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ABSTRACT: In order to accurately understand and estimate molecular
properties, finding energetically favorable molecular conformations is the most
fundamental task for atomistic computational research on molecules and materials.
Geometry optimization based on quantum chemical calculations has enabled the
conformation prediction of arbitrary molecules, including de novo ones. However,
it is computationally expensive to perform geometry optimizations for enormous
conformers. In this study, we introduce the gray-box optimization (GBO)
framework, which enables optimal control over the entire geometry optimization
process, among multiple conformers. Algorithms designed for GBO roughly
estimate energetically preferable conformers during their geometry optimization
iterations. They then preferentially compute promising conformers. To evaluate the performance of the GBO framework, we applied
it to a test set consisting of seven dipeptides and mycophenolic acid to determine their stable conformations at the density functional
theory level. We thus preferentially obtained energetically favorable conformations. Furthermore, the computational costs required
to find the most stable conformation were significantly reduced (approximately 1% on average, compared to the naive approach for
the dipeptides).

■ INTRODUCTION
Finding energetically favorable molecular conformations is
essential for understanding molecules’ chemical and physical
properties (e.g., reactivity, catalytic activity, or optical proper-
ties) and for exploiting design of novel molecules. Recent
developments in various computational chemistry methods,
combined with computational advances, have enabled the
generation and prediction of molecular conformations.1,2 In
particular, search methods using quantum mechanics (QM)
calculation-based geometry optimization and search algorithms
have been developed.3,4 In these methods, density functional
theory (DFT)5 is widely used because of its ease of use,
although it is necessary to consider the effects of incorporation,
such as long-range interactions, depending on the target
molecule. Optimization and search algorithms include
simulated annealing,6 Monte Carlo-minimization,7 particle
swarm optimization,8 basin hopping,9 genetic/evolutionary
algorithms,3 Bayesian optimization,10,11 and firefly algorithm;12

others methods have also been utilized. These inductive
approaches based on QM calculations are essentially applicable
to any molecule, and they are expected to provide more
detailed information than data-driven approaches,13−15 which
use conformation databases and machine learning. This
property is particularly useful in molecule design and can be
combined with recently developed molecule generation
methods based on deep learning,16−19 in which molecules
that do not yet exist in reality are generated.
Despite various methodological developments in the

conformation search method, however, it is still difficult to

find energetically favorable conformations based on expensive
QM calculations because there are large numbers of locally
stable conformations with relatively high energies. This hinders
access to the exact stable conformation. The basic strategy of
the conformation search method based on QM calculations is
to generate a large number of various conformation candidates
(conformers) and then perform geometry optimizations of
them, one by one, through QM calculations. However,
compared to the number of energetically favorable con-
formations, the number of conformations with higher energies
increases as the number of degeneracies increases. Assuming
that the numbers of rotatable bonds are independent of each
other, the probable energy could distribute as a canonical
distribution.20 Here, the probability of energy would distribute
around the center where the number of states is the highest
point because temperature is not considered. Therefore,
geometry optimizations are more likely to be trapped in
conformations with higher energies. As a result, most of the
computational cost of geometry optimization is spent on
finding energetically unfavorable conformations.
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To circumvent this issue, we introduce the gray-box
optimization21−23 (GBO) framework, which has been actively
studied in the context of best arm identification (a special case
of reinforcement learning) and has been used for hyper-
parameter optimization in deep learning.24 From the viewpoint
of search algorithms, finding energetically favorable conforma-
tions can be regarded as an optimization problem of a black-
box function (black-box optimization)25,26 by considering the
QM-based geometry optimization as a complex function
(black-box function). Then, finding energetically favorable
conformations can be formulated as a problem to find input
conformers that output favorable conformations for a given
black-box function. However, the issue of computational cost,
as described above, is inevitable. Here, we employed the GBO
framework, which provides efficient algorithms for solving such
black-box optimization problems while gradually evaluating the
given black-box function. GBO is useful when many candidates
(e.g., initial conformers) need to be evaluated and their
evaluation values are gradually fixed (e.g., geometry opti-
mization, where the final energy gradually converges according
to the optimization iteration). GBO repeats two phases: (1)
selection of the next candidate to be calculated and (2) slight
advancement of the calculation for the selected candidate. This
achieves an efficient search by gradually decreasing the number
of promising candidates and concentrating their computational
resources while considering all candidates.
In this study, we assess the performances of four GBO

algorithms: LAQA (Look Ahead based on Quadratic
Approximation),27 sLAQA (sequential LAQA), successive
rejects28 (SR), and successive halving21 (SH). LAQA and
sLAQA were proposed by some of the authors for the efficient
crystal structure prediction method.27 While most GBO
algorithms, including SR and SH, consider only the score as
an indicator (energy, in this study), LAQA and sLAQA use the
differential of the score (i.e., force in geometry optimization)
to estimate promising candidates. To validate the effectiveness
of the GBO algorithms, we prepared a test set of seven
dipeptides and mycophenolic acid (MPA), which is used as a
drug. Using the GBO algorithms, we have succeeded in
obtaining energetically favorable conformations, including the
most stable structures by reducing the total number of
iterations required for geometry optimization based on DFT
calculations, although the exhaustive search tended to produce
many conformations with relatively high energies. In particular,
the total number of iterations required for geometry
optimization by LAQA to obtain the most stable structure
was reduced to approximately 1% on average, compared to the
naively exhaustive computation; it was reduced to approx-
imately 10% compared to a random search. Our implementa-
tion is available on GitHub at http://github.com/inter-info-
lab/chem_laqa. Users can easily set up parameters (e.g.,
computational resources) and quantum computation modules
and can search conformations using the GBO algorithms with
the standard database format (SDF) file of a target molecule.

