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Abstract: This study presents the Relocatable Operational Ocean Model (ReOMo), which can be used
as a Crisis Ocean Modelling System in any region of the global ocean that is free from ice. ReOMo can
be quickly nested into an existing coarser resolution (parent) model. The core components of ReOMo
are the NEMO hydrodynamic model and Rose-Cylc workflow management software. The principal
innovative feature of ReOMo is the use of the Nesting with Data Assimilation (NDA) algorithm,
which is based on the model-to-model assimilation technique. The NDA utilises the full 3D set of
field variables from the parent model rather than just the 2D boundary conditions. Therefore, ReOMo
becomes physically aware of observations that have been assimilated and dynamically balanced in
the external model. The NDA also reduces the spatial phase shift of ocean features known as the
‘double penalty effect’. In this study, ReOMo was implemented for the Lakshadweep Sea in the Indian
Ocean at 1/20◦, 1/60◦, or 1/120◦ resolution with and without model-to-model data assimilation.
ReOMo is computationally efficient, and it was validated against a number of observational data sets
to show good skills with an additional benefit of having better resolution than the parent model.

Keywords: ocean modelling; Indian Ocean; data assimilation; downscaling; operational forecast

1. Introduction

The need for fine-resolution oceanographic data is growing. These data are used to
support fisheries and navigation, and to assess the impact of hazards such as marine litter and
contaminants. The accuracy and efficiency of oceanic numerical models have greatly improved
in the last decades and they are commonly used operationally, i.e., for real-time forecasts of
the ocean state to support and sometimes to replace observations in a move to create “Digital
Twins of The Ocean (DITTO)” [1]. The output of a number of global ocean operational models
is publicly accessible, for example, from the EU Copernicus Marine Service [2]. Due to high
computational cost, the global models have a relatively coarse resolution. They usually do
not include tidally induced currents, which are important in coastal and shelf seas. Regional
and local operational models have higher resolution and are capable of resolving important
meso- and sub-mesoscale features not revealed by the global models. The capability of finer
resolution models to represent smaller-scale processes is counterbalanced by the introduction
of greater errors and generating ocean features not in phase with reality. There have been
a number of studies assessing relative strengths and weaknesses of finer resolution models
compared to their coarser resolution counterparts, e.g., [3,4] and references therein. Sometimes,
the finer-resolution models run without data assimilation, having only an indirect link to
observation by taking boundary conditions from the coarser data assimilating the ’parent’
model, see e.g., [5]. However, in recent research, it was found that ‘in the absence of data
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assimilation, the high-resolution model is not able to properly reproduce the observed phases
of mesoscale structures’ [6]. Therefore, the downscaled regional models would benefit from
assimilating good quality data.

Being operational, finer-resolution models automatically import necessary external
data such as meteorological forcing and ocean observations, carry out quality checks, run
the core ocean circulation models, and disseminate the outputs to the end-user. However,
such finer resolution models may not exist in a specific area of a marine accident, oil
pollution or release of pollutant due to ship collision, or other man-made or natural disaster.
The setting up, calibrating, testing, and validating of a new regional model is a long process
taking up to a few months. A similar problem exists in numerical weather prediction where
a solution is provided by weather forecasting Crisis Area Models (CAMs) [7].

This paper presents a relocatable ocean modelling system (ReOMo), the development
of which was inspired by atmospheric CAMs. ReOMo can be quickly set up in a new
area as many processes involved in the set up the model are automated. ReOMo uses
a computationally efficient Nesting with Data Assimilation (NDA) technique developed
in [8]. In contrast to conventional approach where only 2D data sets for creating lateral
boundary conditions are used from the external model, the NDA method utilises the full
3D data set produced by the external model within the domain of ReOMo. As many other
regional ocean models, see e.g., [9] and references therein, ReOMo is nested into a coarser
resolution global model.

ReOMo was set up and tested in the Lakshadweep Sea, which is located in the tropical
Indian Ocean to the west of the south-western part of Indian peninsula. The sea provides a
vital supply of proteins to the people of the Indian state of Kerala and beyond. It also is
subject to monsoon influence, and is highly dynamic with strong mesoscale activity. The
paper is organised as follows. Section 2 describes data and methods, Section 3 presents
the results, highlighting the positive effect of model-to-model data assimilation, and the
discussion is presented in Section 4.

2. Data and Methods

The relocatable ocean modelling system contains Nucleus for European Modelling of
the Ocean-NEMO version 3.6 [10] as its core modelling engine and Rose-Cylc software [11]
for automated workflow management including pre-processing, initialisation, acquiring
necessary external data, running the ocean model, data assimilation, and uploading the
results to a data storage pool. For this work, ReOMo was implemented in two versions
named LD20_DA and LD20_noDA, with and without data assimilation (DA), respectively.
Both versions are set in the domain 7.5–14.5◦ N, 68–78◦ E and have horizontal resolution of
1/20◦ and 50 depth levels. This paper also briefly shows some results from ReOMo being
applied to higher resolution models LD60 at 1/60◦ (over the same domain) and LD120 at
1/120◦ within the domain of 8.5–11◦ N, 74.5–77◦ E.

