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ARTICLE INFO ABSTRACT

Dataset link: https://github.com/Angione-Lab/
Hepatoblastoma-Children-Classification

Background: Recently, multi-omic machine learning architectures have been proposed for the early detection
of cancer. However, for rare cancers and their associated small datasets, it is still unclear how to use the
available multi-omics data to achieve a mechanistic prediction of cancer onset and progression, due to the
limited data available. Hepatoblastoma is the most frequent liver cancer in infancy and childhood, and whose
incidence has been lately increasing in several developed countries. Even though some studies have been
conducted to understand the causes of its onset and discover potential biomarkers, the role of metabolic
rewiring has not been investigated in depth so far.

Methods: Here, we propose and implement an interpretable multi-omics pipeline that combines mechanis-
tic knowledge from genome-scale metabolic models with machine learning algorithms, and we use it to
characterise the underlying mechanisms controlling hepatoblastoma.

Results and Conclusions: While the obtained machine learning models generally present a high diagnostic
classification accuracy, our results show that the type of omics combinations used as input to the machine
learning models strongly affects the detection of important genes, reactions and metabolic pathways linked to
hepatoblastoma. Our method also suggests that, in the context of computer-aided diagnosis of cancer, optimal
diagnostic accuracy can be achieved by adopting a combination of omics that depends on the patient’s clinical
characteristics.
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1. Introduction in conjunction with techniques from systems biology has only recently

started to be explored, with clear opportunities for further develop-

Systems biology is a branch of biology aiming at explaining biolog-
ical entities and processes through the integration of experimental data
and mathematical computational frameworks, thus joining aspects and
approaches of theoretical and experimental biology [1,2]. The sub-field
of constraint-based modelling, in particular, has allowed the research
community to investigate changes in biological systems according to
the medium, internal deficiencies and even single individuals, leading
the way to precision-medicine approaches [3-5].

The application of systems biology offers mechanistic explanations
of biological processes not fully understood so far [6]. Several success-
ful results have been achieved by the adoption of this framework in
cancer research [7-9]. However, the exploration of machine learning

ment [10,11]. The flexibility of this framework is such that several
different types of tasks can be solved, from machine learning-guided
metabolic engineering [12] to the prediction of drug side-effects [13]
and gene regulatory network reconstruction via transfer learning [14].

Hepatoblastoma is the most frequent epithelial liver tumour in
infancy and childhood, with over 90% of cases diagnosed earlier than
4 years of age. This tumour is characterised by a high recurrence
rate and metastatic aggressiveness, especially below this threshold
age [15], which makes it paramount to be able to obtain an accurate
prediction early on the onset of the disease. Additionally, its incidence
is increasing in several developed countries. The recent development of
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Fig. 1. A. Multi-omics and machine learning pipeline adopted in this study. Starting from liver gene expression profiles for hepatoblastoma patients and control subjects, we
computed the associated genome-scale metabolic fluxes via FVA. For each of the combinations of transcriptomic, metabolic, and clinical data, we then performed a random stratified
sampling to obtain a hold-out test set and an outer training set for machine learning model evaluation. Starting from this training set, we conducted a 5-fold cross-validation
across hyperparameter values, and then evaluated the best model on the hold-out test set. Within each round of cross-validation, we also performed feature standardisation and
cleaning and omics integration when necessary, in order to avoid any data leakage (brown box). We repeated the entire procedure 200 times to ensure the robustness of the
results and re-ran the entire pipeline with a randomised dataset, whose phenotypes had been randomly permuted, so as to verify that the learned models correctly identified
biologically meaningful patterns. B. Clinical data for the combined dataset used in the study. Race, tumour stage and clinical course had widespread missing entries, due to the

original datasets having different information available.

molecular methods allowed extending the general subtype classification
of primary childhood liver cancers, including hepatoblastoma [11,16],
whose heterogeneity complicates the diagnosis of the disease. More-
over, clinical studies suggest that biomolecular mechanisms are associ-
ated with diverse prognostic outcomes and chemotherapy responses.
Very recently, a few studies have started to explore the biological
variability underlying hepatoblastoma, focusing on genomic biomark-
ers [17]. Likewise, machine learning has been adopted in the study of
hepatoblastoma with encouraging results [18-20]. However, the role
of metabolic rewiring — which is one of the main hallmarks of tumour
cells [21] - has not been studied so far in hepatoblastoma. As a result,
there is a general lack of robust biomarkers for this disease [22].

In this study, we investigate how different omics (and their com-
binations), interplaying with the patient’s characteristics, affect the
accuracy of a machine learning-based diagnosis by using a systems
biology framework (flux balance analysis) in conjunction with machine
learning. This concept has started to be explored only recently, and
follows from recent work conducted on yeast metabolism [23,24].
Transcriptomics cannot be easily outperformed by other omic data, as
observed by [25]. However, based on our experience [26], systems

biology-derived data can inform mathematical models more compre-
hensively. We also examine metabolic markers for hepatoblastoma in
the hope that this will guide future research in the field. In particular,
we study how experimentally measured gene expression plays a role
in diagnosing hepatoblastoma when paired with both synthetic in silico
(i.e. simulated) metabolic data and clinical data such as gender and age
of the patient.

