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Abstract: Despite the unabated growth of algorithmic decision-making in organizations, there is a 

growing consensus that numerous situations will continue to require humans in the loop. Howev-

er, the blending of a formal machine and bounded human rationality also amplifies the risk of 

what is known as local rationality. Therefore, it is crucial, especially in a data-abundant environ-

ment that characterizes algorithmic decision-making, to devise means to assess performance holis-

tically. In this paper, we propose a simulation-based model to address the current lack of research 

on quantifying algorithmic interventions in a broader organizational context. Our approach allows 

the combining of causal modeling and data science algorithms to represent decision settings in-

volving a mix of machine and human rationality to measure performance. As a testbed, we con-

sider the case of a fictitious company trying to improve its forecasting process with the help of a 

machine learning approach. The example demonstrates that a myopic assessment obscures prob-

lems that only a broader framing reveals. It highlights the value of a systems view since the effects 

of the interplay between human and algorithmic decisions can be largely unintuitive. Such a simu-

lation-based approach can be an effective tool in efforts to delineate roles for humans and algo-

rithms in hybrid contexts. 

Keywords: machine learning; system dynamics; simulation modeling; algorithmic  

decision-making; bounded rationality; supply chain planning 

 

1. Introduction 

The phenomenal growth of AI in recent years, especially machine learning (ML), a 

self-improving subfield of AI, has cemented its status as a general-purpose technology 

[1], like the steam engine or electricity of the past. Therefore, and unsurprisingly, it is 

also at the center of a strident debate about its impact across multiple dimensions (e.g., 

economic, social, and ethical) [2], with two very noticeable camps emerging: the opti-

mists and the pessimists [3]. The former camp primarily extolls the virtues (current or 

anticipated) of ML benefiting all of humanity. The latter, however, warns us about tech-

nological sophistication outstripping our ability to reason about its unintended conse-

quences. 

Less noticeable, but increasingly gaining traction, is a third camp composed of 

pragmatists. While acknowledging AI’s staggering achievements (thus refuting ardent 

pessimists), they point out that much progress is still ahead of us and call attention to 

mounting evidence that should give pause to unchecked optimism. In this view, numer-

ous examples of brittleness (for instance, in the face of adversarial ML) [4,5], poor out-of-

distribution performance [6], challenges with explainability [7] (compounded by regula-

tory pressures [8]), and poor adoption [9] must count as evidence. (On the last point, a 

recent study has shown that the adoption rate of AI in organizations in the US is less 

than 7% [10].) 
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Pragmatism about ML’s status and prospects promotes recognition that autonomy 

is not a viable goal in numerous situations, particularly in open-ended problems (where 

there is uncertainty about relevant variables, and the effects of causes tend to be distant 

in space and time). It leads to advocacy for humans in the loop [11]. Of course, given the 

field’s dynamism, the nature of human–ML collaboration must naturally evolve, as well. 

Therefore, the inevitability of roles for humans in complex decision-making situations 

coupled with the fast-paced nature of technological change elicits a nuanced view of au-

tomation. On this account, a picture of automation antithetical to a simplistic either/or 

dichotomy [12] emerges. 

It is a picture of persistent tension caused by task interdependencies, which are apt 

to change over time, giving rise to spatial and temporal dynamism. For example, 

Shestakofsky’s [13] empirical work shows that automating a task impacts adjacent tasks 

in that these (say, previously manual tasks) might benefit from augmentation. Further-

more, the trajectory of these changes heavily depends on the organizational context. 

Therefore, what further crystallizes is an argument that rejects technological determin-

ism [14] and places importance on context. One where besides the apparent technical 

aspects, gross behavioral elements such as social relations and politics play substantial 

roles—a view that accords with the economic theory of complementarities [15]. It holds 

that studying technological adoption benefits from viewing the human–technology en-

semble as a sociotechnical system embedded in an organization, creating a system of 

complements, a more formal notion of the intuitive idea of synergy. 

Although the literature on complementarity illuminates how organizational value 

derives from the interactions between the embedded technology and the surrounding 

organizational and broader environmental factors [16], there is a gap when the technol-

ogy in question is ML [17]. The autonomy that ML affords, albeit partial, represents a 

break from traditional IT that predominates the discourse about the impact of technolo-

gy on value creation and capture. In particular, ML’s role transcends a mere tool and can 

assume various other roles, such as those of assistant, peer, and manager [18], depend-

ing on context/maturity [19]. A profound consequence of this, plainly stated, is that the 

ML agents (the technology) now contribute to organizational learning, the object of 

which is organizational mental models that drive behavior (and create value, or not). 

Puranam [20] points out an unprecedented dynamic in the history of the technology-

driven complementarities that this produces. ML agents can now make the same deci-

sions as humans. So, through aggregation (the wisdom of crowds effect [21]), organiza-

tions could generate performance superior to what humans or ML can achieve working 

alone. Since organizational mental models are the storehouse of creativity, this further 

implies that, jointly, not just improving existing ways but entirely new ways of doing 

things (the realm of strategy) open up [22]. 

The modest premises discussed (self-learning ML, the importance of humans in the 

loop, and new forms of complementarity that ML affords) combine to yield enormous 

implications for organizational performance. The challenge of achieving the desired lev-

el of performance transforms into a coordinating coalition of human and ML agents that 

explore the performance landscape in search of tall peaks. Since in the real world of or-

ganizational problem-solving, payoffs and the menu of choices are uncertain [23] (as 

opposed to the closed world of games)—what Hogarth terms “wicked” problems [24]—

the exploration has to contend with a “rugged landscape” [25] (i.e., the risk of local max-

ima). 

Knudsen and Srikanth [26] observe that prior work on the normative question of 

exploring the terrain—or the problem space [27]—in search of satisfactory solutions as-

sumes the organization as a “unitary actor”. They note that researchers have scarcely at-

tended to the collaborative aspects (in particular, the role of mutual learning). For in-

stance, the issue of second-guessing arises when there are multiple agents, which can 

lead to dysfunctional behavior such as, to use their phrasing, “joint myopia” (or local ra-

tionality [28]) or “mutual confusion” (a result of misperceiving the causes of positive or 
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negative payoffs). Although further complexities arise when humans and ML team up 

[17], a standout dimension is the inability of ML to fully imbibe tacit knowledge [29] that 

is crucial to solving many complex tasks. 

