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A B S T R A C T   

Adapting learning experience according to the rapidly-changing job market is essential for students to achieve 
fruitful learning and successful career development. As building blocks of potential job opportunities, we focus 
on “technical terminologies” which are frequently required in the job market. Given a technical terminology, we 
aim at identifying an order of courses which contributes to the acquisition of knowledge about the terminology 
and also follows the prerequisite relationships among courses. To solve the course ordering problem, we develop 
a two-step approach, in which course-terminology relatedness is first estimated and then courses are ordered 
based on the prerequisite relationships and the estimated relatedness. Focusing on the second step, we propose a 
method based on Markov decision process (MDPOrd) and compare it with three other methods: (1) a method that 
orders courses based on aggregated relatedness (AggRelOrd), (2) a method that topologically sorts the courses 
based on personalized PageRank values (PageRankTS), and (3) a method that greedily picks courses based on the 
average relatedness (GVPickings). In addition to evaluating how the order prioritizes the related courses, we also 
evaluate from pedagogical perspectives, namely, how the order prioritizes specifically/generally fundamental 
courses, and how it places courses close to their prerequisites. Experimental results on two course sets show that 
MDPOrd outperforms the other methods in prioritizing related courses. In addition, MDPOrd is effective in 
ordering courses close to their prerequisites, but does not work well in highly ranking fundamental courses in the 
order.   

1. Introduction 

Many college students experience the following when their gradua-
tions are approaching: flooded with a large amount of job postings, 
closely looking at their curriculum vitae (CV), and struggling to attract 
recruiters’ attention among a bunch of competitors’ applications. With 
the development of open and online education, we hold a vision that, in 
the near future, the students will be able to freely construct their own 
curriculum, which is not prescribed by the institutions. In addition, 
students are encouraged to accumulate working experience earlier as it 
is helpful for building the professional identity (Kapoor & Gardner- 
McCune, 2019). Consequently, it is necessary for students to keep 
adapting their learning experience to achieve fruitful learning and suc-
cessful career development according to the frequent updates in the job 
market. 

“Technical terminologies” are important building blocks of job op-
portunities. For instance, scripting language is one of such 

technical terminologies frequently required in IT job positions. In our 
work, we address technical terminologies as students’ learning goals. 
Given scripting language, what is the best order to take courses for 
students? It is a difficult question even if the number of candidate 
courses is small. Table 1 lists an example of eight courses related to 
scripting language. According to the course title and the snippet of 
the course content, we find that courses c12 and c17 are helpful for 
learning some scripting languages such as Cascade Style Sheet, Java-
Script, and Python. In addition, course c21 also addresses some scripting 
languages though they are not the main topics of the course. As a result, 
we recommend courses c12,c17, and c21 to students, in which priority is 
given to c12 and c17. However, some of these courses are built on the 
basis of other courses. For example, before a student learns advanced 
knowledge about web design and programming in course c12, the stu-
dent should understand the basic knowledge of web design and devel-
opment in course c6. Given a course, some courses that students need to 
learn prior to it are called the prerequisites of it. Therefore, we need to not 

* Corresponding author. 
E-mail addresses: dai.yiling.4t@kyoto-u.ac.jp (Y. Dai), yoshikawa@i.kyoto-u.ac.jp (M. Yoshikawa), kaz.sugiyama@i.kyoto-u.ac.jp (K. Sugiyama).   

1 Currently at Academic Center for Computing and Media Studies, Kyoto University, Kyoto 606-8501, Japan. 

Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

https://doi.org/10.1016/j.eswa.2021.115233 
Received 19 January 2021; Received in revised form 2 April 2021; Accepted 16 May 2021   

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

mailto:dai.yiling.4t@kyoto-u.ac.jp
mailto:yoshikawa@i.kyoto-u.ac.jp
mailto:kaz.sugiyama@i.kyoto-u.ac.jp
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2021.115233
https://doi.org/10.1016/j.eswa.2021.115233
https://doi.org/10.1016/j.eswa.2021.115233
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2021.115233&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Expert Systems With Applications 183 (2021) 115233

2

only prioritize the courses related to the target terminology but also pay 
attention to the prerequisite relationships among courses when 
providing an order to take them. Actually, the number of candidate 
courses and the complexity of the course prerequisite relationships are 
expected to be much larger than the example shown in Table 1, which 
motivates this work. 

Many researchers have been working on recommending learning 
materials using implicit (Srivastava, Palshikar, Chaurasia, & Dixit, 2018; 
Polyzou, Nikolakopoulos, & Karypis, 2019; Zhang et al., 2019; Pardos & 
Jiang, 2020) and explicit (Bridges et al., 2018; Jiang, Pardos, & Wei, 
2019; Parameswaran & Garcia-Molina, 2009; Shi, Wang, Xing, & Xu, 
2020; Xu, Xing, & Schaar, 2016; Zhao, Yang, Li, & Nie, 2020; Zhu et al., 
2018; Ma et al., 2020) approaches. Our work is the first to explicitly 
combine two important factors behind the course selection behavior, 
namely, the course prerequisite relationships and the job-oriented 
learning goal. Other works aimed at recommending job opportunities 
to students (Almaleh, Aslam, Saeedi, & Aljohani, 2019; Guo, Alamudun, 
& Hammond, 2016; Qin et al., 2018; Jacobsen and Spanakis, 2019) or 
recommending learning materials for career demands (Srivastava et al., 
2018; Wang et al., 2020). While the former works ignored the course 
prerequisite relationships and orders (Almaleh, Aslam, Saeedi, & Aljo-
hani, 2019; Guo, Alamudun, & Hammond, 2016; Qin et al., 2018; 
Jacobsen and Spanakis, 2019), the latter ones focused on short-term 
learning scenarios in which only one course is recommended (Srivas-
tava et al., 2018; Wang et al., 2020). In contrast, our work is helpful for 
planning long-term learning in which multiple courses are involved. 

We develop a two-step approach to solve the course ordering prob-
lem: The first step estimates the relatedness of the courses to the tech-
nical terminology (hereafter, course-terminology relatedness). Then the 
second step determines the order of the courses based on the estimated 
relatedness and prerequisite relationships. We address the first step as a 
general task of relatedness estimation and put emphasis on the second 
step. Specifically, we then propose a method for ordering courses based 
on Markov decision process (Puterman, 1994) and conduct comparative 
experiments. 

Furthermore, we explore whether the order is relevant from other 
pedagogical perspectives, such as whether the very basic course ranked 
first, the course is close to its prerequisites in the order, and so on. We 
conduct experiments on two different course sets and compare the 
strengths and weaknesses of the methods comprehensively. 

The contributions of our work are summarized as follows:  

• To the best of our knowledge, our work is the first that attempts to 
order the courses towards a job-oriented learning goal by following 
the prerequisite constraint.  

• Our work is information retrieval-driven and education-aware one. 
In other words, we mainly serve the students whose information gain 

is maximized by following the order, and also explore whether the 
generated order is helpful for students or not from educational 
perspectives.  

• We construct a fair-scale dataset annotated with three kinds of labels 
that denote relatedness between courses and technical 
terminologies. 

The remaining of this paper is organized as follows: In Section 2, we 
review related works by highlighting the major differences between our 
work and them. In Section 3, we formulate our task. In Section 4, we 
detail our proposed and its comparative methods. In Section 5, we 
present our dataset, experimental results, and discuss them in detail. 
Finally, we conclude the work with a summary and directions for future 
work in Section 6. 