2.1. NEMO Model

The NEMO model has been extensively tested in multiple studies covering coastal,
regional, and global domains, and it has shown good forecasting skills [12] subject to proper
combination of simulation options and tuning parameters. The NEMO model is set on
the Arakawa C-grid, and uses the variable volume non-linear free surface and the Total
Variation Diminishing time-stepping scheme. Diffusion and viscosity coefficients were
taken from [13] and further adjusted by calibrating the model outputs against observa-
tions. Both versions of LD20 use the Laplacian formulation of the Smagorinsky scheme
for horizontal viscosity, and a combination of Laplacian and bi-Laplacian operators for
horizontal diffusivity. Vertical diffusion and viscosity coefficients are provided by the
General Length Scale (GLS) turbulence closure scheme using the k-ε option. Both versions
of LD20 model (with and without data assimilation) used the following user adjustable
parameters: the baroclinic and barotropic time steps of 120 and 6 s respectively, compi-
lation keys: key_iomput, key_vectopt_loop, key_zco, key_dynspg_ts, key_ldfslp, key_mpp_mpi,
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key_bdy, key_tide, key_check_nan, key_zdfgls, key_vectopt_loop, key_dynldf_smag, key_dynldf_c3d,
key_traldf_smag, key_traldf_c3d, key_orlanski_npo_imp.

The model is forced by wind velocities and air temperature obtained at 10 m above
surface, total downward shortwave radiation flux, total longwave radiation flux, precipi-
tation, and relative humidity. The wind stress and surface radiation fluxes are estimated
using the bulk formula of Large and Yeager [2]. The flow relaxation scheme (FRS) is applied
at the open boundary using an unstructured NEMO BDY algorithm [12] on a 10-node-
wide sponge layer for temperature, salinity, and baroclinic velocity, while the barotropic
velocities are treated using the usual Flather radiation conditions [10]. Tidal currents were
added to the barotropic velocities obtained from the external model, by assuming superpo-
sition. The domain of the LD20, LD60, and LD120 models has 50 geopotential depth levels
between 0.5 and 4600 m. The number and type of computational levels (z-level, sigma,
and multi-enveloping s-coordinates) are user-selectable in the usual way [14]. Both LD20
models output 3-hourly instantaneous and daily average values for temperature, salinity,
3D velocity, and sea surface height.

2.2. External Data

Global bathymetry is taken from GEBCO database [15] at 1 arc minute resolution
and linearly interpolated to the model horizontal grid. The meteorological forcing is
provided by the global atmospheric model run by the UK Met Office [16] at 3-hourly
intervals for most variables and 1-hourly intervals for winds. Initial and open boundary
conditions for potential temperature, salinity, and meridional and zonal velocities, are
taken from a global model at 1/12◦ resolution with 50 geopotential depth levels available as
GLOBAL_REANALYSIS_PHY_001_030-TDS via EU Copernicus Marine Service [2]. Nine
tidal components: M2, S2, K1, O1, Q1, P1, N2, K2, M4 are taken from the Topex-Poseidon
global tidal model (TPXO) version 7.1 [17].

Sea surface temperature (SST) for model validation is taken from the Operational Sea
Surface Temperature and Ice Analysis (OSTIA) at 1/20◦ resolution available via the UK
Met Office website [18] and the GHRSST-MUR Level 4 Group for High Resolution Sea
Surface Temperature-Multiscale Ultrahigh Resolution data set (hereafter called GHR-MUR)
available via the GHRSST website [19]. Vertical profiles of temperature and salinity for
model validation are taken from Argo float observations available from [20].

2.3. Data Assimilation

The LD20_DA model utilises a Nesting with Data Assimilation (NDA) methodology [8].
This method assimilates a 3D output from parent global data, which is a data assimilating
model in its own right and thus it links, however indirectly, the child model with real-
world observations. For consistency, ReOMo uses the same global model [2] for both data
assimilation and for providing boundary conditions. The benefit of assimilating data from a
good quality coarser model rather than directly from observations is that the model data are
on a regular grid in space and time and the NDA method is computationally very efficient.
The principal difference with common data assimilation schemes is in the calculation of error
covariance matrices (ECMs), which are required to minimise the cost function in order to get
the best possible estimate of the true field [21,22]. In common DA methods, the background
(model) and observational errors are assumed to be uncorrelated [23–25]. It is further assumed
that the observational errors are spatially uncorrelated between them so that the observational
ECM is diagonal; see, e.g., [26]. The latter assumption is unlikely to be true in case of using
parent model data instead of observations and a different approach to estimating ECMs
is required. The details of assessing the background and ‘observational’ ECMs in case of
model-to-model data assimilation are given in [8].

