
RIGHT:

URL:

CITATION:

AUTHOR(S):

ISSUE DATE:

TITLE:

Prerequisite-aware course ordering
towards getting relevant job
opportunities

Dai, Yiling; Yoshikawa, Masatoshi; Sugiyama,
Kazunari

Dai, Yiling ...[et al]. Prerequisite-aware course ordering towards getting relevant job
opportunities. Expert Systems with Applications 2021, 183: 115233.

2021-11-30

http://hdl.handle.net/2433/277446

© 2021 The Authors.; Published by Elsevier Ltd. This is an open access
article under the CC BY-NC-ND license

Expert Systems With Applications 183 (2021) 115233

Available online 15 June 2021
0957-4174/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Prerequisite-aware course ordering towards getting relevant
job opportunities

Yiling Dai *,1, Masatoshi Yoshikawa , Kazunari Sugiyama
Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan

A R T I C L E I N F O

Keywords:
Course ordering
Prerequisite
Job opportunity
Technical terminology
Markov decision process
Pedagogical perspectives

A B S T R A C T

Adapting learning experience according to the rapidly-changing job market is essential for students to achieve
fruitful learning and successful career development. As building blocks of potential job opportunities, we focus
on “technical terminologies” which are frequently required in the job market. Given a technical terminology, we
aim at identifying an order of courses which contributes to the acquisition of knowledge about the terminology
and also follows the prerequisite relationships among courses. To solve the course ordering problem, we develop
a two-step approach, in which course-terminology relatedness is first estimated and then courses are ordered
based on the prerequisite relationships and the estimated relatedness. Focusing on the second step, we propose a
method based on Markov decision process (MDPOrd) and compare it with three other methods: (1) a method that
orders courses based on aggregated relatedness (AggRelOrd), (2) a method that topologically sorts the courses
based on personalized PageRank values (PageRankTS), and (3) a method that greedily picks courses based on the
average relatedness (GVPickings). In addition to evaluating how the order prioritizes the related courses, we also
evaluate from pedagogical perspectives, namely, how the order prioritizes specifically/generally fundamental
courses, and how it places courses close to their prerequisites. Experimental results on two course sets show that
MDPOrd outperforms the other methods in prioritizing related courses. In addition, MDPOrd is effective in
ordering courses close to their prerequisites, but does not work well in highly ranking fundamental courses in the
order.

1. Introduction

Many college students experience the following when their gradua-
tions are approaching: flooded with a large amount of job postings,
closely looking at their curriculum vitae (CV), and struggling to attract
recruiters’ attention among a bunch of competitors’ applications. With
the development of open and online education, we hold a vision that, in
the near future, the students will be able to freely construct their own
curriculum, which is not prescribed by the institutions. In addition,
students are encouraged to accumulate working experience earlier as it
is helpful for building the professional identity (Kapoor & Gardner-
McCune, 2019). Consequently, it is necessary for students to keep
adapting their learning experience to achieve fruitful learning and suc-
cessful career development according to the frequent updates in the job
market.

“Technical terminologies” are important building blocks of job op-
portunities. For instance, scripting language is one of such

technical terminologies frequently required in IT job positions. In our
work, we address technical terminologies as students’ learning goals.
Given scripting language, what is the best order to take courses for
students? It is a difficult question even if the number of candidate
courses is small. Table 1 lists an example of eight courses related to
scripting language. According to the course title and the snippet of
the course content, we find that courses c12 and c17 are helpful for
learning some scripting languages such as Cascade Style Sheet, Java-
Script, and Python. In addition, course c21 also addresses some scripting
languages though they are not the main topics of the course. As a result,
we recommend courses c12,c17, and c21 to students, in which priority is
given to c12 and c17. However, some of these courses are built on the
basis of other courses. For example, before a student learns advanced
knowledge about web design and programming in course c12, the stu-
dent should understand the basic knowledge of web design and devel-
opment in course c6. Given a course, some courses that students need to
learn prior to it are called the prerequisites of it. Therefore, we need to not

* Corresponding author.
E-mail addresses: dai.yiling.4t@kyoto-u.ac.jp (Y. Dai), yoshikawa@i.kyoto-u.ac.jp (M. Yoshikawa), kaz.sugiyama@i.kyoto-u.ac.jp (K. Sugiyama).

1 Currently at Academic Center for Computing and Media Studies, Kyoto University, Kyoto 606-8501, Japan.

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2021.115233
Received 19 January 2021; Received in revised form 2 April 2021; Accepted 16 May 2021

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

mailto:dai.yiling.4t@kyoto-u.ac.jp
mailto:yoshikawa@i.kyoto-u.ac.jp
mailto:kaz.sugiyama@i.kyoto-u.ac.jp
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2021.115233
https://doi.org/10.1016/j.eswa.2021.115233
https://doi.org/10.1016/j.eswa.2021.115233
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2021.115233&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Expert Systems With Applications 183 (2021) 115233

2

only prioritize the courses related to the target terminology but also pay
attention to the prerequisite relationships among courses when
providing an order to take them. Actually, the number of candidate
courses and the complexity of the course prerequisite relationships are
expected to be much larger than the example shown in Table 1, which
motivates this work.

Many researchers have been working on recommending learning
materials using implicit (Srivastava, Palshikar, Chaurasia, & Dixit, 2018;
Polyzou, Nikolakopoulos, & Karypis, 2019; Zhang et al., 2019; Pardos &
Jiang, 2020) and explicit (Bridges et al., 2018; Jiang, Pardos, & Wei,
2019; Parameswaran & Garcia-Molina, 2009; Shi, Wang, Xing, & Xu,
2020; Xu, Xing, & Schaar, 2016; Zhao, Yang, Li, & Nie, 2020; Zhu et al.,
2018; Ma et al., 2020) approaches. Our work is the first to explicitly
combine two important factors behind the course selection behavior,
namely, the course prerequisite relationships and the job-oriented
learning goal. Other works aimed at recommending job opportunities
to students (Almaleh, Aslam, Saeedi, & Aljohani, 2019; Guo, Alamudun,
& Hammond, 2016; Qin et al., 2018; Jacobsen and Spanakis, 2019) or
recommending learning materials for career demands (Srivastava et al.,
2018; Wang et al., 2020). While the former works ignored the course
prerequisite relationships and orders (Almaleh, Aslam, Saeedi, & Aljo-
hani, 2019; Guo, Alamudun, & Hammond, 2016; Qin et al., 2018;
Jacobsen and Spanakis, 2019), the latter ones focused on short-term
learning scenarios in which only one course is recommended (Srivas-
tava et al., 2018; Wang et al., 2020). In contrast, our work is helpful for
planning long-term learning in which multiple courses are involved.

We develop a two-step approach to solve the course ordering prob-
lem: The first step estimates the relatedness of the courses to the tech-
nical terminology (hereafter, course-terminology relatedness). Then the
second step determines the order of the courses based on the estimated
relatedness and prerequisite relationships. We address the first step as a
general task of relatedness estimation and put emphasis on the second
step. Specifically, we then propose a method for ordering courses based
on Markov decision process (Puterman, 1994) and conduct comparative
experiments.

Furthermore, we explore whether the order is relevant from other
pedagogical perspectives, such as whether the very basic course ranked
first, the course is close to its prerequisites in the order, and so on. We
conduct experiments on two different course sets and compare the
strengths and weaknesses of the methods comprehensively.

The contributions of our work are summarized as follows:

• To the best of our knowledge, our work is the first that attempts to
order the courses towards a job-oriented learning goal by following
the prerequisite constraint.

• Our work is information retrieval-driven and education-aware one.
In other words, we mainly serve the students whose information gain

is maximized by following the order, and also explore whether the
generated order is helpful for students or not from educational
perspectives.

• We construct a fair-scale dataset annotated with three kinds of labels
that denote relatedness between courses and technical
terminologies.

The remaining of this paper is organized as follows: In Section 2, we
review related works by highlighting the major differences between our
work and them. In Section 3, we formulate our task. In Section 4, we
detail our proposed and its comparative methods. In Section 5, we
present our dataset, experimental results, and discuss them in detail.
Finally, we conclude the work with a summary and directions for future
work in Section 6.

2. Related work

2.1. Recommending learning materials

Students select learning materials (e.g., courses) based on various
factors such as their interest toward the subject, the expectancy of
achieving high grades, the alignment with their career plans, the social
aspects, and the popularity of the materials (Ma et al., 2020). Therefore,
to achieve better recommendation of learning materials, such factors
should be taken into account.

Some works adopted implicit approaches where the reasons under-
lying the recommendations are hidden in the model and the training
data. Srivastava et al. (2018) employed sequence mining techniques to
identify the next training program a user is likely to take from the his-
torical data. Polyzou et al. (2019) constructed a course transition graph
from the course enrollment data and predicted the next course to take
based on a random walk model. Zhang et al. (2019) built an attention-
based recommendation model from the course enrollment data and
proposed a hierarchical reinforcement learning algorithm to revise the
course sequence and modify the recommendation model. Pardos and
Jiang (2020) adopted skip-gram model to learn the course embeddings
from the course enrollment data and recommend the most similar course
for a given course. These works assume that the observed course taking
behavior is the best answer we can expect. However, the observed
course enrollment patterns are the consequences of complex decision
making processes. The reasons that lead the students to take courses in
those sequences have not been unveiled yet.