2. Related work 

2.1. Recommending learning materials 

Students select learning materials (e.g., courses) based on various 
factors such as their interest toward the subject, the expectancy of 
achieving high grades, the alignment with their career plans, the social 
aspects, and the popularity of the materials (Ma et al., 2020). Therefore, 
to achieve better recommendation of learning materials, such factors 
should be taken into account. 

Some works adopted implicit approaches where the reasons under-
lying the recommendations are hidden in the model and the training 
data. Srivastava et al. (2018) employed sequence mining techniques to 
identify the next training program a user is likely to take from the his-
torical data. Polyzou et al. (2019) constructed a course transition graph 
from the course enrollment data and predicted the next course to take 
based on a random walk model. Zhang et al. (2019) built an attention- 
based recommendation model from the course enrollment data and 
proposed a hierarchical reinforcement learning algorithm to revise the 
course sequence and modify the recommendation model. Pardos and 
Jiang (2020) adopted skip-gram model to learn the course embeddings 
from the course enrollment data and recommend the most similar course 
for a given course. These works assume that the observed course taking 
behavior is the best answer we can expect. However, the observed 
course enrollment patterns are the consequences of complex decision 
making processes. The reasons that lead the students to take courses in 
those sequences have not been unveiled yet. 

Other works included explicit rationales behind the student behav-
iors into their models. Parameswaran and Garcia-Molina (2009) aimed 
at finding the set of k items which has the maximum total score and 
meanwhile meets the prerequisite constraint.2 Xu et al., 2016 developed 
a forward-search backward-induction algorithm to optimize course se-
quences with shorter time needed for graduation. Bridges et al. (2018) 
constructed a course transition graph from the student enrollment and 
grade data, in order to recommend the next course which is popular 
among the students and provides a grade improvement for the given 
student. Jiang, Pardos, and Wei (2019) used recurrent neural network to 
predict course grade from the student course enrollment and grade 
history. Zhao, Yang, Li, and Nie (2020) combined neural attention 
network and course prerequisite relation embeddings so that the rec-
ommended course is similar and understandable to the courses a student 
has taken. Ma et al. (2020) proposed a hybrid framework to recommend 
courses from three aspects, namely, the interest-based, timing-based, 
and grade-based scores. Zhu et al. (2018) and Shi, Wang, Xing, and Xu 
(2020) proposed a method for recommending learning paths from a 
knowledge map by meeting multiple constraints such as whether the 
paths contain unlearnt, important or popular knowledge nodes, and so 

Table 1 
Example of courses.  

ID Courses 

c1  Computer Programming 1 
c2  Computer Programming 2 
c4  Data Structures and Algorithm Analysis 
c6  Web Site Design and Development 
c12  Advanced Web Design and Programming  

(…Students examine advanced topics in Hyper Text Markup Language, 
Cascade Style Sheet and JavaScript for …) 

c13  Database Systems 
c17  Programming Methods  

(…Students learn a combination of visual programming using C# and scripting 
language using Python in this course. …) 

c21  Web-based Information Systems  
(…Students use a variety of web development tools and programming/ 
scripting languages. …)  

2 Although the order is neglected in their problem, the algorithm can be 
adapted to solve our problem and the details are explained in Section 4.2.3. 
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on. 
We attempt to identify a course order that meets the prerequisite 

relationships and the job-oriented goal. Compared with previous works, 
our work has the following advantages: (a) the model and the result are 
easy to explain, (b) we focus on the under-explored learning goal that is 
aligned with job opportunities, and (c) we aim at ordering multiple 
courses so that the information gain at each position is optimized. 

2.2. Connecting academia and industries 

To bridge the gap between the academia and the industries, many 
works attempted to recommend job opportunities to students or 
recommend learning materials for career demands. 

A common approach can be observed in a category of research works 
in which the most “similar” job to the student’s educational background 
is recommended (Almaleh, Aslam, Saeedi, & Aljohani, 2019; Guo, Ala-
mudun, & Hammond, 2016; Qin et al., 2018; Jacobsen and Spanakis, 
2019). Commonly, job postings and student CVs are utilized, and then 
various techniques, such as ontology-based skill similarity (Guo et al., 
2016), recurrent neural network (Qin et al., 2018), latent Dirichlet 
allocation (Jacobsen & Spanakis, 2019), and naïve Bayes classifier 
(Almaleh et al., 2019), are adopted to estimate the similarity between 
them. These works treated the students’ learning experience as a whole, 
namely, all the courses are completed and the students’ acquisition level 
of those courses influences the recommendation performance. On the 
other hand, our work puts much emphasis on making a plan for learning, 
in which the course prerequisite relationships and orders are more 
important. 

Another category of research works attempted to identify relevant 
courses or training programs for job positions or demands of career 
development (Srivastava et al., 2018; Wang et al., 2020). Srivastava 
et al. (2018) inferred a course which a student is most likely to take next 
by mining from a large-scale course enrollment data. Wang et al. (2020) 
recommended a course based on the employee’s current competencies 
modelled from their skill profiles. For this reason, their works concen-
trated on the short-term learning needs, namely, the next one course is 
recommended for the student. Our work not only extracts the most 
necessary courses but also achieves prerequisite-aware course ordering 
for long-term learning needs. 

2.3. Adapting Markov decision process 

Markov decision process (MDP) is a stochastic sequential decision 
model, which has been widely applied to inventory management, 
equipment maintenance, communication systems, and so on (Puterman, 
1994). The main idea behind MDP is to find the best set of decisions that 
optimizes the long-term reward. 

Some researchers have adapted MDP to solve information retrieval 
and recommendation problems. Tavakol and Brefeld (2014) formulated 
the item view session of the user in an e-commerce system as MDP and 
estimated the parameters from a labeled dataset. They modeled the item 
as a disjoint set of attributes and recommended the item that best fits the 
estimated distribution over the attributes. Murray (2015) leveraged 
MDP to generate a summary from a corpus, where the next word in the 
sentence is selected based on its importance and the co-occurrence with 
the previous word. Srivastava et al. (2018) proposed a recommender 
system that provides a next training program from the historical training 
sequence data in a similar way of MDP. Xia et al. (2017) employed MDP 
to diversify a search result, where the perceived utility of the user is 
modeled as the state and optimized in the algorithm. 

Although MDP has been applied to many tasks, our work is the first 
to adopt it for the course ordering problem. The difficulties are twofold: 

(a) How can we model the problem under an MDP framework given the 
learning goal and the prerequisite constraint? (b) How can we estimate 
the parameters without relying on a labeled dataset? Section 4.1 de-
scribes the details. 

3. Formulating our task 

3.1. Awareness of prerequisite relationships 

Generally, we need to acquire some knowledge before understanding 
more advanced knowledge. For instance, if we do not know “algorithms” 
at all, it is difficult to understand the “complexity of an algorithm”. In 
taking courses, following the prerequisite relationships among courses is 
essential. 

In traditional educational institutions, course prerequisite relation-
ships are defined by the curriculum designers. In open and online edu-
cation, massive learning materials are available. For the latter learning 
environment, research works focusing on the extraction of prerequisite 
relationships among concepts (Liang, Wu, Huang, & Giles, 2015; Gor-
don, Zhu, Galstyan, Natarajan, & Burns, 2016; Pan, Li, Li, & Tang, 2017; 
Sayyadiharikandeh, Gordon, Ambite, & Lerman, 2019) are helpful. 
Works on prerequisite extraction are orthogonal to our work and we 
assume the prerequisite relationships are given in our problem setting. 

