
Machine Learning Methods for Survival

Analysis with Clinical and Transcriptomics Data

of Breast Cancer

Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

Abstract Breast cancer is one of the most common cancers in women worldwide,

which causes an enormous number of deaths annually. However, early diagnosis

of breast cancer can improve survival outcomes enabling simpler and more cost-

effective treatments. The recent increase in data availability provides unprecedented

opportunities to apply data-driven and machine learning methods to identify early-

detection prognostic factors capable of predicting the expected survival and potential

sensitivity to treatment of patients, with the final aim of enhancing clinical outcomes.

Le Minh Thao Doan

School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough,

UK, e-mail: l.doan@tees.ac.uk

Claudio Angione

School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough,

UK; Centre for Digital Innovation, Teesside University, Middlesbrough, UK; Healthcare Innovation

Centre, Teesside University, Middlesbrough, UK; National Horizons Centre, Teesside University,

Darlington, UK; e-mail: c.angione@tees.ac.uk

Annalisa Occhipinti

School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough,

UK; Centre for Digital Innovation, Teesside University, Middlesbrough, UK; National Horizons

Centre, Teesside University, Darlington, UK; e-mail: a.occhipinti@tees.ac.uk

1

l.doan@tees.ac.uk
c.angione@tees.ac.uk
a.occhipinti@tees.ac.uk

2 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

This tutorial presents a protocol for applying machine learning models in survival

analysis for both clinical and transcriptomic data. We show that integrating clinical

and mRNA expression data is essential to explain the multiple biological processes

driving cancer progression. Our results reveal that machine learning-based models

such as random survival forests, gradient boosted survival model, and survival

support vector machine can outperform the traditional statistical methods, i.e., Cox

proportional hazardmodel. The highest C-index among themachine learningmodels

was recorded when using survival support vector machine, with a value 0.688,

whereas the C-index recorded using the Cox model was 0.677. Shapley Additive

Explanation (SHAP) values were also applied to identify the feature importance of

the models and their impact on the prediction outcomes.

Key words: Breast cancer, machine learning, survival analysis, data integration,

interpretability.

1 Introduction

Breast cancer is a leading cause of cancer-related deaths worldwide [1]. According

to the latest report published by Cancer Research UK, breast cancer occupies 15%

of annual new cancer cases, and 7% of all cancer mortality in the UK [2]. With

advancements in medical treatment and research, the overall survival rate has nearly

doubled in the last 40 years, e.g., around 78% of patients survive more than ten years

[2]. The survival rate after five years for early diagnosed patients varies between

90% and 99%, while this rate sharply drops to only 28% for late diagnosed patients

[3]. Therefore, early detection and treatment are crucial for breast cancer patients as

malignant cells tend to metastasise in later phases [4].

Machine Learning Methods for Survival Analysis of Breast Cancer 3

Clinical data has been often used to develop clinical prediction models and gain

disease insights [5]. More recently, with the advancement of high-throughput se-

quencing technology, extensive omics data and methods for their integration have

been produced, including genomics, transcriptomics, proteomics and metabolomics

data [6, 7, 8]. The study of multi-omics data allows to investigate the relationships,

roles, and actions of the various types of molecules constituting the cells of an

organism and gain a comprehensive understanding of the biological system under

examination. Information from omics data can be used to identify diagnostic and

prognostic markers and support the development of personalised treatments [9].

Many studies have used omics data to develop accurate prognostic models for differ-

ent cancer types [10, 11, 12], achieving more precise predictions than conventional

clinical methods.

Following the breakthrough in exploring omics data, multiple assays from the

same set of instances have been recently consolidated to generate multi-omics data.

Their availability has reformed the biological and medical fields by making av-

enues for system-level integration tactics. Multi-omics integration has been used

with great success to understand cancer and other disease progression mechanisms,

to eventually obtain patient-specific clinical treatments and prevention strategies

[13, 14, 15]. In fact, developing algorithms able to process multi-omics data could

provide sharpness on biomolecules from different layers, pave the way towards

large-scale cell optimisation, and facilitate the understanding of complex biological

processes involved in cancer progression [16, 17]. Hence, compared to single-omics

data, models using multi-omics data and mechanism-based approaches can provide

a deeper understanding of cancer progression and related mechanisms, including

discovering novel biomarkers, studying the interaction with viruses, and detecting

cancer subtypes [18, 19, 20, 21].

4 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

Most survival-based molecular models have mainly used a single type of omic

data [22]. However, recent investigations found that a proper combination of clinical

and omics survival data could significantly improve clinical outcomes [5]. This

integration usually outperforms the models that rely only on clinical or omics data

[23]. Hence, it is necessary to investigate the effectiveness of using different types

of data, such as clinical data, omics data, and their integration on the performance

of the predictive models.

Recently, machine learning (ML) models have been successfully developed to

process biomedical data, including characterisation of cell phenotype, detection of

cancer, and prediction survival outcomes [24, 25, 26, 27]. Specifically, ML has been

widely applied in clinical diagnosis andmedical image analysis to develop computer-

aided diagnosis systems [28]. The volume and variety of clinical and genomic data

collected from patients are significantly increasing, revealing novel opportunities to

applyML and generate more insights into the molecular investigation of tumours and

cancer prognosis. ML methods have facilitated the development of a more precise

landscape about tumour heterogeneity and contributed to precision oncology. This

allows specific patients to have an individual treatment plan based on a personalised

diagnostic and prognostic risk profile. However, precise diagnosis and treatment of

breast cancer are still representing one of the main challenges in healthcare [29].

Hence, developing accurate prognostic methods is necessary to significantly improve

risk stratification after diagnosis and increase survival expectation. In order to achieve

this, several patient-specific techniques have been proposed, either relying on clinical

records, biological markers, or their combinations [30, 31]. However, there is still

a need to identify the key bio-markers affecting cancer progression and survival

outcomes in order to develop more accurate personalised treatments.

Survival analysis is a reliable and widely applied statistical technique among

prognostic modelling methods, which attempt to evaluate the probability of events

Machine Learning Methods for Survival Analysis of Breast Cancer 5

to occur within a specific time [32]. The prediction outcomes of this type of analysis,

such as cancer death or recurrence, are fundamental to numerous clinical judgments

in oncology and play an essential role for patients, doctors, and scientists [33].Among

the currently available survival analysis models, the Cox proportional hazards (CPH)

regression model is the most widely applied approach to investigate the effect of

the input features on the survival time of the patients [34, 35]. So far, numerous

prognostic models have been proposed to apply the CPH regressionmodel on clinical

and transcriptomic data [36], and onmulti-omics data [37].However,MLhas recently

shown its successful applications in the medical and healthcare fields. Many ML

models have been employed in cancer survival analysis because of their ability

to handle high dimensional data, non-linear relationships, and interaction effects

[38, 39]. ML-based approaches for survival analysis, such as random survival forests

[40], gradient boosted survival model [41], survival support vector machine [42],

Cox-nnet [43], and SALMON [44], have emphasised the feasibility of accurately

predicting cancer outcomes using clinical and omics data.

Although survival analysis is widely applied in clinical studies, its prediction in

practice still relies heavily on the subjective interpretation of the clinician, limiting

reproducibility and accuracy [45]. Therefore, this tutorial aims to investigate breast

cancer survival analysis by proposing a framework based on ML algorithms to per-

form survival analysis using clinical and transcriptomic data. CPH model and three

ML-based models, namely random survival forests (RSF), gradient boosted survival

model (GBS), and survival support vector machine (SSVM), are implemented and

tested on the METABRIC dataset [46]. Our objectives are to classify the patients

into risk groups (i.e., high-risk and low-risk), and unveil the prognostic predictors

impacting the survival outcomes of patients. Consequently, identifying the patient

risk groups could assist doctors in determining the course of treatment, promot-

6 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

ing effective therapies, and supporting personalised clinical decision-making and

recommendation.

Hence, the aim of our work is two-fold: (i) to present a protocol for applying ML

algorithms in survival analysis. Specifically, elements of the study design, experiment

process, and performance evaluation criteria are described and outlined to generalise

and adapt our protocol to other public available clinical and transcriptomic data;

and (ii) to uncover critical prognostic factors affecting the survival likelihood of

breast cancer patients by employing the most recent statistical techniques for the

interpretability of ML models (i.e., SHAP values) [47].

2 Backgrounds

This section presents the main methodologies and ML algorithms applied in our

tutorial. The main differences between the three ML algorithms applied for survival

analysis are also discussed.

2.1 Survival analysis

Survival analysis is a statistical procedure applied for analysing the expected duration

of time until the occurrence of an event of interest (e.g., death or disease recurrence).

One of the main challenges associated with survival analyses consists of dealing

with censored data, a form of missing information that occurs because of the limited

observation time, observation withdrawal, or lost to follow-up during the study

period [48]. Censored data can be classified into two groups: left-censored and

right-censored data. The former occurs when the event has already occurred before

the beginning of the study, while the latter occurs when the survival time is only

Machine Learning Methods for Survival Analysis of Breast Cancer 7

known to exceed a certain value, but the exact time is unknown. Right-censored data

is the most common type of censored data [48]; therefore, this study will focus on

the survival analysis for right-censored data.

For a given instance 8, the survival information associated with 8 is comprised of

two elements: a binary event indicator �8 , in which �8 = 0 for censored instance and

�8 = 1 if the event (e.g., death) is observed, and a failure event time)8 , a non-negative

random variable representing the duration between the beginning of the study and

the occurrence of the event. The formula below reports the probability of observing

the event by time C.

� (C) = %A [) < C] . (1)

The function � (C) is defined as the cumulative distribution function.

Let the probability density function be denoted as 5 (C). The survival function,

((C), provides the probability that the event is observed after time C, and it is defined

as

((C) = %A [) ≥ C] = 1 − � (C) =
∫ ∞

C

5 (G)3G. (2)

The hazard function ℎ(C) represents the probability that the event will happen

within the interval [C, C + 3C), given that it did not occur before time C. Thus, a lower

hazard corresponds to a greater chance of survival. The hazard function ℎ(C) is

defined as

ℎ(C) = lim
3C→0

%A [C ≤) < C + 3C |) ≥ C]
3C

. (3)

By using the definition of ((C) in Eq. 2, the hazard function can also be written as

8 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

ℎ(C) = 5 (C)
((C) = −

3

3C
log ((C). (4)

Survival and hazard functions are two fundamental concepts in survival analysis,

and they are connected by the expression below

((C) = 4−
∫ C

0 ℎ (G)3G . (5)

Eq. 5 can be derived by integrating the first and last terms in Eq. 4 from 0 to C. The

integral inside the parenthesis in Eq. 5 describes the sum of the risks of observing

the event between time 0 and time C. This quantity is called cumulative hazard and

it is defined as � (C) =
∫ C
0 ℎ(G)3G.

2.2 Cox proportional hazards model

The Cox proportional hazards (CPH) model [49] has been the most commonly

applied method in clinical studies to investigate the relationships between time-

to-event or survival-time outcomes and explanatory variables. The CPH model is

a regression approach used to calculate the hazard ratio (HR) and its confidence

interval between patients belonging to different risk groups. Specifically, the HR can

be interpreted as a relative risk. The CPH model is a semi-parametric model and it

is denoted by the hazard function ℎ(C) representing the hazard at time C defined as

ℎ(C) = ℎ0 (C)4V1G1+V2G2+...+V: G: , (6)

Machine Learning Methods for Survival Analysis of Breast Cancer 9

where ℎ0 (C) is the baseline hazard function, and V1, V2, .., V: are the correspond-

ing regression coefficients of covariates G1, G2, ..., G: .

A value of 4V8 above 1, or V8 above zero, shows that the increase in value of the

8Cℎ covariate will lead to the rise in event hazard and, consequently, the reduction in

survival time length. In other words, the covariate is positively correlated with the

event likelihood or negatively associated with the survival time length. In contrast,

a value of 4V8 below 1, or V8 below zero, shows that an increase in value of the 8Cℎ

covariate will lead to a decreased probability of observing the event. If 4V8 is equal

to one, that covariate does not affect the survival probability. Overall, observing 4V8

above one is a bad prognostic indicator in cancer studies, whereas observing 4V8

below one is a good indicator.

Let us consider two observations `, a with covariates G`8 and Ga8 , 8 = 1, ..., : and

hazard functions defined as

ℎ` (C) = ℎ0 (C)4V1G`1+V2G`2+...+V: G`: (7)

ℎa (C) = ℎ0 (C)4V1Ga1+V2Ga2+...+V: Ga: (8)

Using the definitions of ℎ` (C) and ℎa (C) in Eq. 7 and Eq. 8, the HR for the two

observations `, a is calculated as

�' =
ℎ` (C)
ℎa (C)

=
ℎ0 (C)4

:∑
8=1
V8 G`8

ℎ0 (C)4
:∑
8=1
V8 Ga8

=
4

:∑
8=1
V8 G`8

4

:∑
8=1
V8 Ga8

= 4

:∑
8=1
V8 (G`8−Ga8)

(9)

Since the HR is not a function of time C, the hazard risk of the two groups must

remain constant through the whole study, and their hazard curves should not cross.

In fact, the CPH model is based on two assumptions: (1) the survival curves for two

10 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

or more strata must have proportional hazard functions over time C, and (2) each

covariate makes a linear contribution to the model.

2.3 Machine learning models

MLmodels employed for survival analysis have recently received increasing interest

due to their promising applications in cancer research [39]. They are mainly applied

to predict survival outcomes and the corresponding survival likelihood following

statistical survival analysis approaches. However, rather than focusing on survival

curves estimation, ML approaches mainly focus on predicting the time of event

occurrence by merging the traditional statistical survival analysis techniques with

the most recent statistical models. The advantages of using ML algorithms to per-

form survival analysis include the opportunity of providing more accurate solutions

allowing the analysis of survival data while dealing with the statistical challenges

associated with high dimensional data.

In this tutorial, patient-specific survival risk probabilities are predicted using the

most recent ML algorithms, including random survival forests, gradient boosting

model, and survival support vector machine, which have recently become popular

due to their effectiveness in handling survival data [39].

2.3.1 Random survival forests

Random survival forests (RSF) is a random forest-based learning method used to

analyse right-censored survival data [50]. The model uses an ensemble approach

to generate predictions by integrating the estimations of multiple trees. This allows

the model to gain more precise predictions than using a single tree. The algorithm

Machine Learning Methods for Survival Analysis of Breast Cancer 11

employs tree-structured and bagging algorithms, typical of the random forest model

[51], based on the three steps below.

1. A random bootstrap sample from the training set is selected to grow a tree;

2. The tree nodes are divided by a random attribute selection rather than using all

the features available in the dataset;

3. The prediction of the random forest algorithm is determined by averaging the

predictions of the individual tree.

Consequently, each tree in the forest is grown on an independent bootstrap sam-

ple extracted from the training data. This model is more independent and lowers

the correlation between features, thus reducing the variance of the unbiased base

learners occurring when using a single decision tree, and gaining better predictive

performance. This technique aggregates different trees’ decisions, and it often offers

a better generalisation. The random forest algorithm has been demonstrated to be

a widely adopted and effective ML technique for high-dimensional data and it is

regarded as one of the most successful ensemble methods [52].

RSF extends the above approach by integrating censored information from sur-

vival data into the splitting rules applied for the growth of the forest. RSF is one of

the most powerful and widely used learning algorithms for survival analysis. Each

survival tree splitting employs the log-rank splitting rule to develop a set of survival

trees, maximising the log-rank test statistic. Other splitting rules, such as log-rank

score or conservation-of-events, can be used during the growing phase of the forest.

However, log-rank splitting is the most popular technique and it is the focus of this

tutorial algorithm.

According to Ishwaran et al. [50], the description of the RSF algorithm can be

summarised as below.

1. The number of trees = in the forest and the number of predictors : for the splitting

of each node are defined;

12 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

2. = bootstrap samples from data are drawn. Each sampling excludes out-of-bag

data, which can be proven to be approximately equal to 37% of the full dataset

[53].