Other works included explicit rationales behind the student behav-
iors into their models. Parameswaran and Garcia-Molina (2009) aimed
at finding the set of k items which has the maximum total score and
meanwhile meets the prerequisite constraint.2 Xu et al., 2016 developed
a forward-search backward-induction algorithm to optimize course se-
quences with shorter time needed for graduation. Bridges et al. (2018)
constructed a course transition graph from the student enrollment and
grade data, in order to recommend the next course which is popular
among the students and provides a grade improvement for the given
student. Jiang, Pardos, and Wei (2019) used recurrent neural network to
predict course grade from the student course enrollment and grade
history. Zhao, Yang, Li, and Nie (2020) combined neural attention
network and course prerequisite relation embeddings so that the rec-
ommended course is similar and understandable to the courses a student
has taken. Ma et al. (2020) proposed a hybrid framework to recommend
courses from three aspects, namely, the interest-based, timing-based,
and grade-based scores. Zhu et al. (2018) and Shi, Wang, Xing, and Xu
(2020) proposed a method for recommending learning paths from a
knowledge map by meeting multiple constraints such as whether the
paths contain unlearnt, important or popular knowledge nodes, and so

Table 1
Example of courses.

ID Courses

c1 Computer Programming 1
c2 Computer Programming 2
c4 Data Structures and Algorithm Analysis
c6 Web Site Design and Development
c12 Advanced Web Design and Programming

(…Students examine advanced topics in Hyper Text Markup Language,
Cascade Style Sheet and JavaScript for …)

c13 Database Systems
c17 Programming Methods

(…Students learn a combination of visual programming using C# and scripting
language using Python in this course. …)

c21 Web-based Information Systems
(…Students use a variety of web development tools and programming/
scripting languages. …)

2 Although the order is neglected in their problem, the algorithm can be
adapted to solve our problem and the details are explained in Section 4.2.3.

Y. Dai et al.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Expert Systems With Applications 183 (2021) 115233

3

on.
We attempt to identify a course order that meets the prerequisite

relationships and the job-oriented goal. Compared with previous works,
our work has the following advantages: (a) the model and the result are
easy to explain, (b) we focus on the under-explored learning goal that is
aligned with job opportunities, and (c) we aim at ordering multiple
courses so that the information gain at each position is optimized.

2.2. Connecting academia and industries

To bridge the gap between the academia and the industries, many
works attempted to recommend job opportunities to students or
recommend learning materials for career demands.

A common approach can be observed in a category of research works
in which the most “similar” job to the student’s educational background
is recommended (Almaleh, Aslam, Saeedi, & Aljohani, 2019; Guo, Ala-
mudun, & Hammond, 2016; Qin et al., 2018; Jacobsen and Spanakis,
2019). Commonly, job postings and student CVs are utilized, and then
various techniques, such as ontology-based skill similarity (Guo et al.,
2016), recurrent neural network (Qin et al., 2018), latent Dirichlet
allocation (Jacobsen & Spanakis, 2019), and naïve Bayes classifier
(Almaleh et al., 2019), are adopted to estimate the similarity between
them. These works treated the students’ learning experience as a whole,
namely, all the courses are completed and the students’ acquisition level
of those courses influences the recommendation performance. On the
other hand, our work puts much emphasis on making a plan for learning,
in which the course prerequisite relationships and orders are more
important.

Another category of research works attempted to identify relevant
courses or training programs for job positions or demands of career
development (Srivastava et al., 2018; Wang et al., 2020). Srivastava
et al. (2018) inferred a course which a student is most likely to take next
by mining from a large-scale course enrollment data. Wang et al. (2020)
recommended a course based on the employee’s current competencies
modelled from their skill profiles. For this reason, their works concen-
trated on the short-term learning needs, namely, the next one course is
recommended for the student. Our work not only extracts the most
necessary courses but also achieves prerequisite-aware course ordering
for long-term learning needs.

2.3. Adapting Markov decision process

Markov decision process (MDP) is a stochastic sequential decision
model, which has been widely applied to inventory management,
equipment maintenance, communication systems, and so on (Puterman,
1994). The main idea behind MDP is to find the best set of decisions that
optimizes the long-term reward.

Some researchers have adapted MDP to solve information retrieval
and recommendation problems. Tavakol and Brefeld (2014) formulated
the item view session of the user in an e-commerce system as MDP and
estimated the parameters from a labeled dataset. They modeled the item
as a disjoint set of attributes and recommended the item that best fits the
estimated distribution over the attributes. Murray (2015) leveraged
MDP to generate a summary from a corpus, where the next word in the
sentence is selected based on its importance and the co-occurrence with
the previous word. Srivastava et al. (2018) proposed a recommender
system that provides a next training program from the historical training
sequence data in a similar way of MDP. Xia et al. (2017) employed MDP
to diversify a search result, where the perceived utility of the user is
modeled as the state and optimized in the algorithm.

Although MDP has been applied to many tasks, our work is the first
to adopt it for the course ordering problem. The difficulties are twofold:

(a) How can we model the problem under an MDP framework given the
learning goal and the prerequisite constraint? (b) How can we estimate
the parameters without relying on a labeled dataset? Section 4.1 de-
scribes the details.

3. Formulating our task

3.1. Awareness of prerequisite relationships

Generally, we need to acquire some knowledge before understanding
more advanced knowledge. For instance, if we do not know “algorithms”
at all, it is difficult to understand the “complexity of an algorithm”. In
taking courses, following the prerequisite relationships among courses is
essential.

In traditional educational institutions, course prerequisite relation-
ships are defined by the curriculum designers. In open and online edu-
cation, massive learning materials are available. For the latter learning
environment, research works focusing on the extraction of prerequisite
relationships among concepts (Liang, Wu, Huang, & Giles, 2015; Gor-
don, Zhu, Galstyan, Natarajan, & Burns, 2016; Pan, Li, Li, & Tang, 2017;
Sayyadiharikandeh, Gordon, Ambite, & Lerman, 2019) are helpful.
Works on prerequisite extraction are orthogonal to our work and we
assume the prerequisite relationships are given in our problem setting.

3.2. Definition of a “relevant” order

Given a technical terminology, we address how to effectively acquire
the knowledge related to it. Fig. 1 shows the prerequisite relationships
among the courses in Table 1 and how these courses are related to
scripting language. Then, the relevant order is generated by highly
ranking the courses which are related to the terminology. In other
words, c1→c6→c12→c2→c17→c4→c13→c21 (hereafter, Order 1) is a
relevant order as all the related courses (i.e., c12,c17, and c21) are ranked
in the highest positions where they could appear. The goal of our work is
to identify the most relevant order by taking the prerequisite constraint
into account.

3.3. Observation from pedagogical perspectives

Depending on the complexity of the course network and the number
of related courses, there may exist more than one relevant order of
courses for a technical terminology. Even for the simple course re-
lationships in Fig. 1, we can find another order, c1→c2→c17→c6→c12→

Fig. 1. Prerequisite relationships among courses.

Y. Dai et al.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Expert Systems With Applications 183 (2021) 115233

4

c4→c13→c21 (hereafter, Order 2), which is equally relevant as Order 1 in
terms of prioritizing related courses. However, Orders 1 and 2 give
different effects on a student’s learning experience. For example, Order
1 places c12 prior to c17, which is desirable if the student prefers learning
a basic course first and then other advanced courses. In contrast, Order
2, where c12 is placed closer to c21, is more desirable if a student dislikes
the time lag between a course and its prerequisites. Hence, we explore
the relevancy of an order from the following pedagogical perspectives.

• Specific fundamentality. Specific fundamentality defines how
likely a course will form the basis towards understanding the tech-
nical terminology. Prioritizing such courses makes a student’s basic
knowledge solid, helping the learning of more advanced knowledge.

• General fundamentality. In contrast to specific fundamentality
above, general fundamentality defines how likely a course will form
the basis towards understanding the whole domain. A general
fundamentality-focused order is especially important in a learning
context with high uncertainty. In other words, if students change
their goals during the learning process, they can still benefit from the
courses they have already completed since the courses also
contribute to the understanding of other terminologies.

• Local reference. Local reference refers to placing the prerequisites
of a course closer to it. From a cognitive point of view, to shorten the
time lag between courses with dependency helps reduce the extra
cognitive load in learning (Agrawal, Golshan, & Papalexakis, 2016;
Paas, Renkl, & Sweller, 2003).

Theoretically, our concerns are various aspects that affect a student’s
learning experience. However, it is difficult to satisfy all types of stu-
dents’ learning preferences at the same time as some of them are
inherently contradictory to each other. Our work mainly proposes a
method for identifying “relevant” orders for understanding the termi-
nology, and we explore whether the orders are relevant from the
aforementioned pedagogical perspectives.

3.4. Problem definitions

A course set V and the prerequisite relationships E = {(ci, cj)
⃒
⃒ci, cj ∈

V, course ci is a prerequisite of course cj} forms a course graph G = 〈V,
E〉. In our work, when given a technical terminology t and a course graph
G, we aim at identifying an order Ord(V|t) = (ci,…, cj) subject to the
prerequisite relationships and prioritizing the courses closely related to
t. In the following sections, we denote pos(c,Ord) and Ord[i] as the po-
sition of c in Ord and the course at the ith position in Ord, respectively.