3.2. Definition of a “relevant” order 

Given a technical terminology, we address how to effectively acquire 
the knowledge related to it. Fig. 1 shows the prerequisite relationships 
among the courses in Table 1 and how these courses are related to 
scripting language. Then, the relevant order is generated by highly 
ranking the courses which are related to the terminology. In other 
words, c1→c6→c12→c2→c17→c4→c13→c21 (hereafter, Order 1) is a 
relevant order as all the related courses (i.e., c12,c17, and c21) are ranked 
in the highest positions where they could appear. The goal of our work is 
to identify the most relevant order by taking the prerequisite constraint 
into account. 

3.3. Observation from pedagogical perspectives 

Depending on the complexity of the course network and the number 
of related courses, there may exist more than one relevant order of 
courses for a technical terminology. Even for the simple course re-
lationships in Fig. 1, we can find another order, c1→c2→c17→c6→c12→ 

Fig. 1. Prerequisite relationships among courses.  
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c4→c13→c21 (hereafter, Order 2), which is equally relevant as Order 1 in 
terms of prioritizing related courses. However, Orders 1 and 2 give 
different effects on a student’s learning experience. For example, Order 
1 places c12 prior to c17, which is desirable if the student prefers learning 
a basic course first and then other advanced courses. In contrast, Order 
2, where c12 is placed closer to c21, is more desirable if a student dislikes 
the time lag between a course and its prerequisites. Hence, we explore 
the relevancy of an order from the following pedagogical perspectives.  

• Specific fundamentality. Specific fundamentality defines how 
likely a course will form the basis towards understanding the tech-
nical terminology. Prioritizing such courses makes a student’s basic 
knowledge solid, helping the learning of more advanced knowledge.  

• General fundamentality. In contrast to specific fundamentality 
above, general fundamentality defines how likely a course will form 
the basis towards understanding the whole domain. A general 
fundamentality-focused order is especially important in a learning 
context with high uncertainty. In other words, if students change 
their goals during the learning process, they can still benefit from the 
courses they have already completed since the courses also 
contribute to the understanding of other terminologies.  

• Local reference. Local reference refers to placing the prerequisites 
of a course closer to it. From a cognitive point of view, to shorten the 
time lag between courses with dependency helps reduce the extra 
cognitive load in learning (Agrawal, Golshan, & Papalexakis, 2016; 
Paas, Renkl, & Sweller, 2003). 

Theoretically, our concerns are various aspects that affect a student’s 
learning experience. However, it is difficult to satisfy all types of stu-
dents’ learning preferences at the same time as some of them are 
inherently contradictory to each other. Our work mainly proposes a 
method for identifying “relevant” orders for understanding the termi-
nology, and we explore whether the orders are relevant from the 
aforementioned pedagogical perspectives. 

3.4. Problem definitions 

A course set V and the prerequisite relationships E = {(ci, cj)
⃒
⃒ci, cj ∈

V, course ci is a prerequisite of course cj} forms a course graph G = 〈V,
E〉. In our work, when given a technical terminology t and a course graph 
G, we aim at identifying an order Ord(V|t) = (ci,…, cj) subject to the 
prerequisite relationships and prioritizing the courses closely related to 
t. In the following sections, we denote pos(c,Ord) and Ord[i] as the po-
sition of c in Ord and the course at the ith position in Ord, respectively. 

4. Methodology 

To acquire the knowledge of a given technical terminology, we need 
to not only identify the related courses but also pay attention to the 
prerequisites when deciding the order to take them. Intuitively, our task 
consists of the following two steps:  

(STP1) Estimation of how each course is related to the given technical 
terminology, namely, course-terminology relatedness, and 

(STP2) Ordering the courses based on their course-terminology relat-
edness and prerequisite relationships. 

In STP1, course-terminology relatedness can be estimated by 
matching the textual information of courses and terminologies. Relat-
edness estimation is an essential and ever-growing research domain in 
information retrieval, natural language processing, machine learning, 

and data mining. A variety of existing approaches can help realize it. In 
this work, we do not focus on the proposal or comparison of relatedness 
estimation methods. Instead, we adopt one of the simplest methods— 
TF-IDF scheme (Salton & Buckley, 1988) to obtain the course- 
terminology relatedness. Refer to the book (Manning, Raghavan, & 
Schütze, 2008) to understand relatedness estimation and the survey 
(Altinel and Ganiz, 2018) to learn recent advances. We then focus on 
STP2 to propose a method for ordering courses given course- 
terminology relatedness. 

4.1. Proposed method— Markov Decision Process-Based Ordering 
(MDPOrd) 

4.1.1. Intuition of adapting Markov decision process 
To acquire the knowledge of a given technical terminology, deciding 

the order to take the courses involves a sophisticated judgement over 
multiple factors. Firstly, we need to identify the courses we are qualified 
to take based on the courses we have already taken. Secondly, we need 
to consider the instant knowledge acquisition by selecting a new course. 
Last but not least, we need to forecast the future gain of selecting a new 
course. In other words, we may choose a course that itself gives slight 
knowledge gain but is helpful for learning more advanced courses about 
the terminology. As a result, every step in the course ordering process 
should be based on the possible options and the expectation of the future 
gain by taking that step. MDP can model this process well and identify 
an order of courses that optimizes the information gain from a long-term 
perspective. 

4.1.2. Formulation of MDPOrd 
A general model of MDP consists of decision epochs T, states S, ac-

tions A, rewards R, transition probabilities P, discount factor γ, and 
policies Π, namely, denoted as {T, S,A,R,P, γ,Π}. In this framework, a 
decision maker follows a policy to take an action at each epoch, receives 
a reward and transits between states. The main goal is to find a policy 
which leads to a state with optimal discounted future gain. We explain 
how each components are modeled in the following: 

Decision Epochs. Let T be the discrete time steps in the system. In 
our work, we adopt infinite horizon T ≡ {1,2,…} to find the best policy, 
which assumes the system does not know how long the process will last 
at any time step. Infinite horizon assures a stationary policy for any state 
regardless at what time step it reaches the state. The practical meaning 
of infinite horizon in our work can be explained as follows: the system 
will suggest the same course order whenever the students start learning. 
This is reasonable if we assume the students always have sufficient time 
to learn the courses. 

States. Let S be the set of possible states the system occupies at a time 
step. In our work, a state s is a set of courses a student has completed. As 
our work needs to follow prerequisite relationships, for any state s, if it 
includes a course c, it must include the prerequisites of c. Therefore, we 
denote a possible s = {cj ∈ V

⃒
⃒∃(ci, cj) ∈ E⇒ci ∈ s}. It is time-consuming 

to exhaust all the possible states, especially when a course is allowed 
to have more than one prerequisite in the graph. Table 2 demonstrates 
the process of generating valid states for the course graph in Fig. 1 and 
the followings detail the process:  

1. We add a dummy node to the graph and connect it to the original 
root nodes (the value of its in-degree is 0) in the graph. The addition 
of a dummy node assures that  
(a) all the sub graphs are linked as one graph if more than one root 

exist, and 
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(b) the generated states will always include an empty set, which is 
the start state to find an order of courses.  

2. We traverse the graph in a depth-first way from the dummy node. 
Whenever we explore a new node, we generate new states by adding 
this node to the current states based on the following two rules:  
(RL1) Given a node at exploration, new states must be generated 

from the states generated from its parent and other explored 
descendants. For example, when we are exploring c17, its 
parent c2 and other descendants of c2 (c4 and c13) are already 
explored. We generate new states by adding c17 to all the 
generated states from c2,c4, and c13 (Steps 3 to 5).  