This is a topic that opens up several avenues for research. However, they fall into 

two broad categories. The first is research that focuses on the usability aspects of the 

technology itself. For instance, a burgeoning field known as explanatory AI [30] tries to 

make ML models less opaque by endowing them with the ability to answer “why” ques-

tions, that is, why a specific result or counterfactual questions such as “what would have 

happened had the input been different?” (in short, an ability to “introspect” their “be-

liefs”). The second concerns itself with the appropriate use of ML to maximize value—

organizational design questions such as the division of labor between humans and ML, 

and ideal learning configurations [20] fall in this category. 

A prerequisite to fruitful research pursuit in either category is the ability to evaluate 

the combined rationality [31] sufficiently broadly to elucidate the contribution of ML 

(and, by extension, data) in the context of a longer means-end chain (connecting behav-

ior to business value). It is to this that our work seeks to contribute. We adopt a simula-

tion-based approach (using system dynamics) for the evaluation model. System dynam-

ics is particularly amenable to investigating emergent properties of interdependent ac-

tions since it emphasizes dynamic complexity [32] (e.g., due to feedback, a core compo-

nent of learning) more than component-level complexity. Specifically, our contributions 

are two-fold: 

• We complement the conceptual literature on human–ML teaming that, by necessity 

(as it caters to various types of organizations), provides general guidelines on effec-

tively structuring collaborations. Our modeling framework allows quantification of 

the blending of algorithmic ML rationality and bounded human rationality. We test 

our approach using an imaginary case of a company trying to improve its supply 

chain planning process. 

• We complement existing work on explanatory AI in terms of framing “why” ques-

tions. Concretely, two metrics generally evaluate ML’s explanations: interpretability 

and completeness [33]. Our model provides the organizational problem-solving 

context (shedding light on the landscape of choices human and ML agents navi-

gate) that must inform the selection of relevant “why” questions. 

The structure of the remainder of the paper is as follows. In Section 2, we discuss 

conceptual frameworks that provide guidelines for human–ML role separation, from 

which we draw insights that inform the theoretical base for the quantitative framework. 

In Section 3, we justify our design choices in the framework. Specifically, we explain 

why choosing a systems approach to modeling best fits the design requirements out-

lined at the end of Section 2. In Section 4, we describe the details of the framework and 

run tests using synthetic data to validate our central claim about the risk of local ration-

ality. Finally, in Section 5, we discuss the implications of our findings and comment on 

what they have to say about related work in this area. 

2. Related Work 

Various qualitative approaches in the literature suggesting the creation of a human–

ML coalition adopt as a guide the insight that ML suffers from what Marcus terms 

“pointillistic” intelligence [6]. Therefore, in this reading, the overarching brief for hu-

mans is to serve as orchestrators in the group such that it can exhibit “general collective 

intelligence” [18]; Malone describes this group of human strategists and ML tacticians as 

superminds. Kasparov has written about the strategy/tactics distinction [34] in the con-

text of chess, which serves as a valuable proxy for any intellectual endeavor [35]. It stems 

from acknowledging that although the cognitive architecture of humans predisposes 

them to poor performance (compared to ML) on memory and information processing, it 

allows them to excel in long-term planning, crucial for convergent thinking or the pro-
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cess that results in choosing from among alternatives. (The importance of strategy to de-

cision-making is why Malone recommends that we consider putting computers in the 

group rather than putting humans in the loop as the mantra for creating effective coali-

tions.) 

Despite the heterogeneity in the details informed by diverse philosophical and in-

tellectual commitments, these approaches share a similar strategy for delineating human 

and ML roles. They rely on noticing that tasks, seen through the lens of tractability, fall 

along a spectrum, with some resembling games—fictions of the human mind—or are 

“game-like”, while others, closer to life itself, are “life-like”. Game-like tasks are more 

agreeable to a closed formulation as they have more of the following properties. The 

rules are well specified and require minimal background knowledge, feedback is unam-

biguous, feedback loops are short, and behavior is observable. From the perspective of 

objective attainment, such properties contribute to the connections between the means 

and the end being neither tenuous nor uncertain (unlike in life-like tasks where the 

structure is a “tangled web” [36]). It also implies much less difficulty in agreeing on the 

“best” means for a given end, further aiding a closed formulation. 

In contrast, several factors complicate modeling efforts for life-like tasks where so-

cial aspects dominate, the value-ladenness of means/ends scuttles efforts to find the 

“best” option, and poor or absent feedback contributes to flawed mental models. In 

short, game-like tasks represent a “kind” environment, whereas life-like tasks inhabit a 

“wicked” environment [24]. A sensible strategy that the approaches often adopt is care-

fully choosing dimensions that allow the ordering of tasks along the game-like/life-like 

spectrum, suggesting the appropriate blending of algorithmic and human rationality. In 

this way, the dimensions proposed include open/closed [19], weak/severe (according to 

risk) [19], social/asocial [37], creativity/optimization [37], low-dexterity/high-dexterity 

[37], decision space specificity, size, decision-making transparency, speed, and repro-

ducibility [21], abstraction, intuition/prediction, simulation [38], and thinking/feeling 

[39]. 

Although the conceptual models provide a means to assess tasks according to their 

suitability for ML, they suffer from a critical drawback. Since the recommendations must 

be broadly applicable, the frameworks have an “objective” bias regarding the problem 

(that human–ML teams must solve), which yields a disinterested observer or experi-

menter’s eye view of the problem. However, one can scarcely begin to solve real-world 

problems as posed. A wealth of research in cognitive science supports the importance of 

framing or problem representation, emphasizing the complexity reduction aspects of 

problem-solving that make otherwise intractable problems solvable. In their seminal pa-

per on human problem solving, Newell and Simon [27] draw a distinction between the 

objective problem, the “task environment”, in their phrasing, and the problem represen-

tation (namely, the “problem space”). The transformation process from the former to the 

latter is a function of problem complexity. Most problems of interest in organizational 

decision-making—the consumers of the conceptual frameworks—elude optimal solu-

tions requiring significant simplification efforts. (Simon introduced the term “satisfic-

ing” to denote the finding of inexact but satisfactory solutions [40].) 

The contrast between the (unreasonable) expectations of optimally solving prob-

lems and the reality of searching for a suitable representation that yields good-enough 

solutions mirrors the contrasting philosophies of the economic man and bounded ra-

tionality in cognitive psychology. Several streams of research in organizational theory 

have explored the implications of bounded rationality in decision-making. They include 

Klein’s naturalistic decision-making [41], Galbraith’s organizational information-

processing theory [42], Nelson and Winter’s evolutionary theory of economic change 

[43], and Gigerenzer’s ecological rationality [44]. These efforts outline structures and tac-

tics that constitute organizational adaptations to the challenges of their task environ-

ments. In unison, they reject the idea of an infinitely malleable organization that takes 
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the shape of the problem it is trying to solve, thereby advocating subjectivity (that 

bounded rationality inevitably entails). 