4. Methodology

To acquire the knowledge of a given technical terminology, we need
to not only identify the related courses but also pay attention to the
prerequisites when deciding the order to take them. Intuitively, our task
consists of the following two steps:

(STP1) Estimation of how each course is related to the given technical
terminology, namely, course-terminology relatedness, and

(STP2) Ordering the courses based on their course-terminology relat-
edness and prerequisite relationships.

In STP1, course-terminology relatedness can be estimated by
matching the textual information of courses and terminologies. Relat-
edness estimation is an essential and ever-growing research domain in
information retrieval, natural language processing, machine learning,

and data mining. A variety of existing approaches can help realize it. In
this work, we do not focus on the proposal or comparison of relatedness
estimation methods. Instead, we adopt one of the simplest methods—
TF-IDF scheme (Salton & Buckley, 1988) to obtain the course-
terminology relatedness. Refer to the book (Manning, Raghavan, &
Schütze, 2008) to understand relatedness estimation and the survey
(Altinel and Ganiz, 2018) to learn recent advances. We then focus on
STP2 to propose a method for ordering courses given course-
terminology relatedness.

4.1. Proposed method— Markov Decision Process-Based Ordering
(MDPOrd)

4.1.1. Intuition of adapting Markov decision process
To acquire the knowledge of a given technical terminology, deciding

the order to take the courses involves a sophisticated judgement over
multiple factors. Firstly, we need to identify the courses we are qualified
to take based on the courses we have already taken. Secondly, we need
to consider the instant knowledge acquisition by selecting a new course.
Last but not least, we need to forecast the future gain of selecting a new
course. In other words, we may choose a course that itself gives slight
knowledge gain but is helpful for learning more advanced courses about
the terminology. As a result, every step in the course ordering process
should be based on the possible options and the expectation of the future
gain by taking that step. MDP can model this process well and identify
an order of courses that optimizes the information gain from a long-term
perspective.

4.1.2. Formulation of MDPOrd
A general model of MDP consists of decision epochs T, states S, ac-

tions A, rewards R, transition probabilities P, discount factor γ, and
policies Π, namely, denoted as {T, S,A,R,P, γ,Π}. In this framework, a
decision maker follows a policy to take an action at each epoch, receives
a reward and transits between states. The main goal is to find a policy
which leads to a state with optimal discounted future gain. We explain
how each components are modeled in the following:

Decision Epochs. Let T be the discrete time steps in the system. In
our work, we adopt infinite horizon T ≡ {1,2,…} to find the best policy,
which assumes the system does not know how long the process will last
at any time step. Infinite horizon assures a stationary policy for any state
regardless at what time step it reaches the state. The practical meaning
of infinite horizon in our work can be explained as follows: the system
will suggest the same course order whenever the students start learning.
This is reasonable if we assume the students always have sufficient time
to learn the courses.

States. Let S be the set of possible states the system occupies at a time
step. In our work, a state s is a set of courses a student has completed. As
our work needs to follow prerequisite relationships, for any state s, if it
includes a course c, it must include the prerequisites of c. Therefore, we
denote a possible s = {cj ∈ V

⃒
⃒∃(ci, cj) ∈ E⇒ci ∈ s}. It is time-consuming

to exhaust all the possible states, especially when a course is allowed
to have more than one prerequisite in the graph. Table 2 demonstrates
the process of generating valid states for the course graph in Fig. 1 and
the followings detail the process:

1. We add a dummy node to the graph and connect it to the original
root nodes (the value of its in-degree is 0) in the graph. The addition
of a dummy node assures that
(a) all the sub graphs are linked as one graph if more than one root

exist, and

Y. Dai et al.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Expert Systems With Applications 183 (2021) 115233

5

(b) the generated states will always include an empty set, which is
the start state to find an order of courses.

2. We traverse the graph in a depth-first way from the dummy node.
Whenever we explore a new node, we generate new states by adding
this node to the current states based on the following two rules:
(RL1) Given a node at exploration, new states must be generated

from the states generated from its parent and other explored
descendants. For example, when we are exploring c17, its
parent c2 and other descendants of c2 (c4 and c13) are already
explored. We generate new states by adding c17 to all the
generated states from c2,c4, and c13 (Steps 3 to 5).

(RL2) Given nodes with multiple parents, we only generate new
states at the last time we explore it, and new states must
contain all of its parents. For example, when we first explore
c21 in Step 6 where the other parent c12 has not been explored
yet, it is skipped. The last time we explore c21 when all of its
parents have been explored, we can generate new states by
adding c21 to the states in Step 9 which include both of its
parents c12 and c13.

Finally, we take the union of all the states generated alongside the tra-
verse as S.

Actions. A denotes the union of actions that the decision maker is
allowed to take at each state. In this case, an action is the behavior to
take a new course at the current state. Subject to the constraint, the valid
action for a state is any course whose prerequisites (if any exists) are
already included in the state. For the example in Fig. 2, given s1 = {c1},
the valid actions are c2 and c6.

Rewards. R = S × A denotes the immediate reward obtained from
taking a course c at state s. In our work, the reward comes from the

information gain towards understanding the technical terminology by
taking a course. To this end, we use course-terminology relatedness rel(c,
t) to represent the immediate reward. Eq. (1) defines how an immediate
reward r(s, c) from taking c at s is computed:

r
(

s, c
)

=

{
rel(c, t) c ∕∈ s, s ∪ {c} ∈ S

0 otherwise (1)

In Fig. 2, the reward of taking c2 from s1 is 0.1.
Transition Probabilities. P = S × A × S denotes the distributions of

the probabilities that the system transits from states to states by taking
courses. p(s, c, s′) denotes the probability that the system transits from s
to s′ by taking c. Note that

∑
s′ p(s,c,s

′

) = 1. In our work, we simplify the
transition probability by considering the system will keep transiting to
the next state if some courses are taken. If the action is invalid, the state
remains unchanged. Eq. (2) defines this:

p
(

s, c, s’
)

=

{
1 s ∪ {c} = s’

0 otherwise
(2)

As shown in Fig. 2, the probability of transiting from s1 to s2 by taking c2
is 1.

Discount Factor. γ denotes a parameter ranged in 0⩽γ < 1 modi-
fying how much of the future gain values currently. This parameter is
mainly set for a mathematical reason, allowing the decision maker to
find an optimal policy. In our experiment, we set γ to 0.96, which is a
commonly used value in MDP.

Policy. Π = S→A denotes the moving pattern of a decision maker at
each state. In MDP model, a policy that maximizes the expected value of
all the states is defined as an optimal policy π*. The expected value of a
state ExpVal(s) comes from the immediate reward of taking an action
and the expected value of the next state. The best we can expect from a
state ExpVal*(s) is the maximum value of all policies and the optimal
policy for s is the action that maximizes ExpVal(s), defined by Eqs. (3)
and (4), respectively:

ExpVal*(s) = maxc(r(s, c)+ γ
∑

s′
pr(s, c, s′

)ExpVal(s′

)), (3)

Fig. 2. An example of how to order courses in MDP framework. For simplicity,
we only include four nodes in the course graph. The value beside the node
indicates the course-terminology relatedness.

Table 2
Process of generating valid states for the course graph in Fig. 1.

Step Node From Parents visited Generated states

1 dummy – True ∅
2 c1 dummy True {c1}

3 c2 c1 True {c1, c2}

4 c4 c2 True {c1, c2,c4}

5 c13 c4 True {c1, c2,c4, c13}

6 c21 c13 False –
7 c17 c2 True {c1, c2,c17}

{c1, c2,c4, c17}

{c1, c2,c4, c13, c17}

8 c6 c1 True {c1, c6}

{c1, c2,c6}

{c1, c2,c4, c6}

{c1, c2,c4, c13, c6}

{c1, c2,c17 ,c6}

{c1, c2,c4, c17, c6}

{c1, c2,c4, c13, c17,c6}

9 c12 c6 True {c1, c6,c12}

{c1, c2,c6, c12}

{c1, c2,c4, c6,c12}

{c1, c2,c4, c13, c6,c12}

{c1, c2,c17 ,c6, c12}

{c1, c2,c4, c17, c6,c12}

{c1, c2,c4, c13, c17,c6, c12}

10 c21 c12 True {c1, c2,c4, c13, c6,c12, c21}

{c1, c2,c4, c13, c17,c6, c12, c21}

Y. Dai et al.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Expert Systems With Applications 183 (2021) 115233

6

π*(s) = argmaxc(r(s, c)+ γ
∑

s′
pr(s, c, s′

)ExpVal(s′

)). (4)

Eqs. (3) and (4) can be solved using dynamic programming algorithms
which find an approximation of the optimal policy until it converges.
The table in Fig. 2 illustrates the value iteration process using the toy
example. The dotted frame shows how the state value of s1 and its best
action are calculated in the second iteration. At s1, c2 is chosen as the
expected value of taking c2 is greater than the one of taking c6. In this
example, the iteration stops when all the state values are finally
converged.

Ordering. In this step, we utilize the output of MDP model to provide
relevant course ordering. Once the optimal policy π* is found, we start
with the empty set and follow the best actions to move from one state to
another state. If all the courses have a positive reward value, following
the optimal policy leads us to a state in which all courses are included. As
shown in Fig. 2, c1→c6→c2→c17 is identified as the order to take the
courses. If not, the state remains unchanged at some point where no
more reward can be obtained by taking a new course. In this case, we
sort the remaining non-rewarded courses topologically and append
them to the order.