The NDA process contains two components. The first component includes Stochastic-
Deterministic Downscaling (SDD) which projects the outputs of the coarse parent global
model onto the finer resolution nested child model grid [27]. The SDD is based on the con-
cept of objective analysis; it represents the best linear unbiased estimator (BLUE), see [28],
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and is capable of recovering finer-scale details which are only embryonically revealed by
the parent model. The second component includes assimilation of the downscaled 3D
parent model data into the child model. The SDD includes (i) calculations of correlation
functions and objective analysis weights [29] which are carried out only once at the start of
ReOMo operation, and (ii) the application of these weights to perform SDD repeatedly at
each DA cycle. The second component includes calculation and application of Kalman filter
gain weights at each DA cycle, as detailed below. In the case of LD20_DA, the DA cycle
is five days and assimilation occurs at 00:00 GMT. The length of the DA cycle is selected
based on sensitivity tests, and can be easily changed by the user if required.

The SDD requires the knowledge of correlation functions for fluctuations (deviations
from statistical mean) of each field variable at each 3D grid point of the finer model. In
ReOMo, statistical means and fluctuations are estimated using the parent coarse model
data and applying the ergodic hypothesis in that the ensemble averages are replaced by
time averaging. The correlation functions are calculated using a two-length scale technique,
i.e., by fitting the spatial correlations to the sum of two Gaussian functions with different
dispersions [30]. As the SDD method is concerned with the recovery of fine-scale variations,
only the curve with the short length scale is used for further processing. In the case of
LD20_DA, the correlation lengths (CorLen) vary horizontally in the range of 15 to 85 km;
however, they show only minor variability with depth and between the variables, a fact
consistent with previous studies [31,32]. Therefore, the values of the CorLen calculated for
the sea surface temperature at each external model node are used for all variables. The next
step is to linearly interpolate the CorLen from the external onto the finer nested model grid.
The calculation of the CorLen for the SDD method is different from calculations of Error
Covariance Matrices (ECMs) used in many DA methods [23]: the CorLen matrix is based
on correlation of the fluctuations of field variables themselves which are known with some
accuracy, while the ECMs require the knowledge of model and observational errors, which
are not normally known, and hence various proxy methods are used [33]. In the case of
LD20_DA, the total number of SDD weights for four variables: T, S, U, and V is 505,447,676.

The following additional steps are carried out at each assimilation cycle in case the
computational depth levels of the child and parent models do not coincide, which happens in
the case of LD20_DA. The parent model data are vertically interpolated onto the LD20 depth
levels but keeping the original (coarse) horizontal resolution. This step takes place before the
SDD and may require some simple horizontal extrapolation to generate parent model data
‘under the seabed’ when bathymetries for the parent and child models do not match.

The CMEMS global model provides daily average data while instantaneous data at
midnight is required for DA. Therefore, the external model data are shifted to 00Z hours by
applying a ‘midnight correction’. Its value is calculated by subtracting the daily average and
instantaneous (at 00Z) data at each 3D LD20 grid node and assuming that the day-to-night
difference is the same for both models.

At this point, ReOMo has two data sets at the same (fine) 3D grid and at the same
time. The final step is to combine these data sets using the NDA technique by applying
a zero-dimensional Kalman filter to fluctuations at each child model grid node to reduce
RMSE and replacing the statistical mean from the nested model with that of the external
model to reduce bias. A brief mathematical description of the equations used to obtain the
analysis state is given below.

Let us consider a cost function JS:

JS
(
x′
)
=
(

x′ − x′b
)T

B−1
(

x′ − x′b
)
+
(
S′(y)− x′

)TR−1(S′(y)− x′
)

where x, xb, and y denote vectors of the true state, fine, and coarse model respectively; the
primed variables denote deviations from statistical means, B and R are ECMs for the nested
and parent models, and S′ is the projection operator, which was used at the SDD step of
data assimilation. The minimum of the cost function is achieved if:

2
(

x′a − x′b
)T

B−1 − 2
(

S′(y)− x′a
)T

R−1 = 0
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where x′a is the deviation of the analysis vector from its statistical mean. Let us introduce
the error correlation matrices CB and CR for the child and downscaled parent (after the
SDD step) models:

B = VBCB, R = VRCR

where VB, VR are diagonal matrices containing the respective error variances at each fine-
grid node. After some algebraic manipulation, one can obtain the following expression for
each element xa

i of the state vector xa = xa
i = Kwix′bi + (1− Kwi)S′(y)i + 〈S(y)i〉. where

Kwi is the Kalman gain coefficient at each fine-grid node:

Kwi =
VRii

VRii + VBii

Note that the statistical mean 〈S(y)i〉 is calculated using only the data from the coarse
model. The details of this procedure are presented in [8].