Starting from a set of transcriptomic profiles, we use genome-scale
metabolic modelling (GSMM) to estimate the associated metabolic ac-
tivity across pathways in a sample-specific fashion. We then use support
vector machines [27] as a predictor to identify hidden patterns that
discriminate between phenotypic groups, and compare the performance
of the different omics and their combinations, achieved by integrating
the omics via Partial Least Squares Discriminant Analysis (PLSDA), in
four alternative scenarios. For each scenario, we examine and present
potential biomarkers, validating them against the existing literature.
We report how specific omics combinations can be beneficial to the di-
agnosis of hepatoblastoma in different patients, and that the predictive
power of each combination varies with their age, gender and clinical
status.
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Fig. 2. A. Principal component visualisation of the three transcriptomic datasets considered. Upon batch correction through ComBat, the datasets correctly overlap, indicating
that confounding experiment-specific variation has been reduced. B. Principal component visualisation of the aggregated cohort in terms of transcriptomic and fluxomic state,
displaying the main phenotypic groups. The two groups appear circumscribed to well-defined areas of the principal component space for both omics across subjects, indicating
that they describe distinct characteristics in the two groups. In contrast, no clear trend can be observed in terms of subject age, here represented by the circle size. An alternative
representation of these graphs is Fig. E.9 in Appendix. C. Average flux in each pathway across patients and controls, obtained through FVA. Pathways associated with glutathione
and CoA metabolism were found up-regulated, while the ones linked to nucleotide salvage D-alanine metabolism, and central metabolism were down-regulated. D. Flux enrichment
analysis over the pathways in the genome-scale metabolic reconstruction for the flux rates from the FVA (maximal fluxes). Pathways with * and yellow contour are statistically
significantly enriched in at least one stratification. In particular, extracellular transport, nucleotide interconversion, ubiquinone synthesis and keratan and cholesterol metabolism
are the pathways enriched in all the stratifications. No significant difference was detected between the two age-based stratification enrichments.

2. Materials and methods
Data gathering and homogenisation

We gathered relevant transcriptomic data from liver samples of
children diagnosed with hepatoblastoma and for control subjects within
the same age range sets [17,28]. We selected three datasets whose
gene expression profiles and clinical information have been retrieved
from the Gene Expression Omnibus portal (www.ncbi.nlm.nih.gov/
gds) under the accession numbers GSE75271, GSE131329 and from
the BioStudies ArrayExpress portal (https://www.ebi.ac.uk/biostudies/
arrayexpress) under the accession code E-MEXP-1851. The selection of

these datasets considered the experimental platform utilised and, given
the need for numerous samples to train a machine learning model, we
prioritised the platform with the most abundant publicly-available data,
which was in our case the Affymetrix microarray (Affymetrix Human
Genome U133 Plus 2.0, Affymetrix Human Gene 1.0 ST and Affymetrix
HG-U133 A 2.0 GeneChipTM respectively). The gathered data comprise
a total of 151 subjects including 128 hepatoblastoma patients and 23
controls (see Fig. 1B). The average age is 2.6 years, while the sex
distribution is 84 and 67 male and female subjects, respectively. The
transcriptomic profiles cover 12,712 genes.

Appropriate high-throughput biological data pre-processing is fun-
damental to a meaningful analysis clear of technical biases [29-31].
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Having gathered independently generated data, their joint analysis
required ensuring uniformity and batch effect removal, which we per-
formed through ComBat [32]. Fig. 2A shows the effect of homogenisa-
tion across the three datasets. Where possible, clinical data were also
integrated and homogenised. Due to heterogeneous clinical formats,
however, some information remained sparse, such as race, tumour stage
and clinical course (Fig. 1B).

Patient-specific metabolic modelling of hepatoblastoma

To obtain metabolic information tailored to patient-specific
metabolism, we adopted a GSMM approach. The base requirement is
a mathematical representation of all the known biochemical reactions
and transmembrane transporters present in an organism. Previous
work has been done with GSMM to mechanistically characterise var-
ious human disorders, including liver diseases [33] and a range of
cancer types [34-37]. GSMMs can be integrated with omics data
to obtain context-specific models, representing the metabolic status
across various conditions or tissues [38,39]. Notably, tissue- and cell-
specific metabolic models have been successfully used to identify, and
successively validate, specific drug targets that inhibit cancer prolifer-
ation but do not affect normal cell proliferation [40,41]. Through the
mathematical manipulation of metabolic networks, GSMM can provide
mechanistic insights regarding how hepatoblastoma works, with both
the biochemical detail and completeness to interpret large molecular
datasets.

Transcriptomics data integration

In our experiments, the human metabolic reconstruction Recon2.2
[42] was used in order to estimate the metabolic activity associated
with transcriptional cues in tumour and control liver. Following a
precision medicine approach, we derived a different metabolic model
for each patient [43,44]. In doing so, we mapped the gene expression
levels of the patients onto the metabolic network, thus determining
the metabolic conditions from which to infer the reaction activity for
each individual. Specifically, this process uses gene-protein-reaction
relationships encoded within Recon2.2 and generates sample-specific
constraints that describe the maximal and minimal activity that can be
sustained by a given transcriptional state:

Vub < Vup [1 + }/l lOg@HSign(@_l)

. (€8}
Vi < Vi [1 + 7] log o[¥iene-h

where v, and v, represent the upper and lower bounds of the metabolic
fluxes respectively, while © represents the gene expression level of the
gene sets present in the genome-scale metabolic model, and y =2 (see
Appendix A in the Appendix).

Furthermore, we imposed additional experimental constraints (see
Table E.1 from Appendix E in the Appendix) directly onto the genome-
scale metabolic model, which are orthogonal to those given by gene
expression. To this end, we performed a literature search on liver
metabolism, collecting experimentally supported bounds to metabolic
exchanges in the liver. In particular, we followed previous work on
hepatocyte modelling [33], correcting for the modelling convention
according to which exchange reactions that assume uptakes are rep-
resented by negative lower bounds. These secretion and uptake rates
were taken from previous measurements [45], which investigated the
changes in intracellular pathway fluxes of primary rat hepatocytes in
response to low-insulin preconditioning and amino acid supplementa-
tion. Among the involved reactions, we set uptake bounds for glucose,
glutamate and glutamine.