4.2. Comparative methods

We compare MDPOrd with the following three different types of
methods:

• Aggregated-Relatedness-Based Ordering (AggRelOrd),
• Personalized-PageRank-Based Topological Sorting (PageRankTS),

and
• Greedy-Value-Pickings-Based Ordering (GVPickings).

The intuition behind AggRelOrd and PageRankTS is that the priority
of a course in the order is determined by its direct relatedness to the
terminology and how likely it will be the prerequisite of other related
courses. On the other hand, GVPickings selects the courses as a set of
paths, where a highly related course having many prerequisites still
have a chance to be selected at an earlier stage. We compare these three
methods to verify whether our proposed approach works better in
ordering the courses. In the following sections, we explain each of the
three comparative methods.

4.2.1. Aggregated-Relatedness-Based Ordering (AggRelOrd)
As described above, a course should be prioritized as it is related to

the terminology itself and it is the basis of other courses. This method
simply treats the maximum relatedness among all the descendants of a
course as an aggregated score to indicate its priority. Let D(c) be the set
of courses that have a path from c in the course graph, namely, the de-
scendants of c in the graph. Let aggRel denote the aggregated relatedness
of a course. Then aggRel is computed as:

aggRel(c|t,V) = (max
c′∈c∪D(c)

rel(c′

, t)) + |D(c)|δ, (5)

where δ is a very small value added to assure that the score a course gets
is always larger than its descendants, thus subject to the prerequisite
constraint. At last, the courses are sorted in the order of their aggRel
scores.

4.2.2. Personalized-PageRank-Based Topological Sorting (PageRankTS)
PageRank (Page, Brin, Motwani, & Winograd, 1999) estimates the

probability of a “random walker” who ultimately stops at each node in
the network if it follows the links. Therefore, the probability distribution
shows the linkage of the network. The more incoming links, the higher
probability a node gets. Furthermore, a personalized PageRank (Page
et al., 1999; Jeh & Widom, 2003) enables the model to estimate a mixed
probability distribution of following both the network linkage and a
personalized preference over the nodes. As described at the beginning of
Section 4.2, the position of a course in the order should be determined by
the relatedness to the terminology and how likely the course will be the
prerequisite of other related courses. Here, the direct relatedness be-
tween the course and the terminology can be represented in the
personalized preference in the PageRank model. In addition, the likeli-
hood of being a prerequisite of other related courses can be captured in
the network links part in PageRank model.

We follow the matrix–vector notation in Jeh and Widom’s work (Jeh
& Widom, 2003) to explain how the PageRank-based score of each
course is computed. Let v→ be the PageRank scores over the courses in
the graph, and u→ be the course-terminology relatedness. Let M→ be the
transition matrix of the graph where Mij =

1
|indegree(cj)|

if ci is prerequisite
of cj and Mij = 0 otherwise. β ∈ [0, 1] is a teleportation constant and
modifies the probability that the “random walker” follows the person-
alized preference over the nodes.3 Solving Eq. (6) gives a PageRank-
based score v→ for each course.

v→= (1 − β)M→ v→+ β u→ (6)

Note that the score provided by the PageRank model is not neces-
sarily subject to our prerequisite constraint. In other words, it is possible
that a course which has many outgoing edges gets a higher score than its
parent course who has no other children. To solve this problem, we rely
on topological sorting to reorder the courses based on their PageRank-
based scores. As shown in Algorithm 1, line 2–6 is the basic process of
topological sorting with a modification in line 4, where the course with
the highest PageRank-based score and no any prerequisites is always
selected first.

4.2.3. Greedy-Value-Pickings-Based Ordering (GVPickings)
As described in Section 2.1, Parameswaran and Garcia-Molina

(2009) proposed Greedy Value Pickings which recommends the best
set of k items with the maximum total score and meets the prerequisite
constraint. However, their work did not consider the order of items in
the set even if the total score is maximized. While Greedy Value Pickings
is not designed for ordering the items at the first place, we adapt it to our
work. We enhance Greedy Value Pickings by utilizing the order that k

Algorithm 1: PageRank-based topological sorting (PageRankTS)

3 We only report the results obtained by β = 0.2 in Section 5 as it gives the
best performance.

Y. Dai et al.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Expert Systems With Applications 183 (2021) 115233

7

items are added to the final set as the order required in our work, which
is shown in Algorithm 2. The basic idea behind this algorithm is to al-
ways add the path of courses with the largest average score to the order.
As our course graph allows multiple parents for a node, all the paths
towards a node should be included if we add a node (lines 4 and 5). Once
a path (or paths) of courses is added to the final order, the average scores
of the remaining paths are recomputed and the picking is conducted
again. The process of computation and picking is repeated until all the
courses are correctly ordered.

5. Experiments

5.1. Dataset

For the convenience of data collection and analysis, we select com-
puter science domain to verify the effectiveness of our proposed
methods.

5.1.1. Course graph
We collect course syllabi and prerequisite relationships from the

bachelor curricula of computer science in Thompson Rivers University4

and Rutgers University5. We select these curricula as we can access
sufficient course information and prerequisite relationships. As a result,
we obtain two course graphs— Course Graph 1 with 24 courses and 30
prerequisite relationships, and Course Graph 2 with 20 courses and 25
prerequisite relationships (see Tables A.1, A.2, and Fig. A.1 for further
details). In Section 5.4, we report the results for the two course graphs
separately.

5.1.2. Technical terminology
We extract a set of technical terminologies, which are frequently

required by the job postings in a kaggle dataset.6 The dataset consists of
19,000 job postings collected from the Armenian human resource portal
CareerCenter during 2004 to 2015. We use 3,759 of the them which are
labelled as IT-related. We first remove unnecessary sections such as
“Company location”, “Salary”, “Application procedure”, and so on, by
utilizing some basic text processing techniques. We then extract the
technical terminologies from the pre-processed texts by applying entity
extraction tool Wikifier, which works well in detecting abstractive
concepts (e.g., “software development”) and is linked to Wikipedia.

More specifically, we employ TAGME (Ferragina & Scaiella, 2010) and
DBpedia Spotlight (Daiber, Jakob, Hokamp, & Mendes, 2013) and
include the terminologies identified by any of them in the terminology
set. While we address the job postings in IT-related domain only, the
extracted terminologies still include general ones such as “knowledge”,
“communication”, and so on. As each of the terminologies has its asso-
ciated Wikipedia page, we filter out irrelevant terminologies that is
greater than six hops distant from the Wikipedia category “Computing”.
Finally, we collect 3,803 terminologies and select the 100 most frequent
terminologies in the job postings among them.

5.1.3. Ground truth
It is beyond the cognitive capacity even for an expert to decide the

order of taking the courses with complex prerequisite relationships. In
addition, it is difficult to integrate several orders into one. To avoid this,
we first ask several experts what courses are necessary to take for a given
technical terminology without directly collecting the order of courses
from them. We then evaluate the relatedness of an order with some
traditional information retrieval metrics. We discuss the details in Sec-
tion 5.3.

We invite five domain experts to construct our ground truth. Given a
technical terminology, we first provide them with the graph and the
syllabi of the courses, and then ask them to annotate which courses are
necessary or preferable to take for better understanding the terminol-
ogy. Note that “necessary” is a higher level of relatedness than “pref-
erable”. In this annotation task, each pair of a course and a terminology
can be regarded as an item, and the domain experts give either of the
following three labels: “necessary”, “preferable”, or “unnecessary” to the
pair. Some technical terminologies such as computer programming
and productivity software are too general or unrelated to the
computer science domain. It is difficult for the domain experts to
annotate a proper label for any of the courses for them. We call this type
of terminology “irrelevant” and exclude the terminologies viewed as
irrelevant by at least one domain expert. Finally, we obtain 67 termi-
nologies in the dataset (see Table B.3 for further details).

We evaluate the agreement among five domain experts with Fleiss
kappa coefficient (Fleiss, 1971), resulting in moderate agreement of
0.405 and 0.308 for Course Graph 1 and Course Graph 2, respectively. In
a majority-vote method, the five domain experts and the three labels
sometimes make it difficult to determine the final label. Therefore, we
adopt DS algorithm (Dawid & Skene, 1979), which is one of stochastic
approaches, to estimate the probabilities of which label is likely to be
given to the pair of course and terminology. Then, we choose the label
with the highest probability as the ground truth.

5.2. Estimation of course-terminology relatedness

As described at the beginning of Section 4, our work does not mainly
focus on estimating course-terminology relatedness. Using different

Fig. 3. An example of how to compute nDCG.

Algorithm 2. Greedy-Value-Pickings-Based Ordering (GVPickings)

4 https://www.tru.ca/science/programs/compsci/programs/cs_bachelor_of_c
omputing_science.html, last accessed on January 18, 2021.

5 https://www.cs.rutgers.edu/academics/undergraduate/course-synopses/ar
ticles, last accessed on March 19, 2021.

6 https://www.kaggle.com/madhab/jobposts/, last accessed on January 18,
2021.