Among the concepts that underpin problem-simplification approaches, the notion 

of hierarchy stands out as a unifying construct serving as a conceptual glue—in Simon’s 

words, “[h]ierarchy […] is one of the central structural schemes that the architect of 

complexity uses” [40]. Hierarchy captures the essence of the near-universal technique of 

breaking down a complex problem into simpler parts that complex systems embrace. 

The concept of hierarchical planning systems [45], widespread in supply chain man-

agement, vividly illustrates the divide-and-conquer approach inherent in the hierar-

chical notion. In hierarchical planning’s most straightforward formulation, the system 

stratifies decisions into strategic, tactical, and operational. As a problem passes through 

the stages, it undergoes the progressive addition of constraints that transform a relative-

ly open problem into a closed one. It results in the sequential imbuing of subjectivity, 

simultaneously simplifying and providing context to the problem for the organization. 

The preceding discussion highlights the importance of an organization-specific 

problem formulation for evaluating the pairing of humans and ML. 

Since such an evaluation typically precedes implementation, it must be quantitative 

and, given that organizational decisions are context-rich, sufficiently broad in scope, en-

abling a holistic assessment. To the best of our knowledge, such a quantitative simula-

tion-based model to evaluate the blending of formal/ML and substantive/human ration-

ality in a holistic context is currently lacking, a gap this paper seeks to redress. 

3. Design of a Quantitative Model 

The desirable traits outlined in the previous section (that an evaluation framework 

must possess) to assess collaborative human–ML decisions are consistent with findings 

from the business value literature that deals with the value of technology investments 

or, more generally, information. A fundamental result from this stream of research, yet 

one that is often overlooked, is that value does not come from mere investments but de-

rives from proper use [46], reinforcing the importance of quantifying any intervention. 

More detailed empirical work [16] on the mechanics of value creation, especially in 

the resource-based view tradition, recognizes the role of firm-specific resource configu-

ration (erecting “resource position barriers” [47]) in establishing sustained competitive 

advantage. A resource in this formulation is broad and encompasses such factors as 

business processes, policies, and culture. This expansive view contrasts with the classical 

economics definition of resources restricted to only labor, land, and capital. In such an 

integrated view of value, an assemblage of resources, writ large, mediates technology’s 

performance impact on business outcomes. 

An analogous notion to firm-specific resource configuration is the concept of com-

plementarity [48] in organizational economics. In addition to giving quantitative rigor to 

the hypothesis of synergy behind specific resource configurations, research on comple-

mentarities also shows the futility of simplistic ideas of “best practice”, a fallacy because 

business performance is a function of a highly subjective, tenuous mix of internal and 

external variables. There is substantial empirical [49–51] and anecdotal evidence [48] 

pointing to the precarity of a desirable system of complements. An organization might 

suffer significant unintended consequences due to relatively minor changes (also reveal-

ing the naivety behind blind imitation). As a result, the metaphor of moving along a 

rugged landscape (the ruggedness a function of industry dynamism and competition 

[52]) aptly describes an organization’s gradual and tentative attempts to improve its 

business performance. It aligns with the evolutionary model where the landscape has 

many local maxima that make finding “good enough” solutions (“satisficing”) the only 

sensible approach. 

With empirical support for the subjectivity of technological impact on organiza-

tional performance lending credence to intuition from various theoretical bases (chiefly 

bounded rationality, systems theory, and organizational information processing theory), 
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one can make the implications for an evaluation model—previously mentioned re-

quirements—more precise. 

Quantitative. The relative nascency of ML (the technology under consideration 

here) and the novelty of combining machine and human intelligence further compound 

the trial-and-error nature of finding an appropriate means of embedding for technology 

in existing organizational assets. Consequently, it becomes essential to quantify the ben-

efits of competing options, giving rise to the requirement of “quantitative” modeling. 

Here, the definition of the term quantitative follows from Bertrand and Fransoo [53], 

which translates to the need for basing the model on a set of variables with “causal rela-

tionships” between them. 

Simulative. From a modeling perspective, the diversity of paths to value (subjectiv-

ity in action) presents the challenge of abstracting from the details while still capturing 

the richness of context, which plays a pivotal role in determining outcomes. A measure 

of the appropriateness of a model’s level of abstraction is its ability to predict real-world 

performance. More technically, the model must be “empirical”,, again adopting Bertrand 

and Fransoo’s terminology. The alternative approach, called “axiomatic”, focuses on bet-

ter understanding the problem structure (relationship between variables in the model); 

the objective here is not about achieving correspondence with reality. 

The chosen term simulatively performs a double duty: in addition to denoting ex-

planatory power, it forecloses the option of closed-form mathematical formulation, 

which, in line with the philosophical commitment to bounded rationality, is infeasible 

given the combinatorial complexity of even moderately sized problems where perfor-

mance is context-sensitive. In a critique of the predilection for mathematical solutions to 

closed-form simplifications of real-world problems in the operations research field, 

Ackoff has cautioned that they tend to be “mathematically sophisticated but contextual-

ly naive” [54]. 

Holistic. A synthetic outlook is a requirement implicit in the term empirical, seen in 

combination with the premise of subjective problem-framing. However, given its im-

portance, it is a point that bears articulation. The opposite of synthesis is analysis, a rea-

sonable approach to answering mechanistic “how” questions [54]. However, searching 

for causal explanations of performance requires answering “why” questions, justifying 

the “holistic” imperative. 

Collaborative. The decision-making process must accommodate algorithmic ra-

tionality and human judgment or substantive rationality that highlights the (uniquely) 

human capability for value-rational decisions. 

Consistent with evidence from studies about ML’s impact on labor [55] that hold 

that the appropriate unit of analysis is at a task level (rather than at a job level, which is 

too coarse), the (human–ML) role distinction is likely to be task- and organization-

specific. Despite the specificity, a pattern likely to repeat, in agreement with the concep-

tual frameworks discussed earlier, is the preference for judgment in open contexts and 

algorithms in relatively closed contexts. Consequently, a challenge—and the raison 

d’être for such a model—is identifying if what appears to be rational in a limited or local 

setting [28] remains so when considered globally and does not devolve into dysfunc-

tionality [56]. The need for systemic evaluation narrows the field of candidate para-

digms, with system dynamics, a technique created by Jay Forrester [32], emerging as the 

best choice upon further consideration. 

