relationship between catch, the
ensity of FADs in a region, and whether certain model configurations
ill lead to a nonlinear response of catch to tuna abundance (so-called
yperstability or hyperdepletion). For example, the idealized scenarios
e have explored in this study have shown that simulated catch from

he same population size of tuna can change by a factor of two, purely
s a result of different flow and prey field configurations, while all other
arameters remain constant. Our tuna IBM could be used to investigate
he dependence of catch levels on these parameters, across different
una abundance under different model configurations. Examination of
AD-tuna observations, including catch, could where possible include
n-situ oceanography to further test the hypotheses of our model. Such
nalyses would provide a better understanding of how to interpret
atch data, potential levels at high stable populations may collapse,
r parameterize tuna-FAD dynamics at a large-scale typically used to
odel their population dynamics and provide scientific advice on their
anagement.
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