Y. Dai et al.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

https://www.tru.ca/science/programs/compsci/programs/cs_bachelor_of_computing_science.html
https://www.tru.ca/science/programs/compsci/programs/cs_bachelor_of_computing_science.html
https://www.cs.rutgers.edu/academics/undergraduate/course-synopses/articles
https://www.cs.rutgers.edu/academics/undergraduate/course-synopses/articles
https://www.kaggle.com/madhab/jobposts/

Expert Systems With Applications 183 (2021) 115233

8

techniques in relatedness estimation and then comparing their impact
on the course ordering performance is beyond the scope of this work.
Instead, we use the course-terminology relatedness annotated by the
domain experts in STP1 to explore the best performance that STP2 can
achieve. We discuss the details in Section 5.5.1. Here, we adopt a simple
yet effective method, TF-IDF scheme (Salton & Buckley, 1988) to esti-
mate course-terminology relatedness. More specifically, we use course
syllabus and the leading section in Wikipedia page for the term as the
course and terminology corpus. We first compute TF-IDF score from
both of the corpus and then take the cosine similarity of the course and
terminology vectors as the relatedness score.

5.3. Evaluation metrics

We adopt normalized discounted cumulative gain (nDCG) (Järvelin
& Kekäläinen, 2002) to measure the relatedness, specific funda-
mentality, and general fundamentality of an order of courses. In addi-
tion, we propose a distance metric to measure the degree of local
reference of an order of courses.

5.3.1. General model of nDCG
nDCG is a widely used metric in information retrieval, which mea-

sures how an order of items prioritizes the ones with a higher infor-
mation gain. Fig. 3 illustrates a simple example of how to compute
nDCG. Firstly, the information gain of each item is discounted according
to its position. The lower in the order, the more information gain is
discounted. Secondly, the cumulative discounted gain is computed by
summing up the discounted gain of all the items. At the same time, we
reorder the items based on their information gain to obtain an “ideal”
order of these items. Lastly, we normalize the cumulative discounted
gain of the original order using the one of the ideal order.

nDCG meets our need to measure how an order prioritizes items that
provide information of interest such as relatedness, specific funda-
mentality, and general fundamentality. Let nDCG@k(Ord) be the
normalized discounted cumulative gain of an order Ord for items at
position k. nDCG@k(Ord) is computed as follows:

nDCG@k(Ord) =
DCG@k(Ord)

DCG@k(Ordideal)
, (7)

DCG@k(Ord) =
∑k

i=1

gain(Ord[i])
log2(i + 1)

, (8)

where DCG@k(Ord) is the discounted cumulative gain of Ord at position
k,Ordideal is the ideal order ranked according to the information gain of
the items, and gain(Ord[i]) is the information gain of the ith item in Ord.
By replacing gain(⋅) with the information to be explored, we can adapt
nDCG to measure the relatedness, specific fundamentality or general
fundamentality of an order.

5.3.2. Relatedness of an order
We denote Relatedness@k to measure how an order prioritizes related

courses to the terminology. Let relgt
(c, t) be the score defined by the

ground truth of course-terminology relatedness, which is transformed
from the domain experts’ annotated labels as follows:

relgt(c, t) =

⎧
⎨

⎩

α if the label for c is “necessary”
1 − α if the label for c is “preferable”
0 if the label for c is “unnecessary”,

(9)

where α (0⩽α⩽1) is a parameter to tune the level of relatedness.7 Then
Relatedness@k is computed by replacing gain(⋅) in Eqs. (7) and (8) with
relgt

(c, t).

5.3.3. Specific fundamentality of an order
We denote SpecFdm@k to measure how an order prioritizes specif-

ically fundamental courses to the terminology. Let SpecFdm(c|t) be the
specific fundamentality of a course for a terminology in the graph. We
then define SpecFdm(c|t) as follows:

SpecFdm(c|t) =
∑

c′∈D(c)relgt(c′

, t)
∑

c′∈V⧹crelgt(c′
, t)

, (10)

where D(c) is the set of descendants of c in the graph. SpecFdm(c|t) re-
flects the proportion of the related knowledge based on c to the total
amount of related knowledge for the terminology. Then SpecFdm@k is
computed by replacing gain(⋅) in Eqs. (7) and (8) with SpecFdm(c|t).

5.3.4. General fundamentality of an order
We denote GenFdm@k to measure how an order prioritizes generally

fundamental courses in the domain. Let GenFdm(c) be the general fun-
damentatity of a course in the graph. Then it is computed as:

GenFdm(c) =
|D(c)|
|V| − 1

. (11)

GenFdm(c) reflects the proportion of the knowledge based on c to the

Fig. 4. Relatedness obtained by MDPOrd, AggRelOrd, PageRankTS, and
GVPickings for Course Graph 1.

7 We set α = 0.7 in this work.

Y. Dai et al.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Expert Systems With Applications 183 (2021) 115233

9

total knowledge in the domain. Then GenFdm@k is computed by
replacing gain(⋅) in Eqs. (7) and (8) with GenFdm(c).

5.3.5. Local reference of an order
We propose “Average Reference Distance (ARD)” to inversely mea-

sure how likely an order will place courses close to their prerequisites.
We denote ARD@k as the average distance between the courses and their
prerequisites of an order at position k. Let RelDis(c|Ord) be the reference
distance of c in Ord. We then define RelDis(c|Ord) as follows:

RelDis(c|Ord) =

⎧
⎪⎨

⎪⎩

0 Pre(c) = ∅
∑

c′∈Pre(c)

pos(c,Ord) − pos(c′

,Ord)

|Pre(c)|
otherwise

, (12)

where Pre(c) is the set of direct prerequisites of c in G = 〈V, E〉, i.e.,
Pre(c) = {c′

|(c′

, c) ∈ E}. Then ARD@k is computed as:

ARD@k =

∑k
i=1RelDis(Ord[i])

k −
∑k

i=11{Pre(Ord[i]) = ∅}
. (13)

Here, 1{⋅} is an indicator function which equals 1 if {⋅} is true,
0 otherwise.

In summary, Relatedness@k,SpecFdm@k, and GenFdm@k range in [0,
1]. In addition, the larger the scores, the better the performance. On the
other hand, ARD@k ranges from 0 to some positive value based on the
size and structure of a graph. The smaller ARD@k is, the higher the
degree of local reference, indicating a better performance.

5.4. Experimental results

5.4.1. Course Graph 1
Relatedness. Fig. 4a shows the average nDCG-based relatedness of the

orders of Course Graph 1 obtained by the four methods (MDPOrd,
AggRelOrd, PageRankTS, and GVPickings) described in Section 4 by
varying k.

Overall, the Relatedness value ranges from 0 to 0.45 as the value of k
increases. We observe that GVPickings and MPDOrd slightly outperform
AggRelOrd and PageRankTS, especially when k is larger than 9. To
further observe the performance over different terminologies, Fig. 4b

shows Relatedness@11 scores for each terminologies. According to
Fig. 4b GVPickings and MDPOrd show a similar relatedness score dis-
tribution over the terminologies while AggRelOrd and PageRankTS
show some significant performance drop for some of the terminologies.

What do these scores indicate in the orders? We pick two technical
terminologies to demonstrate the relation between the Relatedness dif-
ference and the order difference. Fig. 5 shows the orders generated by
the four methods. In formal specification, c15 (Software Engineer-
ing) is considered necessary to take and it is not ordered within the top
11 courses by AggRelOrd, which leads to a Relatedness score of 0.
Meanwhile, three lower positions of c15 in PageRankTS results in around
0.1 drop in the Relatedness compared with GVPickings and MDPOrd. In
debugging, the domain experts annotate both c15 (Software Engi-
neering) and c17 (Programming Methods) as necessary. All the methods
successfully rank c17 in its optimal position while AggRelOrd and Pag-
eRankTS place c15 five and two lower positions than GVPickings and
MDPOrd, respectively. The two lower positions for c15 result in a
decrease of 0.03 in the Relatedness of the order. The drop of 0.03 is small
in the evaluation metric. However, the order forces the students to learn
two more courses before they can reach the one which is helpful for the
acquisition of knowledge on the terminology.

Comparison between the two terminologies indicates that the posi-
tioning of the first related course substantially influences the final
Relatedness score. While following related courses in the order do not
give a large impact on the Relatedness score, the wrong positioning of
them results in extra learning cost in actual cases. In summary, we
believe that GVPickings and MDPOrd work well.

To further discuss why GVPickings and MDPOrd work better than
AggRelOrd and PageRankTS, we analyze the frameworks of four
methods for the terminology debugging. Fig. 6a shows the estimated
course-terminology relatedness scores, in which c17 (Programming
Methods), c10 (Operating Systems), and c15 (Software Engineering) give
the top three scores 0.177,0.129, and 0.106, respectively. However, only
c17 and c15 are annotated as necessary by the domain experts. Thus, the
relatedness of c10 is overestimated in STP1. Fig. 6b illustrates how the
order is determined in each method and how c10 affects the ordering
process.

AggRelOrd aggregates the score of a course based on its most related
descendant. As shown in Fig. 6b, c1 and c2 obtain their scores

Fig. 5. Examples of orders generated by our proposed methods for Course Graph 1. In each sub-figure, the orders for one terminology are presented. The row and cell
color denote the position in the order and the course-term relatedness annotated by the domain experts, respectively. Only the top 11 courses in the orders are
demonstrated to compactly show the results.