System dynamics buys into a core tenet of complex systems by recognizing that the 

thrust while modeling must be on the interactions between the components rather than 

the intricacies of their inner workings. This perspective, inspired by cybernetics, holds 

that the information flows or feedback are at the heart of learning, influencing our (or 

organizational) mental models, which manifest as behavior [57]. Noting the pervasive-

ness of feedback loops (often passing unnoticed) in explaining behavior, Powers goes so 

far as to say, “…it is as invisible as the air we breathe. Quite literally, it is behavior” [58]. 

A powerful tool in the system dynamics toolbox, the causal loop diagram, operationaliz-
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es this way of thinking about behavior where it is “one of the causes of the same behav-

ior” [58] by depicting a system of cause-and-effect variables in a closed loop. 

Therefore, this illustration technique is a common design artifact before implemen-

tation in a tool such as Vensim [59,60] that finds extensive use in industry and academia 

for its straightforward interface and simulation and reporting capabilities. It is also the 

tool used in the experiment described in the next section. 

Causal loop diagrams that visualize a system’s feedback structure turn up another 

vital property of complexity. The individual causal links are simple enough but collec-

tively produce complex emergent behavior, epitomizing the wisdom of complexity theo-

ry that Simon articulates thus: “complexity, correctly viewed, is only a mask for simplici-

ty” [40]. In the modeling process, this property has the beneficial effect of simplification. 

Since the scope boundary is drawn more broadly (compared to alternative approach-

es)—in line with holistic thinking—the emergent nature of complexity has an overall 

offsetting effect in the modeling effort. 

The discussion about system dynamics has shown that the paradigm meets the 

qualitative, simulative, and holistic criteria. However, regarding collaboration that re-

quires the mixing of judgment and algorithmic reckoning, a tool such as Vensim does 

not natively support incorporating ML methods. Here, a Python library, PySD, devel-

oped by Houghton and Siegel [60], addresses the gap and allows the infusion of data 

science techniques into system dynamics models, thus satisfying the collaborative crite-

rion. 

PySD enables the bridging of causal modeling (the backbone of system dynamics) 

and the ever-growing field of data science. It opens doors to exploiting the natural syn-

ergy between the fields: the former premised on the tenet that structure drives behavior, 

and the latter rich in techniques that allow both the modeling of more sophisticated be-

haviors and their analysis (which can inform improved models). 

Despite the potential for embedding ML agents in system dynamics models, the 

overarching principle that the presence of structural elements such as feedback, delays, 

and stocks means that one cannot reliably predict the overall dynamic behavior of a sys-

tem still holds. Thus, such systems’ “dynamic complexity” [32] renders analytical solu-

tions infeasible, providing further impetus to simulation-based approaches. 

The importance of the structure noted above stems from taking a firm stance (which 

PySD implicitly does) related to the epistemological question of whether knowledge can 

be model-free. There have been claims that with big data, we have entered a new para-

digm where data can speak for themselves [61], a claim that contradicts the core of the 

scientific method. However, Pearl [62] and numerous others (e.g., [63,64]) argue that 

meaning relies on a structure one cannot build from data alone. Trending issues in ML 

around out-of-distribution performance and explainability further support the position 

that to progress from merely observing correlations to attributing causes, one has to, in 

Pearl’s words, climb the “ladder of causation” [65]. It requires translating mental repre-

sentations, the infrastructure humans use so effectively, into formal models that, in con-

junction with data, can make understanding possible. 

4. Experiment 

This section introduces a small-scale experiment to test the viability of the main 

ideas in the proposed modeling framework (the ML code, system dynamics simulation 

files, and data are available on GitHub under: 

https://anonymous.4open.science/r/aicollab-model-C108) For evaluating human-AI col-

laborative decision-making. 

It focuses on the importance of a holistic problem-solving approach that is more re-

sistant to the potentially distracting effect [28] of superior information processing in that 

such an approach is wary of immediately visible improvements local in time and space, 

masking unintended consequences that may be quite distant (due to delays and complex 

feedback structures). 
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Concretely, improvements in the forecasting process—the result of a machine learn-

ing algorithm replacing a judgmental process—represent the “visible” local improve-

ment in the experiment. However, this unearths a suboptimal decision routine in the 

production process that results in overall underwhelming performance (especially given 

the magnitude of improvement in forecasting accuracy when viewed narrowly). 

4.1. Problem Context 

The experiment involves a fictitious company, Acme, attempting to improve its 

product sales and returns-forecasting process. The company uses a simple first-order 

exponential smoothing process—a simple but surprisingly hard-to-beat procedure 

[66]—and would like to evaluate the benefits of implementing an advanced machine 

learning algorithm, especially for returns. The basic assumption that returns forecasting 

can benefit from an algorithm more sophisticated than Acme’s current univariate (or 

single-variable) forecasting method is well founded. Specifically, more sophistication af-

forded by a multivariate approach might improve forecasting accuracy by using addi-

tional (leading) indicators, such as historical sales in the case of forecasting returns. 

Although a simple comparison of forecast accuracy between the two approaches is 

a reasonable starting point for evaluating the potential benefits, it is often insufficient. 

The insufficiency stems from the forecasting process being just one among several pro-

cesses in end-to-end process chains that encompass forward (material flow from suppli-

ers towards customers) and returns flows (where the customer becomes the supplier for 

the post-consumer product [67]). Therefore, it is critical to check the local intervention 

(the forecasting process in the case of this experiment) for unintended global conse-

quences. At Acme, besides the planned machine learning model for forecasting, most 

other decisions are assumed to be based on rules of thumb or heuristics. Therefore, a 

systemic assessment (checking if the locally rational algorithmic component translates 

globally, given that there is a mix of algorithmic and human rationality at this level) of 

the comingling of human and algorithmic decisions entails modeling the relevant parts 

of the adjacent production and order-fulfillment processes. 

4.2. Data 

The experiment (see Figure 1 for experimental protocol) uses a seasonal time series 

from the M forecasting competition [68] to generate a synthetic sales dataset by first de-

composing it (into trend-cycle, seasonal, and remainder components) and subsequently 

constructing samples with similar demand characteristics. 
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Figure 1. Experimental protocol consists of three stages: generation of synthetic data, creation of 

the RNN model for predictions, and incorporation of the RNN model in the system dynamics 

causal model for simulating scenarios for heuristics (human)–ML collaboration. 