3. A survival tree in each bootstrap sample is grown using the following approach:

• : candidate predictor variables are randomly chosen;

• For the possible splitting point of each : , the log-rank statistic is computed;

• The node is split based on the log-rank splitting rule that maximises the

survival difference between children nodes;

• The tree continues to grow to full size under the constraint that the number

of event observations (e.g., deaths) in each node is greater than a predefined

minimum terminal node size.

4. A cumulative hazard function is computed for each tree. Then, the results are

averaged to estimate the ensemble cumulative hazard function for all trees;

5. Harrell’s concordance index [54] is calculated on the out-of-bag data and used

to determine the predictive accuracy of the model.

2.3.2 Gradient boosted survival

Gradient boosted survival analysis (GBS) is a gradient boosting machine learning

model applied to analyse censored data [55]. The predictive algorithm is based on an

additive regression model of sequentially fitted weak learners (base-learners), while

minimising the loss function. It is thus regarded as an ensemble learning method. It

is a nonparametric approach and does not require any functional form assumption,

providing researchers with more flexibility than other survival models. GBS also

generates more robust returns than one single learner as it consolidates predictions

from various estimations of weak learners.

Machine Learning Methods for Survival Analysis of Breast Cancer 13

In GBS, each successive tree is an enhancement over the previous one. In other

words, the second tree improves over the first tree by learning from the residual of

its prediction, while the third tree enhances over the first and second ones, and so

on. The outcome is estimated by the weighted sum of all the predicted values given

by the individual trees.

The gradient boosting algorithm can be summarised as below [56, 57].

1. The number of iterations " , the base learner model ℎ(x,)), and the loss func-

tion ; (H, 5) are defined, where (x, H)#
8=1 is the input data,) are the parameter

estimates, and 5 is the unknown function that maps the input variables x to the

target variables H;

2. An initial random guess 5̂0 of the unknown function 5 is defined;

3. For each iteration : , the following steps are performed:

• The negative gradient of the loss function at iteration : is calculated;

• The new base learner function ℎ(x, \:) is fitted;

• The best gradient descent step-size d: is estimated as follows

d: = 0A6 <8=d

#∑
8=1

; [H8 , 5̂:−1 (G8) + dℎ(G8 , \:)]; (10)

• The estimated function 5̂: is updated as 5̂: = 5̂:−1 + d:ℎ(x, \:);

4. The output of the final model is defined as 5̂ (x) =
"∑
:=1

5̂: (x).

In this tutorial, we use regression trees as the base learner model, and CPH as

the loss function in the GBS [58]. By doing this, the hazard, survival function, and

log-hazard ratio are estimated by summing up the prediction of each regression tree.

14 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

2.3.3 Survival support vector machine

Support vector machine (SVM) is a very popular supervised learning method for

regression and classification problems. SVM has also been applied to censored data

for survival analysis [59]. The central idea of SVM is to classify data points by

maximising the margin between groups in a high-dimensional space, and finding a

separating hyperplane that minimises misclassification [60]. The hyperplane sepa-

rates the classes and is as far from the closest observations as possible. Then, support

vectors are defined as the data nearest to the maximum margin hyperplane.

Survival support vector machine (SSVM) follows the same approach as SVM

but it employs an asymmetric penalty function to handle survival data. Specifically,

linear SVM can be adapted to solve survival analysis by ranking, regression, and

hybrid approaches. In a ranking approach, the learning model assigns a lower rank

to instances with a shorter time of an event by examining all possible combinations

of instances in the training data, while predicting the exact survival times in the

regression problem. Because of its efficiency and optimal performance, this work

focus on linear SSVM to handle survival analysis problems.We apply amore efficient

SVM algorithm called FastSVM [61]. This model has lower computational training

costs since it is based on truncated Newton optimisation and order statistic trees.

2.4 Feature selection

When working with transcriptomic data, the number of features often exceeds sig-

nificantly the number of observations leading ML algorithms to overfit the data and

report poor performance. For this reason, several features selections techniques have

been proposed, with the aim of identifying and selecting an optimal subset of fea-

tures. The most widely applied feature selection models include Pearson correlation,

Machine Learning Methods for Survival Analysis of Breast Cancer 15

Spearman correlation [62], principal component analysis (PCA) [63], and genetic

algorithm (GA) [64]. However, Schemper et al. [65] have shown that the Pearson and

Spearman correlation models are unsuitable to work with censored data. Besides,

dimensionality reduction methods, such as PCA, are difficult to interpret and are

more suitable to use for the linear or approximately linear high dimensional data

[66], while GA-based wrapper techniques have low computational efficiency [67].

Maximum relevance and minimum redundancy (mRMR) [68], a technique applied

to select features based on their correlation with the response variables, has the ad-

vantage of fast computation and stronger robustness than the above feature selection

techniques. Hence, mRMR is applied in this tutorial. According to Peng et al. [68],

the model ranks the features according to both their relevance to the outcome and the

low correlation between themselves. The steps performed by the mRMR algorithm

are described below. Firstly, mRMR identifies the first feature based on themaximum

relevance value.

Let � be the mutual information (MI) to measure both relevance and redundancy

between features. The MI of two random features < and = is given by

� (<, =) =
∬

?(<, =) log ?(<, =)
?(<)?(=) 3< 3= (11)

where ?(<), ?(=), and ?(<, =) denote the probabilistic density function of <, = and

their joint probabilistic density function, respectively.

Next, let - denotes the whole feature set, while (denotes the selected feature

set containing B features, and 2 is the outcome class. For an individual feature G8 ,

� (G8 , 2) denotes its MI with the class 2. The maximum relevance criterion, reflecting

the largest dependence of G8 on the target class 2, is computed by

max� ((, 2), � ((, 2) = 1
|(|

∑
G8 ∈(

� (G8; 2). (12)

16 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

The features selected by the maximum relevance criterion are likely to have large

dependency among them. Hence, the minimum redundancy condition is added and

calculated by

min '((), '(() = 1
|(|2

∑
G8 ,G 9 ∈(

|� (G8 , G 9) |, (13)

where � (G8 , G 9) is the MI of feature G8 and G 9 .

The final mRMR feature set is chosen by simultaneously optimising Eq. 12 and

Eq. 13. An incremental search approach is used to find the near-optimal features. Let

us consider the (B−1 feature set with B− 1 features already identified. The BCℎ feature

is selected from the remainder feature set {- − (B−1} by optimising the following

condition

max
G 9 ∈-−(B−1

[
� (G 9 ; 2) −

1
B − 1

∑
G8 ∈(B−1

� (G 9 ; G8)
]
. (14)

3 Methods

This section describes the dataset used in this tutorial and the experiments run

to perform survival analysis. We conducted three experiments to investigate the

performance of CPH and ML-based models on clinical data, transcriptomic data,

and on the integration of the two data types. First, we report the dataset description,

then the study design, initial setting, and details of three experiments are discussed.

Machine Learning Methods for Survival Analysis of Breast Cancer 17

3.1 Dataset

METABRIC dataset [46] was used to assess the predictive performance of the CPH

model and the ML methods implemented in this study. The dataset has been down-

loaded from cBioPortal (www.cbioportal.org/datasets). The tumour information in

the originalMETABRIC studywas collected fromfive centres in theUK andCanada.

The objective of the study was to analyse the effect of genomic and transcriptomic

profiles on breast cancer survival to discover the optimal treatment approach of

patients. The dataset contains clinical information for 2,509 primary breast cancer

samples, and 2,509 molecular profiling, including 1,904 transcriptomic data with a

maximum follow-up period of 355 months. Clinical data was obtained from cohort

studies and trials, including the survival time in months and status (deceased or cen-

sored), while gene expression data was extracted from mRNAseq, which provides

a snapshot of the transcript abundance of different gene transcripts of the cell. The

detailed description of tissue specimens and staging can be found in the original

METABRIC study of Curtis et al. [69]. To explore the power of CPH and ML

models, we considered all the clinical and transcriptomic covariates available in the

dataset.

3.2 Study design

We set up three experiments to evaluate the CPH and ML models for survival

analysis, including (1) clinical data, (2) transcriptomic data, and (3) integrating

clinical and transcriptomic data. Python programming language (version 3.8.8) and

its libraries on the Anaconda environment (version 4.10.3) were used to conduct the

experiments. Python 3 can be run on any popular operating system such asWindows,

www.cbioportal.org/datasets

18 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

Mac, and Linux. However, the steps in this work are demonstrated on a Windows 10

Pro - 64-bit operating system.

We separately implemented all the experiments in Jupiter notebooks, an open-

source web application that integrates code, visualisations, computational output,

and other resources in one single file. However, the code can also be efficiently run

online on Google Colab (https://colab.research.google.com) without any software

installation.

The CPH and the current state-of-the-art ML algorithms presented in Sect. 2 were

applied and evaluated in this study using scikit-survival packages [70] for Python.

The procedure of the experiments followed in this tutorial is described below and

presented in Fig. 1.

https://colab.research.google.com

Machine Learning Methods for Survival Analysis of Breast Cancer 19

Step 2: Get data

Step 3: Preprocess +

Step 4: Feature Selection

https://www.cbioportal.org

Step 1: Set up

+
Clinical data Transcriptomic data

< 30 mins

Missing values
Duplicated values
Encode data

< 10 mins

Step 5: Cox Proportional

Hazard Ratio

95% confidence interval

p-value

mRMR

45 mins

30 mins

15 mins

Step 6: Machine Learning

Step 7: Interpret results
Prognostic Model Evaluation

2 - 3 hours

20 hours

Explore data

 Hazards Model Plot

for Survival Analysis

C-index

Survival risk
High Risk

Low RiskShapley values

major risk factors

Fig. 1: Tutorial Workflow. After setting the environment (Step 1), clinical and tran-
scriptomic data was retrieved from cBioPortal (Step 2). To start the experiment, we
loaded the data, followed by data cleaning and data exploration steps (Step 3). Due
to the high dimensional nature of transcriptomic data, a feature extraction step was
required before running the machine learning models (Step 4). Next, the CPH model
was run and the results were plotted to investigate the HR and p-value associated
with each risk factor (Step 5). Then, we built, trained, and evaluated the ML models
for survival analysis. Patients were then divided into high and low-risk groups based
on the predicted risks scores, and the survival risk differences between groups were
investigated (Step 6). Finally, the top critical prognostic markers were identified and
interpreted using SHAP values (Step 7).

20 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

Step 1: The libraries and packages required for the analysis are first installed

and imported;

Step 2: The METABRIC dataset is loaded;

Step 3: Preprocessing steps and data exploration techniques are performed to

investigate the dataset;

Step 4: Feature selection is applied to select the optimal number of features from

a large set of variables (this step is applied only to the transcriptomic

data, where data reduction is necessary to improve the performance of

models);

Step 5: The CPH model is run and the results are plotted and interpreted;

Step 6: ML algorithms are set up and run to generate the final predictivemodels;

Step 7: Results are interpreted using SHAP values, and models are compared.

The outputs of the survival ML models are patient-specific risk scores, which

incorporate OS time and the corresponding event censorship indicator. A higher

risk score indicates a greater likelihood of observing the event of interest (e.g.,

decease) early. Therefore, it is necessary to find an appropriate metric to evaluate the

performance of models based on such predicted risk scores.

Harrell’s concordance index (C-index) [54], a goodness of fit for survival models,

is used to measure the concordance probability %([9 > [8 |)8 >)9) for two instances

8 and 9 to rank association between their OS time points)8 ,)9 and the models’

prediction [8 , [9 . It assesses the possibility for a random observations pair that the

patient with a higher risk score is the one who has a shorter survival time. Hence,

it estimates how well a model predicts the ordering of decease times of patients.

C-index values range from 0 to 1, where a value of 0.5 corresponds to a random

model or no predictive discrimination. In contrast, C-index equal to 1 implies a

precise association or perfect ranking of the observed and predicted survival times.

Machine Learning Methods for Survival Analysis of Breast Cancer 21

3.3 Initial setting

Before starting the analysis, the folders named Data and Plot are required to be

set up in your local machine to store all data and figures for the experiments. Then,

Python 3 [71] needs to be installed. The software is free and can be downloaded from

www.python.org/downloads/. We recommend using the Anaconda environment for

Python and its libraries to run the experiments presented in this project.

The data files used for this project and the complete codes notebooks are avail-

able at (https://github.com/Angione-Lab/survival_analysis_tutorial). The reposi-

tory includes the clinical and transcriptomic data (i.e., data_clinical_patient.csv,

data_clinical_sample.csv, data_mRNA_median_all_sample_Zscores.csv),which are

required to run the following steps.

After creating a new notebook, a new cell/field to run the codes needs to be

created. By clicking on the "Run Cell" button, the code will be executed cell-by-cell.

Finally, libraries and packages of Python need to be installed as shown below.

1 !pip install dataprep # data exploration

2 !pip install scikit-survival # survival analysis

3 !pip install lifelines # plotting survival analysis

4 !pip install git+https://github.com/smazzanti/mrmr # feature

selection

5 !pip install shap # model interpretation

Other than the above packages, some primary data preprocessing and visualisation

libraries such as Pandas, NumPy,Matplotlib, and Seaborn are expected to be installed

if the code is run on a local machine. The syntax !pip install + libraries_names can

be followed to install the preliminary packages.

1 !pip install pandas # loading and preprocessing data

2 !pip install numpy # loading and preprocessing data

3 !pip install matplotlib # visualisation

www.python.org/downloads/
https://github.com/Angione-Lab/survival_analysis_tutorial

22 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

4 !pip install seaborn # visualisation

5 !pip install -U scikit-learn # preparing ML algorithms

Once the required libraries are installed, they need to be imported at the beginning

of the notebook to use the relevant functions.

1 # Packages to load and preprocess data

2 import numpy as np

3 import pandas as pd

4

5 # Packages to visualise and explore data

6 import seaborn as sns

7 sns.set_style("whitegrid")

8 import matplotlib.pyplot as plt

9 from dataprep.eda import plot, create_report , plot_missing ,

plot_correlation

10

11 # Feature selection

12 from mrmr import mrmr_classif

13

14 # Packages to prepare data for ML

15 from sklearn. preprocessing import OrdinalEncoder

16 from sklearn.model_selection import GridSearchCV , KFold

17 from sklearn.model_selection import train_test_split

18 from sklearn. preprocessing import MinMaxScaler

19 from sklearn.pipeline import Pipeline

20

21 # Packages for survival analysis

22 from lifelines import CoxPHFitter

23 from lifelines.utils import k_fold_cross_validation

24 from lifelines.statistics import logrank_test

25 from lifelines import KaplanMeierFitter

26 from lifelines.plotting import add_at_risk_counts

Machine Learning Methods for Survival Analysis of Breast Cancer 23

27

28 # Packages for ML in survival analysis

29 from sksurv.linear_model import CoxPHSurvivalAnalysis

30 from sksurv.svm import FastSurvivalSVM

31 from sksurv.ensemble import RandomSurvivalForest

32 from sksurv.ensemble import GradientBoostingSurvivalAnalysis

33 from sksurv.metrics import concordance_index_censored

34

35 # Package to interpret data

36 import shap

3.4 Experiment 1: clinical data

Following the workflow presented in Fig. 1, Experiment 1 was conducted to perform

survival analysis on the clinical data. The data was first loaded into a data frame

for data cleaning and exploratory data analysis (EDA). Then, the CPH model and

ML models were trained and evaluated to predict the survival risk of the patients.

Finally, the results were interpreted to identify the critical clinical factors associated

with low survival of the breast cancer patient.

The details of the experiment are presented in the following sections.

3.4.1 Load data

The patients information used in our analysis is stored in two files, one with clinical

information and the other with the demographic characteristics of the patients. These

two files need to be merged into a single data frame for easy processing.

1 # Load data

2 file1 = pd.read_csv(’Data/data_clinical_patient.csv’)

24 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

3 file2 = pd.read_csv(’Data/data_clinical_sample.csv’)

4

5 # Merge clinical data

6 data = pd.merge(file1,file2, how="inner", on=["PATIENT_ID"])

Once the data was loaded and merged, the first five rows of the new data frame

and its information were extracted to get an overview of the data using the lines

below. The outcome is reported in Fig. 2.

1 # Have a quick look at data

2 data.head()

Fig. 2: First five rows of the merged data frame. The data is presented in a table with
the clinical features as columns and patients as rows. As the data frame comprised
many columns, only the first eight columns are displayed in this figure.