Y. Dai et al.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Expert Systems With Applications 183 (2021) 115233

10

(0.177+n⋅δ) from the relatedness of c17 with their corresponding small
value δ. As a result, the order is determined by ranking the most related
courses: c17, c10, and c15 with their ancestors ({c1 and c2}, {c18, c24, c4,
and c3}, and {c7}, respectively). PageRankTS computes the score of each
course from the scores of their children recursively. As shown in Fig. 6b,
the relatedness of c17, c10, and c15 is transferred to other courses. Note
that the PageRank scores of c15 and c10 are partially propagated to their
parents and also partially propagated from their children. In this case,
c10 only has a non-related child c20, resulting in a lower score (0.048)
than that of c15 (0.058). GVPickings picks paths based on their average
relatedness. As shown in Fig. 6b, the path from c7 to c15 gets a higher
average value (0.072) than those from c18 to c10 (0.057), resulting in
lower rank for c10 while it has a higher relatedness than c15. The decision
maker in MDPOrd compares the expected values among multiple
candidate orders. For example, placing c10 prior to c15 results in an in-
crease of expected value from c10 but a larger decrease of that from c15.
Therefore, the upper order is finally selected.

In summary, AggRelOrd works better in prioritizing a highly-related
course no matter how deep it locates in the graph. Consequently, it
cannot globally optimize relatedness of the order and wrongly estimated
course often generates wrong order. PageRankTS does keep a balance

Fig. 6. Analysis on the frameworks of AggRelOrd, PageRankTS, GVPickings,
and MDPOrd for the terminology debugging and Course Graph 1.

Fig. 7. SpecFdm and GenFdm obtained by AggRelOrd, PageRankTS, GVPick-
ings, and MDPOrd, varying position k for Course Graph 1.

Fig. 8. ARD obtained by AggRelOrd, PageRankTS, GVPickings, and MDPOrd,
varying position k for Course Graph 1.

Y. Dai et al.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Expert Systems With Applications 183 (2021) 115233

11

between the relatedness of a course and the relatedness of its de-
scendants. However, the courses with more children tend to be over-
estimated and the courses without any child tend to be underestimated.
In contrast, GVPickings and MDPOrd consider the impact of selecting a
course from a long-term perspective. Therefore, GVPickings and
MDPOrd are more robust for wrongly estimated course-terminology
relatedness and demonstrate more stable performances than AggRe-
lOrd and PageRankTS.

Pedagogical metrics. Figs. 7 and 8 show the SpecFdm, GenFdm, and
ARD scores for the orders of Course Graph 1 generated by the four
methods, AggRelOrd, PageRankTS, GVPickings, and MDPOrd. We
observe similar trends for SpecFdm and GenFdm. Note that SpecFdm and
GenFdm scores for the orders obtained by the four methods are relatively
close to 1, which is due to the prerequisite relationships. In other words,
a course that is prerequisite for more courses is usually ordered in a
higher position, resulting in better fundamentality score. Among the
four methods, AggRelOrd and PageRankTS outperform GVPickings and
MDPOrd in both of the fundamentality scores, which can be inferred
from the frameworks of AggRelOrd and PageRankTS. AggRelOrd
chooses the maximum value among the course and its descendants as the
aggregated value of this course. As a result, a course with more de-
scendants, which is more fundamental one, is ordered higher in most
cases. In PageRankTS, 80% of the priority of a course comes from the
outgoing edges, which shows the fundamentality of the course.

On the other hand, in ARD, we observe different trends as shown in
Fig. 8. The difference between (AggRelOrd, PageRankTS) and
(GVPickings, MDPOrd) is getting larger as the value of k increases.
GVPickings explores the courses in the unit of paths, which makes it
easier to sequentially order a path of courses. In MDPOrd, if the first
course of a path is not so closely related, the courses on the path tend to
be ordered lower. In other words, the decision maker in MDPOrd tends
to choose courses in the current path to starting a new path. In contrast,
AggRelOrd and PageRankTS tend to prioritize courses with more de-
scendants in the graph, resulting in more jumps in the order from one
course to another without any prerequisite relationships.

5.4.2. Course Graph 2
Relatedness. Fig. 9a shows the average nDCG-based relatedness of the

orders of Course Graph 2 obtained by the four methods (MDPOrd,
AggRelOrd, PageRankTS, and GVPickings) described in Section 4 by
varying k. Overall, the Relatedness of AggRelOrd, GVPickings, and
MDPOrd is greater than the one of PageRankTS. When k⩽5 and k⩾13,
MDPOrd outperforms the other methods. Although slight improvement
is obtained at the average Relatedness@13 of MDPOrd over AggRelOrd
and GVPickings, the specific Relatedness@13 of different terminologies

Fig. 9. Relatedness obtained by MDPOrd, AggRelOrd, PageRankTS, and
GVPickings for Course Graph 2.

Fig. 10. Analysis on the frameworks of AggRelOrd, PageRankTS, GVPickings,
and MDPOrd for the terminology knowledge base and Course Graph 2.

Y. Dai et al.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Expert Systems With Applications 183 (2021) 115233

12

varies. As shown in Fig. 9b, MDPOrd gives significantly better results
over the other methods on some of the terminologies (e.g., t17, t29, t47,
etc.)

We take the terminology knowledge base as an example to further
discuss how the methods perform on Course Graph 2. For knowledge
base, c19 is annotated as necessary and {c11, c18} are annotated as
preferable courses. As shown in Fig. 10a, c11, c19, and c18 obtain the
highest relatedness scores 0.243,0.191, and 0.119 in STP1, respectively.
Given the course graph and the estimated relatedness, we observe that
AggRelOrd, GVPickings, and MDPOrd rank c11 at a higher position while
PageRankTS places it one position lower. In PageRankTS framework, c5
has more descendants than c11 so that it gets a higher score and takes
over the positions of c3 and c11. AggRelOrd, GVPickings, and MDPOrd
generate different orders from c11. GVPickings places c18 higher than a
more related course c19. As shown in Fig. 10b, the paths from c1 to c18
are selected at once since they have a larger average relatedness. It is not
desirable for GVPickings to take such a large step of seven courses as it
may ignore other potential courses. AggRelOrd ranks {c5, c8, c19} and {
c7, c18} according to the relatedness of c19 and c18. AggRelOrd performs
well when the highly-related courses are located deep in the graph or

when their prerequisites have low relatedness. MDPOrd chooses to place
c19 higher than c18 based on a comparison of other possible orders. In
summary, AggRelOrd and MDPOrd succeed to rank related courses at
higher positions even if they have many prerequisites.

Pedagogical metrics. Figs. 11 and 12 show the SpecFdm,GenFdm, and
ARD scores for the orders of Course Graph 2 generated by the four
methods, AggRelOrd, PageRankTS, GVPickings, and MDPOrd. We
observe similar results with Course Graph 1— AggRelOrd and Pag-
eRankTS outperform GVPickings and MDPOrd in both of the funda-
mentality scores while GVPickings and MDPOrd work well in ordering
courses at a shorter reference distance.8

5.5. Discussion

5.5.1. Analysis on performance obtained by STP1 and STP2
In this work, we put much emphasis on STP2 to identify an order of

related courses for the technical terminology and adopt TF-IDF scheme
to estimate course-terminology relatedness. As described in Section 5.2,
we use the course-terminology relatedness annotated by the domain
experts as the input of STP2 to explore the upper bounds of the perfor-
mance of STP2.

Fig. 13 shows that using the ground truth in STP1 achieves better
Relatedness than using TF-IDF scheme-based course-terminology relat-
edness. As described in Section Relatedness, the relatedness of
debugging and c10 (Operating Systems) is overestimated by TF-IDF
scheme. This is because the terms such as “system” and “memory”
show relatively higher frequency scores in c10, and debugging includes
these terms. However, if these terms are addressed with more textual
information such as “operating system”, “main memory”, “memory
cache”, and so on in c10, the relatedness score for debugging would be
reasonable one. Therefore, improving relatedness estimation is one of
our future works.

5.5.2. Comparison of performance on different course graphs
In this work, we conduct experiments on two different course graphs.

As described in Section 5.4, we observe that MDPOrd works well in
prioritizing related courses for both course graphs. The performance of
the other methods such as GVPickings and AggRelOrd varies with the
structures of course graph and the locations of highly-related courses.
From pedagogical perspectives, AggRelOrd and PageRankTS are effec-
tive in prioritizing specifically and generally fundamental courses while

Fig. 11. SpecFdm and GenFdm obtained by AggRelOrd, PageRankTS, GVPick-
ings, and MDPOrd, varying position k for Course Graph 2.

Fig. 12. ARD obtained by AggRelOrd, PageRankTS, GVPickings, and MDPOrd,
varying position k for Course Graph 2.

8 We omit detailed analysis as it is discussed in Section 5.4.1.

Y. Dai et al.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Expert Systems With Applications 183 (2021) 115233

13

GVPickings and MDPOrd work well in ordering courses at a shorter
reference distance.

Compared with MDPOrd, AggRelOrd and GVPickings demonstrate
competitive performances in prioritizing related courses. We use a
simple example to compare how the course order is determined in
AggRelOrd, GVPickings, and MDPOrd frameworks. As shown in the top
left of Fig. 14, suppose that we have a course graph of five courses with
their course-terminology relatedness.

AggRelOrd prioritizes the path toward the most related course e. As a
result, the secondly related course c is set aside and placed at the last

position. AggRelOrd has a strength of spotting a highly-related course
especially when it has many prerequisites. However, AggRelOrd is short-
sighted and permits no other plans once the path toward the high-
related course is detected.