We performed these steps for all the 151 samples in our dataset,
in parallel, thus obtaining 151 context-specific metabolic models, each
associated with a specific individual.
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Flux variability analysis

To quantify the genome-scale metabolic state associated with col-
lected transcriptomic profiles, we adopted flux variability analysis
(FVA), which provides complete maximal (and minimal) cell metabolic
capabilities across the biochemical network [46]. FVA operates by
sequential maximisation and minimisation of each reaction activity
to explore the boundaries of the feasible flux space. This algorithm
yields a profile of maximal and minimal reaction rates (fluxes) for
every biochemical reaction in Recon2.2, which collectively constitute a
fluxomic profile. However, unlike the transcript levels, these metabolic
fluxes do not belong to a single metabolic state, rather they represent
the metabolic capabilities and limits of the individual’s metabolic
network, because the reactions are maximised and minimised in turn.
While a transcriptomic profile represents the full set of transcription
levels for a patient’s genes in the liver, a fluxomic profile v is a set of
reaction rates within a patient’s liver metabolic network. The rationale
behind this is that it should be possible to distinguish between healthy
and cancer cells by looking at their metabolism. The optimisation
problem was the following:
max (min) v;
subject to V= e

Sv=0,

(2)

Vi <v<v,, fori=12..,n,

where S is the stoichiometric matrix that defines the chemical reactions
present in the metabolic model, ¢ is a vector for characterising the
objective function f starting from v, f,,, is the maximum value of
f, and vp,v,, are the lower and upper bounds, respectively, of the
metabolic reactions, as per Eq. (1).

As an alternative to FVA, we also used parsimonious flux bal-
ance analysis (pFBA) [47], following recent advances in mammalian
metabolic modelling [48]. This approach, however, involves the adop-
tion of specific cellular objectives that in this case did not provide
sufficiently diversified metabolic profiles across all samples, which
prompted us to employ FVA as it provides more unbiased estimates
of metabolic variation across individuals. This could be explained by
the fact that cancer cells present complex behaviour which may not
be easily modelled with a single optimisation objective [49]. The
interested reader can find more results regarding pFBA in Appendix B
in Appendix. The COBRA Toolbox [50] was used with the Gurobi solver
to compute the metabolic fluxes in MATLAB R2021b.

Biomarker identification framework

The study was divided into two parts: we first analysed the
metabolism of the patients with respect to the possible stratifications
in the population, and then applied machine learning techniques to
determine possible biomarkers and how different omics could affect
the precision of diagnosis of hepatoblastoma. We decided to follow
this two-fold approach (flux-based metabolic analysis first and machine
learning-led knowledge discovery after) as this is the most promising
for the delivery of robust biomarker insights. Conversely, enrichment
by itself does not guarantee predictive power nor does it help prioritise
candidate biomarkers for future studies [51].

Flux enrichment analysis

To determine whether the over-represented pathways associated
with the resulting metabolic reactions in the pool were overly present
“by chance” or because of the existence of real biological mechanisms
linked to the reactions, we decided to run a Flux Enrichment Analysis
(FEA), which is a statistical testing technique that tests for the statistical
relevance of biological pathways associated with a pool of reactions.

Before applying FEA, we removed all the reactions which had an
absolute flux lower than le-7, considering them non-active, to account
for the tolerance of the FVA solver. All the other reactions were instead



G. Magazzu et al.

included in the analysis. FEA was conducted on all the samples, in a
stratified and non-stratified way, by using hypergeometric tests, and
the Benjamini-Hochberg correction was used to take into account the
multiple hypothesis testing scenario. We set 0.05 as a threshold for
the p-value to determine whether the presence of an over-represented
pathway was statistically significant or not. Whenever specific covari-
ate information was not available for a sample, we discarded the sample
for that stratification and conducted the analysis on the remaining data.

We followed this approach because we were interested in assess-
ing whether different groups of individuals (healthy/ill, male/female,
etc...) showed changes in metabolic activity highly concentrated in
specific pathways. The different cohorts were based on the available
covariates and were organised as follows: tumour—control; male-female;
older-younger than 4.5 years; older-younger than 3 years; alive—
dead. The choice regarding the thresholds for the age was driven by
the need for a deeper granularity in the analysis within the range
[3, 4.5], which is considered to be critical to the diagnosis of the
disease [15].

Machine learning-led biomarker discovery

Support vector machines (SVMs) are machine learning models that
can be trained to distinguish samples belonging to different groups,
such as patients and control individuals [27]. Here, we trained and
applied SVM models to identify predictive variables that best discrimi-
nate between phenotypic groups (tumour and control). Once identified,
these variables could thus be regarded as biomarkers. The objective
function for the training of our SVMs was the following:

1T T
1’31;’1 Ew w+AZmax<O,l—yi(w x,-+b)), 3)

where 1 is a regularisation hyperparameter to optimise, w and b, re-
spectively, weights and bias of the model, and (x;, y;) the pair (features,
class) of the ith sample. In addition to SVMs, we also tested another
machine learning algorithm, Random Forest (RF) [52], and a Neural
Network (NN), a deep learning approach that usually achieves state-of-
the-art performance in many modern artificial intelligence tasks. The
performance of the three models was compared and we found out that
the SVM model performed better or equally well in all the studied
scenarios. Further information can be found in Appendix C and E of
Appendix. The choice of reporting the results for the SVMs only in the
rest of the paper was also driven by the fact that the SVM algorithm is
computationally inexpensive if compared, for instance, with the NNs.