Next, an overview of the data frame information can be generated by running the

lines below. The output is displayed in Fig. 3.

1 # Data information

2 data.info()

Machine Learning Methods for Survival Analysis of Breast Cancer 25

Fig. 3: Clinical data information. The figure reports an overview of the clinical data
frame, including total entries, data types, the names of the columns, and the number
of validated data points. There are 2,509 entries and 36 columns in the clinical data
frame. The first 21 columns are shown in this figure, which include two types of data:
(1) float or numeric and (2) object or non-numeric. Some columns contained missing
values such as LYMPH_NODES_EXAMINED_POSITIVE, and NPI. This analysis
provides a useful summary of the data before implementing any preprocessing steps.

The data contained some missing values; hence, it is essential to understand the

data and preprocess it carefully before implementing any predictive models. In the

next section, different techniques to explore and clean the data are performed.

26 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

3.4.2 Preprocess and explore data

In order to save computation time, duplicate observations and unused columns were

dropped before conducting exploratory data analysis. This is one of the fundamental

data cleaning steps to prepare the data for further analysis.

• VITAL_STATUS and SAMPLE_ID columns were dropped because they reported

the same information as OS_STATUS and PATIENT_ID, respectively;

• SEX and SAMPLE_TYPE columns had only a single value; hence they were

not providing any useful information for the predictive models and they were

removed;

• RSF_STATUS and RSF_MONTHS were derived variables and were not used in

our survival analysis;

1 # Drop unused columns: Based on data.info(), we will drop some

unused cols and null cols

2

3 drop_list = [’VITAL_STATUS’, ’SAMPLE_ID’, ’SEX’, ’SAMPLE_TYPE’, ’

RSF_STATUS’, ’RSF_MONTHS’]

4 data = data.drop(drop_list , axis=1)

We also checked the number of patients for each cancer type since the target of

our study is breast cancer. The dataset included some breast sarcoma instances, a

sporadic form of breast cancer. However, since a normal breast cancer prognosis

is our primary objective, the data was filtered by CANCER_TYPE to keep normal

breast cancer only. The lines below show the implementation of the filtering steps.

The output of these steps is reported in Fig. 4.

1 # We check the number of patients by cancer type

2 print(’\nGroup Patients by’,data.groupby(’CANCER_TYPE’)[’

PATIENT_ID’].count())

3

Machine Learning Methods for Survival Analysis of Breast Cancer 27

4 # There are only three patients with Breast Sarcoma

5 # So we will filter those patients with Breast Cancer type

6 data = data[data[’CANCER_TYPE’] == ’Breast Cancer’]

7

8 # Delete Cancer type columns as this column reports the same

value for all the samples, and it does not bring any useful

information for the following steps of the analysis.

9 data = data.drop([’CANCER_TYPE’], axis=1)

10 print(’\nAfter the preprocessing , the shape of data is:’, data.

shape))

Fig. 4: Output of preprocessing step. Only three breast sarcoma samples were present
in the data; therefore, we dropped those three samples and left only one single value
in the CANCER_TYPE column, i.e., normal breast cancer. As a result, since the
CANCER_TYPE column reported the same value for all the samples, and it did
not add any extra information about the samples, the column was removed and not
included in the future steps of the analysis. Finally, after preprocessing, the final
dataset consisted of 2506 samples and 29 features.

Before continuing the preprocessing phase (Step 2 in Fig. 1), data was explored

to investigate data types, data distribution, and missing values. The library dataprep

was used for exploratory data analysis (EDA). Other options to explore specific parts

of the report, such as missing values and data distribution, were also used, as shown

in the code below.

1 # Understand data

2 # Save to report as html file

3 create_report(data).save(’Plot/EDA_clinical_report’)

28 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

4

5 # Optional to explore parts of the report

6 plot_missing(data).save(’Plot/missing_values.html’)

7 plot(data).save(’Plot/data.html’)

The library generates an interactive EDA report that can be exported as an HTML

file, as shown in Fig. 5, and opened in a web browser. This is a comprehensive

report presenting all information about the features in the data frame. Besides the

comprehensive report, the library allows to extract specific parts of the report. This

can be achieved by selecting "Missing Values" in the menu at the top of the report

page. For instance, the percentage of missing values for each variable is illustrated

in Fig. 6. Once an overview of the data had been obtained, the next step was dealing

with missing values. Our strategy was to remove the rows and columns with more

than 50% missing values. Fig. 6 shows that there were no columns with more than

50% missing values.

We removed the rows with more than 50% blank values by running the lines of

codes below. The output is reported in the first two rows of Fig. 7.

1 # Deal with missing values

2 # There is no columns more than 50% missing value

3 cols_mv_50 = data.columns[data.isnull().mean()>0.5]

4 print(’Number of columns having more 50% missing data’, len(

cols_mv_50))

5

6 # Remove row with more than 50% missing

7 percent = 50

8 min_count = int(((100-percent)/100)*data.shape[1] + 1)

9 data = data.dropna(axis=0, thresh=min_count)

10 print(’After removing rows with more than 50% missing value:’,

data.shape)

Machine Learning Methods for Survival Analysis of Breast Cancer 29

Fig. 5: EDA report for clinical data. The report shows that the dataset consists of
29 features (22 categorical and 7 numerical features) and 2,506 rows. There are no
duplicate rows, and 10,088 missing values account for 13.9% of the data. Besides,
the report also reveals insights for each column (top-right panel), such as the number
of missing values, skewness, unique number of values, and statistical summary. The
distribution of each variable and information about missing values are also provided
in the final report (bottom panel).

After removing the rows with more than 50% of missing values, we replaced any

missing values with their mode (for categorical variables), and their average (for

numeric variables). To achieve this, firstly, we identified which columns contained

blanks and classified them into either categorical or continuous numeric types. Once

this step was completed, we checked again the number of missing values to ensure

there were no other missing values in the data. The output of the below codes is

displayed in Fig. 7.

30 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

Fig. 6: Missing values chart. The plot shows the missing values information by
column. In the stacked column chart, the orange section represents the number of
blank rows, whereas the blue represents the non-blank ones. As shown in the chart,
no columns have more than 50% missing values.

1 # Print columns name having blanks

2 cols_missvalue = data.columns[data.isnull().sum()>0]

3 print(’List columns having missing data:’, cols_missvalue)

4

5 cat_var = [’LYMPH_NODES_EXAMINED_POSITIVE’, ’CELLULARITY’, ’

ER_IHC’, ’THREEGENE’, ’LATERALITY’, ’HISTOLOGICAL_SUBTYPE’, ’

BREAST_SURGERY’, ’GRADE’, ’TUMOR_STAGE’]

6 num_var = [’TUMOR_SIZE’]

7

8 # Replace missing values with most frequent values

9 data[cat_var] = data[cat_var].fillna(data[cat_var].mode().iloc

[0])

10

11 # Replace missing values with average values

12 data[num_var] = data[num_var].fillna(data[num_var].mean())

Machine Learning Methods for Survival Analysis of Breast Cancer 31

13

14 # Check missing values again

15 print(’Missing value number:’, data.isna().sum().sum())

Fig. 7: Output of dealing with missing values steps. There are no columns that
missed more than 50% of values. After removing the rows with more than 50% of
missing values, the data’s remaining rows are 1,977. Also, 10 columns, namely
LYMPH_NODES_EXAMINED_POSITIVE, CELLULARITY, ER_IHC, THREE-
GENE, LATERALITY, HISTOLOGICAL_SUBTYPE, GRADE, TUMOR_SIZE, TU-
MOR_STAGE, BREAST_SURGERY contains missing values, which are replaced by
their mode (if categorical) or their average (if numeric). Once the preprocessing
steps are completed, no missing values are found in the dataset.

Before moving into the next step of the pipeline, distribution visuals for each

variable were plotted using the below line of code. The output is reported in Fig. 8.

1 # Exploring clean data

2 plot(data.iloc[:,1:]).save(’Plot\preprocessed_data.html’)

In the following step (Step 2 in Fig. 1), some categorical variables were encoded

to numeric to process and analyse data. Firstly, we prepared a list of features/columns

to be encoded. Then theOrdinalEncoder function was used to transform the columns

in the list to numeric.

1 # Encode categorical data

2

3 # Encode OS status to dummy

4 data[’OS_STATUS’]=np.where(data[’OS_STATUS’]==’1:DECEASED’, 1, 0)

5

32 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

Fig. 8: Features distribution in clinical data. Excluding PATIENT_ID, the remain-
ing 28 features, including OS_MONTHS and OS_STATUS, are plotted. The figure
shows that LYMPH_NODES_EXAMINED_POSITIVE and OS_MONTHS are right-
skewed, while the CELLULARITY values, i.e., amount of tumour cells, is mostly
high, followed by moderate and low status.

6 # Encode other categorical variables

7 other_var = [’LYMPH_NODES_EXAMINED_POSITIVE’, ’NPI’,’

AGE_AT_DIAGNOSIS’, ’COHORT’, ’GRADE’, ’TUMOR_SIZE’, ’

TUMOR_STAGE’, ’TMB_NONSYNONYMOUS’, ’OS_MONTHS’, ’OS_STATUS’,’

PATIENT_ID’]

8 df_encode = data.drop(other_var , axis=1)

9

10 # Some variables’ values are not in order, so we have to specify

the variables and their corresponding orders

11 modified_list =[’CELLULARITY’, ’HER2_SNP6’, ’

INFERRED_MENOPAUSAL_STATE’, ’INTCLUST’, ’THREEGENE’]

12 keep_list = df_encode.columns[~df_encode.columns.isin(

modified_list)]

13 cel_cat = [’Low’, ’Moderate’, ’High’]

Machine Learning Methods for Survival Analysis of Breast Cancer 33

14 her2_cat = [’UNDEF’, ’LOSS’, ’NEUTRAL’, ’GAIN’]

15 inf_cat = [’Pre’, ’Post’]

16 intclust_cat = [’1’, ’2’, ’3’, ’4ER+’, ’4ER-’, ’5’, ’6’, ’7’, ’8’

, ’9’, ’10’]

17 three_gene_cat = [’ER-/HER2-’, ’HER2+’, ’ER+/HER2- Low Prolif’, ’

ER+/HER2- High Prolif’]

18

19 # Encode the predefined order variables

20 enc = OrdinalEncoder(categories=[cel_cat, her2_cat , inf_cat,

intclust_cat , three_gene_cat]).fit(df_encode[modified_list])

21 encoder = enc.transform(df_encode[modified_list])

22 df_encode_new = pd.DataFrame(encoder, columns=modified_list)

23

24 # Encode the other variables

25 enc1 = OrdinalEncoder().fit(df_encode[keep_list])

26 encoder1 = enc1.transform(df_encode[keep_list])

27 df_encode_new1 = pd.DataFrame(encoder1 , columns=keep_list)

Finally, the columns were concatenated to the other numeric columns to generate

the final data frame.

1 # Merge encode data and original data

2 df =pd.concat([df_encode_new , df_encode_new1 , data[other_var].

reset_index(drop=True)], axis=1)

3 print(df.shape)

To check the mapping between the encoded categories and the original ones, the

code below can be executed.

1 # To check the encoded categories

2 for i in range(len(col)):

3 print(col[i], enc.categories_[i])

4 for i in range(len(keep_list)):

5 print(keep_list[i], enc1.categories_[i])

34 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

Fig. 9: Output of the mapping between the encoded and the original categories. The
figure shows the original values for each encoded categorical column. The original
categories are presented in ascending order based on their corresponding encoded
values.

Next, the clean data was saved in a CSV file, clinical.csv, in the Data folder to be

used for the following analysis and to be integrated with transcriptomic data.

1 # Save preprocess data to csv to merge to gene data

2 df.to_csv(’Data/clinical.csv’, index=False)

Correlation analysis was performed to understand the relationship between fea-

tures in the data. The heat map in Fig. 10 presents the Pearson correlation matrix

where the varying intensity of colour represents the values of correlation. There

were some highly correlated features observed in the data, such as ER_STATUS and

ER_IHC, and AGE_AT_DIAGNOSIS and INFERRED_MENOPAUSAL_STATE.

1 # Drop Patient ID column as this is not relevant for the analysis

2 df = df.drop([’PATIENT_ID’], axis=1)

3

Machine Learning Methods for Survival Analysis of Breast Cancer 35

4 # Correlation analysis

5 colormap = plt.cm.Reds

6 plt.figure(figsize=(12,10))

7 sns.heatmap(df.corr(),linewidths=0.1,vmax=0.8,

8 square=True, cmap = colormap, linecolor=’white’)

9 plt.title(’Correlation matrix’, fontsize=14)

10 plt.show()

Since the next steps of the pipeline are based on survival analysis, we calculated

the percentage of censored data using the lines of code below. Overall, there was

42.2% of censored information.

1 num_censored = df.shape[0] - df["OS_STATUS"].sum()

2 print("%.1f%% of records are censored" % (num_censored/df.shape

[0]*100))

Then, the follow-up time distribution of death and censored patients was plotted

using the code below. The final chart is shown in Fig. 11. This step allows a further

investigation into the time-to-event distribution for censored/non-censored patients.

1 # Time Distribution of Death and Censor

2 plt.figure(figsize=(9, 6))

3 val, bins, patches = plt.hist((df.query(’OS_STATUS == 1’)[’

OS_MONTHS’],df.query(’OS_STATUS == 0’)[’OS_MONTHS’]),

4 bins=30, stacked=True)

5 _ = plt.legend(patches, ["Time of Deaths", "Time of Censored"])

6 plt.title("Time Distribution of Censored and Death Patients")

3.4.3 Plot Cox proportional hazards model

In the next step of our pipeline (Step 5 in Fig. 1), the CPH model was fitted on the

clinical data. The results were then visualised and reported to view the coefficients

36 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

C
EL

LU
LA

R
IT

Y
H

ER
2_

SN
P6

IN
FE

R
R

ED
_M

EN
O

PA
U

SA
L_

ST
AT

E
IN

TC
LU

ST
TH

R
EE

G
EN

E
C

H
EM

O
TH

ER
AP

Y
ER

_I
H

C
H

O
R

M
O

N
E_

TH
ER

AP
Y

C
LA

U
D

IN
_S

U
BT

YP
E

LA
TE

R
AL

IT
Y

R
AD

IO
_T

H
ER

AP
Y

H
IS

TO
LO

G
IC

AL
_S

U
BT

YP
E

BR
EA

ST
_S

U
R

G
ER

Y
C

AN
C

ER
_T

YP
E_

D
ET

AI
LE

D
ER

_S
TA

TU
S

H
ER

2_
ST

AT
U

S
O

N
C

O
TR

EE
_C

O
D

E
PR

_S
TA

TU
S

LY
M

PH
_N

O
D

ES
_E

XA
M

IN
ED

_P
O

SI
TI

VE N
PI

AG
E_

AT
_D

IA
G

N
O

SI
S

C
O

H
O

R
T

G
R

AD
E

TU
M

O
R

_S
IZ

E
TU

M
O

R
_S

TA
G

E
TM

B_
N

O
N

SY
N

O
N

YM
O

U
S

O
S_

M
O

N
TH

S
O

S_
ST

AT
U

S

CELLULARITY
HER2_SNP6

INFERRED_MENOPAUSAL_STATE
INTCLUST

THREEGENE
CHEMOTHERAPY

ER_IHC
HORMONE_THERAPY

CLAUDIN_SUBTYPE
LATERALITY

RADIO_THERAPY
HISTOLOGICAL_SUBTYPE

BREAST_SURGERY
CANCER_TYPE_DETAILED

ER_STATUS
HER2_STATUS

ONCOTREE_CODE
PR_STATUS

LYMPH_NODES_EXAMINED_POSITIVE
NPI

AGE_AT_DIAGNOSIS
COHORT

GRADE
TUMOR_SIZE

TUMOR_STAGE
TMB_NONSYNONYMOUS

OS_MONTHS
OS_STATUS

Correlation matrix

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Fig. 10: Correlation matrix of clinical features. The correlation matrix depicts the
linear correlation between all the pairs of attributes and ranges from -1 (perfect neg-
ative correlation) to +1 (perfect positive correlation), with the value of zero being no
correlation between the features. Colour density represents the correlation’s values,
where the darker colour implies higher values and the lighter colour implies lower
ones. The figure shows some high correlated features in the data, such asER_STATUS
and ER_IHC; AGE_AT_DIAGNOSIS and INFERRED_MENOPAUSAL_STATE.

and ranges of features. Before running the analysis, data needed to be normalised.