In contrast, GVPickings examines more possible paths as shown in
the top right of Fig. 14. Specifically, it selects a→b→d→e over a→b→c in
the first round of picking as it has the largest average relatedness
(0.175). It is reasonable that GVPickings takes the cost of prerequisite
courses into consideration. However, there remains a concern that
whether the duplicated part of different paths should be counted as the

Fig. 13. Relatedness obtained by AggRelOrd, PageRankTS, GVPickings, and MDPOrd by using ground truth and TF-IDF based relatedness in STP1, varying position k.

Fig. 14. Comparison among AggRelOrd, GVPickings, and MDPOrd frameworks using a simple example.

Y. Dai et al.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Expert Systems With Applications 183 (2021) 115233

14

cost. For example, if a→b is included into the order, it is better to take c
next to get a relatedness gain of 0.3 rather than to take d→e to get an
average relatedness gain of 0.25. Therefore, when GVPickings picks a
long path of courses, it needs a more sophisticated way to compute the
average relatedness.

On the other hand, MDPOrd works from a future-oriented perspec-
tive. The bottom right of Fig. 14 shows the state-action transition pattern
in the MDP model, where a rectangle represents a state, an arrow rep-
resents an action, and a bold arrow indicates the best policy for a state.
For each state, the best policy is chosen based on the reward and the
expected value of the future states. At state {a, b}, taking c, d, and e
ensures a higher expected value than any other plans. In other words,
MDPOrd chooses to take c first when given the case where it always
needs to take a non-reward course d before being able to take the most
related course e.

In summary, AggRelOrd prioritizes the most related course without
considering the cost and other possibilities. GVPickings examines the
cost of taking a related course but sometimes overestimates the influ-
ence of prerequisite courses. MDPOrd orders courses from a future-
based perspective and keeps a balance among multiple related cour-
ses. Actually, the strengths of AggRelOrd and GVPickings are the
weaknesses of MDPOrd: (a) MDPOrd does not necessarily rank the
highly-related courses if they have many unrelated prerequisites; (b)
MDPOrd makes decisions independent of the past, which means the cost
of taking previous courses is ignored.

6. Conclusion and future work

In this work, we have addressed the problem of ordering the related
courses for a given technical terminology while following the prereq-
uisite relationships among courses. We proposed a two-step approach
where the course-terminology relatedness is first estimated and then
courses are ordered based on the prerequisite relationships and the
estimated relatedness. Putting much emphasis on the second step, we
proposed a Markov Decision Process-Based Ordering (MDPOrd) method
and compared it with the other three methods— AggRelOrd, Pag-
eRankTS, and GVPickings. Except for evaluating how an order priori-
tizes related courses for a terminology, we also evaluated from
pedagogical perspectives, namely, how the order prioritizes specif-
ically/generally fundamental courses, and how it places courses close to
their prerequisites.

We conducted the experiments on two course graphs with different

courses and prerequisite relationships. The results showed that MDPOrd
achieved the best performance on prioritizing related courses when we
observe more than 11 and 13 positions of the order for Course Graphs 1
and 2, respectively. For pedagogical metrics, we observed that AggRe-
lOrd and PageRankTS worked well in prioritizing fundamental courses
while GVPickings and MDPOrd were effective in ordering courses at a
shorter reference distance. Furthermore, we discussed how the course
order is generated in different methods with specific examples. We
concluded that MDPOrd orders courses from a future-based perspective
and keeps a balance among multiple related courses. However, MDPOrd
tends to be influenced by the unrelated prerequisites of highly-related
courses and ignores the cost of taking previous courses.

In future work, we plan to address the followings: We used courses
collected from two curricula in which prerequisite information is
available. Thus, we plan to explore whether we can apply our method to
order courses in more learning resources such as Massive Open Online
Courses (MOOC). In addition, we only evaluated the orders generated by
our methods from a pedagogical point of view. It would be more useful if
we could use other pedagogical perspectives to further improve the
orders. As pointed out as a limitation, current MDPOrd ignores the cost
of previous courses when determining the order. It could be a promising
direction to integrate the cost into the schemes of reward and transition
probability.

CRediT authorship contribution statement

Yiling Dai: Conceptualization, Methodology, Software, Writing -
original draft. Masatoshi Yoshikawa: Writing - review & editing, Su-
pervision. Kazunari Sugiyama: Writing - review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Appendix A. Course information

Fig. A.1. Course graph structures in our experiments.

Y. Dai et al.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Expert Systems With Applications 183 (2021) 115233

15

Appendix B. Technical terminology information

References

Agrawal, R., Golshan, B., & Papalexakis, E. (2016). Toward data-driven design of
educational courses: A feasibility study. Journal of Educational Data Mining (JEDM), 8
(1), 1–21.

Almaleh, A., Aslam, M. A., Saeedi, K., & Aljohani, N. R. (2019). Align my curriculum: A
framework to bridge the gap between acquired university curriculum and required
market skills. Sustainability, 11(9).

Altinel, B., & Ganiz, M. C. (2018). Semantic text classification: A survey of past and
recent advances. Information Processing & Management, 54(6), 1129–1153.

Table B.3
Technical terminologies used in our experiments.

ID Technical terminology ID Technical terminology

t1 Web application t35 Computer program

t2 Object-oriented programming t36 Web service

t3 Database t37 World Wide Web

t4 SQL t38 Computer hardware

t5 Knowledge representation

and reasoning

t39 Machine learning

t6 Programming language t40 Subroutine

t7 JavaScript t41 Graphical user interface

t8 Software development

process

t42 Software bug

t9 Software testing t43 Knowledge base

t10 HTML t44 Unit testing

t11 Operating system t45 Debugging

t12 Microsoft SQL Server t46 Data management

t13 Java virtual machine t47 Agile software

development

t14 Software engineering t48 Modular programming

t15 Java (programming language) t49 JavaServer Pages

t16 Cascading Style Sheets t50 Java Platform,

Enterprise Edition

t17 Software maintenance t51 Data structure

t18 MySQL t52 Test case

t19 PHP t53 Stored procedure

t20 Formal specification t54 Algorithmic efficiency

t21 Active Server Pages t55 Transact-SQL

t22 Web server t56 Hypertext Transfer

Protocol

t23 Computer network t57 Relational database

t24 Scripting language t58 HTML5

t25 Unix t59 Test automation

t26 ASP.NET t60 Client–server model

t27 Ajax (programming) t61 Software deployment

t28 Computational problem t62 Internet protocol suite

t29 Software design pattern t63 Software project

management

t30 Algorithm t64 Software documentation

t31 Digital signature t65 Apache HTTP Server

t32 User interface t66 Version control

t33 Web development t67 Java servlet

t34 JQuery

Table A.1
Course information in Course Graph 1.

ID Course Prerequisite ID

c1 Computer Programming 1 –
c2 Computer Programming 2 c1

c3 Introduction to Computer Systems c2,c18

c4 Data Structures and Algorithm Analysis c2,c24

c5 Mobile App Development c2

c6 Web Site Design and Development c1

c7 Software Architecture & Design c2

c8 Computer Network Security c9

c9 Computer Networks c3,c4

c10 Operating Systems c3,c4

c11 Human Computer Interaction Design c6

c12 Advanced Web Design and Programming c4,c6

c13 Database Systems c4

c14 Applied Artificial Intelligence c4

c15 Software Engineering c7

c16 Computing Science Project c15

c17 Programming Methods c2

c18 Discrete Structure 1 for Computer Science –

c19 Algorithm Design and Analysis c4

c20 Distributed Systems c9,c10 ,c13

c21 Web-based Information Systems c12, c13

c22 Expert Systems c14

c23 Systems Software Design c15

c24 Discrete Structure 2 for Computer Science c18

Table A.2
Course information in Course Graph 2.

ID Course Prerequisite ID

c1 Introduction to Computer Science –
c2 Data Structures c1

c3 Introduction to Discrete Structures I c1

c4 Introduction to Discrete Structures II c3

c5 Computer Architecture c2

c6 Software Methodology c2

c7 Systems Programming c5

c8 Principles of Programming Languages c3,c5

c9 Numerical Analysis and Computing –
c10 Introduction to Imaging and Multimedia c2,c4

c11 Principles of Information and Data Management c2,c3

c12 Design and Analysis of Computer Algorithms c2,c4

c13 Internet Technology c4,c5

c14 Compilers c5,c8

c15 Operating Systems Design c7

c16 Distributed Systems: Concepts and Design c15

c17 Introduction to Computer Graphics c2

c18 Database Systems Implementation c7,c11

c19 Introduction to Artificial Intelligence c8

c20 Formal Languages and Automata c12

Y. Dai et al.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

http://refhub.elsevier.com/S0957-4174(21)00665-5/h0005
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0005
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0005
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0010
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0010
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0010
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0015
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0015

Expert Systems With Applications 183 (2021) 115233

16

Bridges, C., Jared, J., Weissmann, J., Montanez-Garay, A., Spencer, J., & Brinton, C. G.
(2018). Course recommendation as graphical analysis. In Proceedings of the 52nd
Annual Conference on Information Sciences and Systems (CISS) (pp. 1–6).