2.4. Workflow Engine

ReOMo automates many of the computational steps required for running an oper-
ational model in a new area of the ocean. The user is required to select the limits of the
domain, horizontal resolution, barotropic and baroclinic time steps, and computational
depth levels. The weights for interpolation of meteorological fields are also calculated
off-line using standard NEMO tools. ReOMo takes care of many other tasks including
compilation of NEMO from a source code using a Flexible Configuration Management
build system [34].

For running in the operational model, ReOMo utilises the Rose-Cylc software environ-
ment for managing the operational modelling tasks [11]. Cylc is the workflow engine that
runs the suites of interdependent jobs. The Rose component acts as a toolkit for editing,
writing, and executing the application configurations and provides a helpful graphical user
interface. Rose-Cylc is implemented in ReOMo to submit jobs from a controlling Linux
computer to the workhorse HPC cluster. For Lakshadweep Sea, both LD20 models use
71 computing cores on an HPC cluster.

Before ReOMo starts its simulations, a few pre-processing tasks have to be completed
off-line. These include: (i) creation of operational bathymetry from GEBCO global data set;
(ii) generation of 3D computational grid; (iii) creating initial conditions for temperature,
salinity, zonal, and meridional components of velocity from the external model or clima-
tology; (iv) calculating interpolation weight files for meteorological data; (v) preparation
of tidal boundary conditions (amplitude and phases); and (vi) calculation of downscaling
weights required for the SDD step of DA.

ReOMo contains a set of applications; some are run only once at the beginning of
simulation, and others are run repeatedly every model day. The run-once tasks include
(i) compilation of Nemo executive module from the source code; (ii) copying pre-processed
initial conditions into the work space; and (iii) creation of the original namelist for NEMO
computations. The daily repeated tasks include (i) updating of the namelist; (ii) inter-
polation of meteorological forcing onto the model grid; (iii) preparation of data on river
discharges if necessary (LD20 does not include rivers); (iv) execution of NEMO module;
(v) data assimilation—LD20_DA does it every five days; (vi) creating the restart file for the
next day simulations; (vii) transferring the daily average and 3-hourly instantaneous results
from NEMO simulation to the external storage system; and (viii) cleaning the operational
disk to prepare space for further simulations. The cleaning is carried out with a five-day
delay to allow simple automatic or manual re-run of tasks in case of failure. In order to
save time, some tasks (e.g., interpolation of meteorological forcing, preparation of river
data, lateral boundary conditions for the next day simulation) are carried out concurrently
with or before NEMO model runs.

ReOMo generates the initial working namelist required by the NEMO model by using
pre-recorded parameters. The end-user can modify these parameters. At the start of
simulations, ReOMo runs NEMO from the initial conditions for one day and creates the
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first restart file for further repeated cycles of simulation. The lateral boundary conditions
are created by combining and interpolating data from a non-tidal global model [2] and the
TPXO tidal solution [17]. For every daily cycle, ReOMo checks if the current date coincides
with the prescribed data assimilation date and carries out data assimilation when required.
In the case of LD20_DA, LD60_DA, and LD120_DA, the data assimilation step is invoked
every five days, although this frequency can be modified by the user. The SDD step of DA
uses a large set of downscaling weights (in the case of LD20_DA it is about 125 million per
variable), which are calculated off-line before the start of ReOMo. In the case of LD20_DA,
it takes about 1.5 h to calculate the weights on a typical office PC.

The results of simulation are produced as 3-hourly instantaneous data, daily averages,
and updated restart data for the next daily cycle. The output is archived using an SFTP
transfer, and unnecessary intermediate files are removed by the housekeeping subsystem.
A graphical representation of a typical daily cycle is shown in Figure 1.
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Figure 1. Graphical presentation of a daily cycle of the ReOMo workflow. The green colour highlights
active tasks, completed tasks are shown in grey. The bubbles outlined blue are the tasks in waiting.

3. Results
3.1. The effect of Data Assimilation

Both versions of LD20 implementation of ReOMo were run for six years from 1 January
2015 to 31 December 2020. An important and innovative process used in ReOMo is the
model-to-model data assimilation using the NDA algorithm. The steps of this process are
illustrated in Figure 2 for 4 May 2016.

Table 1 shows differences introduced by model-to-model data assimilation for tem-
perature and salinity at different depths. Data from three depth levels are presented:
(i) d = 9.5 m representing the upper mixed layer; (ii) d = 53 m representing the seasonal
thermocline; and (iii) d = 449 m representing the permanent thermocline. The data from
CMEMS are vertically interpolated onto the LD20 depth levels, projected onto LD20 hori-
zontal grid using SDD method and adjusted for time difference between daily average and
midnight instantaneous readings.

In this example, the standard deviation of temperature between CMEMS and LD20_noDA
is in the range 0.20–0.40 ◦C, while between CMEMS and LD20_DA it is much smaller, in the
range of 0.04–0.11 ◦C. The reduction in standard deviations results from the reduction in bias
achieved by the NDA method. The bias of LD20_noDA could be still acceptable for some
applications. The main error in the free-run model is the spatial shift of physical features, which
is discussed below.