Min-max normalisation, one of the most popular methods to normalise data, was

applied. The method is based on the formula in Eq. 15 and the transformed data

values range between 0 and 1.

Machine Learning Methods for Survival Analysis of Breast Cancer 37

0 50 100 150 200 250 300 350
Time (months)

0

20

40

60

80

100

120

Fr
eq

ue
nc

y

Time Distribution for Censored and Observed Events

Observed Events (Death)
Censored Events

Fig. 11: Distribution of follow-up times of censored and uncensored (death) data.
42.2% of the total observations were censored. The distribution is right-skewed and
is different between censored patients and those who experienced the event. The
censored group has more patients with longer survival times.

GB20;43 =
G − <8=(G)

<0G(G) − <8=(G) (15)

1 # Cox survival analysis

2 # Normalise data

3 ss = MinMaxScaler()

4 df_norm = df.drop([’OS_STATUS’, ’OS_MONTHS’], axis = 1)

5 df_norm = pd.DataFrame(ss.fit_transform(df_norm), columns=df_norm

.columns)

6 df_norm[’OS_STATUS’] = df[’OS_STATUS’]

7 df_norm[’OS_MONTHS’] = df[’OS_MONTHS’]

The next step was to use the entire dataset to fit the Cox regression model and the

final results were plotted using the code below.

1 # Build model

38 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

2 # Cox proportional hazards model

3 cph = CoxPHFitter()

4 cph.fit(df_norm, duration_col=’OS_MONTHS’, event_col=’OS_STATUS’)

5

6 # Plot

7 plt.figure(figsize=(9, 12))

8 plt.title(’Cox Proportional Hazards Model for Clinical data’)

9 cph.plot()

10

11 # Report

12 cph.print_summary(columns=["coef","exp(coef)","exp(coef) lower

95%","exp(coef) upper 95%", "z", "p"], decimals=3)

The hazard ratio of each feature and its statistical report are presented in Fig. 12

and Fig. 13, respectively. According to Fig. 12, AGE_AT_DIAGNOSIS was found as

the most significant factor associated with the death events with the coefficient or

hazard ratio value of 3.753. To be specific, elderly patients were 3.753 times as likely

to die as younger ones. LYMPH_NODES_EXAMINED_POSITIVE was the second

critical factor among the clinical data. Patients with positive lymph nodes tended to

have a risk of death 1.888 times higher compared to those who did not have positive

lymph nodes. As shown in Fig. 13, the overall C-index of this model is 0.685, which

shows an acceptable predictive model.

The advantage of fitting the entire dataset to a regression model is that more

data is fitted to the CPH model, which usually increases the accuracy of the model.

Besides, the predictive capabilities of the CPH model fitted can be evaluated to see

how well the algorithm performs on the entire data. However, the generalisation of

the model cannot be assessed if the entire data is fitted to the model, and it is usually

considered less trustworthy. Hence, cross-validation can be performed to reduce

selection bias and overfitting. This approach also provides more insight into how

Machine Learning Methods for Survival Analysis of Breast Cancer 39

Fig. 12: Results of the Cox proportional hazards model for clinical data. The
log hazard ratio is plotted for all the features, with a 95% confidence interval
(CI). AGE_AT_DIAGNOSIS, LYMPH_NODES_EXAMINED_POSITIVE, and TU-
MOR_SIZE were found as the top three most significant factors associated with the
death events with the log(HR) value of 3.753, 1.888, and 1.189, respectively. In other
words, patients having higher values of these three predictors are more likely to have
lower survival times. In contrast, the less than zero log(HR) value predictors, such as
HISTOLOGICAL_SUBTYPE and INFERRED_MENOPAUSAL_STATE, were nega-
tively associated with the death event. Patients with higher values of these factors
tend to live longer compared to those who have low values.

well the model will perform on unseen data. Therefore, the next step of the analysis

was to conduct a five-fold cross-validation to get an average C-index and generate

more robust prediction scores. Specifically, a five-fold cross-validation approach

splits the data into five folds, four of which are used as a training set to fit the model.

40 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

Fig. 13: Cox proportional hazards report for clinical data. The report indicates that
OS_MONTHS was the duration variable, while OS_STATUS was the event variable
used for survival analysis. The figure also reports the HR values (exp(coef)), with
the corresponding 95% confident interval, and p-values of the clinical features. The
accuracy prediction of theCPHmodel, i.e. theC-index,was 0.685,which indicates an
acceptable model. Similar to the results presented in Fig. 12, AGE_AT_DIAGNOSIS,
LYMPH_NODES_EXAMINED_POSITIVE, and TUMOR_SIZE were identified as
the top three most significant factors associated with the death event with a p-
value less than 0.0005, and coefficient/log(HR) value of 3.753, 1.888, and 1.189,
respectively.

Machine Learning Methods for Survival Analysis of Breast Cancer 41

The fitted model is then evaluated on the left-out fold and a C-index is computed.

The process is repeated for all the possible combinations of training and testing sets

using the five folds. The final C-index is calculated as the average of the five C-index

values generated during the five-fold cross-validation process. The code below can

be run to perform cross-validation and generate the average C-index.

1 # Cross validation (optional)

2 scores = k_fold_cross_validation(cph, df_norm, ’OS_MONTHS’,

event_col=’OS_STATUS’, k=5, scoring_method="concordance_index

", seed=18)

3 print("Average score", round(np.mean(scores),3))

Fig. 14: Average C-index of five-fold cross-validation for Cox proportional hazards
models. The figure shows the average C-index generated during the five-fold cross-
validation process. The final C-index was 0.677, which was lower than the C-index
of 0.685 reported in Fig. 13.

3.4.4 Set up and evaluate machine learning algorithms

In order to run theML algorithms (Step 6 in Fig. 1), the following steps were applied:

1. Data was split into training and testing sets using a stratified split with a ratio of

80:20.

2. The machine learning models were trained using a five-fold cross-validation ap-

proach on the training set. Grid search was applied to autotune hyperparameters

to get optimal solutions.

3. The trained models were applied to the testing set to generate patient-specific

predictions.

42 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

4. Steps 1-3 were repeated 20 times on different splits of training and testing sets

to obtain an average C-index. This process provides a more robust evaluation of

the models, since it is not dependent on the training/testing split.

5. The prediction scores generated by the models was used to separate the patients

in the testing set into higher risk and lower risk to investigate any significant

difference in the survival rates of the two groups.

The five steps presented above are further discussed and illustrated below. Firstly,

we set up a seed value to ensure the reproducibility of the results. Then, the data was

arranged into a data frame - containing the prognostic attributes, and a H data frame

containing the target variables (survival time and status). The new data frames were

split into training and testing sets using a random and stratified approach with a ratio

of 80:20.

1 # Set up seed and the options for the cross-validation approach

2 SEED = 5

3 CV = KFold(n_splits=5, shuffle=True, random_state=0)

4

5 # Split data to prepare for ML

6 X = df.drop([’OS_MONTHS’,’OS_STATUS’], axis = 1)

7 df[’OS_STATUS’] = np.where(df[’OS_STATUS’] == 1, True, False)

8 y = df[[’OS_STATUS’,’OS_MONTHS’]].to_records(index=False)

9

10 # Split the data set into training and testing sets

11 X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, stratify=y[’OS_STATUS’],random_state=SEED)

Once data was prepared, the ML models were applied by defining a function to

train and evaluate the procedure. We used grid search with five-fold cross-validation

to train and tune the hyperparameters for each estimator. Then,we applied the optimal

Machine Learning Methods for Survival Analysis of Breast Cancer 43

algorithms to generate the final prediction on the testing set. The function returns

the optimal model and C-index.

1 # Build model

2 # Define a function for grid search to tune training model

3 # and predict the results

4 def grid_search(estimator , param, X_train, y_train, X_test,

y_test, CV):

5

6 # Define Grid Search

7 gcv = GridSearchCV(estimator , param_grid=param, cv=CV,

n_jobs=-1).fit(X_train, y_train)

8

9 # Find best model

10 model = gcv.best_estimator_

11 print(model)

12

13 # Generate predictions

14 prediction = model.predict(X_test)

15 result = concordance_index_censored(y_test["OS_STATUS"],

y_test["OS_MONTHS"], prediction)

16 print(’C-index for test set (Hold out):’, result[0])

17

18 return [model, prediction]

Next, to avoid bias in our final evaluation, we ran each ML model 20 times. By

defining the below function, the number of re-run times can be easily changed by

modifying the value of =. The function below randomly generates n different seeds,

one for each iteration. Training and testing set splitting is performed in each loop, the

data is fitted to identify the optimal algorithm, and the final model is evaluated on

unseen data. By doing so, we randomly created n different testing sets and evaluated

44 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

each algorithm n times. Finally, the average results of the n runs were calculated and

reported.

1 # Re-run experiment 20 times

2 def c_index(model, X, y, n=20):

3 np.random.seed(1)

4 seeds = np.random.permutation(1000)[:n]

5

6 # Train and evaluate model with 20 times

7 cindex_score = []

8 predict_list = []

9

10 for s in seeds:

11 X_trn, X_test, y_trn, y_test = train_test_split(X, y,

test_size=0.2, stratify=y[’OS_STATUS’], random_state=s)

12 model.fit(X_trn, y_trn)

13 prediction = model.predict(X_test)

14 predict_list.append(prediction)

15 result = concordance_index_censored(y_test["OS_STATUS"],

y_test["OS_MONTHS"], prediction)

16

17 cindex_score.append(round(result[0],3))

18

19 print(’Average C-index for {} runs’.format(n), np.mean(

cindex_score))

20

21 return [cindex_score , predict_list]

After defining the two functions above for theML process, we designed the exper-

iment pipeline by specifying the algorithms and establishing their hyperparameters.

Before applying the algorithms, all the data had to be normalised using Min-max

normalisation. Different values of ridge regression penalty were tested to tune the

CPH model (the values varied between 0.001 and 100, as shown in Table 1).

Machine Learning Methods for Survival Analysis of Breast Cancer 45

1 # Define the Pipeline and hyperparameter

2 # CoxPHSurvivalAnalysis

3 pipe_cox = Pipeline([(’scaler’, MinMaxScaler()),(’model’,

CoxPHSurvivalAnalysis())])

4 param_cox ={’scaler’: [MinMaxScaler()],

5 "model__alpha": [0.001, 0.01, 0.1, 1, 10, 100]}

Then, we set up the hyperparameters for the three ML-based algorithms, namely

RSF, GBS, and SSVM. In the RSF algorithm, the n_estimators and the max_depth

hyperparameters can be set to specify the number of trees and the maximum depth

of the tree in the forest, while the min_samples_leaf and the min_samples_split

parameters can be set to specify the minimum number of samples required to be

at a leaf node, and the minimum number of samples required to split an internal

node, respectively. The deeper the tree grows in the forest, the more complex the

model, which can easily lead to overfitting and increased computational complexity.

In order to avoid these problems, a predefined max_depth parameter can be set;

otherwise, the trees are grown until each leave contains less than min_samples_split

samples. The max_features hyperparameter can be also defined to set the number

of features to consider when looking for the best split. By default, the algorithm

considers all the features and selects the one with the optimal metric to perform

the split. If the max_features parameter is set equal to sqrt, the maximum number

of features considered at each split is equal to the square root of the total number

of features in the dataset. Reducing the number of features can save computational

resources, increase the stability of the forest, reduce variance, and overfitting.

1 # Random Survival Forests

2 pipe_rsf = Pipeline([(’scaler’, MinMaxScaler()),(’model’,

RandomSurvivalForest())])

3 param_rsf ={’scaler’: [MinMaxScaler()],

4 ’model__random_state’: [SEED],

46 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

5 ’model__max_features’: [’sqrt’],

6 ’model__max_depth’: [8],

7 ’model__min_samples_leaf’: [50, 100],

8 ’model__min_samples_split’: [100],

9 ’model__n_estimators’:[500]}

In the GBS algorithm, the n_estimators parameter can be used to set the number

of trees to generate, while the learning_rate parameter can be set to regulate the

learning rate that shrinks the contribution of each tree. The GBS model is robust to

overfitting, so a higher value of the n_estimators parameter often results in better

performance. However, there is a trade-off between n_estimators and learning_rate.

Thus, different combinations of the list of values of the above hyperparameters were

tried in the tuning phase.

1 # Gradient Boost Survival

2 pipe_gbs = Pipeline([(’scaler’, MinMaxScaler()),(’model’,

GradientBoostingSurvivalAnalysis())])

3 param_gbs ={’scaler’: [MinMaxScaler()],

4 ’model__random_state’: [SEED],

5 ’model__learning_rate’: [0.01, 0.1, 1],

6 ’model__n_estimators’:[200, 500, 800, 1000]}

The hyperparameters defined for the SSVM algorithm included the optimizer,

which refers to the optimization techniques, such as the AVL tree (avltree), the red-

black tree (rbtree), and the simple methods. The max_iter parameter can be set to

define the maximum number of iterations to perform in the Newton optimization.

These hyperparameters are necessary to design an effective and efficient SSVM

model. A summary of the hyperparameters tuned for each model using grid search

and their final values are presented in Table 1.

1 # Survival SVM

Machine Learning Methods for Survival Analysis of Breast Cancer 47

2 pipe_svm = Pipeline([(’scaler’, MinMaxScaler()),(’model’,

FastSurvivalSVM())])

3 param_svm ={’scaler’: [MinMaxScaler()],

4 ’model__random_state’: [SEED],

5 ’model__max_iter’: [500, 5000],

6 ’model__optimizer’:[’avltree’, ’rbtree’,’simple’]}

Models Hyperparameters name Hyperparameters set Selected

value

CPH ridge regression pa-

rameter

[0.001, 0.01, 0.1, 1, 10, 100] 1

RSF

max_features sqrt sqrt

max_depth 8 8

min_samples_leaf [50, 100] 50

min_samples_split 100 100

n_estimators 500 500

GBS
learning_rate [0.01, 0.1, 1] 0.1

n_estimators [200, 500, 800, 1000] 200

SSVM
optimizer [avltree, rbtree, simple] avltree

max_iter [500, 5000] 500

Table 1: Hyperparameters of the models. Each method was parametrised and trained
using a five-fold cross-validation approach. Grid search was used with different
hyperparameters while maximising the C-index.

Once data preparation and models design were completed, an estimators dic-

tionary, containing the pairs of names of the algorithms, and their corresponding

pipelines, were generated to support looping the same procedure for each model.

48 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

1 # Estimator list:

2 estimator_list = {’Cox Regression’:[pipe_cox , param_cox],

3 ’Random Forest Survival’:[pipe_rsf , param_rsf],

4 ’Gradient Boosting Survival’:

5 [pipe_gbs, param_gbs],

6 ’SVM Survival’: [pipe_svm , param_svm]}

Since the training and testing phases for each algorithm follow the same approach,

we put them into a list of estimators and iterate the same procedure over this list. The

output of the procedure displays the optimal algorithm, the holdout-test results, and

the average C-index for each model, as shown in Fig. 15. The results show that the

average C-index over 20 runs of the three ML-based models outperformed CPH, a

well-known statistical approach for survival analysis. SSVM had the highest average

C-index with a value of 0.688, followed by RSF, GBS, and CPH with a C-index of

0.685, 0.683, and 0.678, respectively.

1 model_list = []

2 pred_list = []

3 c_index_list = []

4 pred_list_n = []

5

6 for model_name , index in estimator_list.items():

7 print(’\n’,model_name)

8 estimator = index[0]

9 param = index[1]

10 outcome = grid_search(estimator , param, X_train, y_train,

X_test, y_test, CV)

11 model = outcome[0]

12 pred_list.append(outcome[1])

13

14 # Run model n times to check C-index

15 score, pre = c_index(model, X, y, n=20)

Machine Learning Methods for Survival Analysis of Breast Cancer 49

16 c_index_list.append(score)

17 pred_list_n.append(pre)

Fig. 15: CPH and ML models results for clinical data. The selected hyperparam-
eters, initial test result, and the average C-index of each model are displayed in
the outcome. Overall, the average performance over 20 runs of the three ML-based
models outperformed the CPH model, a well-known statistical approach for survival
analysis. SSVM had the highest average C-index with a value of 0.688, followed by
RSF, GBS, and CPH.