(RL2) Given nodes with multiple parents, we only generate new 
states at the last time we explore it, and new states must 
contain all of its parents. For example, when we first explore 
c21 in Step 6 where the other parent c12 has not been explored 
yet, it is skipped. The last time we explore c21 when all of its 
parents have been explored, we can generate new states by 
adding c21 to the states in Step 9 which include both of its 
parents c12 and c13. 

Finally, we take the union of all the states generated alongside the tra-
verse as S. 

Actions. A denotes the union of actions that the decision maker is 
allowed to take at each state. In this case, an action is the behavior to 
take a new course at the current state. Subject to the constraint, the valid 
action for a state is any course whose prerequisites (if any exists) are 
already included in the state. For the example in Fig. 2, given s1 = {c1}, 
the valid actions are c2 and c6. 

Rewards. R = S × A denotes the immediate reward obtained from 
taking a course c at state s. In our work, the reward comes from the 

information gain towards understanding the technical terminology by 
taking a course. To this end, we use course-terminology relatedness rel(c,
t) to represent the immediate reward. Eq. (1) defines how an immediate 
reward r(s, c) from taking c at s is computed: 

r
(

s, c
)

=

{
rel(c, t) c ∕∈ s, s ∪ {c} ∈ S

0 otherwise (1)  

In Fig. 2, the reward of taking c2 from s1 is 0.1. 
Transition Probabilities. P = S × A × S denotes the distributions of 

the probabilities that the system transits from states to states by taking 
courses. p(s, c, s′ ) denotes the probability that the system transits from s 
to s′ by taking c. Note that 

∑
s′ p(s,c,s

′

) = 1. In our work, we simplify the 
transition probability by considering the system will keep transiting to 
the next state if some courses are taken. If the action is invalid, the state 
remains unchanged. Eq. (2) defines this: 

p
(

s, c, s’
)

=

{
1 s ∪ {c} = s’

0 otherwise
(2)  

As shown in Fig. 2, the probability of transiting from s1 to s2 by taking c2 
is 1. 

Discount Factor. γ denotes a parameter ranged in 0⩽γ < 1 modi-
fying how much of the future gain values currently. This parameter is 
mainly set for a mathematical reason, allowing the decision maker to 
find an optimal policy. In our experiment, we set γ to 0.96, which is a 
commonly used value in MDP. 

Policy. Π = S→A denotes the moving pattern of a decision maker at 
each state. In MDP model, a policy that maximizes the expected value of 
all the states is defined as an optimal policy π*. The expected value of a 
state ExpVal(s) comes from the immediate reward of taking an action 
and the expected value of the next state. The best we can expect from a 
state ExpVal*(s) is the maximum value of all policies and the optimal 
policy for s is the action that maximizes ExpVal(s), defined by Eqs. (3) 
and (4), respectively: 

ExpVal*(s) = maxc(r(s, c)+ γ
∑

s′
pr(s, c, s′

)ExpVal(s′

)), (3)  

Fig. 2. An example of how to order courses in MDP framework. For simplicity, 
we only include four nodes in the course graph. The value beside the node 
indicates the course-terminology relatedness. 

Table 2 
Process of generating valid states for the course graph in Fig. 1.  

Step Node From Parents visited Generated states 

1 dummy – True ∅  
2 c1  dummy True {c1}

3 c2  c1  True {c1, c2}

4 c4  c2  True {c1, c2,c4}

5 c13  c4  True {c1, c2,c4, c13}

6 c21  c13  False – 
7 c17  c2  True {c1, c2,c17}

{c1, c2,c4, c17}

{c1, c2,c4, c13, c17}

8 c6  c1  True {c1, c6}

{c1, c2,c6}

{c1, c2,c4, c6}

{c1, c2,c4, c13, c6}

{c1, c2,c17 ,c6}

{c1, c2,c4, c17, c6}

{c1, c2,c4, c13, c17,c6}

9 c12  c6  True {c1, c6,c12}

{c1, c2,c6, c12}

{c1, c2,c4, c6,c12}

{c1, c2,c4, c13, c6,c12}

{c1, c2,c17 ,c6, c12}

{c1, c2,c4, c17, c6,c12}

{c1, c2,c4, c13, c17,c6, c12}

10 c21  c12  True {c1, c2,c4, c13, c6,c12, c21}

{c1, c2,c4, c13, c17,c6, c12, c21}
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π*(s) = argmaxc(r(s, c)+ γ
∑

s′
pr(s, c, s′

)ExpVal(s′

)). (4)  

Eqs. (3) and (4) can be solved using dynamic programming algorithms 
which find an approximation of the optimal policy until it converges. 
The table in Fig. 2 illustrates the value iteration process using the toy 
example. The dotted frame shows how the state value of s1 and its best 
action are calculated in the second iteration. At s1, c2 is chosen as the 
expected value of taking c2 is greater than the one of taking c6. In this 
example, the iteration stops when all the state values are finally 
converged. 

Ordering. In this step, we utilize the output of MDP model to provide 
relevant course ordering. Once the optimal policy π* is found, we start 
with the empty set and follow the best actions to move from one state to 
another state. If all the courses have a positive reward value, following 
the optimal policy leads us to a state in which all courses are included. As 
shown in Fig. 2, c1→c6→c2→c17 is identified as the order to take the 
courses. If not, the state remains unchanged at some point where no 
more reward can be obtained by taking a new course. In this case, we 
sort the remaining non-rewarded courses topologically and append 
them to the order. 

4.2. Comparative methods 

We compare MDPOrd with the following three different types of 
methods:  

• Aggregated-Relatedness-Based Ordering (AggRelOrd),  
• Personalized-PageRank-Based Topological Sorting (PageRankTS), 

and  
• Greedy-Value-Pickings-Based Ordering (GVPickings). 

The intuition behind AggRelOrd and PageRankTS is that the priority 
of a course in the order is determined by its direct relatedness to the 
terminology and how likely it will be the prerequisite of other related 
courses. On the other hand, GVPickings selects the courses as a set of 
paths, where a highly related course having many prerequisites still 
have a chance to be selected at an earlier stage. We compare these three 
methods to verify whether our proposed approach works better in 
ordering the courses. In the following sections, we explain each of the 
three comparative methods. 

4.2.1. Aggregated-Relatedness-Based Ordering (AggRelOrd) 
As described above, a course should be prioritized as it is related to 

the terminology itself and it is the basis of other courses. This method 
simply treats the maximum relatedness among all the descendants of a 
course as an aggregated score to indicate its priority. Let D(c) be the set 
of courses that have a path from c in the course graph, namely, the de-
scendants of c in the graph. Let aggRel denote the aggregated relatedness 
of a course. Then aggRel is computed as: 

aggRel(c|t,V) = ( max
c′∈c∪D(c)

rel(c′

, t)) + |D(c)|δ, (5)  

where δ is a very small value added to assure that the score a course gets 
is always larger than its descendants, thus subject to the prerequisite 
constraint. At last, the courses are sorted in the order of their aggRel 
scores. 

4.2.2. Personalized-PageRank-Based Topological Sorting (PageRankTS) 
PageRank (Page, Brin, Motwani, & Winograd, 1999) estimates the 

probability of a “random walker” who ultimately stops at each node in 
the network if it follows the links. Therefore, the probability distribution 
shows the linkage of the network. The more incoming links, the higher 
probability a node gets. Furthermore, a personalized PageRank (Page 
et al., 1999; Jeh & Widom, 2003) enables the model to estimate a mixed 
probability distribution of following both the network linkage and a 
personalized preference over the nodes. As described at the beginning of 
Section 4.2, the position of a course in the order should be determined by 
the relatedness to the terminology and how likely the course will be the 
prerequisite of other related courses. Here, the direct relatedness be-
tween the course and the terminology can be represented in the 
personalized preference in the PageRank model. In addition, the likeli-
hood of being a prerequisite of other related courses can be captured in 
the network links part in PageRank model. 