The spatial distribution of Kalman gain coefficients for SST on the same day is shown
in Figure 3.
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Figure 2. Temperature distribution at the depth 9.5 m on 4 May 2016: (a) daily average temperature
from CMEMS model after linear interpolation vertically onto LD20 depth levels and downscaled onto
LD20 horizontal grid using the SDD method; (b) same as (a) but after applying midnight correction
to estimate temperature field at 24:00GMT on 4 May 2016; (c) instantaneous temperature at 24:00GMT
on 4 May 2016 from LD20_DA before applying data assimilation at midnight on the same date; (d) the
analysis state after assimilating data presented on the upper-right panel into LD20_DA at midnight.

Table 1. Standard deviation of temperature (◦C) and salinity between various models.

Variable (Depth
Level)/Depth

Model Output Pairs—All at 24:00GMT on 4 May 2016

CMEMS vs.
LD20_DA (after

DA Cycle)

CMEMS vs.
LD20_noDA

LD20_noDA vs.
LD20_DA (after

DA Cycle)

LD20_DA before
vs. LD20_DA after

DA Cycle

Temperature

Surface 0.07 0.25 0.23 0.09

(k = 10) 9.5 m 0.08 0.27 0.24 0.08

(k = 20) 53 m 0.11 0.40 0.38 0.09

(k = 25) 449 m 0.04 0.20 0.20 0.03

Salinity

Surface 0.10 0.33 0.31 0.08

(k = 10) 9.5 m 0.10 0.32 0.30 0.08

(k = 20) 53 m 0.06 0.24 0.24 0.05

(k = 25) 449 m 0.01 0.05 0.05 0.01
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Figure 3. Spatial distribution of Kalman gain coefficient (Kw) for SST at midnight of 4 May 2016 as
calculated using the procedure described in Section 2.3.

In the centre of the domain, the values of Kw calculated as described in Section 2.3 are
close to 0.5, which indicates that the data from the external (CMEMS) and internal (LD20_DA)
models have approximately equal contribution to the analysis state. In the southwest corner,
the data from CMEMS have greater weight, and in the rest of the domain, the LD20 data
prevail. The area-averaged Kalman gain weight Kw for SST in this example varies from
<Kw> = 0.51 at the surface to <Kw> = 0.46 at 2235 m depth. Smaller-scale features resolved
by the higher-resolution model (i.e., LD20_DA) propagate into the analysis state however
with slightly reduced amplitude and provide a better granularity of model simulation. Larger-
scale features are mainly taken from the coarser model. The area-average <Kw> for zonal
and meridional current velocities at the surface are 0.38 and 0.42, respectively. A lower than
0.5 value of Kw and high correlation of the fields before and after DA cycle (in this case, Pierson
correlation = 0.92) indicate that the DA cycle for currents predominantly takes finer-scale
features from the higher-resolution model, and larger-scale features are taken from the coarser
external model, similar to temperature and salinity.

Data assimilation helps reduce the spatial shift of physical features, which is also
called ‘the double penalty effect’ [35]. This effect is common when comparing coarse and
high-resolution models both in oceanography and meteorology. The ability of model-to-
model data assimilation to reduce the phase shift is illustrated in Figure 4. Large-scale
features that are resolved by the global 1/12◦ CMEMS model are presented in LD20_DA
in a similar way. For example, the front between warmer and colder waters delineated by
T = 31.3 ◦C isotherm is located at 72◦ E in the CMEMS model and at 72.25◦ E in LD20_DA.
In contrast, the LD20_noDA model shows the front shifted to the west by nearly 150 km
to 70.5◦ E.
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Figure 4. Sea surface temperature for the three models in a zoomed area south of Lakshadweep islands
on 4 May 2016: (a) CMEMS, (b) LD20_DA with 5 daily cycle of data assimilation, (c) LD20_noDA
without data assimilation. Black contour shows the 31.3 ◦C isoline.

The computational efficiency of ReOMo can be seen from the following timings obtained
from the Rose-Cylc statistical utility. A typical time for NEMO LD20 computation (both
DA and noDA versions) on a mesh 200 × 140 × 50 for one day forecast is 2 min, the data
assimilation cycle (every five days) is 2.5 min, and preparation of boundary conditions, which
is done in advance to save time, is about 2 min. Other jobs such as creating and updating
the namelist, copying daily restarts, archiving the results onto external storage, and cleaning
the working space on the cluster, take 5–15 s each. The full 5-day ReOMo forecasting cycle
for LD20_DA including data assimilation lasts 14 min on 71 computing cores. For LD60_DA
(on a mesh 600 × 420 × 50), the full 5-day cycle takes 100 min including 16 min for data
assimilation. For LD120_DA (over a smaller domain on a mesh 300 × 300 × 50) the full
5-day cycle takes 85 min including 4 min for data assimilation. LD120 models were run on
100 computing cores and used the DA code that was optimised for speed.