Boxplots were then used to visualise and compare the distributions of C-index

values for the 20 runs for each model (Fig. 16). On average, SSVM had the highest

performance, followed by RSF, GBS, and CPH.

50 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

1 # Visualise results

2 name = [’CPH’, ’RSF’, ’GBS’, ’SSVM’]

3 cv_res = []

4

5 for i in range(0,4):

6 for c in c_index_list[i]:

7 cv_res.append([name[i],c])

8

9 c_plot = pd.DataFrame(cv_res, columns=[’Model Name’,’C-index’])

10 ax = sns.boxplot(x="Model Name", y="C-index", data=c_plot)

11 plt.title(’C-index for 20 runs’)

CPH RSF GBS SSVM
Model Name

0.65

0.66

0.67

0.68

0.69

0.70

0.71

C
-in

de
x

C-index for 20 runs

Fig. 16: C-index comparisons for Experiment 1. Boxplots of C-index results of
clinical data using CPH, RSF, GBS, and SSVM. The experiments were replicated 20
times. In each experiment, the data was randomly divided into training and testing
sets with a ratio of 80:20, while guaranteeing the same censoring percentage on each
subset of data. SSVM was found to have the highest median C-index, followed by
RSF, GBS, and CPH.

Machine Learning Methods for Survival Analysis of Breast Cancer 51

The patients in the testing set were then ranked by their predicted risk score

and split into two equal-sized groups using the median risk score. High-risk groups

included patients with prognostic risk scores greater than or equal to the median

value, while low-risk groups included those with prognostic risk scores below the

median value.

In the next step of the pipeline (Step 6 in Fig. 1), Kaplan–Meier plot and log-rank

tests were conducted for all the models to statistically investigate the differences

between the survival curves of the two groups. Fig. 17 reveals that the lower-risk

patients, or those with lower predicted risk scores, were associated with better

survival outcomes (i.e., higher survival probability). Besides, there were statistically

significant differences in the survival distributions of high-risk and low-risk patients

for all fourmodels (p-values < 0.0001). Log-rank test was used to assess the statistical

significance and compute the p-value. This analysis shows that the clinical factors

can be used to split the patients into risk groups based on their predicted scores.

GBS was the best model in prognostic diagnosis with a p-value of 5.918E-12.

1 fig, ax = plt.subplots(2,2,figsize=(12,12))

2 k = 0

3 for pred in pred_list:

4 df1 = X_test.reset_index(drop=True)

5 risk =[]

6 y_pred = pred

7 med = np.median(y_pred)

8 r = np.where(y_pred >= med, 1, 0)

9 df1[’Risk’] = r

10 print(df1.shape)

11 ix = df1[’Risk’] == 1

12

13 df_y = pd.DataFrame(y_test)

14 df_y[’OS_STATUS’] = np.where(df_y[’OS_STATUS’] == True, 1, 0)

52 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

15 df1[’OS_STATUS’]= df_y[’OS_STATUS’]

16 df1[’OS_MONTHS’]= df_y[’OS_MONTHS’]

17 T_hr, E_hr =df1.loc[ix][’OS_MONTHS’],df1.loc[ix][’OS_STATUS’]

18 T_lr, E_lr = df1.loc[~ix][’OS_MONTHS’], df1.loc[~ix][’

OS_STATUS’]

19

20 # Set-up plots

21 k+=1

22 plt.subplot(2,2,k)

23

24 # Fit survival curves

25 kmf_hr = KaplanMeierFitter()

26 ax = kmf_hr.fit(T_hr, E_hr, label=’HR’).

plot_survival_function()

27 kmf_lr = KaplanMeierFitter()

28 ax = kmf_lr.fit(T_lr, E_lr, label=’LR’).

plot_survival_function()

29 add_at_risk_counts(kmf_hr, kmf_lr)

30

31 # Format graph

32 plt.ylim(0,1);

33 ax.set_xlabel(’Timeline (months)’,fontsize=’large’)

34 ax.set_ylabel(’Percentage of Population Alive’,fontsize=’

large’)

35

36 # Calculate p-value

37 res = logrank_test(T_hr, T_lr, event_observed_A=E_hr,

event_observed_B=E_lr, alpha=.95)

38 print(’\nModel’, name[k-1])

39 res.print_summary()

40

41 # Locate the label at the 1st out of 9 tick marks

Machine Learning Methods for Survival Analysis of Breast Cancer 53

42 xloc = max(np.max(T_hr),np.max(T_lr)) / 10

43 ax.text(xloc,.2, res.p_value,fontsize=15)

44 ax.set_title(’KM Curves {}’ .format(name[k-1]))

45 plt.tight_layout()

Fig. 17: Kaplan-Meier curves to compare the high-risk and low-risk breast cancer
groups, stratified by the predicted survival risk scores generated by the four models.
The low-risk group (n=198) included patients with predicted risk scores above the
median value, while the high-risk group (n=198) comprised those less than the
median value. Also, the p-value from the log-rank test was calculated to determine
the statistical significance of the difference in survival functions between the two
groups. The figure shows statistically significant differences in survival distributions
between the two groups for all four models with a p-value lower than 0.0001.

54 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

3.4.5 Interpret model

Clinicians can rely on a predictive model when its outcome can be interpreted. This

is especially crucial for the healthcare domain, where every decision relates to human

life. Interpretability of ML can be defined as the extent to which an individual can

understand the cause of the predicted outcome [72]. Shapely Additive Explanations

values (SHAP) [47] can be applied to interpret the results of the ML models run in

the previous section. SHAP values represent a unified approach to interpret predicted

outcomes made by complex ML algorithms. This explainable approach has gained

much attention from researchers and it has been increasingly applied in many fields,

including medical and oncology applications [39, 73].

As shown in Step 7 in Fig. 1, SHAP values can be used to measure the importance

of the features by calculating the impact of each estimator on the model prediction.

In other words, it mainly focuses on explaining the importance or the weight of a

specific feature on the model prediction. Each patient is represented by one data

point with positive or negative values indicating the direction of the impact. The

higher the SHAP value associated with the patient, the higher the mortality risk. For

example, for the age feature, a 20-year-old patient might have a negative SHAP value

of -1.5, meaning this young patient has a better prognosis and would live longer. In

contrast, a 70-year-old patient might have a positive SHAP value of 1.0, indicating

that this patient faces a higher mortality risk. Hence, age, in this case, is an important

feature significantly influencing the survival rate of the patient. The code below can

be run to perform the SHAP interpretability analysis. The run time for CPH, GBS,

and SSVM is about 30 minutes per model, while RSF requires about 16 hours to

generate the SHAP plot.

1 # Initialize JS For Plot

2 shap.initjs()

3

Machine Learning Methods for Survival Analysis of Breast Cancer 55

4 for i in range(0,4):

5 print(’\nModel’, name[i])

6 m = model_list[i][1]

7 m.fit(X_train,y_train)

8 explainer = shap.Explainer(m.predict, X_train, feature_names=

X_train.columns)

9 shaps = explainer(X_test)

10 shap.summary_plot(shaps, X_test)

Fig. 18 shows the SHAP summary plot for clinical data, where a single patient is

represented by one data point for each feature. The x-axis represents the effect of the

features on the prediction of the algorithm for a specific observation in the testing

set, while the y-axis reports the top prognostic predictors in descending order based

on their importance ranking. AGE_AT_DIAGNOSIS was found consistently among

the four models as the top significant factor impacting the survival risk. Specifically,

higher age is associated with higher mortality risk. The SHAP values and features

ranking are slightly different across the models. For example, according to CPH and

SSVM, INFERRED_MENOPAUSAL_STATE was the second most important feature

associated with survival risk, while NPI was the second most important feature in

RSF and GBS. In contrast, LATERALITY and ER_STATUS had the lowest impact

on the outcome of the model as they had convergent data points. Hence, we can

get a holistic picture of the model prediction from the SHAP plots as they illustrate

the importance of features and their corresponding impact on the outcome, while

determining the value distribution of those features in the test set.

56 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

(a) CPH (b) RSF

(c) GBS (d) SSVM

Fig. 18: SHAP summary plot for clinical data for (a) CPH, (b) RSF, (c) GBS, and (d)
SSVMmodels. For each clinical feature, a single patient is represented by one point.
The y-axis lists the top prognostic features and presents them in descending order
based on their importance ranking provided by the mean of their absolute SHAP
values. The x-axis reports the SHAP value indicating the impact of the feature on the
prediction of the algorithm for a specific observation in the testing set. The colour
represents the value of the feature. The higher the SHAP value the patient had, the
higher the risk of death or the shorter survival time. AGE_AT_DIAGNOSIS was
found consistently among the four models as the top significant factors impacting
the survival risk.

3.5 Experiment 2: transcriptomic data

The second experiment presented in ourwork consists in conducting survival analysis

on transcriptomic data following similar steps presented in Sect. 3.4. Since transcrip-

tomic data is high dimensional data, features extraction is highly recommended to

Machine Learning Methods for Survival Analysis of Breast Cancer 57

avoid overfitting and save computational time and resources. 50 features were ex-

tracted from the transcriptomic data and used to train and evaluate the models. To

quickly reproduce the experiment and for a more straightforward presentation, we

divided this experiment into two notebooks. The first one includes the preprocessing

and feature selection steps, where the number of extracted features can be easily

changed. The training and evaluation of the models are performed in the second

notebook, where the data extracted from the first workbook are explored and used

for the ML models.

3.5.1 Load data

Firstly, transcriptomic datawas loaded.As it omittedOS_MONTHS andOS_STATUS,

clinical data was also required to be loaded into the data frame to extract the relevant

information about survival time and status.

1 # Load data

2 file1=pd.read_csv(’Data/data_clinical_patient.csv’)

3 file2=pd.read_csv(’Data/data_mRNA_median_all_sample_Zscores.csv’)

Then, the first five rows and data information are displayed, as shown in Fig. 19.

1 # Have a quick look on data

2 file2.info()

3 file2.head()

The transcriptomic data included 1,906 columns and 24,368 rows. The first two

columns report the gene identifiers in different formats, namely Hugo_Symbol and

Entrez_Gene_Id, while the rest of the columns report the data for the 1,904 patients.

58 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

Fig. 19: Output of transcriptomic data information. The figure presents an overview
of the transcriptomic data frame, including the total number of entries and the number
of columns. There are 24,368 genomic entries and 1,906 patient columns in the data.
As the dataset contains too many columns, the output shows only the first 7 columns,
while the first five rows are extracted.

3.5.2 Preprocess data

Hugo Symbols (Hugo_Symbol column) were used in the transcriptomic data as a

stable identifier for genes. Therefore, the Entrez_Gene_Id columnwas removed from

the data frame.

1 # Drop unused column

2 file2 = file2.drop(’Entrez_Gene_Id’, axis=1)

We filtered the non-blank values in the Hugo_Symbol column. Next, missing

and duplicate values were checked and removed (Step 3 in Fig. 1). A different

approach for dealing with duplicates in trancriptomic data consists is replacing all

the duplicates for each gene with their average value. For the sake of simplicity, in

this tutorial, we decided to simply remove the duplicate values.

1 # Drop NA in GeneID

2 file2 = file2[file2[’Hugo_Symbol’].notna()]

3

4 # Check null in GeneID columns

5 file2[’Hugo_Symbol’].isnull().sum()

Machine Learning Methods for Survival Analysis of Breast Cancer 59

6

7 # Check duplicate values

8 print(’The number of duplicate values of Hugo_Symbol in data:’,

file2[’Hugo_Symbol’].duplicated().sum())

9

10 # Drop duplicate values for Gene ID

11 file2 = file2.drop_duplicates(subset=[’Hugo_Symbol’])

12 print(’After pre-processing , the number of duplicate values of

Hugo_Symbol:’, file2[’Hugo_Symbol’].duplicated().sum())

13 print(’Shape of Gene data:’, file2.shape)

Fig. 20 shows that initially there were 192 repeated Hugo_Symbol values in our

data. After the preprocessing, there were no duplicates and the final data frame had

24,176 rows (i.e., Hugo symbols) and 1,905 columns (i.e., 1,904 patients and one

Hugo symbols ID). After eliminating duplicate values, the data frame was readily

transposed to allow the matching of the Patient IDs in the transcriptomic data with

those in the clinical data. As shown in Fig. 20, the new shape of the data frame was

1904 rows (i.e., patients) and 24,177 columns (i.e., 24,176 Hugo symbols and one

Patient ID column). The first three rows in the new data frame were extracted to

check the format of the transposed matrix.

1 # Tranpose Patient ID to rows in order to match two data

2 file2 = file2.set_index(’Hugo_Symbol’).T.rename_axis(’PATIENT_ID’

).rename_axis(None, axis=1).reset_index()

3 print(’New shape of Gene data:’, file2.shape)

4 file2.head(3)

The new data frame was then merged with the OS_MONTHS and OS_STATUS

columns from the clinical data based on the Patient ID information. The resulting

data frame only comprised those matched patients between the transcriptomic and

clinical tables.

60 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

Fig. 20: Output of transcriptomic data preprocessing. The dataset includes 192
duplicate Hugo symbols. After removing duplicate values in the Hugo_Symbol
column, there are 24,176 rows (i.e., Hugo symbols) and 1,905 columns (i.e., 1904
patients and one Hugo symbol column) in the dataset. We transposed the data frame
beforemerging it with the clinical data to retrieve theOS_MONTHS andOS_STATUS
columns, needed for performing survival analysis. After transposing the data, the
new table contained 1,904 patient rows and 24,177 columns (24,176 Hugo symbols
and one patient IDs column). The first three rows of the table are shown in the figure.

1 # Merge gene data with OS time and status

2 data = pd.merge(file1[[’PATIENT_ID’,’OS_MONTHS’,’OS_STATUS’]],

file2, how="inner", on=["PATIENT_ID"])

3

4 # Have a quick look at data

5 data.head()

In the next step (Step 3 in Fig. 1), we checked if the new data frame contained

any missing values.

1 # Check missing values

2 print(’Total missing value in the dataset:’, data.isnull().sum().

sum())

3 cols_missvalue = data.columns[data.isnull().sum()>0]

4 print(’List columns having missing data:’, cols_missvalue)

According to the output presented in Fig. 21, there were 10 missing values in

the entire data. We replaced those with their average values in the corresponding

Machine Learning Methods for Survival Analysis of Breast Cancer 61

columns. Several techniques have been proposed to handle missing values in tran-

scriptomic data, such as k-nearest neighbours imputation, Gaussian mixture cluster-

ing imputation, and weighted least square imputation [74, 75, 76]. For simplicity,

we replaced the missing values with their average values in this tutorial.

1 # Deal with missing values

2 # Replace missing values with average values

3 data[cols_missvalue] = data[cols_missvalue].fillna(data[

cols_missvalue].mean())

4

5 # Check missing values again

6 print(’After preprocessing , the number of missing values:’, data.

isna().sum().sum())

Fig. 21:Output of the processing ofmissing values. There are 10missing values in the
entire data. The Hugo ID columns with missing values are TMPRSS7, SLC25A19,
IDO1, CSNK2A1, BAMBI, MRPL24, AK127905, and FAM71A. As the missing
values in the data are numeric, we replace them with their average values in the
corresponding columns.

3.5.3 Feature selection

mRMR was applied to extract the most relevant features from the Hugo_Symbol

column to be used for the MLmodels (Step 4 in Fig. 1). Before employing mRMR, it

is recommended to normalise the data to boost the performance of the algorithm and

save computational time. Hence, after removing the survival and patient ID infor-

62 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

mation, min-max normalisation was implemented to normalise the transcriptomic

data.