We follow the matrix–vector notation in Jeh and Widom’s work (Jeh 
& Widom, 2003) to explain how the PageRank-based score of each 
course is computed. Let v→ be the PageRank scores over the courses in 
the graph, and u→ be the course-terminology relatedness. Let M→ be the 
transition matrix of the graph where Mij =

1
|indegree(cj)|

if ci is prerequisite 
of cj and Mij = 0 otherwise. β ∈ [0, 1] is a teleportation constant and 
modifies the probability that the “random walker” follows the person-
alized preference over the nodes.3 Solving Eq. (6) gives a PageRank- 
based score v→ for each course. 

v→= (1 − β)M→ v→+ β u→ (6) 

Note that the score provided by the PageRank model is not neces-
sarily subject to our prerequisite constraint. In other words, it is possible 
that a course which has many outgoing edges gets a higher score than its 
parent course who has no other children. To solve this problem, we rely 
on topological sorting to reorder the courses based on their PageRank- 
based scores. As shown in Algorithm 1, line 2–6 is the basic process of 
topological sorting with a modification in line 4, where the course with 
the highest PageRank-based score and no any prerequisites is always 
selected first. 

4.2.3. Greedy-Value-Pickings-Based Ordering (GVPickings) 
As described in Section 2.1, Parameswaran and Garcia-Molina 

(2009) proposed Greedy Value Pickings which recommends the best 
set of k items with the maximum total score and meets the prerequisite 
constraint. However, their work did not consider the order of items in 
the set even if the total score is maximized. While Greedy Value Pickings 
is not designed for ordering the items at the first place, we adapt it to our 
work. We enhance Greedy Value Pickings by utilizing the order that k 

Algorithm 1: PageRank-based topological sorting (PageRankTS) 

3 We only report the results obtained by β = 0.2 in Section 5 as it gives the 
best performance. 
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items are added to the final set as the order required in our work, which 
is shown in Algorithm 2. The basic idea behind this algorithm is to al-
ways add the path of courses with the largest average score to the order. 
As our course graph allows multiple parents for a node, all the paths 
towards a node should be included if we add a node (lines 4 and 5). Once 
a path (or paths) of courses is added to the final order, the average scores 
of the remaining paths are recomputed and the picking is conducted 
again. The process of computation and picking is repeated until all the 
courses are correctly ordered. 

5. Experiments 

5.1. Dataset 

For the convenience of data collection and analysis, we select com-
puter science domain to verify the effectiveness of our proposed 
methods. 

5.1.1. Course graph 
We collect course syllabi and prerequisite relationships from the 

bachelor curricula of computer science in Thompson Rivers University4 

and Rutgers University5. We select these curricula as we can access 
sufficient course information and prerequisite relationships. As a result, 
we obtain two course graphs— Course Graph 1 with 24 courses and 30 
prerequisite relationships, and Course Graph 2 with 20 courses and 25 
prerequisite relationships (see Tables A.1, A.2, and Fig. A.1 for further 
details). In Section 5.4, we report the results for the two course graphs 
separately. 

5.1.2. Technical terminology 
We extract a set of technical terminologies, which are frequently 

required by the job postings in a kaggle dataset.6 The dataset consists of 
19,000 job postings collected from the Armenian human resource portal 
CareerCenter during 2004 to 2015. We use 3,759 of the them which are 
labelled as IT-related. We first remove unnecessary sections such as 
“Company location”, “Salary”, “Application procedure”, and so on, by 
utilizing some basic text processing techniques. We then extract the 
technical terminologies from the pre-processed texts by applying entity 
extraction tool Wikifier, which works well in detecting abstractive 
concepts (e.g., “software development”) and is linked to Wikipedia. 

More specifically, we employ TAGME (Ferragina & Scaiella, 2010) and 
DBpedia Spotlight (Daiber, Jakob, Hokamp, & Mendes, 2013) and 
include the terminologies identified by any of them in the terminology 
set. While we address the job postings in IT-related domain only, the 
extracted terminologies still include general ones such as “knowledge”, 
“communication”, and so on. As each of the terminologies has its asso-
ciated Wikipedia page, we filter out irrelevant terminologies that is 
greater than six hops distant from the Wikipedia category “Computing”. 
Finally, we collect 3,803 terminologies and select the 100 most frequent 
terminologies in the job postings among them. 

5.1.3. Ground truth 
It is beyond the cognitive capacity even for an expert to decide the 

order of taking the courses with complex prerequisite relationships. In 
addition, it is difficult to integrate several orders into one. To avoid this, 
we first ask several experts what courses are necessary to take for a given 
technical terminology without directly collecting the order of courses 
from them. We then evaluate the relatedness of an order with some 
traditional information retrieval metrics. We discuss the details in Sec-
tion 5.3. 

We invite five domain experts to construct our ground truth. Given a 
technical terminology, we first provide them with the graph and the 
syllabi of the courses, and then ask them to annotate which courses are 
necessary or preferable to take for better understanding the terminol-
ogy. Note that “necessary” is a higher level of relatedness than “pref-
erable”. In this annotation task, each pair of a course and a terminology 
can be regarded as an item, and the domain experts give either of the 
following three labels: “necessary”, “preferable”, or “unnecessary” to the 
pair. Some technical terminologies such as computer programming 
and productivity software are too general or unrelated to the 
computer science domain. It is difficult for the domain experts to 
annotate a proper label for any of the courses for them. We call this type 
of terminology “irrelevant” and exclude the terminologies viewed as 
irrelevant by at least one domain expert. Finally, we obtain 67 termi-
nologies in the dataset (see Table B.3 for further details). 

We evaluate the agreement among five domain experts with Fleiss 
kappa coefficient (Fleiss, 1971), resulting in moderate agreement of 
0.405 and 0.308 for Course Graph 1 and Course Graph 2, respectively. In 
a majority-vote method, the five domain experts and the three labels 
sometimes make it difficult to determine the final label. Therefore, we 
adopt DS algorithm (Dawid & Skene, 1979), which is one of stochastic 
approaches, to estimate the probabilities of which label is likely to be 
given to the pair of course and terminology. Then, we choose the label 
with the highest probability as the ground truth. 

5.2. Estimation of course-terminology relatedness 

As described at the beginning of Section 4, our work does not mainly 
focus on estimating course-terminology relatedness. Using different 

Fig. 3. An example of how to compute nDCG.  

Algorithm 2. Greedy-Value-Pickings-Based Ordering (GVPickings) 

4 https://www.tru.ca/science/programs/compsci/programs/cs_bachelor_of_c 
omputing_science.html, last accessed on January 18, 2021.  

5 https://www.cs.rutgers.edu/academics/undergraduate/course-synopses/ar 
ticles, last accessed on March 19, 2021.  

6 https://www.kaggle.com/madhab/jobposts/, last accessed on January 18, 
2021. 
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techniques in relatedness estimation and then comparing their impact 
on the course ordering performance is beyond the scope of this work. 
Instead, we use the course-terminology relatedness annotated by the 
domain experts in STP1 to explore the best performance that STP2 can 
achieve. We discuss the details in Section 5.5.1. Here, we adopt a simple 
yet effective method, TF-IDF scheme (Salton & Buckley, 1988) to esti-
mate course-terminology relatedness. More specifically, we use course 
syllabus and the leading section in Wikipedia page for the term as the 
course and terminology corpus. We first compute TF-IDF score from 
both of the corpus and then take the cosine similarity of the course and 
terminology vectors as the relatedness score. 