Regarding the returns time series, the assumption is that Acme has three classes of 

customers with distinct returns characteristics or profiles (where a profile is a specific 

combination of the mean and standard deviation of returns that follows a normal distri-

bution). A discrete event-simulation model built in AnyLogic [69] on this assumption 

generates the requisite returns data. It first spawns customer “agents” (based on the 

sales data) and sorts them randomly into three groups, assigning them their correspond-

ing returns profiles. After a specified time offset, the model simulates an agent generat-

ing a product return per its profile—that is, a sample value, which stands for the number 

of units returned, is drawn from a normal distribution with the profile’s mean and 

standard deviation (see Figure 2). 
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Figure 2. Dataset generation for product returns. 

The synthetic data generation process outputs a file consisting of 480 months of 

monthly sales (broken down by customer group) and returns data. Before model genera-

tion, the data undergo a further important processing step designed to tackle the prob-

lem of poor generalization common in ML. 

Poor generalization performance, or the phenomenon of overfitting, is when model 

performance deteriorates severely on unseen data. It typically happens when the model 

learns spurious correlations or memorizes inputs [70] to return good training perfor-

mance that does not translate to good performance in the real world. The usual recom-

mendation to avoid overfitting is to split the data into train, test, and validation sets [71], 

which the experiment adopts by splitting the data according to a 60/10/30 ratio. Alt-

hough several specific techniques exist to perform the split, the experiment takes a sim-

ple holdout validation approach. In this variant, the training set determines model pa-

rameters, the validation set helps fine-tune those parameters, and the test set forms the 

basis for the final performance evaluation. Given the relatively simple nature of the orig-

inal seasonal sales data with a limited number of possible features and the synthetic data 

generation approach (affording finer control over the noise, thus placing modest de-

mands on sample size), there are no grounds for more complex treatments such as K-

fold and iterated K-fold validation more suited to feature-rich/data-sparse contexts [70]. 

4.3. Main Components 

4.3.1. Modeling Judgmental Forecast 

System dynamics offers various techniques for modeling simple rules that charac-

terize human decisions in most contexts [57]. One such representation is the so-called 

anchor-and-adjust [72], which produces an effect similar to the first-order exponential 

smoothing procedure, which serves as the experiment’s current-state judgmental pro-

cess for forecasting sales and returns. The term anchor-and-adjust alludes to a well-

known fact from psychological research that humans, when tasked with estimation, “an-

chor” on an initial value and adjust it according to the cues they receive [73]. Despite the 
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apparent simple-mindedness of the procedure, there is abundant empirical evidence [72] 

that supports its use by decision-makers in contexts where the sheer number of influenc-

ing factors make satisficing rational in intention. 

In the experiment’s forecasting process, the initial value or anchor is a historical av-

erage of sales or returns. The value undergoes continuous adjustments upon receiving 

informational feedback (actual sales or returns orders). The adjustment rate, which de-

pends on empirical details regarding such factors as feedback delays experienced by an 

organization, is set to three months in Acme’s case. A delay of three months roughly 

corresponds to setting the smoothing constant to 0.3 when using the exponential 

smoothing procedure. Although it is possible to search (for instance, using a grid search 

technique) for a more optimal value, it is not essential given that the experimental objec-

tive only relies on the claim that ML represents any improvement over a heuristic ap-

proach. In other words, the qualification criterion for local rationality is that ML is 

somewhat better than the extant approach. Furthermore, as we will also see, the magni-

tude of the difference in accuracy between the two approaches renders any fine-tuning 

effort of the delay parameter moot. 

4.3.2. Modeling ML Forecast 

As mentioned earlier, the primary focus of the ML method in Acme’s context is im-

proving returns forecast accuracy. Since sales (split by the three customer groups) serve 

as an early indicator for future returns (except, potentially, historical returns), the intui-

tion is apparent behind using an ML algorithm that can learn how the two relate with-

out explicit instructions. More technically, an ML model can learn, from training sam-

ples (consisting of input/output pairs), the transformation from the input (set of early 

indicators) to the output (future returns) that minimizes prediction errors. This descrip-

tion corresponds to a supervised learning regime. 

However, the requirements for sequential data (in this context, time series) are 

slightly more stringent—the architecture must be capable of maintaining temporal or-

dering. From this perspective, there are two basic ML architectures: feedforward net-

works that flatten the inputs, hence their lack of means to carry forward information 

meaningfully, and architectures with a feedback loop. A recurrent neural network 

(RNN) is an architecture that falls into the latter type, which the evaluation framework 

uses. An RNN can use its memory about earlier periods in a time-series setting and 

combine it with the current period while making a prediction. One can best imagine the 

process by “unrolling (the network) through time” [74]; that is, imagining the network 

processing each of the periods sequentially. In the simplest case of a network of a single 

artificial neuron, it receives as input both the current period value and the output of the 

previous period (usually initialized to zero at the start). Thus, at any given period, the 

additional input—the output of the previous period—is akin to the memory of the entire 

past, which influences predictions. 

For the RNN implementation, the framework uses the Keras API, which offers con-

venient routines for training deep learning models [70]. In Keras, there are three types of 

RNN available: SimpleRNN, long short-term memory (LSTM), and the gated recurrent 

unit (GRU). Each type shares the basic idea of carrying over information when pro-

cessing sequential information such as time series. The crucial difference between RNN 

and both LSTM and GRU lies in the latters’ relative ability to handle long sequences. 

Since the backpropagation procedure has to deal with a significantly deeper network, 

given the unrolling through time, SimpleRNN (the vanilla implementation) suffers from 

a debilitating memory loss problem. It is a problem that LSTM and GRU specifically ad-

dress, partly by being more discerning about what to retain and what to forget [74]. In 

the experiment, the sales model uses LSTM given the long historical sales horizon (36 

months since there are seasonal effects). For the returns scenario, the experiment uses 

GRU as it performed better during the parameter tuning phase. 
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Figures 3 and 4 below provide a schematic representation of the ML (using RNN 

for illustrative purposes) and heuristic approaches. 

 

Figure 3. Schematic representation of the unrolling through time in the RNN architecture. 

 

Figure 4. An illustration of how the anchor-and-adjust heuristic works. 