1 # Normalise data

2 ss = MinMaxScaler()

3 X_norm = data.drop([’OS_STATUS’, ’OS_MONTHS’,’PATIENT_ID’], axis

= 1)

4 X_norm = pd.DataFrame(ss.fit_transform(X_norm), columns=X_norm.

columns)

For the mRMR algorithm, the number of selected features can be easily changed

by modifying the value of in the code below. In this experiment, we extracted

50 features (=50) to demonstrate how to run the pipeline. The more features are

removed, the longer is the time required by the mRMR algorithm. For 50 features,

the model took around 30 to 45 minutes to run. After the features were extracted, the

new data frame was saved to a new CSV file (Gene_MRMR_50.csv); this file will be

required for the ML process in the second notebook.

1 # Features extraction

2 # Select features using mRMR

3 y_mrmr = data[’OS_MONTHS’]

4

5 features_selected = mrmr_classif(X_norm, y_mrmr, K = 50)

6 X_mrmr = data[features_selected]

7

8 # Save to csv file

9 df_mrmr = X_mrmr

10 df_mrmr[’PATIENT_ID’] = data[’PATIENT_ID’]

11 df_mrmr.to_csv(’Data/GeneID_MRMR_50.csv’, index=False)

For easier processing, a new Jupyter notebook was created and the extracted data

was loaded to carry on the next steps of the analysis. Then, the transcriptomic data

of the 50 extracted features was merged with the clinical data by Patient_ID. After

Machine Learning Methods for Survival Analysis of Breast Cancer 63

the merging, the PATIENT_ID column was not relevant for the ML analysis, and it

was removed from the data frame. Before analysing data, the OS_STATUS column

was encoded to numeric values. The final data frame included 1,904 rows (patients)

and 52 columns (the survival time and status of patients, and 50 genes), as shown in

Fig. 22.

1 # Load data

2 file1 = pd.read_csv(’Data/data_clinical_patient.csv’)

3 file2 = pd.read_csv(’Data/GeneID_MRMR_50.csv’)

4

5 # Merge gene data with OS time and status

6 data = pd.merge(file1[[’PATIENT_ID’,’OS_MONTHS’,’OS_STATUS’]],

file2, how="inner", on=["PATIENT_ID"])

7

8 # Preprocess data

9 # Drop unused columns

10 drop_list = [’PATIENT_ID’]

11 df = data.drop(drop_list , axis=1)

12 print(’After the first preprocessing , the shape of data is’, df.

shape)

13 # Encode OS status to dummy

14 df[’OS_STATUS’] = np.where(df[’OS_STATUS’] == ’1:DECEASED’, 1, 0)

Fig. 22: Output of preprocessing step. The figure shows that there were 1,904 rows
and 52 columns in the final data frame. The columns in the final dataset comprised
OS_MONTHS, OS_STATUS, and 50 transcriptomic extracted features columns. No
missing values were found in the data.

Once the preprocessing steps (Step 3 in Fig. 1) on the data were completed, we

conducted a correlation analysis and plotted the followed-up survival time distribu-

64 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

tion to investigate the data, as displayed in Fig. 23 and Fig. 24. No high correlated

features were found in the selected transcriptomic data.

1 # Correlation analysis

2 colormap = plt.cm.Reds

3 plt.figure(figsize=(8,8))

4 sns.heatmap(df.corr(),linewidths=0.1,vmax=0.8,

5 square=True, cmap = colormap, linecolor=’white’)

6 plt.title(’Correlation matrix’, fontsize=14)

7 plt.show()

1 # Time Distribution of Death and Censored

2 num_censored = df.shape[0] - df["OS_STATUS"].sum()

3 print("%.1f%% of records are censored" % (num_censored/df.shape

[0]*100))

4

5 plt.figure(figsize=(10, 6))

6 val, bins, patches =

7 plt.hist((df.query(’OS_STATUS == 1’)[’OS_MONTHS’],

8 df.query(’OS_STATUS == 0’)[’OS_MONTHS’]),

9 bins=30, stacked=True)

10 _ = plt.legend(patches, ["Time of Death", "Time of Censored"])

11 plt.title("Time Distribution of Censored and Death Patients")

The rest of Experiment 2, including plotting the CPH model, preparing and

evaluating the ML algorithms, and interpreting the results, was set up as previously

done in Experiment 1 in Sect. 3.4.3, 3.4.4, and 3.4.5. Since the code to run the

analysis in the sections below is the same as the one shown in Sect. 3.4.3, 3.4.4, and

3.4.5, we do not repeat it below. However, the complete notebook can be accessed

at https://github.com/Angione-Lab/survival_analysis_tutorial.

https://github.com/Angione-Lab/survival_analysis_tutorial

Machine Learning Methods for Survival Analysis of Breast Cancer 65

O
S_

M
O

N
TH

S
FG

F3
AT

P9
A

KP
R

P
AI

C
D

A
D

A0
28

94
6

PN
M

A5
M

YL
1

C
17

or
f9

8
IN

SM
2

G
IF

O
TO

S
AI

38
21

67
R

H
AG

C
T4

5A
5

EM
IL

IN
3

SL
C

14
A1

BX
09

64
36

ER
AS

O
R

6C
4

AA
62

56
91

G
FA

P
AW

29
62

52
ZP

4
BC

H
E

TM
ED

6

OS_MONTHS
FGF3

ATP9A
KPRP

AICDA
DA028946

PNMA5
MYL1

C17orf98
INSM2

GIF
OTOS

AI382167
RHAG

CT45A5
EMILIN3

SLC14A1
BX096436

ERAS
OR6C4

AA625691
GFAP

AW296252
ZP4

BCHE
TMED6

Correlation matrix

0.2

0.0

0.2

0.4

0.6

0.8

Fig. 23: Correlation matrix of 50 gene expression features. The correlation matrix
depicts the linear correlation between all the pairs of attributes and ranges from -1
(perfect negative correlation) to +1 (perfect positive correlation), with the value of
zero representing no correlation between the features. Colour density represents the
values of the correlation, where a darker colour implies higher values and a lighter
colour implies the lower ones. There were no highly correlated features observed in
the data.

3.5.4 Plot Cox proportional hazards model

Before fitting the CPH model (Step 5 in Fig. 1), the data was normalised applying

the Min-max method (as shown in Sect. 3.4.3). Then, the log(HR) values were

plotted as shown in Fig. 25, and the statistical report, including HR with a 95%

66 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

0 50 100 150 200 250 300 350
Time (months)

0

20

40

60

80

100

120

Fr
eq

ue
nc

y

Time Distribution for Censored and Observed Events

Observed Events (Death)
Censored Events

Fig. 24: Distribution of follow-up times of censored and uncensored (death) data
associated with the transcriptomic data selected by mRMR. The data contained
42.1% censored observations. The distribution is right-skewed and it is different
between censored patients and those who experienced the event. The censored group
has more patients with longer survival times.

confidence interval and log-rank p-values, was generated. Genes LCN15, OTOS, and

INSM2were identified as the top three most significant factors associated with a high

probability of experiencing the event of interest (i.e., death), while genesMATN1 and

KPRP were negatively associated with the death event (as shown by their negative

log(HR) values). As shown in Fig. 26, the overall C-index of this model is 0.574,

which shows an acceptable predictive model.

3.5.5 Set up and evaluate machine learning algorithms

After visualising the results of the CPHmodel, we performed the same steps as Sect.

3.4.4 to build and evaluate the ML models (Step 6 in Fig. 1). The following steps

were applied:

Machine Learning Methods for Survival Analysis of Breast Cancer 67

Fig. 25: Results of the CPHmodel applied to transcriptomic data. The genes LCN15,
OTOS, and INSM2 were found as the top three most significant factors associated
with low survival with HR values of 1.643, 1.556, and 1.507, respectively. Hence,
patients having higher values of these three predictors are more likely to have a
shorter survival time. In contrast, the less than zero log(HR) value predictors (i.e.,
HR less than one), such as MATN1 and KPRP, were negatively associated with the
death event. Patients with higher values of these genes tend to live longer compared
to those who have lower expression values of the same genes.

1. Data was split into training (80%) and testing sets (20%).

2. Data was normalised using the Min-max normalisation. Normalised data was

used to fit and train the four predictive algorithms.

3. Five-fold cross-validation with grid search was used for tuning the hyperparam-

eters and selecting the optimal hyperparameters.

4. The models were evaluated on the testing set and the full process (Steps 1- 3)

was repeated 20 times to obtain the average C-index.

68 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

Fig. 26: Cox proportional hazards report for transcriptomic data. The report indi-
cates that OS_MONTHS was the duration variable, while OS_STATUS was the event
variable used for survival analysis. The figure also reports the HR values (exp(coef)),
with the corresponding 95% confident interval, and p-values of the 50 extracted fea-
tures. The accuracy prediction of the CPH model, i.e. the C-index, was 0.574, which
indicates an acceptable model. Similar to the results presented in Fig. 25, the genes
LCN15, OTOS, and INSM2 were identified as the top three most significant factors
associated with the death event with a p-value less than 0.05, and coefficient/log(HR)
value of 1.643, 1.556, and 1.507, respectively.

5. Finally, patients in the testing set were ranked in descending order based on their

predicted risk scores, and split into two groups according to the median values.

The comparisons between the two groups (high-risk and low-risk groups) for

all the four algorithms was performed using Kaplan–Meier curves and log-rank

test.

Machine Learning Methods for Survival Analysis of Breast Cancer 69

The details of the set-up and evaluation of ML models codes are the same as in

Sect. 3.4.4. The outcomes of the four algorithms are presented in Fig. 27 and Fig.

28. RSF had the highest C-index value of 0.53, followed by GBS, SSVM, and CPH.

CPH RSF GBS SSVM
Model Name

0.48

0.50

0.52

0.54

0.56

C
-in

de
x

C-index for 20 runs

Fig. 27: C-index comparisons for Experiment 2. Boxplots of C-index results of tran-
scriptomic data using CPH, RSF, GBS, and SSVM. The experiments were replicated
20 times. In each experiment, the data was randomly divided into training and testing
sets with a ratio of 80:20, while guaranteeing the same censoring percentage on each
set of data. RSF was found to have the highest median C-index, followed by GBS,
SSVM, and CPH.

The Kaplan–Meier curves for breast cancer patients in the testing set according

to their predicted prognostic score using 50 features revealed that only the CPH

model reported a significant difference in the survival distributions of high-risk and

low-risk patients with a p-value of 0.009, as shown in Fig. 29. This result might be

due to the number of features selected in the preprocessing steps. For this reason,

several approaches have been proposed to select the optimal subset of features and

achieve more accurate and robust results [77, 78, 79].

70 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

Fig. 28: ML models results for 50 selected genes on the transcriptomic data. The
selected hyperparameters, initial test results, and the average C-index of each model
are displayed in the output. Overall, the average performance over 20 runs of the three
ML-based models outperformed the CPH model on the analysis of transcriptomic
data for survival prediction. RSF had the highest average C-index with a value of
0.530, followed by GBS, SSVM, and CPH.

3.5.6 Interpret model

In order to provide an interpretation of the results of models (Step 7 Fig. 1), we

computed and plotted the SHAP values for all the features in the test set. The SHAP

values for the top 20 features are shown in Fig. 30. A single patient is represented by

each data point. The y-axis lists the top 20most influential genes in descending order,

represented by its Hugo symbol. The x-axis reports the corresponding SHAP values

Machine Learning Methods for Survival Analysis of Breast Cancer 71

Fig. 29:Kaplan-Meier curves to compare high-risk and low-risk breast cancer groups,
stratified by predicted survival risk score based on the transcriptomic datawhen using
50 features. The low-risk group includes patients with predicted risk scores above
the median value, while the high-risk group comprises patients with predicted risk
scores lower than themedian value. The p-value from the log-rank test was calculated
to statistically determine the difference in survival functions between the two groups.
The figure shows that only theCPHmodel showed a statistically significant difference
between risk groups with a p-value of 0.009.

for a specific observation in the testing set. The higher the SHAP value, the higher

the mortality risk of the patient represented by the data point. The colour represents

low or high gene expression values. Particularly, the genes LCN15 and AA625691

were identified among the top 10 features by the four models. OTOS was selected by

72 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

CPH, RSF, and SSVM. High values of this gene had a positive impact on the models’

outcome (i.e., high values of this gene correlates with higher risk of experiencing

the event of interest). All these genes were associated with patient survival and

could represent useful prognostic biomarkers for breast cancer patients. Most of the

gene features in the CPH model were convergent and had SHAP values distribution

around 0, indicating no significant influence on the outcome of the model.

3.6 Experiment 3: integrating clinical to transcriptomic data

In the last experiment presented in our tutorial, clinic information (from Experiment

1) and transcriptomic data (from Experiment 2) were integrated to improve the

predictive power of the ML models. The workflow followed in this experiment is

similar to the one previously followed in Sect. 3.4 and Sect. 3.5. First, data was

loaded and cleaned before performing EDA. Next, the CPH results were visualised,

and the reports were extracted for further analysis. Then, we prepared the data

for survival analysis and constructed the ML models for training and evaluating

models performance. Finally, the outcomeswere interpreted to identify the important

markers associated with low survival.

3.6.1 Load data

The data used for this experiment are derived from the data already used for Exper-

iment 1 (Sect. 3.4) and Experiment 2 (Sect. 3.5), i.e., the encoded clinical data and

the 50 Hugo Symbol extracted using mRMR. There were 1,977 and 1,903 obser-

vations in the preprocessed clinical data and transcriptomic data, respectively. We

extracted the matching observations between these two datasets and used them in

this experiment.

Machine Learning Methods for Survival Analysis of Breast Cancer 73

(a) CPH (b) RSF

(c) GBS (d) SSVM

Fig. 30: SHAP summary plot for transcriptomic data for (a) CPH, (b) RSF, (c) GBS,
and (d) SSVMmodels. For each gene feature, a single patient is represented by each
data point. The y-axis lists the top 20 prognostic biomarkers and presents them in
descending order based on the ranking provided by the mean of their absolute SHAP
values. The x-axis reports the SHAP value indicating the impact of the feature on the
prediction of the algorithm for a specific observation in the testing set. The colour
represents the value of the feature for each patient. The higher the SHAP value
the patient had, the higher the risk of death. The genes OTOS and AA625691 were
respectively found as the most important predictors for the CPH and SSVMmodels,
while LCN15 was identified as the top most significant feature for the RSF and GBS
models.

74 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

1 # Load data

2 file1 = pd.read_csv(’Data\clinical.csv’)

3 file2 = pd.read_csv(’Data\GeneID_MRMR_50.csv’)

4

5 # Merge clinical data

6 data = pd.merge(file1,file2, how="inner", on=["PATIENT_ID"])

Then, an overview of the information and the first five rows of the merged data

frame was displayed. As shown in Fig. 31, there were 79 columns and 1,903 rows in

the new data frame. No missing values were found in the final dataset.

1 # Have a quick look at data

2 data.info()

3 data.head()

3.6.2 Preprocess and explore data

For this experiment, it is optional to check the duplicate and missing values since the

data was already processed in the previous two experiments. However, it is always a

good practice to conduct the preprocessing step after loading data (Step 3 in Fig. 1).

The PATIENT_ID column was removed from the dataset before moving into the next

step of the pipeline. As shown in Fig. 32, the new shape of the data was 1903 rows

and 78 columns. No duplicates and missing values were found in the final dataset.

1 # Preprocess data & Explore data

2 # Check duplicate values

3 print(’The number of duplicate values in data’, data.duplicated()

.sum())

4

5 # Drop unused cols: Based on data.info(), we will drop some

unused cols and null cols

6 drop_list = [’PATIENT_ID’]

Machine Learning Methods for Survival Analysis of Breast Cancer 75

Fig. 31: Output of the integrated clinical and transcriptomic data information. The
output gives an overview of themerged data frame, including total entries, data types,
names of columns, and number of validated data points. There are 1,903 entries and
79 columns in the merged data frame. The first 25 features are shown in this figure.
There are no missing values in the final dataset.

.

7 df = data.drop(drop_list , axis=1)

8 print(’After the first preprocessing , the shape of data is’, data

.shape)

76 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

9

10 # Check missing values again

11 print(’Missing value number:’, df.isna().sum().sum())

Fig. 32: Output of the integrated clinical and transcriptomic data preprocessing.
After removing PATIENT_ID column, the new dataset consists of 1,903 rows and
78 columns. There are no duplicates and missing values in the final dataset

.