As integrative approaches were also investigated, partial least squares
discriminant analysis (PLSDA) was adopted in order to mitigate the
problems deriving from the high dimensionality of the data combined
with the small number of samples. In particular, the omics (tran-
scriptomic and fluxomic) were projected onto two-dimensional spaces
(one dimension per phenotypic trait; each omic was projected onto
an independent space) in the explored integrative settings, explained
below.

Our general training-evaluation pipeline, as reported in Fig. 1A, was
the following: starting from the complete sample set (151 samples),
we performed a random stratified sampling of 10 samples (5 patients
and 5 controls) to put aside as a test set. The remaining samples
were used as training data for an SVM model with a linear kernel,
which we then employed to predict the phenotypic group for the 10
hold-out samples. This train-test process was repeated on random data
partitions 200 times in order to ensure the robustness of the results,
given such a small test set. The exact number of iterations was a
result of a trial-and-error procedure, through which we determined
that a lower number of repetitions would increase the standard de-
viation of the performance distributions (thus making our results less
robust), while a higher number would simply increase the duration of
the experiments, with negligible gains in terms of results robustness.
Given the over-representation of tumour samples (see Fig. 1B), at each
iteration we employed random under-sampling of tumour samples and
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over-sampling of control samples in order to obtain 30 samples for
both groups (60 samples in total). We did this after the generation of
the hold-out test sets, to avoid any data leakage that could affect the
robustness of our pipeline. In other words, we randomly sampled, in
a stratified fashion, 30+30 samples out of the 141 samples which did
not belong to the test set. During the model building stage, we also
performed feature standardisation and hyperparameter optimisation of
4 through grid search. This, together with the under- and over-sampling
of the 60 samples described above, was conducted within a 5-fold cross-
validation framework on the remaining 141 samples, thus controlling
for overfitting. The optimisation procedure for A was selected for
its robustness, but alternative approaches are possible. For instance,
several meta-heuristics have been developed recently based on animal
group behaviour and particle dynamics [53,54]. Such algorithms have
previously been applied in combination with metabolic modelling [55],
and it has been shown that they can be beneficial when optimising
hyperparameters of SVM [56]. In this work, however, we opted for
a more standard procedure that was applicable to all the investigated
machine learning models.

Moreover, we performed feature selection by removing all the con-
stant variables and the ones which were not unique (in the case of
fluxomic data, for instance, reactions in a pathway with a locally linear
topology could share the same value at all times). The feature selection
procedure was itself performed within the cross-validation framework,
in order to avert any overly optimistic performance evaluation of the
SVM models during the hyperparameter optimisation.

We conducted these experiments in 6 different scenarios, with the
aim of investigating how different combinations of omic data would
influence the predictive power of the SVM models and their sensitivity
to different biological entities (genes, fluxes, pathways): (i) use of
transcriptomic data only; (ii) use of fluxomic data only; (iii) use of
transcriptomic and clinical data (age, gender); (iv) use of fluxomic and
clinical data; (v) use of transcriptomic and fluxomic data; (vi) use of
transcriptomic, fluxomic and clinical data. To the above scenarios, we
added also a final setting in which we trained the SVM models only
with the clinical data, in order to eradicate any possible bias caused by
the collection of the data (sampling bias).

To verify that the learned models correctly identified biologically
meaningful patterns, we tested (through the same evaluation process)
SVM models built starting from a permuted version of the dataset [57].
Specifically, we performed an additional 200 test iterations while ran-
domly reassigning phenotypic labels to each sample prior to conducting
the cross-validation, as previously suggested [58]. We did this for each
of the 6+1 scenarios described above for completeness of the analysis.

Since we wanted to investigate how the discriminative power and
sensitivity to biological mechanisms would change with different omics
integrations, we decided to analyse the weights assigned by the SVMs
to each variable during training, with the rationale that a higher weight
in absolute value corresponds to a higher relevance. For the integrative
experiments, the weights were computed by projecting the weights
attributed to the latent dimensions back onto the original feature space.
Moreover, in order to have a broader picture of the main metabolic
pathways detected in the four integrative scenarios, we conducted FEA
in each of them. For each scenario, we selected only the fluxes whose
weight was in the 99.5th percentile. 0.05 was set as the threshold value
for significance.

All the analyses were conducted in python, and the SVM and PLSDA
algorithms were implemented with the library scikit-learn [59].

3. Results and discussion

The scope of this study was to investigate how different omics and
their combinations may contribute to a computer-aided diagnosis of
hepatoblastoma both in terms of accuracy and understanding of the
biological mechanisms underlying the disease. In this framework, we
focused on the use of individuals’ transcriptomes and model-generated
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fluxomic profiles in order to capture the metabolic alterations asso-
ciated with the disease. These omics readouts were integrated and
used to build predictive models through the machine learning pipeline
displayed in Fig. 1A.

Genome-scale model characterisation of hepatoblastoma metabolism

Following a condition-specific modelling approach, we estimated
the metabolic activity differences associated with varying transcrip-
tional patterns across individuals. In brief, a genome-scale stoichio-
metric model of human metabolism was used as a platform for gene
expression profiles obtained from three independent cohorts of individ-
uals. As a result, we obtained maximal and minimal rates achievable
through each biochemical reaction present in the model under the
given transcriptional states. Fig. 2B shows a principal component analy-
sis (PCA) of transcriptomic and fluxomic (maximal fluxes only) profiles.
In both cases, hepatoblastoma patients and healthy controls display
an almost linear separation. From a machine learning standpoint, this
suggested that patient phenotypic classification could be achieved with
high accuracy even with a limited number of samples. On the other
hand, PCA revealed no obvious global relationship between subject age
and multi-omics variation. An alternative graphical representation of
Fig. 2B, in which age is replaced by gender, can be found in Fig. E.9 in
Appendix.