4.4. Execution and Results 

4.4.1. Comparing Stand-Alone Forecasting Performance 

The first stage of the experiment is a straightforward comparison of the forecast ac-

curacy of the RNN and heuristic approaches. The RNN sales- and returns-forecasting 

models have the following main parameters (see Table 1): a single hidden layer (the 

former with 225 units and the latter with 150 units), a dropout rate of 10%, a mean 

squared error (MSE) loss function, and 150 epochs of training. As noted earlier, the sales 

model uses LSTM and a returns model GRU. (Including dropouts is another effective 

means to avoid overfitting as the dropping out of units from the network with a certain 

probability (rate) leads to more robust overall learning since it trains the elements to be 

more self-reliant and discourages excessive reliance on specific inputs.) 
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Table 1. RNN model parameters. 

Parameter Description 
Value 

Sales Returns 

Historical pe-

riods 

Actual historical sales or returns 

horizon to use for forecasting. 
36 months 1 month 

Forecast peri-

ods 
Forecast horizon. 1 month 1 month 

RNN layer 

There are three built-in layers in 

Keras: SimpleRNN, GRU, and 

LSTM (the latter two support long-

er time-series sequences; we de-

scribe the rationale in the text).  

LSTM GRU 

Optimizer Gradient method used. Adam Adam 

Layers Depth of the neural network. 1 1 

Number of 

units 
Artificial neurons per layer. 225 150 

Dropout 
Regularization parameter (de-

scribed in the text). 
10% 10% 

Epochs Training iterations. 150 150 

After model fit, an evaluation of the model to assess overfitting (Figure 5) shows the 

converging training and validation loss curves, which indicates a robust fit. The canoni-

cal overfitting behavior is when training loss decreases while the validation loss increas-

es—the divergence is predictive of poor generalizability. 

 

Figure 5. Loss curves for the sales and returns models. 

Carrying out a partial model test to verify intended rationality [56] by embedding 

the forecasting routine in the system dynamics model shows that the accuracy (meas-

ured using the mean squared error metric) of RNN is 87.4% better for sales (21.4 com-
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pared to 2.7) and 81% better for returns (5.8 compared to 1.1). Figure 6 below shows the 

system dynamics model for returns; the sales model follows the same structure. Table 

A1 in Appendix A provides a complete list of the parameters for the system dynamics 

model. 

 

Figure 6. The partial system dynamics model for predicting returns. 

The graphs below (Figures 7 and 8) compare the RNN and heuristic predictions 

against the actual sales and returns orders. At first glance, a more significant improve-

ment in sales-forecasting accuracy with RNN might be surprising. However, this is be-

cause the sales time series shows seasonality, but the anchor-and-adjust heuristic does 

not account for seasonal factors, providing a satisfactory explanation. 

 

Figure 7. Comparing heuristic and RNN sales predictions. 
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Figure 8. Comparing heuristic and RNN returns predictions. 

As an additional sanity check, a comparison of the accuracy of the heuristic to a 

simple exponential smoothing procedure using the Statsmodels library [75] (with a 

smoothing equivalent to a delay of three months, as described earlier) shows that the 

MSEs are roughly the same (Figure 9). It confirms the magnitude of the local improve-

ment indicated earlier. 
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Figure 9. An exponential smoothing approach to forecasting sales and returns. 

4.4.2. Comparing Overall System Performance 

The second and most crucial stage involves evaluating the impact of the forecasting 

intervention (use of RNN) in its proper context by including relevant aspects of Acme’s 

overall forecasting, order fulfillment, and extended production processes. A decision pa-

rameter in the whole-model simulation (Figure 10a) determines the source of predictions 

(for sales and returns)—heuristics (or judgmental) or RNN. If set, PySD substitutes a 

hook in the model with a function that makes online predictions that integrate with the 

rest of the model (Figure 10b). Otherwise, judgmental or heuristic predictions take effect 

(Figure 10c). Acme follows a make-to-stock strategy, implying that it fulfills orders from 

inventory. Here (order fulfillment sector in the figure below), the system dynamics 

model includes simple rules to satisfy orders as they come in and to ascertain backorders 

and lost sales if there is a shortage—in other words, when the forecast is inaccurate. If 

the delivery lead time exceeds the goal, delivery pressure (a function of backlog) builds 

up, resulting in lost sales if the delay exceeds the tolerance limit (Figure 10d). Production 

orders are simply the difference between forecasted sales and returns in the production 

sector. For simplicity, the experiment assumes a negligible production lead time (a few 

days) relative to the planning periodicity (of months). At the end of the month, the fore-

casts generate production orders, assumed to be available as inventory at the start of the 

following period. 

The decision rules discussed thus far are operational (in their evolutionary theory of 

economic change, Nelson and Winter use the term “operating characteristics” to charac-

terize such rules [43]). However, there is a routine in the capacity management sector 

that is at a higher level, typically considered tactical by supply chains. It is a routine that 
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calibrates the available capacity and is a crucial determinant of overall performance. The 

routine is responsible for augmenting capacity under delivery pressure (Figure 10e). 

Augmentation increases the capacity at a rate defined by the ramp-up delay (Figure 10f) 

to a maximum capacity determined by the available discretionary capacity. On the other 

hand, capacity normalization happens as the pressure eases. The equation for delivery 

lead time overshoot captures the easing of delivery pressure. This is the difference be-

tween the goal delivery lead time and the delivery lead time outlook (the ratio between 

the backlog and the current clearance rate). As the overshoot moves close to zero—all 

other things being equal—the normalization rule down-regulates the available capacity 

until it reaches the standard available capacity. 

 

Figure 10. Whole simulation model. (a): Choice of forecasting procedure. (b): RNN forecast—a 

“hook” that is programmatically substituted with online predictions via PySD. (c): Judgmental 

forecast. (d): Delay tolerance. (e): Capacity adjustment under delivery pressure. (f): Capacity 

ramp-up and ramp-down delays. 

As all the rules in the whole-model simulation, except the source of predictions, are 

the same, verifying the effect of improved forecast accuracy on the overall performance 

is allowed. In an ideal scenario—perfect forecast accuracy—the lost sales are zero, and 

the average inventory equals half of the average production orders (since the planned 

production is available at the start of the period and the consumption of inventory by 

sales is assumed to proceed at a constant rate). Thus, lost sales and average inventory 

are the outcome metrics—closer to actual business performance—that provide a window 

into how well the process metric (forecast accuracy) translates to improved performance, 

seen holistically. 
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Base Case 

As the first step of the whole-model simulation, setting the capacity profile to two 

months each for ramp-down and ramp-up and a 20% discretionary capacity, the results 

show a 39% improvement in lost sales (RNN over heuristics) performance and a 6% im-

provement in inventory (see Figures 11 and 12, and Table 2). 