Daiber, J., Jakob, M., Hokamp, C., & Mendes, P. N. (2013). Improving efficiency and
accuracy in multilingual entity extraction. In Proceedings of the 9th International
Conference on Semantic Systems (I-SEMANTICS’13) (pp. 121–124). Association for
Computing Machinery.

Dawid, A. P., & Skene, A. M. (1979). Maximum likelihood estimation of observer error-
rates using the EM algorithm. Journal of the Royal Statistical Society. Series C (Applied
Statistics), 28(1), 20–28.

Ferragina, P., & Scaiella, U. (2010). TAGME: On-the-fly annotation of short text
fragments (by Wikipedia Entities). In Proceedings of the 19th ACM International
Conference on Information and Knowledge Management (CIKM’10) (pp. 1625–1628).

Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters. Psychological
Bulletin, 76(5), 378–382.

Gordon, J., Zhu, L., Galstyan, A., Natarajan, P., & Burns, G. (2016). Modeling Concept
Dependencies in a Scientific Corpus. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (ACL 2016) (pp. 866–875). volume 2.

Guo, S., Alamudun, F., & Hammond, T. (2016). RésuMatcher: A Personalized Résumé-
Job Matching System. Expert Systems with Applications, 60, 169–182.

Jacobsen, A., & Spanakis, G. (2019). It’s a Match! Reciprocal Recommender System for
Graduating Students and Jobs. In Proceedings of the 12th International Conference
on Educational Data Mining (EDM 2019) (pp. 580–583).

Järvelin, K., & Kekäläinen, J. (2002). Cumulated gain-based evaluation of IR techniques.
ACM Transactions on Information Systems (TOIS), 20(4), 422–446.

Jeh, G., & Widom, J. (2003). Scaling Personalized web search. In n Proceedings of the 12th
International Conference on World Wide Web (WWW’03) (pp. 271–279).

Jiang, W., Pardos, Z. A., & Wei, Q. (2019). Goal-based course recommendation. In
Proceedings of the 9th International Conference on Learning Analytics & Knowledge
(LAK’19) (pp. 36–45).

Kapoor, A., & Gardner-McCune, C. (2019). Understanding CS undergraduate students’
professional identity through the lens of their professional development. In
Proceedings of the 2019 ACM Conference on Innovation and Technology in Computer
Science Education (ITiCSE’19) (pp. 9–15).

Liang, C., Wu, Z., Huang, W., & Giles, C.L. (2015). Measuring Prerequisite Relations
among Concepts. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP 2015) (pp. 1668–1674).

Ma, B., Taniguchi, Y., & Konomi, S. (2020). Course Recommendation for University
Environments. In Proceedings of the 13th International Conference on Educational
Data Mining (EDM 2020) (pp. 460–466).

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval.
Cambridge University Press.

Murray, G. (2015). Abstractive Meeting Summarization as a Markov Decision Process. In
Proceedings of the 28th Canadian Conference on Artificial Intelligence (Canadian AI
2015) (pp. 212–219).

Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design:
recent developments. Educational Psychologist, 38(1), 1–4.

Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank Citation Ranking:
Bringing Order to the Web. Technical Report SIDL-WP-1999-0120 Stanford Digital
Library Technologies Project.

Pan, L., Li, C., Li, J., & Tang, J. (2017). Prerequisite Relation Learning for Concepts in
MOOCs. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (ACL 2017) (pp. 1447–1456). volume 1.

Parameswaran, A. G., & Garcia-Molina, H. (2009). Recommendations with prerequisites.
In Proceedings of the 3rd ACM Conference on Recommender Systems (RecSys’09) (pp.
353–356).

Pardos, Z. A., & Jiang, W. (2020). Designing for serendipity in a university course
recommendation system. In Proceedings of the 10th International Conference on
Learning Analytics & Knowledge (LAK’20) (pp. 350–359).

Polyzou, A., Nikolakopoulos, A.N., & Karypis, G. (2019). Scholars Walk: A Markov Chain
Framework for Course Recommendation. In Proceedings of the 12th International
Conference on Educational Data Mining (EDM 2019) (pp. 396–401).

Puterman, M. L. (1994). Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons Inc.

Qin, C., Zhu, H., Xu, T., Zhu, C., Jiang, L., Chen, E., & Xiong, H. (2018). Enhancing
person-job fit for talent recruitment: An ability-aware neural network approach. In
Proceedings of the 41st International ACM SIGIR Conference on Research & Development
in Information Retrieval (SIGIR’18) (pp. 25–34).

Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval.
Information Processing & Management, 24(5), 513–523.

Sayyadiharikandeh, M., Gordon, J., Ambite, J.-L., & Lerman, K. (2019). Finding
prerequisite relations using the wikipedia clickstream. In Companion Proceedings of
the 2019 World Wide Web Conference (WWW’19 Companion) (pp. 1240–1247).

Shi, D., Wang, T., Xing, H., & Xu, H. (2020). A learning path recommendation model
based on a multidimensional knowledge graph framework for E-learning. Knowledge-
Based Systems (KBS), 195, Article 105618.

Srivastava, R., Palshikar, G. K., Chaurasia, S., & Dixit, A. (2018). What’s next? A
recommendation system for industrial training. Data Science and Engineering (DSE), 3
(3), 232–247.

Tavakol, M., & Brefeld, U. (2014). Factored MDPs for detecting topics of user sessions. In
Proceedings of the 8th ACM Conference on Recommender Systems (RecSys’14) (pp.
33–40).

Wang, C., Zhu, H., Zhu, C., Zhang, X., Chen, E., & Xiong, H. (2020). Personalized
Employee Training Course Recommendation with Career Development Awareness.
In Proceedings of the Web Conference 2020 (WWW’20) (pp. 1648–1659).

Xia, L., Xu, J., Lan, Y., Guo, J., Zeng, W., & Cheng, X. (2017). Adapting markov decision
process for search result diversification. In Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR’17) (pp.
535–544).

Xu, J., Xing, T., & Schaar, M.v.d. (2016). Personalized course sequence
recommendations. IEEE Transactions on Signal Processing (TSP), 64(20), 5340–5352.

Zhang, J., Hao, B., Chen, B., Li, C., Chen, H., & Sun, J. (2019). Hierarchical reinforcement
learning for course recommendation in MOOCs. In Proceedings of the 33rd AAAI
Conference on Artificial Intelligence (AAAI-19) (pp. 435–442).

Zhao, Z., Yang, Y., Li, C., & Nie, L. (2020). GuessUNeed: Recommending courses via
neural attention network and course prerequisite relation embeddings. ACM
Transactions on Multimedia Computing, Communications, and Applications (TOMM), 16
(4), 132:1–132:17.

Zhu, H., Tian, F., Wu, K., Shah, N., Chen, Y., Ni, Y., Zhang, X., Chao, K.-M., & Zheng, Q.
(2018). A multi-constraint learning path recommendation algorithm based on
knowledge map. Knowledge-Based Systems (KBS), 143, 102–114.

Y. Dai et al.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

http://refhub.elsevier.com/S0957-4174(21)00665-5/h0020
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0020
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0020
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0025
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0025
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0025
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0025
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0030
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0030
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0030
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0035
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0035
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0035
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0040
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0040
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0050
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0050
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0060
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0060
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0065
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0065
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0070
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0070
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0070
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0075
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0075
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0075
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0075
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0090
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0090
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0100
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0100
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0115
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0115
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0115
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0120
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0120
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0120
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0130
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0130
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0135
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0135
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0135
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0135
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0140
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0140
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0145
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0145
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0145
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0150
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0150
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0150
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0155
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0155
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0155
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0160
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0160
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0160
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0170
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0170
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0170
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0170
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0175
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0175
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0180
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0180
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0180
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0185
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0185
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0185
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0185
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0190
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0190
http://refhub.elsevier.com/S0957-4174(21)00665-5/h0190

	Prerequisite-aware course ordering towards getting relevant job opportunities
	1 Introduction
	2 Related work
	2.1 Recommending learning materials
	2.2 Connecting academia and industries
	2.3 Adapting Markov decision process

	3 Formulating our task
	3.1 Awareness of prerequisite relationships
	3.2 Definition of a “relevant” order
	3.3 Observation from pedagogical perspectives
	3.4 Problem definitions

	4 Methodology
	4.1 Proposed method— Markov Decision Process-Based Ordering (MDPOrd)
	4.1.1 Intuition of adapting Markov decision process
	4.1.2 Formulation of MDPOrd

	4.2 Comparative methods
	4.2.1 Aggregated-Relatedness-Based Ordering (AggRelOrd)
	4.2.2 Personalized-PageRank-Based Topological Sorting (PageRankTS)
	4.2.3 Greedy-Value-Pickings-Based Ordering (GVPickings)

	5 Experiments
	5.1 Dataset
	5.1.1 Course graph
	5.1.2 Technical terminology
	5.1.3 Ground truth

	5.2 Estimation of course-terminology relatedness
	5.3 Evaluation metrics
	5.3.1 General model of nDCG
	5.3.2 Relatedness of an order
	5.3.3 Specific fundamentality of an order
	5.3.4 General fundamentality of an order
	5.3.5 Local reference of an order

	5.4 Experimental results
	5.4.1 Course Graph 1
	5.4.2 Course Graph 2

	5.5 Discussion
	5.5.1 Analysis on performance obtained by STP1 and STP2
	5.5.2 Comparison of performance on different course graphs

	6 Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A Course information
	Appendix B Technical terminology information
	References