Next, the correlation matrix was plotted to provide more insights into the rela-

tionships of features in the merged dataset (Fig. 33). Except for some pair of clinical

features such as ER_STATUS and ER_IHC, no high correlated values were observed

between clinical and transcriptomic features.

1 # Correlation analysis

2 colormap = plt.cm.Reds

3 plt.figure(figsize=(15,15))

4 sns.heatmap(df.corr(),linewidths=0.1,vmax=0.8,

5 square=True, cmap = colormap, linecolor=’white’)

6 plt.title(’Correlation matrix’, fontsize=14)

7 plt.show()

In the next step, the follow-up survival time distribution was plotted. Overall,

the time distribution plot for this experiment was similar to the one observed in

Experiment 2 and shown in Fig. 34. There were 42% censored observations in the

integrated clinical and transcriptomic data.

1 # Time Distribution of Death and Censored

2 num_censored = df.shape[0] - df["OS_STATUS"].sum()

Machine Learning Methods for Survival Analysis of Breast Cancer 77

C
EL

LU
LA

R
IT

Y
H

ER
2_

SN
P6

IN
FE

R
R

ED
_M

EN
O

PA
U

SA
L_

ST
AT

E
IN

TC
LU

ST
TH

R
EE

G
EN

E
C

H
EM

O
TH

ER
AP

Y
ER

_I
H

C
H

O
R

M
O

N
E_

TH
ER

AP
Y

C
LA

U
D

IN
_S

U
BT

YP
E

LA
TE

R
AL

IT
Y

R
AD

IO
_T

H
ER

AP
Y

H
IS

TO
LO

G
IC

AL
_S

U
BT

YP
E

BR
EA

ST
_S

U
R

G
ER

Y
C

AN
C

ER
_T

YP
E_

D
ET

AI
LE

D
ER

_S
TA

TU
S

H
ER

2_
ST

AT
U

S
O

N
C

O
TR

EE
_C

O
D

E
PR

_S
TA

TU
S

LY
M

PH
_N

O
D

ES
_E

XA
M

IN
ED

_P
O

SI
TI

VE N
PI

AG
E_

AT
_D

IA
G

N
O

SI
S

C
O

H
O

R
T

G
R

AD
E

TU
M

O
R

_S
IZ

E
TU

M
O

R
_S

TA
G

E
TM

B_
N

O
N

SY
N

O
N

YM
O

U
S

O
S_

M
O

N
TH

S
O

S_
ST

AT
U

S
FG

F3
BQ

77
16

83
AT

P9
A

BU
19

38
64

KP
R

P
C

20
or

f7
0

AI
C

D
A

G
PR

12
8

D
A0

28
94

6
W

FD
C

6
PN

M
A5

SN
O

R
D

18
B

M
YL

1
LO

C
64

37
19

C
17

or
f9

8
SC

G
B1

A1
IN

SM
2

EC
EL

1
G

IF
W

D
R

17
O

TO
S

BF
51

45
83

AI
38

21
67

H
BE

1
R

H
AG

M
AT

N
1

C
T4

5A
5

C
3P

1
EM

IL
IN

3
D

B3
06

78
3

SL
C

14
A1

LC
N

15
BX

09
64

36
KR

T1
ER

AS
LO

C
10

02
88

23
8

O
R

6C
4

C
YP

3A
7

AA
62

56
91

BE
85

67
20

G
FA

P
W

AK
M

AR
2

AW
29

62
52

AC
TC

1
ZP

4
AA

72
43

05
BC

H
E

KR
T2

7
TM

ED
6

C
H

R
N

A9

CELLULARITY
HER2_SNP6

INFERRED_MENOPAUSAL_STATE
INTCLUST

THREEGENE
CHEMOTHERAPY

ER_IHC
HORMONE_THERAPY

CLAUDIN_SUBTYPE
LATERALITY

RADIO_THERAPY
HISTOLOGICAL_SUBTYPE

BREAST_SURGERY
CANCER_TYPE_DETAILED

ER_STATUS
HER2_STATUS

ONCOTREE_CODE
PR_STATUS

LYMPH_NODES_EXAMINED_POSITIVE
NPI

AGE_AT_DIAGNOSIS
COHORT

GRADE
TUMOR_SIZE

TUMOR_STAGE
TMB_NONSYNONYMOUS

OS_MONTHS
OS_STATUS

FGF3
BQ771683

ATP9A
BU193864

KPRP
C20orf70

AICDA
GPR128

DA028946
WFDC6
PNMA5

SNORD18B
MYL1

LOC643719
C17orf98

SCGB1A1
INSM2
ECEL1

GIF
WDR17

OTOS
BF514583
AI382167

HBE1
RHAG

MATN1
CT45A5

C3P1
EMILIN3

DB306783
SLC14A1

LCN15
BX096436

KRT1
ERAS

LOC100288238
OR6C4

CYP3A7
AA625691
BE856720

GFAP
WAKMAR2
AW296252

ACTC1
ZP4

AA724305
BCHE

KRT27
TMED6

CHRNA9

Correlation matrix

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Fig. 33: Correlation matrix of clinical and transcriptomic features. The correlation
matrix depicts the linear correlation between all the pairs of attributes and ranges
from -1 (perfect negative correlation) to +1 (perfect positive correlation), with the
value of zero being no correlation between the features. Colour density represents
the correlation values, where a darker colour implies a higher value and a lighter
colour implies a lower value. Except for some pair of clinical features having high
correlation values (as previously seen in Fig. 10), no high correlated values were
observed between clinical and transcriptomic features.

3 print("%.1f%% of records are censored" % (num_censored/df.shape

[0]*100))

4

5 plt.figure(figsize=(10, 6))

6 val, bins, patches =

78 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

7 plt.hist((df.query(’OS_STATUS == 1’)[’OS_MONTHS’],

8 df.query(’OS_STATUS == 0’)[’OS_MONTHS’]),

9 bins=30, stacked=True)

10 _ = plt.legend(patches, ["Time of Death", "Time of Censored"])

11 plt.title("Time Distribution of Censored and Death Patients")

0 50 100 150 200 250 300 350
Time (months)

0

20

40

60

80

100

120

Fr
eq

ue
nc

y

Time Distribution for Censored and Observed Events

Observed Events (Death)
Censored Events

Fig. 34: Distribution of follow-up times of censored and uncensored (death) obser-
vations in the integrated clinical and transcriptomic data. The data contains 42% of
censored observations. The distribution is right-skewed and it is different between
censored patients and those who experienced an event. The censored group has more
patients with longer survival times.

The rest of Experiment 3 includes plotting the CPHmodel, preparing and evaluat-

ing the ML algorithms, and interpreting the results. These were set up as previously

done in Experiment 1 in Sect. 3.4.3, 3.4.4, and Sect. 3.4.5. Hence, we do not repeat

the code in the sections below, but we discuss and interpret the results. However, the

complete notebook can be accessed at https://github.com/Angione-Lab/survival_

analysis_tutorial.

https://github.com/Angione-Lab/survival_analysis_tutorial
https://github.com/Angione-Lab/survival_analysis_tutorial

Machine Learning Methods for Survival Analysis of Breast Cancer 79

3.6.3 Plot Cox proportional hazards model

Following the same approach presented in Sect. 3.4.3 in Experiment 1 (Step 5 in Fig.

1), the merged data was normalised and the CPH model was fitted to generate the

log(HR)s and the final statistical report. Fig. 35 shows that AGE_AT_DIAGNOSIS

was identified as the most significant factor associated with a higher probability of

experiencing the event, with a log(HR) value of 3.800. In contrast, the genes ECEL1

and KPRP were found negatively associated with the death event as shown by their

negative log(HR) values. Patients having higher expression values for these two

genes tend to live longer compared to those who show lower expression values of

the same genes.

3.6.4 Set up and evaluate machine learning algorithms

Following the same steps (Step 6 in Fig. 1) described in Sect. 3.4.4, data was prepared

by splitting it into training and testing sets. The experiment pipeline was the same

as in Experiments 1 and 2. Firstly, the ML models were trained using a grid search

approach with five-fold cross-validation to identify the optimal hyperparameters.

Next, the fitted models were evaluated on the testing set. The data was split into

training and testing sets and the evaluation were repeated 20 times to obtain an

average C-index. Finally, Kaplan–Meier curves and log-rank tests were applied to

statistically compare the differences between the two predicted risk groups. The

high-risk group contained the patients in the testing set with the expected risk scores

above the median value. In contrast, the low-risk group included the patients with

the expected risk score below the median value. This process helped us to identify

the optimal algorithm that could successfully estimate the survival risk of the cancer

patient.

80 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

Fig. 35: Results of the CPH model applied to the merged clinical and transcrip-
tomic dataset. AGE_AT_DIAGNOSIS was identified as the most significant fac-
tors associated with the death events with a log(HR) value of 3.800, followed
by LYMPH_NODES_EXAMINED_POSITIVE, genes KRT1, OTOS, and ACTC1.
In contrast, the negative HR value predictors, such as gene ECEL1 and KPRP, were
negatively associated with the death event. Patients with higher values of these fac-
tors tend to live longer compared to those who have lower expression values of those
genes.

Fig. 36 and Fig. 37 show the results of Experiment 3. RSFwas the best performing

model with an average C-index value of 0.683, followed by GBS, SSVM, and

CPH, with C-index equal to 0.675, 0.673, 0.670, respectively. Kaplan–Meier curves,

Machine Learning Methods for Survival Analysis of Breast Cancer 81

reported in Fig. 38, show that all fourmodels had statistically significant differences in

survival distributions between risk groups. RSFwas again the best survival algorithm

with the lowest p-value of 1.197E-14.

CPH RSF GBS SSVM
Model Name

0.62

0.64

0.66

0.68

0.70

C
-In

de
x

C-index for 20 runs

Fig. 36: C-index comparisons for Experiment 3. Boxplots of C-index results of the
integrated clinical and transcriptomic data using CPH, RSF, GBS, and SSVM. The
experiments were replicated 20 times. In each experiment, the data was randomly
divided into training and testing sets with a ratio of 80:20, while guaranteeing the
same censoring percentage in each splitting. On average, RSF was found to have the
highest median C-index, followed by GBS, SSVM, and CPH.

3.6.5 Interpret model

For the final step of the pipeline (Step 7 in Fig. 1), SHAP values were used to

interpret the results of the models. The SHAP plots of the top 20 most important

features are reported in Fig. 39. A single patient is represented by each data point for

each feature. The y-axis lists the top 20 most influential features in descending order,

while the x-axis reports their corresponding SHAP values for a specific observation

in the testing set. The higher the SHAP value associated with a patient, the higher

82 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

Fig. 37: ML models results for the integration clinical and transcriptomic data. The
selected hyperparameter, initial test result, and average C-index of each model are
displayed in the outcome. Overall, the average performance over 20 runs of the
three ML models outperformed CPH when using the integrated data for survival
prediction. RSF had the highest average C-index with a value of 0.683, followed by
GBS, SSVM, and CPH.

the mortality risk that the patient would have. AGE_AT_DIAGNOSIS was selected

among the top features by the four models, suggesting the high impact of this feature

on the survival outcome. Fig. 39 also identifies some critical biomarkers affecting the

prediction outcomes of algorithms, including genes ERAS, SLC14A1, and LCN15.

Specifically, high values ofERAS and SLC14A1 had a negative impact on the outcome

of the models (i.e., high expression values of these genes correlated negatively with

Machine Learning Methods for Survival Analysis of Breast Cancer 83

��
�

Fig. 38: Kaplan-Meier curves to compare high-risk and low-risk groups, stratified
by predicted survival risk scores. The low-risk group (n=190) included patients with
predicted risk scores above the median value, while the high-risk group (n=190)
comprised patients with risk scores calculated to determine the statistical difference
between the survival distributions of the two groups. The figure shows statistically
significant differences between survival groups for all four models with a p-value
lower than 0.0001.

the probability of experiencing the event), while high values of LCN15 showed a

positive impact on the outcome of models (i.e., high values of this gene correlated

positively with the probability of experiencing the event). All these genes were

associated with patient survival and could be useful prognostic biomarkers for breast

cancer patients.

84 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

(a) CPH (b) RSF

(c) GBS (d) SSVM

Fig. 39: SHAP summary plot for the integrated clinical and transcriptomic data for (a)
CPH, (b) RSF, (c) GBS, and (d) SSVMmodels. For each gene feature, a single patient
is represented by each data point. The y-axis lists the top prognostic biomarkers and
presents them in descending order based on their ranking provided by the mean of
their absolute SHAP values. The x-axis reports the SHAP value indicating the impact
of the feature on the algorithm’s prediction outcome for a specific observation in
the testing set. The colour represents the value of the feature for each instance. The
higher the SHAPvalue associatedwith the patient, the higher the risk of death. For the
survival risk predictors, AGE_AT_DIAGNOSIS was consistently selected by the four
models as the top significant factors impacting the outcome of models. Specifically,
high values of this feature correlated with a higher probability of experiencing the
event. Other biomarkers such as ERAS, SLC14A1, and LCN15 were identified as
features having a high impact on the prediction outcomes and associated with the
predicted survival likelihood.

Machine Learning Methods for Survival Analysis of Breast Cancer 85

4 Conclusions

The application of ML models on the integration of clinical and omics data can

provide data insights to improve personalised treatment and precision oncology.

However, there are still some challenges to overcome, mainly related to the high

dimensionality of the data and the heterogeneity of samples.Hence, better approaches

to develop accurate predictive models and identify critical prognostic markers need

to be implemented. In this tutorial, we showed that ML models appear as salient

and successful methods to analyse medical data and predict patient-specific survival

outcomes. Our study proposed a step-by-step protocol to design and evaluate the

traditional statistical model CPH and threeMLmodels for breast cancer survival, i.e.,

RSF, GBS, and SSVM. The performance of the ML models was assessed using the

METABRIC dataset. The presented pipeline, based on optimising C-index by using a

grid search approach and a five-fold cross-validation method, has a great potential to

improve the performance of models and generalise the models for survival prediction

on unseen data. Furthermore, we used SHAP values to interpret the model results

and identify the features that had the highest impact on the prediction outcomes of

models. The improvement in ML interpretability will help researchers and clinicians

understand more about ML models and thus gain more credibility and trust. This

tutorial represents one step further to bring these novel solutions to clinicians and

to the public. Our work offers an exploratory strategy to enhance the biological

understanding of the prognosis predictive ML models.

We conducted three different experiments for clinical data, transcriptomic data,

as well as the integration of these two data types. Incorporating clinical and mRNA

expression data is crucial to uncover a sequence of complicated interactions in

multiple biological processes and complex human conditions. Due to the high-

dimensional nature of transcriptomic data, mRMRwas applied as a feature selection

86 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

technique. This preprocessing step also helps to boost the performance of models,

save computational resources, and reduce overfitting.

Even if we presented themost usedML techniques to perform survival analysis on

different types of data, there are some limitations to this tutorial. We only considered

threeML algorithms, namely RSF, GBS, and SSVM, because of their popularity and

effectiveness in analysing survival data. However, other approaches based on deep

learning, a branch of ML, have also proved their capability to work with survival

data. Some packages are available to run deep learning-based models for cancer

prognosis, such as Deepsurv [80], Cox-nnet [43], and DeepProg [81]. A competi-

tive performance comparison between our approaches to other deep learning-based

models could enable researchers to explore and obtain optimal ways to supplement

conventional survival analysis techniques.

The number of features selected in our study could also have limited the findings

when using transcriptomic data. To save computation time and resources, we only

extracted 50 features to demonstrate our approach. Future studies could adopt our

framework and repeat our steps exploring different numbers of features.

In summary, by performing survival analysis across different models and data,

our results revealed that ML approaches were capable of generating accurate prog-

nostic predictions. The ML-based models showed a better performance compared

to traditional statistic methods, i.e., CPH model. Particularly, RSF reported the best

performance results in analysing the transcriptomic data (Experiment 2) and the

integrated clinical and transcriptomic data (Experiment 3), while SSVM was the

best performing model when using clinical data only (Experiment 1).