The metabolic flux variation can be decomposed into metabolic
capabilities across the pathways in the tumour and control groups
described above, illustrated in Fig. 2C. From the figure, generated from
the maximal fluxes, it is possible to observe a widespread reduced
activity in several pathways associated with hepatoblastoma, such as
in the central metabolism, nucleotide salvage and interconversion.
However, up-regulation was found in glutathione and CoA metabolism.

We then used flux enrichment analysis (FEA) to obtain a picture of
the most relevant metabolic pathways for groups of individuals defined
based on their health status, sex, age, and clinical course. When doing
so, FEA showed several statistically significant differences among the
chosen cohorts (alive-dead, younger—older than 3 years, younger—older
than 4.5 years, male-female, tumour—control). FEA computed over the
maximal reaction fluxes generated by FVA returned several statistically
significant differences. When considering the forward reaction direc-
tion, all the enrichments had in common many relevant pathways,
since the reaction rates were generally higher, which meant many more
active reactions in the metabolism (Fig. 2D). The generally enriched
pathways were the ones associated with extracellular transport and
nucleotide interconversion (as in the cases above), ubiquinone synthesis
and keratan and cholesterol metabolism. The only exception to this was
the alive-dead contrast, which did not present the reactions associated
with the keratan sulphate synthesis. In all three cases, no significant
differences were found across age groups (older—younger than 4.5 years
and older-younger than 3 years), which probably indicates that within
this age range there are no specific metabolic changes. When consider-
ing the backward direction of reversible reactions, all the enrichments
had in common the reactions associated with extracellular transport
and nucleotide interconversion as the most relevant, while the citric
acid cycle and the nuclear transport reactions were not critical for the
tumour—control comparison, unlike the other stratifications. Moreover,
the two age stratifications and the alive-dead contrast showed as im-
portant reactions the ones related to the metabolism of valine, leucine
and isoleucine.

Biochemical marker identification

The analyses above could identify changes in metabolic activity
associated with a range of subject sub-cohorts. To understand which
changes can be more strictly linked to carcinogenesis, we adopted
machine learning techniques. Since the maximal fluxes presented more
diversified metabolic profiles, we decided to focus only on them for
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the rest of the study. Fig. 3A shows the classification results obtained
for all the 6+1 omics combinations studied, including gene expression,
metabolic fluxes, and clinical information. On average, SVM models
achieved a mean accuracy and MCC of around 0.9, with the exception
of models trained only on clinical data. In contrast, SVM models
obtained from permuted versions of the dataset on average proved
no better than a random model for all the omics integrations, with a
mean accuracy close to 0.6 and a mean Matthews correlation coefficient
(MCC) around 0.1, and with a standard deviation much larger than the
one of the models trained on the original dataset. This indicates that the
original models captured meaningful patterns underlying the clinical
state of the subjects, as expected.

In order to gain some insights regarding potential biomarkers for
hepatoblastoma, we analysed the weights w from Eq. (3) given to the
input features by the SVM models as a proxy for feature importance.
Unlike previous work [26], we did not notice any regularisation-like
phenomenon caused by the integration of fluxomic with transcriptomic
data (see Figs. E.1-E.3 from Appendix E in the Appendix). However, the
integration did redistribute the weights across the features in a varying
way depending on the omics used.

Figs. 3D-E show the total weight each gene and reaction were
given across the 200 iterations conducted. To facilitate comparison
between the scenarios, the weights were quantile-normalised. The plot
reveals that the most critical genes and reactions for subject classifi-
cation vary depending on the data sources employed. In particular,
the integrations highlighted as more relevant genes EPCAM, FRRS1L
and ZBEDS8, whereas the base scenario with the SVMs trained only
with gene expression had determined as more important the genes
TMPRSS15, NPVF and HHLA2 (not relevant in the integrative exper-
iments). It is interesting to note that none of these genes is associated
with the reactions deemed relevant by the SVM models. EPCAM is a
gene classified as tumour antigen on the database UniProt [60] while
FRRS1L, more specifically, concerns the regulation of the glutamate
receptor signalling pathway. The role of glutamate metabolism in
hepatocytes is well-known and established [61]. Gene ZBEDS is instead
a gene for which not much information has been collected yet, which
suggests it might be involved in the metabolism of hepatoblastoma in
an indirect way. Among the genes which were instead detected solely in
the single-omic scenarios, TMPRSS15 is responsible for the activation
of pancreatic proteolytic proenzymes, while NPVF is a neuropeptide
and HHLA2 participates in the proliferation of T cells and regulation
of cytokine production in lieu, which have a prominent role in inhibit-
ing (but sometimes even stimulating) growth of cancer cells [62,63].
Among these, EPCAM, TMPRSS15 and HHLA2 can be found in blood
samples [64], as also reported in The Human Protein Atlas database
(https://www.proteinatlas.org) [65], whereas EPCAM and HHLA2 can
be also found in urine samples [66,67].

When considering which reactions were deemed important by the
SVM models, the results highlighted that reactions DASCBR (dehy-
droascorbate reductase, which participates in glutamate and ascor-
bate metabolism), RNMK (ribosylnicotinamide kinase, which is in-
volved in the metabolism of nicotinamide adenine dinucleotide, a
potential target for treating cancer [68]), AASAD3 m (L-aminoadipate-
semialdehyde dehydrogenase, which participates in the production of
lysine, whose acetylation is responsible for cancer development [69—
711) and EX lys_L(e) (lysine exchange) were present in all the experi-
mental scenarios.