3.2. Model Validation

The LD20 implementation of ReOMo was validated against OSTIA (SST), Argo floats
(temperature and salinity profiles), and data from the local weather buoys (SST). It was also
verified against data assimilating Copernicus global model GLOBAL_REANALYSIS_PHY_
001_030-TDS. Comparisons are presented for domain averaged magnitudes for the models,
OSTIA and GHR-MUR, and for point magnitudes at the location of the buoys and Argo
floats. Figure 5 shows a time series of area-averaged SST from LD20_noDA, LD20_DA,
CMEMS, OSTIA, and GHR-MUR. For comparison, the data from a non-assimilating ver-
sion of LD20_noDA model is also shown. As can be seen, the data assimilation reduces
differences between the model and observations.

The improvement provided by model-to-model data assimilation is particularly seen
during the monsoon period (July–September) 2015. The solar radiation used to drive the
LD20 models was overestimated during this period and corrected for later dates by the
meteorological data supplier [36]. In response to overestimated heat flux, the LD20_noDA
was significantly higher, up to 1.5 ◦C SST compared to OSTIA, while the data assimilating
model LD20_DA only shows a difference of up to 0.5 ◦C.

The uncertainty analysis includes the estimates of bias, root-mean-square differences,
and point-to-point correlations. Table 2 shows model bias, RMSD, and Pierson correlation
coefficient, which are calculated using daily averaged SST data as follows:

Bias(t) =
1
N

N

∑
i=1

(Mi(t)−Oi(t))

RMSD(t) =

[
1
N

N

∑
i=1

(Mi(t)−Oi(t))
2

]1/2

Corr(t) =
1
N

N

∑
i=1

(Mi(t)−M(t))(Oi(t)−O(t))
σM(t)σO(t)
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where Mi(t) and Oi(t) are model and observational data at grid node number i, M(t), O(t),
σM(t), and σO(t) are their area averages and standard deviations, t is time, and N is the
total number of wet grid nodes at the sea surface. Then, these statistics were additionally
averaged over six years of simulations from 2015 to 2020. Calculations excluded a narrow
rim of grid points near the boundary where the flow relaxation scheme was applied. All
statistics were calculated taking OSTIA as a basis. For comparison, the same statistics
were calculated for an alternative observational data set GHR-MUR, as well as for the
LD20_noDA model, which was run without data assimilation.
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Figure 5. Time series of area-averaged SST from LD20_noDA, LD20_DA in comparison to OSTIA
and GHR-MUR observations, as well as CMEMS global reanalysis.

Table 2. Statistics showing the skills of models in representing SST.

Ref. Data
OSTIA LD20_DA CMEMS GHR-MUR LD20_noDA

Average over
year 2015–2018

RMSD, ◦C 0.42 0.35 0.38 0.53

BIAS, ◦C 0.23 0.14 0.01 0.31

Corr. 0.61 0.65 0.67 0.53

OSTIA and LD20 have the same spatial resolution (1/20◦); therefore, the RMSD is
a good indicator of model skill to represent smaller scale features not resolved by the
coarser external model. In terms of RMSD, the best accuracy is achieved by the CMEMS,
with LD20_DA being not far away. When comparing the data sets, it must be taken into
account that CMEMS, OSTIA, and GHR-MUR share the same data sources; therefore, it is
expected that the difference between them should be small. LD20_DA clearly shows an
improvement compared to LD20_noDA in all skill parameters. It gives results closer to
OSTIA even though OSTIA is not directly assimilated into LD20_DA, only via the global
model CMEMS. This is a result for which we aimed when applying mode-to-model data
assimilation. The deviations between LD20_DA and OSTIA are within the accuracy of
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the OSTIA data itself (0.57◦, see [37]), and is also similar to the deviations between two
alternative observational data sets, OSTIA and GHR-MUR.

The spatial distribution of the models’ skill was assessed by comparing sea surface
temperature (SST) produced by models with the OSTIA data set, which produces high-
resolution analysis for the SST of the global ocean from satellite and in situ data. The maps
of models’ skill (see Figure 6) were computed by calculating bias and root-mean-square
difference at each grid point cell taking OSTIA as the basis. Data sets on different horizontal
meshes were interpolated onto the LD20 grid.
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bias; (b,d,f) RMSD; (a,b) CMEMS; (c,d) LD20_DA, (e,f) LD20_noDA. Time-averaging period is from
01 January to 31 December 2016.