Table 2. Outcome metrics summary. 
     

Case B vs. Case A  
Metric (in 

Units) 

Heuristics 

(H) 

RNN (R) R vs. H Heuristics RNN 

(A) Base case: 

20% discre-

tionary capac-

ity, quick 

ramp-up and 

ramp-down 

(1) 

Lost Sales 29.06 17.85 −39% N/A N/A  

Inventory 39.46 37.17 −6% N/A N/A 

(B) After heu-

ristic adjust-

ment: 20% 

discretionary 

capacity; 

quick ramp-

up and slow 

ramp-down 

(2) 

Lost Sales 26.10 10.27 −61% −10.2% −42.5% 

Inventory 39.52 37.54 −5% 0.2% 1.0% 

Notes: (1) Quick ramp-up and ramp-down: Capacity ramp-up lasts two months. Capacity normal-

ization when delivery pressure eases also lasts two months. (2) Quick ramp-up and slow ramp-

down: Capacity ramp-up lasts two months. However, capacity normalization when delivery pres-

sure eases lasts four months. 

At first glance, the results seem to live up to the promise of the forecast accuracy 

gains of RNN over heuristics. However, studying the graphs gives pause as it suggests 

that there are further improvements to be made. Focusing on the lost sales and capacity 

subplots and comparing the RNN and heuristics graphs, one sees that the capacity pro-

file in the case of RNN has significantly more spikes. The lost sales in the case of RNN 

are also much more densely clustered compared to heuristics. This behavior results from 

RNN’s superior ability to capture the peaks and troughs in customer demands (one can 

see this by comparing the production rate curves). In particular, the inability of heuris-

tics to anticipate the troughs results in excess inventory. The inventory build-up obviates 

the need for sustained additional capacity in the case of heuristics—thus, the capacity 

availability curve is smoother. 

On the other hand, the much-improved forecast accuracy of RNN translates to the 

production rate closely chasing actual demands, thereby leading to a leaner inventory 

profile. An additional consequence of the better anticipation of lows is that capacity 

seems to normalize too quickly during periods with “rugged” peaks. This suggests a 

simple adjustment (an increase) to the capacity ramp-down delay. Intuitively, a slower 

ramp-down should allow the provisioning of some buffer capacity to clear the backlog, 

even as the production rate continues to roughly trace the sharp turns in the demands. 
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Figure 11. Whole-model simulation results: heuristics with discretionary capacity; quick ramp-up 

and ramp-down. 
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Figure 12. Whole-model simulation results: RNN with discretionary capacity; quick ramp-up and 

ramp-down. 

Heuristic Adjustment 

After adjusting the ramp-down to four months (up from two months), the results 

show a 61% improvement in lost sales (RNN over heuristics) performance and a 5% im-

provement in inventory. This represents a 42.5% improvement in lost sales (with a slight 

1% degradation in inventory performance) for RNN over the base case (see Figures 13 

and 14, and Table 2). 

As intuitively hypothesized, the improvement in the case of heuristics over the pre-

vious scenario is minor in comparison (10% improvement in lost sales and a 0.2% deg-

radation in inventory performance) to RNN, given its tendency to build excess invento-

ry. Furthermore, as the capacity utilization for RNN is only slightly more than heuristics 

(3% more; 57.8 units/month versus 56.1 units/month), the nearly cost-neutral rule ad-

justment projects substantial overall gains. 
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Figure 13. Whole-model simulation results: heuristics with discretionary capacity; quick ramp-up 

and slow ramp-down. 
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Figure 14. Whole-model simulation results: RNN with discretionary capacity; quick ramp-up and 

slow ramp-down. 

A graph that overlays lost sales and the capacity profiles in the second scenario for 

RNN (see Figure 15) confirms our intuition regarding why RNN benefits disproportion-

ately from this rule change. The capacity availability profile in the second case has fewer 

spikes owing to the more gradual ramp-down, which allows for additional buffer capac-

ity (relative to case A) for clearing the backlog, resulting in less dense clustering of lost 

sales than before. 
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Figure 15. Comparing quick and slow ramp-down along lost sales and capacity measures. 

5. Discussion and Conclusions 

Despite the rapid pace of progress in ML, there are concerns about the disconnect 

between innovation and adoption [9] and between investments and value (e.g., [76,77]). 

A growing body of work reflecting on the state of ML notes the overemphasis of tech-

nology over transformation (e.g., [78,79]) and worker substitution over augmentation 

[15]. Consequently, there is neglect in studying the unique ways by which humans and 

ML can jointly unlock significantly more value (e.g., [14,22,80]). We contribute to the 

conversation by adopting the view that ML is a technological asset that combines in an 

organizational-specific manner with other assets, chiefly personnel, to generate value. In 

the following paragraphs, we discuss the primary insights from the simulations per-

formed using our proposed quantitative model that is suitably subjective (and holistic) 

in its conceptualization of the value-generation process. We also note the implications of 

these insights and how they relate to other works of a more conceptual/abstract nature 

in this area. 

Our simulations have highlighted that, although procedurally rational, local pro-

cess improvements (measured via process metrics) do not automatically translate to 

commensurate overall benefits (measured via outcome metrics). The system dynamics 

approach provides an elegant way to confirm the rationale of the improvement (in this 
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case, the ML intervention) through partial model tests before proceeding to whole-

model simulations to check for unintended global consequences. Although, as noted ear-

lier, the idea of partial-model tests is not new [56], employing the idea when the im-

provement comes from ML is novel. It assumes greater significance in light of recent 

work [17] on organizational learning (using an abstract agent-based modeling approach) 

in a human–ML collaborative context that shows that ML strongly influences the classic 

explore–exploit trade-off [81]. Specifically, since ML agents do not subscribe to preexist-

ing organizational mental models, they tend to facilitate nimbler exploration of the per-

formance landscape. However, this also amplifies the type of risk our experiments illus-

trate (entering an organization into operating regimes with an increased likelihood of 

untested decision routines or operating characteristics that might produce dysfunctional 

global outcomes). The new dynamics caused by the introduction of ML forecasting in 

our experiment underscores this point. 

Before ML, the incumbent heuristic method was slow to react to peaks and troughs 

in actual sales and returns (because of the inertia inherent in the anchor-and-adjust heu-

ristic, current perceptions change only slowly). More pertinent to the earlier point re-

garding exploration, ML predictions (from the forecasting process) that are closer to ac-

tual values readily expose the inadequacy of the adjacent capacity management process. 