When exploiting only the information contained in fluxomic data,
the following reactions were identified as useful for the diagnosis of
hepatoblastoma: LNS14DM (lanosterol 14-alpha-demethylase, which
has shown to be able to decrease the proliferation of cancer cells [72]),
G6PDA (glucosamine-6-phosphate deaminase), NAHCO3_HCLt (bicar-
bonate transport, that may be used in a diagnostic setting [73] but
controversially in therapy [74,75]), THYMDtm (thymidine transport)
and MI1PP (myo-inositol 1-phosphatase, regulating myo-inositol which
can be used in cancer treatment [76]).
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Fig. 3. A. Classification accuracy (top) and Matthews Correlation Coefficient (MCC, bottom) for SVM models that recognise tumour and control samples. Blue and orange bars
respectively represent the performance of SVM models built using the original datasets and the same datasets with random sample labelling to phenotypic groups. The results
with the original labels significantly outperform those with permuted labels, which approximate the performance of a random classifier. This proves further that our models are
capable of learning from transcriptomic and fluxomic data the most relevant features which can be then used for biological interpretation. B. Statistically significantly enriched
pathways from flux enrichment analysis across the four experimental settings. A black entry means that the pathway is significantly enriched in the cohort. When combining
fluxomic and transcriptomic data enrichment returned more statistically significant pathways than in the other settings. C. Distribution of the accuracy of the SVM models trained,
according to clinical data. Different groups of individuals can find beneficial a machine learning-aided diagnosis with different omics combinations. For female patients (in purple),
all omics combinations tend to obtain a more accurate diagnosis. Moreover, if the patient has hepatoblastoma (in red), the best predictive performance can be achieved by
integrating both transcriptomic and fluxomic data, while in the case of healthy control subjects, these two omics must be used separately to obtain a more accurate computer-aided
diagnosis. Means are represented by vertical lines. D-E. Total weight attributed to reactions (D) and genes (E) in the four integrative scenarios. The weight distributions were first
quantile-transformed so that they could be comparable, and the weights were then normalised in [0, 1]. An alternative representation of graphs D-E is available in Appendix E

of Appendix.

Finally, the reactions that were useful for the prediction only in the
integrative settings were CLCFTRte (CFTR chloride transport), FAOXd
00x and FAOXC180x (beta-oxidation of long-chain fatty acid). An alter-
native graphical representation of these plots, which allows for easier
comparison between integrative scenarios, is provided in Figs. E.4-E.5
in Appendix.

When using FEA, we noticed that the enriched pathways were
more stable across the four settings than the genes. In particular,
we found that Vitamin B6 metabolism and Cholesterol metabolism
were observed only when gene expression data was integrated with
fluxomic data (regardless of the presence of clinical data in the in-
tegration), while the Pentose phosphate pathway was enriched only
in the single-omic setting and when transcriptomics was integrated
with fluxomics (but not in the presence of clinical data). Triacylglyc-
erol synthesis was instead absent only when integrating the metabolic
fluxes with clinical data, as opposed to Inositol phosphate metabolism,
Aminosugar metabolism, Glutathione metabolism, Citric acid cycle,
Glycerophospholipid metabolism, Lysine metabolism, NAD metabolism
and Oxidative phosphorylation, which were found to be enriched in all
scenarios. Overall, the integration of transcriptomic data with fluxomic
data contributes to a greater number of enriched pathways. These
results are summarised in Fig. 3B, and others showing the models’
weights distributions are presented in Figs. E.1-E.3 from Appendix E

in Appendix. In order to test for the robustness of our biomarker
identification pipeline, we used a different approach to determine the
weight of the biochemical features, obtaining similar results. These are
presented in Appendix D of Appendix.

Relation between clinical data and diagnosis accuracy

We then asked if the constructed SVM models could be used to
gain insights that can more accurately diagnose hepatoblastoma. We
therefore analysed more in depth the trained models, in order to find
directly applicable heuristics for guiding their use. In particular, we
looked at how age, gender and health status could affect the predictive
performance of different omics combinations.

In Fig. 3C, the accuracy distribution of the SVM models for different
omics combinations is reported. It can be noticed that, across all
omics combinations, female patients (in purple) tend to obtain a more
accurate diagnosis (with the worst performance, in the case of a healthy
subject, being above 94%, achieved by using only transcriptomic and
clinical data) on average. On the other hand, in presence of a male, ill
patient, the only use of transcriptomics will provide the best diagnostic
performance. Similarly, the figure shows the desired property of our
training and evaluation pipeline, namely the ability to discriminate
with higher accuracy patients suffering from the tumour (in red).
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Notably, when a patient has hepatoblastoma, the best predictive per-
formance is achieved by integrating both transcriptomic and fluxomic
data. Conversely, in the case of healthy control subjects, transcriptomic
and fluxomic data separately represent the best two options for a
correct computer-aided diagnosis. In both stratifications, as expected,
the use of merely clinical data corresponds instead to trying to guess
the phenotype of the individual, since there is no relation between age,
gender and health status. This simple analysis allowed us to double-
check that there were no spurious associations in the data due to their
collection. Even though the information regarding clinical status cannot
be exploited in a diagnostic setting, it is always possible to make use of
other clinical information such as age and gender when choosing which
omics combination to adopt for the diagnosis.

In particular, we investigated the performance of the SVM models
with a more fine-grained detail to find less visible patterns in the
performance distribution. Interestingly, we found that patients of age
= 0.7 are much less likely to receive a correct diagnosis than patients
of different ages (p-value < 0.001), while for patients of age = 7 the
integrations of omics perform better than the use of single omics in
general (p-value = 0.057). Finally, as a further addition to Fig. 3C,
we found that omics integrations achieve overall better accuracy than
single omics (p-value = 0.057) when the patient is female and has
hepatoblastoma.