5.3. Evaluation metrics 

We adopt normalized discounted cumulative gain (nDCG) (Järvelin 
& Kekäläinen, 2002) to measure the relatedness, specific funda-
mentality, and general fundamentality of an order of courses. In addi-
tion, we propose a distance metric to measure the degree of local 
reference of an order of courses. 

5.3.1. General model of nDCG 
nDCG is a widely used metric in information retrieval, which mea-

sures how an order of items prioritizes the ones with a higher infor-
mation gain. Fig. 3 illustrates a simple example of how to compute 
nDCG. Firstly, the information gain of each item is discounted according 
to its position. The lower in the order, the more information gain is 
discounted. Secondly, the cumulative discounted gain is computed by 
summing up the discounted gain of all the items. At the same time, we 
reorder the items based on their information gain to obtain an “ideal” 
order of these items. Lastly, we normalize the cumulative discounted 
gain of the original order using the one of the ideal order. 

nDCG meets our need to measure how an order prioritizes items that 
provide information of interest such as relatedness, specific funda-
mentality, and general fundamentality. Let nDCG@k(Ord) be the 
normalized discounted cumulative gain of an order Ord for items at 
position k. nDCG@k(Ord) is computed as follows: 

nDCG@k(Ord) =
DCG@k(Ord)

DCG@k(Ordideal)
, (7)  

DCG@k(Ord) =
∑k

i=1

gain(Ord[i])
log2(i + 1)

, (8)  

where DCG@k(Ord) is the discounted cumulative gain of Ord at position 
k,Ordideal is the ideal order ranked according to the information gain of 
the items, and gain(Ord[i]) is the information gain of the ith item in Ord. 
By replacing gain(⋅) with the information to be explored, we can adapt 
nDCG to measure the relatedness, specific fundamentality or general 
fundamentality of an order. 

5.3.2. Relatedness of an order 
We denote Relatedness@k to measure how an order prioritizes related 

courses to the terminology. Let relgt
(c, t) be the score defined by the 

ground truth of course-terminology relatedness, which is transformed 
from the domain experts’ annotated labels as follows: 

relgt(c, t) =

⎧
⎨

⎩

α if the label for c is “necessary”
1 − α if the label for c is “preferable”
0 if the label for c is “unnecessary”,

(9)  

where α (0⩽α⩽1) is a parameter to tune the level of relatedness.7 Then 
Relatedness@k is computed by replacing gain(⋅) in Eqs. (7) and (8) with 
relgt

(c, t). 

5.3.3. Specific fundamentality of an order 
We denote SpecFdm@k to measure how an order prioritizes specif-

ically fundamental courses to the terminology. Let SpecFdm(c|t) be the 
specific fundamentality of a course for a terminology in the graph. We 
then define SpecFdm(c|t) as follows: 

SpecFdm(c|t) =
∑

c′∈D(c)relgt(c′

, t)
∑

c′∈V⧹crelgt(c′
, t)

, (10)  

where D(c) is the set of descendants of c in the graph. SpecFdm(c|t) re-
flects the proportion of the related knowledge based on c to the total 
amount of related knowledge for the terminology. Then SpecFdm@k is 
computed by replacing gain(⋅) in Eqs. (7) and (8) with SpecFdm(c|t). 

5.3.4. General fundamentality of an order 
We denote GenFdm@k to measure how an order prioritizes generally 

fundamental courses in the domain. Let GenFdm(c) be the general fun-
damentatity of a course in the graph. Then it is computed as: 

GenFdm(c) =
|D(c)|
|V| − 1

. (11)  

GenFdm(c) reflects the proportion of the knowledge based on c to the 

Fig. 4. Relatedness obtained by MDPOrd, AggRelOrd, PageRankTS, and 
GVPickings for Course Graph 1. 

7 We set α = 0.7 in this work. 
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total knowledge in the domain. Then GenFdm@k is computed by 
replacing gain(⋅) in Eqs. (7) and (8) with GenFdm(c). 

5.3.5. Local reference of an order 
We propose “Average Reference Distance (ARD)” to inversely mea-

sure how likely an order will place courses close to their prerequisites. 
We denote ARD@k as the average distance between the courses and their 
prerequisites of an order at position k. Let RelDis(c|Ord) be the reference 
distance of c in Ord. We then define RelDis(c|Ord) as follows: 

RelDis(c|Ord) =

⎧
⎪⎨

⎪⎩

0 Pre(c) = ∅
∑

c′∈Pre(c)

pos(c,Ord) − pos(c′

,Ord)

|Pre(c)|
otherwise

, (12)  

where Pre(c) is the set of direct prerequisites of c in G = 〈V, E〉, i.e., 
Pre(c) = {c′

|(c′

, c) ∈ E}. Then ARD@k is computed as: 

ARD@k =

∑k
i=1RelDis(Ord[i])

k −
∑k

i=11{Pre(Ord[i]) = ∅}
. (13)  

Here, 1{⋅} is an indicator function which equals 1 if {⋅} is true, 
0 otherwise. 

In summary, Relatedness@k,SpecFdm@k, and GenFdm@k range in [0,
1]. In addition, the larger the scores, the better the performance. On the 
other hand, ARD@k ranges from 0 to some positive value based on the 
size and structure of a graph. The smaller ARD@k is, the higher the 
degree of local reference, indicating a better performance. 

5.4. Experimental results 

5.4.1. Course Graph 1 
Relatedness. Fig. 4a shows the average nDCG-based relatedness of the 

orders of Course Graph 1 obtained by the four methods (MDPOrd, 
AggRelOrd, PageRankTS, and GVPickings) described in Section 4 by 
varying k. 

Overall, the Relatedness value ranges from 0 to 0.45 as the value of k 
increases. We observe that GVPickings and MPDOrd slightly outperform 
AggRelOrd and PageRankTS, especially when k is larger than 9. To 
further observe the performance over different terminologies, Fig. 4b 

shows Relatedness@11 scores for each terminologies. According to 
Fig. 4b GVPickings and MDPOrd show a similar relatedness score dis-
tribution over the terminologies while AggRelOrd and PageRankTS 
show some significant performance drop for some of the terminologies. 

What do these scores indicate in the orders? We pick two technical 
terminologies to demonstrate the relation between the Relatedness dif-
ference and the order difference. Fig. 5 shows the orders generated by 
the four methods. In formal specification, c15 (Software Engineer-
ing) is considered necessary to take and it is not ordered within the top 
11 courses by AggRelOrd, which leads to a Relatedness score of 0. 
Meanwhile, three lower positions of c15 in PageRankTS results in around 
0.1 drop in the Relatedness compared with GVPickings and MDPOrd. In 
debugging, the domain experts annotate both c15 (Software Engi-
neering) and c17 (Programming Methods) as necessary. All the methods 
successfully rank c17 in its optimal position while AggRelOrd and Pag-
eRankTS place c15 five and two lower positions than GVPickings and 
MDPOrd, respectively. The two lower positions for c15 result in a 
decrease of 0.03 in the Relatedness of the order. The drop of 0.03 is small 
in the evaluation metric. However, the order forces the students to learn 
two more courses before they can reach the one which is helpful for the 
acquisition of knowledge on the terminology. 