For instance, some high values that ML predicts are more than the standard available 

capacity, and the rules for using additional discretionary capacity suffer from latency, 

leading to poor order fulfillment performance. The example confirms the folk wisdom in 

manufacturing, supported by rigorous research, that saving time at a non-bottleneck re-

source is a mirage [82]. Translated to the experiment, the forecast improvement beyond 

a point collides with the capacity bottleneck, which limits the performance (unless ad-

dressed). This example reinforces the point about broadening the scope of analysis—

organizational decision-making involves complex feedback loops that make it unrealistic 

to anticipate high-level outcomes accurately. 

In addition, the approach taken in the experiment to alleviate the problem demon-

strates the importance of complementarity between decision pairs. Concretely, the im-

provement took the form of reducing the delay in using the discretionary capacity. In 

general, ML increases the “clock speed” [83] of an organization, and the decision struc-

tures must keep pace, for example, through decentralization that tends to reduce the 

number of levels a decision has to pass through (reducing delays). 

A further implication of bottlenecks preventing subsystem improvements cascading 

to the system level—discovered through a synthetic rather than an analytical view of 

performance—is how it provides a valuable frame for questions about the value of data. 

In case additional data (costly to acquire and process) push the system to an operating 

point that surfaces limiting constraints fixed in the short term (e.g., physical assets or 

lead times), it puts a cap on benefits. This, in turn, helps ascertain the value of data col-

lection efforts. From a more technical standpoint, a systems lens strengthens the argu-

ment for a reasonable statistical baseline before attempting ML methods that usually re-

quire many predictors and complex nonlinear relationships (between predictors and the 

target variable) for their superior performance [84]. 

Treating data as instrumental to value (and not valuable in themselves) is a position 

that follows naturally from the causal modeling approach that is the bedrock of system 

dynamics simulation. Thus, the importance given to the data-generating process aligns 

with the position of the causal inference research community (gaining wider acceptance) 

that espouses the need for good explanations. In Pearl’s words, “empiricism should be 

balanced with the principles of model-based science” [62]. One can surmise the upshot 

of this from our simulations. By situating the forecasting process in the context of the 

end-to-end order-to-delivery process chain, the model makes prioritizing aspects of the 

explanation possible. For instance, one can focus on predictions that most impinge out-

comes and pose “why” questions (see Figure 16) to understand if they are representative 

or a product of anomalous inputs. In this way, the proposed modeling approach con-
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tributes to the explanatory AI work by identifying what the “completeness” criterion 

(for evaluating explanations) must entail. 

 

Figure 16. Causal modeling engenders asking relevant “why” questions to make algorithmic ra-

tionality less opaque. 
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Appendix A 

Table A1. System dynamics parameters. 

Variable Equation or Value Units 

Adjusted production rate 
IF THEN ELSE (“Use DNN?” = 1, MIN (Capacity, DNN predictions), MIN 

(Capacity, Judgmental production rate)) 
Pcs/Month 

Backlog INTEG (Sales orders − Fulfillment rate − Lost sales, 0) Pcs 

Capacity 
INTEG (Capacity augmentation rate − Capacity normalization rate, Nor-

mal capacity) 
Pcs/Month 

Capacity augmentation 

rate 

IF THEN ELSE (Delivery lead time overshoot > 0, Capacity flexibil-

ity/Capacity ramp-up time, 0) 
Pcs/(Month × Month) 

Capacity flexibility Maximum capacity − Capacity Pcs/Month 

Capacity normalization 

rate 

IF THEN ELSE (Delivery lead time overshoot > 0, 0, Excess capaci-

ty/Capacity ramp-down time) 
Pcs/(Month × Month) 

Capacity ramp-down 

time 
2 (base case); 4 (heuristic adjustment) Month 

Capacity ramp-up time 2 Month 

Delay tolerance 2 Month 

Delivery lead time goal 1 Month 

Delivery lead time out-

look 
IF THEN ELSE (backlog = 0, 1, Backlog/Fulfillment rate) Month 

Delivery lead time over-

shoot 
MAX(0, Delivery lead time outlook − Delivery lead time goal) Month 

Discrepancy with actual 

returns 
Returns time series (Time/One month) − Perception of returns Pcs/Month 

Discrepancy with actual 

sales 
Order time series (Time/One month) − Perception of sales Pcs/Month 

Discretionary capacity 0.2 Dmnl 

DNN predictions 
DNN sales predictions (Time/One month) − DNN returns predictions 

(Time/One month) 
Pcs/Month 

DNN returns predictions The result of RNN returns forecast is programmatically fed. Pcs/Month 

DNN sales predictions The result of RNN sales forecast is programmatically fed. Pcs/Month 

Excess capacity MAX(0, Capacity − Normal capacity) Pcs/Month 

FINAL TIME 96 Month 

Fulfillment rate MIN(Backlog, Inventory)/One month Pcs/Month 

INITIAL TIME 1 Month 

Inventory INTEG (Production rate + Return orders − Shipment rate, 0) Pcs 

Judgmental production 

rate 
Perception of sales − Perception of returns Pcs/Month 

Lost sales (Delivery lead time overshoot × Fulfillment rate)/Delay tolerance Pcs/Month 

Maximum capacity Normal capacity × (1 + Discretionary capacity) Pcs/Month 

Net requirements Sales orders − Return orders Pcs/Month 

Normal capacity 55 Pcs/Month 

One month 1 Month 

Order time series Test dataset for actual customer orders. Pcs/Month 

Perception of returns 

INTEG (Returns perception update, 19.67)  

(Note: 19.67 is the initial value; equals the average of last 6 months of re-

turns) 

Pcs/Month 

Perception of sales 
INTEG (Sales perception update, 70) 

(Note: 70 is the initial value; equals the average of last 6 months of sales) 
Pcs/Month 

Production rate Adjusted production rate Pcs/Month 

Return orders Returns time series (Time/One month) Pcs/Month 

Returns perception up-

date 
Discrepancy with actual returns/Update delay Pcs/(Month × Month) 

Returns time series Test dataset for actual customer returns. Pcs/Month 
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Sales orders Order time series (Time/One month) Pcs/Month 

Sales perception update Discrepancy with actual sales/Update delay Pcs/(Month × Month) 

Shipment rate Fulfillment rate Pcs/Month 

Update delay 3 Month 

“Use DNN?” Programmatically set to switch between heuristic forecasting and RNN. Dmnl 
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