In general, both the characteristics of the dataset and biologi-
cal factors might contribute to the above patterns. The highest ac-
curacy observed for hepatoblastoma patients could be due to their
over-representation in the dataset, which grants a more complete distri-
bution for this class of subjects. Similarly, the omics integration might
result more effective for the patients for this reason. In contrast, the
higher discriminatory power found for the female patients cannot be
explained in this way, given that no clear connection was seen between
gender and health status (Fig. E.9). Besides, differences between gen-
ders in terms of omics accuracy could be underlain by specificities in
developmental programming of growth and metabolism, which present
sex differences not only in normal development but also in disease [77],
and are linked to specific risk factors in childhood cancers [78]. Thus,
critical aspects of metabolic rewiring in female subjects could be better
captured by the GSMMs here developed, leading to better accuracy.

4. Conclusions and future work

In this study, we adopted an interpretable multi-omic framework
to investigate molecular biomarkers and metabolic mechanisms in or-
der to shed light on the onset of hepatoblastoma, potentially helping
diagnose more accurately this disease in young patients. An aspect
of this involved also the investigation of the sensitivity that such a
method could have with respect to the characteristics of such patients,
namely age, gender and the observed phenotypic trait. Moreover, we
examined how different combinations of data can interplay with these
and highlight different aspects of the metabolism of the patient. In
particular, important genes as revealed by the integrations, are linked
to cancer metabolism and hallmarks. Starting from gene expression
profiles, we generated metabolic fluxes representing the metabolic state
of the patients and, with the addition of clinical data, integrated all this
information within a machine learning pipeline to determine whether
an integrative approach could lead to an improvement in the diagnostic
performance of our models.

We investigated genes, reactions and metabolic pathways by resort-
ing to a feature importance approach in quest of potential biomarkers to
guide future research in hepatoblastoma. We demonstrated that differ-
ent omics combinations can achieve optimal predictive performance for
different patients according to the patients’ clinical data, even though
the individual omics used can have a significantly skewed performance
distribution [25], and that machine learning models can be endowed
with different sensitivity to distinct biological entities based on the
omics combinations they are trained on. Finally, we extracted novel
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mechanistic biomarkers whose study could be relevant in the research
regarding the mechanisms underlying hepatoblastoma.

Overall, our study suggests that using systems biology approaches
in conjunction with machine learning methods can provide valuable
insights into the biological mechanisms of rare cancer conditions, for
which omics data and biological knowledge are not as widely available
as for the most commonly studied diseases (such as breast or lung
cancer).

One of the limitations of our study is the practical impossibility,
with current technology, to directly measure metabolic fluxes in hu-
man patients [79]. Here, we mitigated this by adopting genome-scale
metabolic models, but these require some experimentally measured
information such as transcriptomics data. Another potential limitation
of our approach is the challenging direct applicability in some cases.
Specifically, we have determined when to use which combination of
omics, but this information is exploitable only in a limited number of
cases, such as when the conditions determining the omics combination
to use are based on clinical information such as gender or age (and,
within this, only when we are within certain ranges). Yet, this work
can serve as a guide for further research in hepatoblastoma, and the
biomarkers found could potentially lead to the development of new
diagnostic or therapeutic tools. Our approach has the advantage of
elucidating how molecular entities can be related, and their importance
in hepatoblastoma, with a granularity that is based on the patient’s
clinical information.

In the future, our work will focus on improving the omics inte-
grative approaches, as well as investigating other omics data such
as proteomics. Moreover, we will explore other phenotypic variations
and try to determine whether some of the conclusions reached in this
work are of general validity. For larger datasets, alternative optimisa-
tion methods based on heuristics will be investigated and adopted to
improve the speed and quality of the training phase for the studied
machine learning models [53,54].
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Appendix A. Context-specific metabolic modelling formulation

In a genome-scale metabolic model, the relation between a reaction
and the genes that codify it is expressed in the form of gene-reaction
rules. Such rules are formulae using logical operators AND, OR to com-
bine different genes. The defined combination serves the purpose of
determining the activity level of the reaction based on the gene ex-
pression level of the genes associated with it, which compose its gene
set. Starting from a gene set composed of two genes, g; and g,, whose
respective gene expression levels are 6(g) and 6(g,), we followed [44]
and determined the gene expression level of the entire gene set by
adopting the following mapping:

= min{0(g,), 0(g>)}
= max{6(g), 0(g)}.

O(g; A g2)

(©)]
O(g Vv 8)

Appendix B. Parsimonious flux balance analysis

We used an approach based on parsimonious Flux Balance Analysis
(pFBA) [47] to study the metabolic network at a steady state, i.e. when
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Weight distributions for metabolic reaction fluxes computed via FVA (Flux Variability Analysis) in the four different experimental settings. The shape of the distribution

the concentration of metabolites in liver cells can be approximated as
constant over time [80]. We were therefore able to determine which
metabolic fluxes (the rates of each metabolic reaction) were active
and thus which metabolic pathways were predominant on a whole-cell
scale.

Mathematical framework

The optimisation problem that was solved was formulated as:

min |v[|;
v

subject to V= frae s

Sv=0

)

Vip SV SV

where f,,. is the maximum value of the objective function f, and
V.V are the lower and upper bounds, respectively, of the metabolic
reactions.
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Fig. E.2. Weight distributions for metabolic pathways. The weights were computed in the experiments reported, i.e. when training the SVMs with reaction fluxes generated via
FVA (Flux Variance Analysis). It is easy to notice that the shape of the distribution has not changed in the various settings.