The model skill of LD20_DA was further assessed by computing the spatial distribu-
tion of the Willmott skill parameter; see, e.g., [38,39], defined by the equation:

WSi = 1− 〈(Mi −Oi)
2〉

〈(|Mi − 〈Oi〉|+ |Oi − 〈Oi〉|)2〉
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where angle brackets denote time averaging and vertical bars denote absolute values. The
Willmott skill parameter is a simple measure of the agreement between two data sets; WS = 1
indicates a perfect match, whereas WS = 0 means there is no agreement at all. As an example,
the maps of WS averaged over 2016 are presented in Figure 7 for LD20_DA and CMEMS. The
WS for LD20_DA is very close to one (and to the WS for CMEMS) everywhere in the domain,
showing that assimilation of observational SST via the global model works as expected.
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Figure 7. Spatial distribution of Willmott skill parameter averaged for year 2016 with OSTIA data
taken as reference: (a) LD20_DA; (b) CMEMS.

The accuracy of ReOMo within the water column was assessed by comparing temper-
ature and salinity profiles with observed values available from Argo floats [20]. For this
analysis, a total number of 401 Argo profiles was used covering a period from 2015 to 2020;
see Figure 8.
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Figure 8. Comparison of LD20_DA, LD20_noDA and CMEMS against Argo float profiles of tem-
perature and salinity: (a,c) bias; (b,d) RMSD; (a,b) temperature; (c,d) salinity. Potential temperature
produced by the models is converted to in situ values measured by floats using the Thermodynamic
Equation of Seawater-2010. Averaging is done over 401 individual Argo profiles for the period
1 January 2015 to 31 December 2020.



J. Mar. Sci. Eng. 2022, 10, 1579 13 of 17

The uncertainty generated by LD20_DA is similar to that produced by CMEMS reanal-
ysis. For both models, the largest uncertainty is within the depth range of 150–250 m. At
lower depth levels, the RMSDs reduce to 0.2–0.3 ◦C for temperature and 0.05–0.1 PSU for
salinity. LD20_DA is likely to inherit positive deviations in both temperature and salinity
from CMEMS data used for boundary conditions. This view is supported by a similar
behaviour of LD20_no DA, which only accepts boundary conditions from CMEMS but
does not assimilate its 3D data in the interior.

Table 3 shows how SST produced by LD20_DA compares with observational data
obtained from three moored weather buoys located within 1 to 5 miles of the islands of the
Lakshadweep archipelago. The data were obtained from [40]. The RMSD and bias were
calculated using the entire available period of observation.

Table 3. Comparison of SST from LD20_DA and moored weather buoys.

Buoy ID Latitude, ◦N Longitude, ◦E Period Bias, ◦C RMSD, ◦C

MB2300454 10.32 72.59
27 October 2016
to
31 December 2020

−0.08 0.29

MB2300492 10.87 72.21
23 May 2016
to
31 December 2020

0.22 0.44

MB2300497 10.61 72.30
23 May 2016
to
31 December 2020

0.07 0.44

In all cases, the RMSD is less than 0.45 ◦C, which is slightly better than the uncertainty
of RMSD = 0.57 ◦C provided by OSTIA. The seasonal variation of SST from LD20_DA in
comparison with buoy measurements is illustrated in Figure 9 for year 2018.
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Figure 9. Time series of SST from LD20_DA and weather buoy MB2300454 located south of Kavaratti
Island at 10.32◦ N, 72.59◦ E from 1 January 2015 to 31 December 2015. The model SST is bi-linearly
interpolated to the location of the buoy.
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3.3. Higher Resolution Models

The higher resolution models (LD60 and LD120) provide better granularity, as ex-
pected. As with many other high-resolution models without data assimilation, they are
prone to the spatial phase shift. The shift is significantly reduced by model-to-model DA
using the ReOMo NDA algorithm. Figure 10 shows the current velocity distribution from
the CMEMS global model, LD60_noDA, and LD60_DA.
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Figure 10. Daily averaged current velocities at the sea surface on 2 February 2015: (a) CMEMS model
at 1/12◦ resolution; (b) LD60_noDA at 1/60◦; (c) LD60_DA also at 1/60◦. Colour shows the speed of
current in m/s.

The anticyclonic eddy centred at 9.1◦ N, 75.7◦ E is well resolved by the global data
assimilating model. This eddy is displaced to 9.4◦ N, 75.2◦ E in LD60_noDA simulations. It
is restored to its correct position in the data assimilating model LD60_DA. A similar effect is
seen for the LD120 (1/120◦ resolution) models. The anticyclone is shifted to 9.3◦ N, 75.8◦ E
in the model without DA and is restored to its correct location in the data assimilating
LD120_DA model; see Figure 11.
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Figure 11. Daily averaged current velocities at the sea surface on 2 February 2015: (a) LD120_noDA;
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4. Discussion

Dynamical downscaling is generally considered as the approach consisting of running
a high-resolution regional simulation (‘child’ models) inside a subdomain covered by a
‘parent’ lower-resolution model, see e.g., [6]. The benefits of downscaled regional models
have been discussed in a number of studies; see e.g., [4,41] and references therein. A
practical need of having a ‘rapid-response’ high-resolution model was formulated and
discussed by Onken et al. [42]. However, setting up a data assimilating regional model in a
new domain, particularly in operational mode, takes time. Therefore, some high-resolution
nested models do not use data assimilation at all; see e.g., [43]. Non-assimilating models
are suitable for process studies but are usually not accurate enough for operational use.
Aguiar et al. [6] concluded that, in the absence of data assimilation, their downscaled model
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was ‘not able to correctly locate the mesoscale structures, which negatively affects the
representation of the variability of surface currents’. This paper presents a rapid response
‘Crisis Ocean Forecasting System’ which is quick to set up, assimilates data from the freely
available coarse model reanalysis and forecast products, and automates many routine and
intermittent tasks.