Comparison between the two terminologies indicates that the posi-
tioning of the first related course substantially influences the final 
Relatedness score. While following related courses in the order do not 
give a large impact on the Relatedness score, the wrong positioning of 
them results in extra learning cost in actual cases. In summary, we 
believe that GVPickings and MDPOrd work well. 

To further discuss why GVPickings and MDPOrd work better than 
AggRelOrd and PageRankTS, we analyze the frameworks of four 
methods for the terminology debugging. Fig. 6a shows the estimated 
course-terminology relatedness scores, in which c17 (Programming 
Methods), c10 (Operating Systems), and c15 (Software Engineering) give 
the top three scores 0.177,0.129, and 0.106, respectively. However, only 
c17 and c15 are annotated as necessary by the domain experts. Thus, the 
relatedness of c10 is overestimated in STP1. Fig. 6b illustrates how the 
order is determined in each method and how c10 affects the ordering 
process. 

AggRelOrd aggregates the score of a course based on its most related 
descendant. As shown in Fig. 6b, c1 and c2 obtain their scores 

Fig. 5. Examples of orders generated by our proposed methods for Course Graph 1. In each sub-figure, the orders for one terminology are presented. The row and cell 
color denote the position in the order and the course-term relatedness annotated by the domain experts, respectively. Only the top 11 courses in the orders are 
demonstrated to compactly show the results. 
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(0.177+n⋅δ) from the relatedness of c17 with their corresponding small 
value δ. As a result, the order is determined by ranking the most related 
courses: c17, c10, and c15 with their ancestors ({c1 and c2}, {c18, c24, c4, 
and c3}, and {c7}, respectively). PageRankTS computes the score of each 
course from the scores of their children recursively. As shown in Fig. 6b, 
the relatedness of c17, c10, and c15 is transferred to other courses. Note 
that the PageRank scores of c15 and c10 are partially propagated to their 
parents and also partially propagated from their children. In this case, 
c10 only has a non-related child c20, resulting in a lower score (0.048) 
than that of c15 (0.058). GVPickings picks paths based on their average 
relatedness. As shown in Fig. 6b, the path from c7 to c15 gets a higher 
average value (0.072) than those from c18 to c10 (0.057), resulting in 
lower rank for c10 while it has a higher relatedness than c15. The decision 
maker in MDPOrd compares the expected values among multiple 
candidate orders. For example, placing c10 prior to c15 results in an in-
crease of expected value from c10 but a larger decrease of that from c15. 
Therefore, the upper order is finally selected. 

In summary, AggRelOrd works better in prioritizing a highly-related 
course no matter how deep it locates in the graph. Consequently, it 
cannot globally optimize relatedness of the order and wrongly estimated 
course often generates wrong order. PageRankTS does keep a balance 

Fig. 6. Analysis on the frameworks of AggRelOrd, PageRankTS, GVPickings, 
and MDPOrd for the terminology debugging and Course Graph 1. 

Fig. 7. SpecFdm and GenFdm obtained by AggRelOrd, PageRankTS, GVPick-
ings, and MDPOrd, varying position k for Course Graph 1. 

Fig. 8. ARD obtained by AggRelOrd, PageRankTS, GVPickings, and MDPOrd, 
varying position k for Course Graph 1. 
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between the relatedness of a course and the relatedness of its de-
scendants. However, the courses with more children tend to be over-
estimated and the courses without any child tend to be underestimated. 
In contrast, GVPickings and MDPOrd consider the impact of selecting a 
course from a long-term perspective. Therefore, GVPickings and 
MDPOrd are more robust for wrongly estimated course-terminology 
relatedness and demonstrate more stable performances than AggRe-
lOrd and PageRankTS. 

Pedagogical metrics. Figs. 7 and 8 show the SpecFdm, GenFdm, and 
ARD scores for the orders of Course Graph 1 generated by the four 
methods, AggRelOrd, PageRankTS, GVPickings, and MDPOrd. We 
observe similar trends for SpecFdm and GenFdm. Note that SpecFdm and 
GenFdm scores for the orders obtained by the four methods are relatively 
close to 1, which is due to the prerequisite relationships. In other words, 
a course that is prerequisite for more courses is usually ordered in a 
higher position, resulting in better fundamentality score. Among the 
four methods, AggRelOrd and PageRankTS outperform GVPickings and 
MDPOrd in both of the fundamentality scores, which can be inferred 
from the frameworks of AggRelOrd and PageRankTS. AggRelOrd 
chooses the maximum value among the course and its descendants as the 
aggregated value of this course. As a result, a course with more de-
scendants, which is more fundamental one, is ordered higher in most 
cases. In PageRankTS, 80% of the priority of a course comes from the 
outgoing edges, which shows the fundamentality of the course. 

On the other hand, in ARD, we observe different trends as shown in 
Fig. 8. The difference between (AggRelOrd, PageRankTS) and 
(GVPickings, MDPOrd) is getting larger as the value of k increases. 
GVPickings explores the courses in the unit of paths, which makes it 
easier to sequentially order a path of courses. In MDPOrd, if the first 
course of a path is not so closely related, the courses on the path tend to 
be ordered lower. In other words, the decision maker in MDPOrd tends 
to choose courses in the current path to starting a new path. In contrast, 
AggRelOrd and PageRankTS tend to prioritize courses with more de-
scendants in the graph, resulting in more jumps in the order from one 
course to another without any prerequisite relationships. 

5.4.2. Course Graph 2 
Relatedness. Fig. 9a shows the average nDCG-based relatedness of the 

orders of Course Graph 2 obtained by the four methods (MDPOrd, 
AggRelOrd, PageRankTS, and GVPickings) described in Section 4 by 
varying k. Overall, the Relatedness of AggRelOrd, GVPickings, and 
MDPOrd is greater than the one of PageRankTS. When k⩽5 and k⩾13, 
MDPOrd outperforms the other methods. Although slight improvement 
is obtained at the average Relatedness@13 of MDPOrd over AggRelOrd 
and GVPickings, the specific Relatedness@13 of different terminologies 

Fig. 9. Relatedness obtained by MDPOrd, AggRelOrd, PageRankTS, and 
GVPickings for Course Graph 2. 

Fig. 10. Analysis on the frameworks of AggRelOrd, PageRankTS, GVPickings, 
and MDPOrd for the terminology knowledge base and Course Graph 2. 
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varies. As shown in Fig. 9b, MDPOrd gives significantly better results 
over the other methods on some of the terminologies (e.g., t17, t29, t47, 
etc.) 

We take the terminology knowledge base as an example to further 
discuss how the methods perform on Course Graph 2. For knowledge 
base, c19 is annotated as necessary and {c11, c18} are annotated as 
preferable courses. As shown in Fig. 10a, c11, c19, and c18 obtain the 
highest relatedness scores 0.243,0.191, and 0.119 in STP1, respectively. 
Given the course graph and the estimated relatedness, we observe that 
AggRelOrd, GVPickings, and MDPOrd rank c11 at a higher position while 
PageRankTS places it one position lower. In PageRankTS framework, c5 
has more descendants than c11 so that it gets a higher score and takes 
over the positions of c3 and c11. AggRelOrd, GVPickings, and MDPOrd 
generate different orders from c11. GVPickings places c18 higher than a 
more related course c19. As shown in Fig. 10b, the paths from c1 to c18 
are selected at once since they have a larger average relatedness. It is not 
desirable for GVPickings to take such a large step of seven courses as it 
may ignore other potential courses. AggRelOrd ranks {c5, c8, c19} and {
c7, c18} according to the relatedness of c19 and c18. AggRelOrd performs 
well when the highly-related courses are located deep in the graph or 

when their prerequisites have low relatedness. MDPOrd chooses to place 
c19 higher than c18 based on a comparison of other possible orders. In 
summary, AggRelOrd and MDPOrd succeed to rank related courses at 
higher positions even if they have many prerequisites. 