Machine Learning Methods for Survival Analysis of Breast Cancer 87

Acknowledgements

AO and CA acknowledge the support of Earlier.org through their Research Grant

"Application of computational models of breast cancer for early-detection person-

alised tests". CA acknowledges the support of EPSRC and The Alan Turing Institute

through their Turing Network Development Award, and the Children’s Liver Disease

Foundation through their Research Grant.

88 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

References

[1] Ferlay J, Héry C, Autier P, Sankaranarayanan R (2010) Global burden of breast

cancer. In: Breast cancer epidemiology, Springer, pp 1–19

[2] Cancer Research UK (2021) Breast cancer statistics. URL

https://www.cancerresearchuk.org/health-professional/cancer-statistics/

statistics-by-cancer-type/breast-cancer

[3] Office for National Statistics (2019) Cancer survival in England Cancer

survival in England: national estimates for patients followed up to 2017. URL

https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/

conditionsanddiseases/bulletins/cancersurvivalinengland/

nationalestimatesforpatientsfollowedupto2017

[4] Robson M, Im SA, Senkus E et al. (2017) Olaparib for metastatic breast cancer

in patients with a germline brca mutation. New England Journal of Medicine

377(6):523–533

[5] De Bin R, Sauerbrei W, Boulesteix AL (2014) Investigating the prediction

ability of survival models based on both clinical and omics data: two case

studies. Statistics in medicine 33(30):5310–5329

[6] HiraMT, RazzaqueM, Angione C et al. (2021) Integrated multi-omics analysis

of ovarian cancer using variational autoencoders. Scientific reports 11(1):1–16

[7] Conesa A, Beck S (2019) Making multi-omics data accessible to researchers.

Scientific data 6(1):1–4

[8] Vĳayakumar S, Conway M, Lió P, Angione C (2018) Optimization of multi-

omic genome-scale models: Methodologies, hands-on tutorial, and perspec-

tives. Metabolic Network Reconstruction and Modeling pp 389–408

[9] Angione C (2019) Human systems biology and metabolic modelling: a re-

view—from disease metabolism to precision medicine. BioMed research in-

https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/cancersurvivalinengland/nationalestimatesforpatientsfollowedupto2017
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/cancersurvivalinengland/nationalestimatesforpatientsfollowedupto2017
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/cancersurvivalinengland/nationalestimatesforpatientsfollowedupto2017

Machine Learning Methods for Survival Analysis of Breast Cancer 89

ternational 2019

[10] Zhao Z, Zhang KN, Wang Q et al. (2021) Chinese glioma genome atlas (cgga):

a comprehensive resource with functional genomic data from chinese glioma

patients. Genomics, proteomics & bioinformatics 19(1):1

[11] Iuliano A, Occhipinti A, Angelini C et al. (2018) Combining pathway identi-

fication and breast cancer survival prediction via screening-network methods.

Frontiers in genetics 9:206

[12] Győrffy B (2021) Survival analysis across the entire transcriptome identifies

biomarkers with the highest prognostic power in breast cancer. Computational

and structural biotechnology journal 19:4101–4109

[13] Higdon R, Earl RK, Stanberry L et al. (2015) The promise of multi-omics

and clinical data integration to identify and target personalized healthcare ap-

proaches in autism spectrum disorders. Omics: a journal of integrative biology

19(4):197–208

[14] Hasin Y, SeldinM, Lusis A (2017)Multi-omics approaches to disease. Genome

biology 18(1):1–15

[15] Yaneske E, Angione C (2018) The poly-omics of ageing through individual-

based metabolic modelling. BMC bioinformatics 19(14):83–96

[16] Yan J, Risacher SL, Shen L, Saykin AJ (2018) Network approaches to systems

biology analysis of complex disease: integrative methods for multi-omics data.

Briefings in bioinformatics 19(6):1370–1381

[17] Occhipinti A, Hamadi Y, Kugler H et al. (2020) Discovering essential multiple

gene effects through large scale optimization: an application to human cancer

metabolism. IEEE/ACM transactions on computational biology and bioinfor-

matics

[18] Eyassu F, Angione C (2017) Modelling pyruvate dehydrogenase under hypoxia

and its role in cancer metabolism. Royal Society open science 4(10):170360

90 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

[19] Zhao L, Dong Q, Luo C et al. (2021) Deepomix: A scalable and interpretable

multi-omics deep learning framework and application in cancer survival anal-

ysis. Computational and structural biotechnology journal 19:2719–2725

[20] Yaneske E, Zampieri G, Bertoldi L et al. (2021) Genome-scale metabolic

modelling of sars-cov-2 in cancer cells reveals an increased shift to glycolytic

energy production. FEBS letters 595(18):2350–2365

[21] Angione C (2018) Integrating splice-isoform expression into genome-scale

models characterizes breast cancer metabolism. Bioinformatics 34(3):494–501

[22] Anaya J, Reon B, Chen WM et al. (2016) A pan-cancer analysis of prognostic

genes. PeerJ 3:e1499

[23] ZhuB, SongN, ShenR et al. (2017) Integrating clinical andmultiple omics data

for prognostic assessment across human cancers. Scientific reports 7(1):1–13

[24] Islam MM, Haque MR, Iqbal H et al. (2020) Breast cancer prediction: a

comparative study using machine learning techniques. SN Computer Science

1(5):1–14

[25] Zampieri G, Vĳayakumar S, Yaneske E, Angione C (2019) Machine and deep

learning meet genome-scale metabolic modeling. PLoS computational biology

15(7):e1007084

[26] Alabi RO, Elmusrati M, Sawazaki-Calone I et al. (2020) Comparison of super-

vised machine learning classification techniques in prediction of locoregional

recurrences in early oral tongue cancer. International journal of medical infor-

matics 136:104068

[27] Culley C, Vĳayakumar S, Zampieri G, Angione C (2020) A mechanism-aware

and multiomic machine-learning pipeline characterizes yeast cell growth. Pro-

ceedings of the National Academy of Sciences 117(31):18869–18879

[28] Chugh G, Kumar S, Singh N (2021) Survey on machine learning and deep

learning applications in breast cancer diagnosis. Cognitive Computation pp

Machine Learning Methods for Survival Analysis of Breast Cancer 91

1–20

[29] Akram M, Iqbal M, Daniyal M, Khan AU (2017) Awareness and current

knowledge of breast cancer. Biological research 50(1):1–23

[30] Simmons CP, McMillan DC, McWilliams K et al. (2017) Prognostic tools

in patients with advanced cancer: a systematic review. Journal of pain and

symptom management 53(5):962–970

[31] Ascolani G, Occhipinti A, Liò P (2015) Modelling circulating tumour cells for

personalised survival prediction in metastatic breast cancer. PLoS computa-

tional biology 11(5):e1004199

[32] Wang P, Li Y, Reddy CK (2019) Machine learning for survival analysis: A

survey. ACM Computing Surveys (CSUR) 51(6):1–36

[33] Mariotto AB, Noone AM, Howlader N et al. (2014) Cancer survival: an

overview of measures, uses, and interpretation. Journal of the National Cancer

Institute Monographs 2014(49):145–186

[34] Austin PC (2017) A tutorial on multilevel survival analysis: methods, models

and applications. International Statistical Review 85(2):185–203

[35] IulianoA,Occhipinti A,Angelini C et al. (2016)Cancermarkers selection using

network-based cox regression: a methodological and computational practice.

Frontiers in physiology 7:208

[36] Yang Y, Lu Q, Shao X et al. (2018) Development of a three-gene prognostic

signature for hepatitis b virus associated hepatocellular carcinoma based on

integrated transcriptomic analysis. Journal of Cancer 9(11):1989

[37] Kiebish MA, Cullen J, Mishra P et al. (2020) Multi-omic serum biomarkers

for prognosis of disease progression in prostate cancer. Journal of translational

medicine 18(1):1–10

[38] Hao J, Kim Y, Mallavarapu T et al. (2019) Interpretable deep neural network

for cancer survival analysis by integrating genomic and clinical data. BMC

92 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

medical genomics 12(10):1–13

[39] Moncada-Torres A, van Maaren MC, Hendriks MP et al. (2021) Explainable

machine learning can outperform cox regression predictions and provide in-

sights in breast cancer survival. Scientific Reports 11(1):1–13

[40] Akai H, Yasaka K, Kunimatsu A et al. (2018) Predicting prognosis of resected

hepatocellular carcinoma by radiomics analysis with random survival forest.

Diagnostic and interventional imaging 99(10):643–651

[41] Bibault JE, Chang DT, Xing L (2021) Development and validation of a model

to predict survival in colorectal cancer using a gradient-boosted machine. Gut

70(5):884–889

[42] Wang H, Zheng B, Yoon SW, Ko HS (2018) A support vector machine-based

ensemble algorithm for breast cancer diagnosis. European Journal of Opera-

tional Research 267(2):687–699

[43] Ching T, Zhu X, Garmire LX (2018) Cox-nnet: an artificial neural network

method for prognosis prediction of high-throughput omics data. PLoS compu-

tational biology 14(4):e1006076

[44] Huang Z, Zhan X, Xiang S et al. (2019) Salmon: survival analysis learning with

multi-omics neural networks on breast cancer. Frontiers in genetics 10:166

[45] Cheon S, Agarwal A, Popovic M et al. (2016) The accuracy of clinicians’

predictions of survival in advanced cancer: a review. Ann Palliat Med 5(1):22–

29

[46] Pereira B, Chin SF, Rueda OM et al. (2016) The somatic mutation profiles of

2,433 breast cancers refine their genomic and transcriptomic landscapes. Nature

communications 7(1):1–16, DOI https://doi.org/10.1038/ncomms11479

[47] Lundberg SM, Lee SI (2017) A unified approach to interpreting model predic-

tions. In: Proceedings of the 31st international conference on neural information

processing systems, pp 4768–4777

Machine Learning Methods for Survival Analysis of Breast Cancer 93

[48] Singh R, Mukhopadhyay K (2011) Survival analysis in clinical trials: Basics

and must know areas. Perspectives in clinical research 2(4):145

[49] Cox DR (1972) Regression models and life-tables. Journal of the Royal Statis-

tical Society: Series B (Methodological) 34(2):187–202

[50] Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS (2008) Random survival

forests. The annals of applied statistics 2(3):841–860

[51] Breiman L (2001) Random forests. Machine learning 45(1):5–32

[52] Azar AT, Elshazly HI, Hassanien AE, Elkorany AM (2014) A random forest

classifier for lymph diseases. Computer methods and programs in biomedicine

113(2):465–473

[53] Qu Z, Li H, Wang Y et al. (2020) Detection of electricity theft behavior based

on improved synthetic minority oversampling technique and random forest

classifier. Energies 13(8):2039

[54] Harrell FE, Califf RM, Pryor DB et al. (1982) Evaluating the yield of medical

tests. Jama 247(18):2543–2546

[55] HothornT, Bühlmann P,Dudoit S et al. (2006) Survival ensembles. Biostatistics

7(3):355–373

[56] Natekin A, Knoll A (2013) Gradient boosting machines, a tutorial. Frontiers in

neurorobotics 7:21

[57] Friedman JH (2001) Greedy function approximation: a gradient boosting ma-

chine. Annals of statistics pp 1189–1232

[58] Ridgeway G (1999) The state of boosting. Computing science and statistics pp

172–181

[59] Khan FM, ZubekVB (2008) Support vector regression for censored data (svrc):

a novel tool for survival analysis. In: 2008 Eighth IEEE International Confer-

ence on Data Mining, IEEE, pp 863–868

94 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

[60] Vapnik V (1999) The nature of statistical learning theory. Springer science &

business media

[61] Pölsterl S, Navab N, Katouzian A (2015) Fast training of support vector ma-

chines for survival analysis. In: Joint European Conference on Machine Learn-

ing and Knowledge Discovery in Databases, Springer, pp 243–259

[62] Leger S, Zwanenburg A, Pilz K et al. (2017) A comparative study of machine

learning methods for time-to-event survival data for radiomics risk modelling.

Scientific reports 7(1):1–11

[63] Gárate-Escamila AK, El Hassani AH, Andrès E (2020) Classification models

for heart disease prediction using feature selection and pca. Informatics in

Medicine Unlocked 19:100330

[64] Ewees AA, Al-qaness MA, Abualigah L et al. (2021) Boosting arithmetic

optimization algorithm with genetic algorithm operators for feature selection:

Case study on cox proportional hazards model. Mathematics 9(18):2321

[65] Schemper M, Kaider A, Wakounig S, Heinze G (2013) Estimating the cor-

relation of bivariate failure times under censoring. Statistics in medicine

32(27):4781–4790

[66] Su Z, Tang B, Liu Z, Qin Y (2015) Multi-fault diagnosis for rotating machinery

based on orthogonal supervised linear local tangent space alignment and least

square support vector machine. Neurocomputing 157:208–222

[67] Rodrigues D, Pereira LA, Nakamura RY et al. (2014) A wrapper approach

for feature selection based on bat algorithm and optimum-path forest. Expert

Systems with Applications 41(5):2250–2258

[68] Peng H, Long F, Ding C (2005) Feature selection based on mutual informa-

tion criteria of max-dependency, max-relevance, and min-redundancy. IEEE

Transactions on pattern analysis and machine intelligence 27(8):1226–1238

Machine Learning Methods for Survival Analysis of Breast Cancer 95

[69] Curtis C, Shah SP, Chin SF et al. (2012) The genomic and transcrip-

tomic architecture of 2,000 breast tumours reveals novel subgroups. Nature

486(7403):346–352

[70] Pölsterl S (2020) scikit-survival: A library for time-to-event analysis built on

top of scikit-learn. J Mach Learn Res 21(212):1–6

[71] Van Rossum G, Drake FL (2009) Python 3 Reference Manual. CreateSpace,

Scotts Valley, CA

[72] Kim B, Khanna R, Koyejo OO (2016) Examples are not enough, learn to criti-

cize! Criticism for Interpretability. Advances in Neural Information Processing

Systems 29

[73] Lundberg SM, Nair B, Vavilala MS et al. (2018) Explainable machine-learning

predictions for the prevention of hypoxaemia during surgery. Nature biomedical

engineering 2(10):749–760

[74] Aittokallio T (2010) Dealing with missing values in large-scale studies: mi-

croarray data imputation and beyond. Briefings in bioinformatics 11(2):253–

264

[75] Fryett JJ, Inshaw J, Morris AP, Cordell HJ (2018) Comparison of methods

for transcriptome imputation through application to two common complex

diseases. European Journal of Human Genetics 26(11):1658–1667

[76] Shahjaman M, Rahman MR, Islam T et al. (2021) rmisbeta: A robust missing

value imputation approach in transcriptomics and metabolomics data. Com-

puters in Biology and Medicine 138:104911

[77] Park S, Shin B, Shim WS et al. (2019) Wx: a neural network-based feature

selection algorithm for transcriptomic data. Scientific reports 9(1):1–9

[78] Han Y, Huang L, Zhou F (2021) Zoo: Selecting transcriptomic and methylomic

biomarkers by ensembling animal-inspired swarm intelligence feature selection

algorithms. Genes 12(11):1814

96 Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti

[79] Iuliano A, Occhipinti A, Angelini C et al. (2021) Cosmonet: An r package for

survival analysis using screening-network methods. Mathematics 9(24):3262

[80] Katzman JL, Shaham U, Cloninger A et al. (2018) Deepsurv: personalized

treatment recommender system using a cox proportional hazards deep neural

network. BMC medical research methodology 18(1):1–12

[81] Poirion OB, Jing Z, Chaudhary K et al. (2021) Deepprog: an ensemble of

deep-learning and machine-learning models for prognosis prediction using

multi-omics data. Genome medicine 13(1):1–15

	Machine Learning Methods for Survival Analysis with Clinical and Transcriptomics Data of Breast Cancer
	Le Minh Thao Doan, Claudio Angione, and Annalisa Occhipinti
	Introduction
	Backgrounds
	Survival analysis
	Cox proportional hazards model
	Machine learning models
	Feature selection

	Methods
	Dataset
	Study design
	Initial setting
	Experiment 1: clinical data
	Experiment 2: transcriptomic data
	Experiment 3: integrating clinical to transcriptomic data

	Conclusions
	Acknowledgements
	References
	References