Results

We conducted a Flux Enrichment Analysis (FEA) also on the fluxes
generated via pFBA (using as objective function the maximisation
of the biomass, thus simulating the uncontrolled growth of cancer
cells). The enrichment for all the stratifications displayed as statistically
relevant the reactions associated with nucleotide interconversion and
glutamate metabolism. Furthermore, extracellular transport reactions
were the most relevant for all the stratifications. All the enrichments
but the one associated with the tumour-control stratification showed
the importance of the reactions composing the citric acid cycle as well.

Appendix C. Machine learning models

In addition to the SVM models, in this study we adopted other two
machine and deep learning models, namely Random Forests (RFs) and
Neural Networks (NNs).

We compared their performances for each omics combination by
using Wilcoxon signed-rank test. This statistical test was used to de-

10

termine whether the accuracies and MCCs of the models belonged
to an identical distribution or not. In particular, only the RF models
presented performance distributions that were determined as different
from the SVMs’ ones, and exclusively when the models were trained
with transcriptomic data only. In this case, the RF models performed
slightly worse than the SVM models.

A graphical comparison of the performances of the three model
types can be found in Appendix E, while for implementation details
the reader is referred to Section 6.

Appendix D. Robustness of biomarker feature importance

In this study, we determined relevant biomarkers for hepatoblas-
toma by looking at the weights these were given by the trained SVM
models.

In particular, we adopted two approaches for determining the use-
fulness of the available biomarkers: we aggregated the weights by
summation over the 200 iterations of our training pipeline conducted,
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Fig. E.3. Weight distributions for the gene expression data in the four integration settings. The shape of the distribution does not significantly change in the various scenarios.

and we considered the median of the weight distribution for each
feature. Both approaches led to very similar results, with the former
being presented in the main text of the article. When taking the median
instead of the sum (which in this scenario is qualitatively equivalent
to taking the mean, since all the weights would need to be divided
by 200 iterations, thus leaving their relative “importance ranking”

unchanged), the following differences were found.

Among the reactions that the models considered important for the
prediction, AASAD3 m was not present in the single-omic scenario,
while RNMK was not relevant when the metabolic fluxes were inte-
grated with the genes. FAOXC2251836x replaced FAOXC180x in the
integrative settings, while ADNtm was found to be significant only in

the metabolic fluxes without any other omic.

The results for the genes and pathways were identical to the ones
reported in the main text, whereas for the weight-informed FEA the fol-

lowing results were found: NAD metabolism, Aminosugar metabolism,

11

Glutathione metabolism, Citric acid cycle, Lysine metabolism, Oxida-
tive phosphorylation were enriched in all four scenarios; Glycerophos-
pholipid metabolism was observed only in the integrative settings,
unlike Triacylglycerol synthesis which was present only in the single-
omic scenario. Finally, Inositol phosphate metabolism was enriched in
all four settings except when integrating metabolic fluxes and clinical
data.

Appendix E. Additional tables and figures

See Figs. E.1-E.9 and Table E.1.



G. Magazzu et al. Computers in Biology and Medicine 151 (2022) 106244

0.15 4
0.10 3
=
=
q) —
© o}
5 0.05 2
= ©
°
|_
1
0.00
2 STHhBowo
UJn_—ISUJUJ<DC</JNI
NDZIFomX I EOXL 0
XT"IGNXLT Y ZuWw
z S IR
o eryNS3~"BE°TIIow
< o = W
= (27

(a) Only gene expression data (b) Gene expression and fluxomic data

w

Total weight
Total weight
n

—_

0
S Jd W0 ~ o 2 — —
LIJO(D!(OQ: <
8329%00%25? T HE
0 & = 5= LaNF~ O

(c¢) Gene expression and clinical data (d) Gene expression, fluxomic and clinical
data

Fig. E.4. Total weight bar plots for the weights attributed to the genes in the four integrative scenarios. The bar plots display only the genes with weight in the 99.5th percentile.
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(b) Fluxomic and gene expression data
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Fig. E.7. Classification accuracy for Support Vector Machine (SVM), Random Forest (RF) and Neural Network (NN) models. The three models perform comparably well (no

statistically significant difference could be detected) in all omics combinations.
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Fig. E.8. Matthew correlation coefficient for Support Vector Machine (SVM), Random Forest (RF) and Neural Network (NN) models. The three models perform comparably well
(no statistically significant difference could be detected) in all omics combinations.
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Table E.1
Experimental values used to constrain the model. The values were corrected by changing their sign, according to the
convention by which lower bounds for exchange reactions are negative when the reaction admits uptakes.

Reaction Reaction lower bound
D-Glucose exchange 2.025
L-histidine exchange —0.04425
L-Isoleucine exchange —0.0585
L-Leucine exchange —-0.0825
L-Lysine exchange —-0.2325
L-Methionine exchange -0.12
L-phenylalanine exchange —0.202774
L-Threonine exchange -0.12
L-Tryptophan exchange —-0.0075
L-Valine exchange —0.04125
H20 exchange 25.3228
02 exchange —28.05
CO2 exchange 21.7219
L-alanine exchange —-0.02325
L-asparagine exchange —-0.00135
L-glutamine exchange -2.325
L-Tyrosine exchange —-0.05775
L-cysteine exchange —0.0555
L-Arginine exchange -0.2175
Glycine exchange —-0.2625
L-Proline exchange 0.02925
L-serine exchange —0.1425
L-Aspartate exchange 0.00825
L-Glutamate exchange 0.15
Ammonia exchange -0.165
Sulphate exchange 0.16121
Proton exchange —0.42825
Glycerol exchange —-6.675
Ornithine exchange 0.125
Acetoacetate exchange 0.1275
(R)-3-Hydroxybutanoate transport via H+ symport 0.05775
L-Lactate exchange —-0.063
Urea exchange 3.375
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