This study uses the NEMO modelling engine, which has been successfully and widely
exploited both for research and operational purposes. A critical component of a modern
regional ocean model is an efficient data assimilation component, which helps keep the
model in agreement with reality. Existing data assimilation procedures are based on a
number of assumptions and simplifications (see e.g., [21,23]), and only practical applications
can judge if these assumptions are acceptable. The innovative feature of this study is the use
of a model-to-model data assimilation approach in an operational environment. Therefore,
the focus here is on the efficiency of data assimilation.

It is known that spurious high-frequency oscillations occur in forecasts made with
the primitive equations if the initial fields of density and velocity are not in an appropriate
state of balance with each other [44]. Density and velocity data gained from unrelated
observations are not in a dynamic balance and an additional effort is required to filter
out high-frequency oscillations [45]. Current velocity data produced by a global model
are dynamically balanced with temperature and salinity fields by design. Therefore, the
assimilation of 3D rather than 2D model data has an additional benefit of removing the
need for dynamic balancing or filtering data coming directly from observations.

The relocatable operational forecasting system titled ReOMo was designed, imple-
mented, and tested for the case of Lakshadweep Sea in a domain of approximately
1100 × 700 km2. This paper also briefly describes higher-resolution models, which were
run within ReOMo at 1/60◦ and 1/120◦ resolutions. Two versions of the LD20 model were
developed, LD20_DA and LD20_noDA—with and without data assimilation respectively.
Both versions were run for an extended period, from 1 January 2015 to 31 December 2020,
in order obtain reliable statistics of model performance. Models were validated against
various observational data sets—the Operational Sea Surface and Ice Analysis, Argo float
profiles, and moored weather buoys. The LD20_DA performed consistently better than
LD20_noDA, confirming that the new DA system helps improve the model outputs.

Area-average statistics, which are more dependent on model accuracy than resolution,
show close performance of LD20_DA and the state-of-the-art EU CMEMS reanalysis. Both
CMEMS and LD20_DA demonstrate better agreement with OSTIA in the winter months
than in June–September. This is likely caused by degradation of accuracy of satellite-derived
data due to heavy clouds and rain during the south-west monsoon period. Comparison
with Argo float profiles shows good agreement except at the depth range of 150–250 m.
This discrepancy in this depth range is seen in both LD20 model and CMEMS reanalysis.
LD20_DA is likely to inherit positive deviations in temperature and salinity from CMEMS
data used for boundary conditions. This view is supported by a similar behaviour of
LD20_noDA, which only accepts boundary conditions from CMEMS but does not assimilate
its 3D data in the interior. ReOMo is computationally efficient. In our experiments, the
five-day analysis-forecasting cycle took between 14 and 100 min depending on the number
of computing nodes, domain size, and model resolution: 1/20◦, 1/60◦, or 1/120◦. Our
tests show that ReOMo can be used as a Crisis Ocean Modelling System due to its ease of
implementation and good accuracy at medium and high resolution.

5. Conclusions

This paper presents the Relocatable Operational Ocean Model (ReOMo), which can be
quickly nested into a larger area model and used as a Crisis Ocean Modelling System in
any region of the global ocean that is free from ice. The core components of ReOMo are the
NEMO hydrodynamic model and Rose-Cylc workflow management software. A user is
required to prepare initial data only once, after which the system works automatically. The
principal innovative feature of ReOMo is the use of Nesting with Data Assimilation (NDA),
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which is based on the model-to-model assimilation technique. The NDA utilises the full 3D
set of field variables (temperature, salinity, and zonal and meridional current velocities)
from the external, e.g., the global model rather than just the 2D boundary conditions.
Therefore, ReOMo becomes physically aware of observations that are assimilated and
dynamically balanced in the external model. The NDA also reduces the spatial phase shift
of ocean features, also known as the ‘double penalty effect’. In this study ReOMo was
implemented for the Lakshadweep Sea in the Indian Ocean at 1/20◦, 1/60◦, and 1/120◦

resolution, with and without model-to-model data assimilation. ReOMo is computationally
efficient; one data assimilation cycle takes approximately the same time as one day of free-
running the NEMO model. ReOMo was validated against OSTIA, Argo floats, and moored
weather buoy data, which showed it has accuracy similar to that of the state-of-the-art
CMEMS global model with an additional benefit of having better resolution.
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