Pedagogical metrics. Figs. 11 and 12 show the SpecFdm,GenFdm, and 
ARD scores for the orders of Course Graph 2 generated by the four 
methods, AggRelOrd, PageRankTS, GVPickings, and MDPOrd. We 
observe similar results with Course Graph 1— AggRelOrd and Pag-
eRankTS outperform GVPickings and MDPOrd in both of the funda-
mentality scores while GVPickings and MDPOrd work well in ordering 
courses at a shorter reference distance.8 

5.5. Discussion 

5.5.1. Analysis on performance obtained by STP1 and STP2 
In this work, we put much emphasis on STP2 to identify an order of 

related courses for the technical terminology and adopt TF-IDF scheme 
to estimate course-terminology relatedness. As described in Section 5.2, 
we use the course-terminology relatedness annotated by the domain 
experts as the input of STP2 to explore the upper bounds of the perfor-
mance of STP2. 

Fig. 13 shows that using the ground truth in STP1 achieves better 
Relatedness than using TF-IDF scheme-based course-terminology relat-
edness. As described in Section Relatedness, the relatedness of 
debugging and c10 (Operating Systems) is overestimated by TF-IDF 
scheme. This is because the terms such as “system” and “memory” 
show relatively higher frequency scores in c10, and debugging includes 
these terms. However, if these terms are addressed with more textual 
information such as “operating system”, “main memory”, “memory 
cache”, and so on in c10, the relatedness score for debugging would be 
reasonable one. Therefore, improving relatedness estimation is one of 
our future works. 

5.5.2. Comparison of performance on different course graphs 
In this work, we conduct experiments on two different course graphs. 

As described in Section 5.4, we observe that MDPOrd works well in 
prioritizing related courses for both course graphs. The performance of 
the other methods such as GVPickings and AggRelOrd varies with the 
structures of course graph and the locations of highly-related courses. 
From pedagogical perspectives, AggRelOrd and PageRankTS are effec-
tive in prioritizing specifically and generally fundamental courses while 

Fig. 11. SpecFdm and GenFdm obtained by AggRelOrd, PageRankTS, GVPick-
ings, and MDPOrd, varying position k for Course Graph 2. 

Fig. 12. ARD obtained by AggRelOrd, PageRankTS, GVPickings, and MDPOrd, 
varying position k for Course Graph 2. 

8 We omit detailed analysis as it is discussed in Section 5.4.1. 
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GVPickings and MDPOrd work well in ordering courses at a shorter 
reference distance. 

Compared with MDPOrd, AggRelOrd and GVPickings demonstrate 
competitive performances in prioritizing related courses. We use a 
simple example to compare how the course order is determined in 
AggRelOrd, GVPickings, and MDPOrd frameworks. As shown in the top 
left of Fig. 14, suppose that we have a course graph of five courses with 
their course-terminology relatedness. 

AggRelOrd prioritizes the path toward the most related course e. As a 
result, the secondly related course c is set aside and placed at the last 

position. AggRelOrd has a strength of spotting a highly-related course 
especially when it has many prerequisites. However, AggRelOrd is short- 
sighted and permits no other plans once the path toward the high- 
related course is detected. 

In contrast, GVPickings examines more possible paths as shown in 
the top right of Fig. 14. Specifically, it selects a→b→d→e over a→b→c in 
the first round of picking as it has the largest average relatedness 
(0.175). It is reasonable that GVPickings takes the cost of prerequisite 
courses into consideration. However, there remains a concern that 
whether the duplicated part of different paths should be counted as the 

Fig. 13. Relatedness obtained by AggRelOrd, PageRankTS, GVPickings, and MDPOrd by using ground truth and TF-IDF based relatedness in STP1, varying position k.  

Fig. 14. Comparison among AggRelOrd, GVPickings, and MDPOrd frameworks using a simple example.  
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cost. For example, if a→b is included into the order, it is better to take c 
next to get a relatedness gain of 0.3 rather than to take d→e to get an 
average relatedness gain of 0.25. Therefore, when GVPickings picks a 
long path of courses, it needs a more sophisticated way to compute the 
average relatedness. 

On the other hand, MDPOrd works from a future-oriented perspec-
tive. The bottom right of Fig. 14 shows the state-action transition pattern 
in the MDP model, where a rectangle represents a state, an arrow rep-
resents an action, and a bold arrow indicates the best policy for a state. 
For each state, the best policy is chosen based on the reward and the 
expected value of the future states. At state {a, b}, taking c, d, and e 
ensures a higher expected value than any other plans. In other words, 
MDPOrd chooses to take c first when given the case where it always 
needs to take a non-reward course d before being able to take the most 
related course e. 

In summary, AggRelOrd prioritizes the most related course without 
considering the cost and other possibilities. GVPickings examines the 
cost of taking a related course but sometimes overestimates the influ-
ence of prerequisite courses. MDPOrd orders courses from a future- 
based perspective and keeps a balance among multiple related cour-
ses. Actually, the strengths of AggRelOrd and GVPickings are the 
weaknesses of MDPOrd: (a) MDPOrd does not necessarily rank the 
highly-related courses if they have many unrelated prerequisites; (b) 
MDPOrd makes decisions independent of the past, which means the cost 
of taking previous courses is ignored. 

6. Conclusion and future work 

In this work, we have addressed the problem of ordering the related 
courses for a given technical terminology while following the prereq-
uisite relationships among courses. We proposed a two-step approach 
where the course-terminology relatedness is first estimated and then 
courses are ordered based on the prerequisite relationships and the 
estimated relatedness. Putting much emphasis on the second step, we 
proposed a Markov Decision Process-Based Ordering (MDPOrd) method 
and compared it with the other three methods— AggRelOrd, Pag-
eRankTS, and GVPickings. Except for evaluating how an order priori-
tizes related courses for a terminology, we also evaluated from 
pedagogical perspectives, namely, how the order prioritizes specif-
ically/generally fundamental courses, and how it places courses close to 
their prerequisites. 

We conducted the experiments on two course graphs with different 

courses and prerequisite relationships. The results showed that MDPOrd 
achieved the best performance on prioritizing related courses when we 
observe more than 11 and 13 positions of the order for Course Graphs 1 
and 2, respectively. For pedagogical metrics, we observed that AggRe-
lOrd and PageRankTS worked well in prioritizing fundamental courses 
while GVPickings and MDPOrd were effective in ordering courses at a 
shorter reference distance. Furthermore, we discussed how the course 
order is generated in different methods with specific examples. We 
concluded that MDPOrd orders courses from a future-based perspective 
and keeps a balance among multiple related courses. However, MDPOrd 
tends to be influenced by the unrelated prerequisites of highly-related 
courses and ignores the cost of taking previous courses. 

In future work, we plan to address the followings: We used courses 
collected from two curricula in which prerequisite information is 
available. Thus, we plan to explore whether we can apply our method to 
order courses in more learning resources such as Massive Open Online 
Courses (MOOC). In addition, we only evaluated the orders generated by 
our methods from a pedagogical point of view. It would be more useful if 
we could use other pedagogical perspectives to further improve the 
orders. As pointed out as a limitation, current MDPOrd ignores the cost 
of previous courses when determining the order. It could be a promising 
direction to integrate the cost into the schemes of reward and transition 
probability. 
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Appendix A. Course information    

Fig. A.1. Course graph structures in our experiments.  
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