■ METHODS
Figure 1 shows an overview of a molecular conformation
search based on exhaustive relaxation (ER) and GBO. First, a
large number of initial conformers are generated for a target
molecule. Subsequently, these conformers are relaxed at the
molecular mechanics (MM) level. In the ER approach, all
conformers are relaxed based on QM calculation, as shown on
the left side of Figure 1. In the GBO approach, energetically

favorable conformers are preferentially relaxed by controlling
the geometry optimization. Details of these procedures are
given below.

Generation of Initial Conformers. Initial conformers of a
target molecule were generated from its simplified molecular-
input line-entry system string (SMILES) representation or
SDF file using modules in the fafoom code.3 In the modules,
first, a random three-dimensional structure was generated
directly from the input SMILES using the ETKDG29 method
included in RDKit.30 This structure was used as a template to
generate the geometries of the conformers. Next, rotatable
dihedral and cis/trans bonds were analyzed from SMILES and
picked up as variables of the coordinates of the conformers.
Geometries of the conformers are generated by assigning
random values to the variables. Then, structural relaxations are
performed for the generated conformers at the MM level
described by the universal force field (UFF).31 The trial of
conformer structure generation is conducted until a certain
number of times and added to the succeeded list. Conforma-
tionally different initial molecules often converge into the same
conformer through relaxations at the MM level. Hence, we
optionally performed filtered relaxed conformers and selected
representative conformers based on the root-mean-square
deviation (rmsd) values of heavy atoms with certain values
(dmm).

Figure 1. Overviews of ER and GBO-based conformation searches.
(a) Number of various initial conformers are generated; these
conformers are relaxed at the MM level. (b) Relaxed conformers with
various energies are obtained by exhaustively relaxing all of the
generated conformers at the QM level [blue distribution in (d)]. (c)
GBO-based approach preferentially relaxes energetically favorable
conformers by controlling the geometry optimization, and con-
sequently, relatively low-energy conformers [orange distribution in
(d)] are intensively obtained.
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Gray-Box Optimization. Here, we introduce four GBO
algorithms: LAQA, sLAQA, SH, and SR. Figure 2 shows
flowcharts of these algorithms. All of these algorithms require
the total number of iterations in the geometry optimization
steps, Nmax, as an input parameter. First, the initial conformers
are generated and their relaxations are performed at the MM
level, as described above (step 1). Then, the filtering based on
the structural similarity is optionally conducted (step 2). In the
results section, we assess the effect of this filtering. For LAQA
(a), only a single iteration of QM-based geometry optimization
is performed for each conformer (step 3). Then, we calculate
the following score Li,T for each conformer i (step 4), select the
conformer with the best score (step 5), and perform a single
iteration of geometry optimization (step 6).
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Here, T is the iteration number of the geometry optimization
for candidate i, Ei,T and Fi,T are the energy and force to the
nucleus at iteration number T, respectively, and ΔFi,T = |Fi,T −
Fi,T−1|. Fi,T is the mean of the norms of the force to all atoms.
When T = 1, we fix ΔFi,T = 1. The score of eq 1 corresponds to
a quadratic approximation of the final energy that is predicted
from the current energy and force.27 A conformer with a large
force is expected to undergo a large energetic decrease in the
future. By using this score, we can roughly estimate the
energetic decrement of current conformers. In LAQA, steps 4−
6 are repeated until sufficient optimized conformers are
obtained or until the total number of iterations for geometry
optimization reached the value of Nmax. As LAQA runs steps
4−6 while checking all conformers, it is necessary to keep the
information used to calculate all conformers, which can require
considerably large storage. In sLAQA (b), some of the
conformers are pooled as a conformer set for calculation
(Npool), and the calculation processes (steps 4−6) of LAQA

are performed in the pooled conformers. After calculation in
step 6, if the conformer is fully relaxed, sLAQA removes the
conformer and the highest-energy one from the pool and adds
two new conformers from the remaining ones in the prepared
conformers (step 7). This operation allows us to perform
geometry optimization while considering the overall con-
formers prepared up to step 3. LAQA and sLAQA are
sequential methods, that is, they never advance the iteration of
geometry optimization more than one conformer at a time.
In the case of LAQA, the score of eq 1 is calculated for all

the candidate conformers, and then, the best one is selected for
geometry optimization. On the other hand, SR28 and SH21

gradually reduce the number of candidates. In the geometry
optimization step, SR and SH proceed with a designated
number of iterations with all the retained candidates. The
difference between SR and SH is the reduction procedure of
candidate conformers: SR reduces the number of candidates
one by one, and SH reduces them by half each time. The
details of SR and SH are described below. Here, we assume
that the number of initial conformers is K. In both SR and SH,
let the list of all conformers be A [step 3 in (c) and (d)]. For
SR, the calculation of geometry optimization (step 4 in (c))
and selection of conformer (step 5 in (c)) are repeated K − 1
times. In the kth loop (k ∈ {1, 2, ..., K − 1}), for each
conformer in A, we calculate nk − nk−1 iterations of geometry
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Ä
Å
ÅÅÅÅÅÅ

É
Ñ
ÑÑÑÑÑÑnk K

N K
K k

1
log( ) 1
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2 1

1= + ∑ = , and n0 = 0. Then, in step 5, the

candidate with the worst score in A is excluded. In both SH
and SR, the minimum energy is used as the score for each
conformer. For SH, ⌈log2 K⌉ iterations of steps 4 and 5 are
performed. In the kth loop (k ∈ {0, 1, ..., ⌈log2 K⌉}), for each

conformer in A, we calculate
Å
Ç
ÅÅÅÅÅÅÅ

Ñ
Ö
ÑÑÑÑÑÑÑ

N
A Klog

max

2| | ⌈ ⌉ iterations of geometry

optimization. Then, in step 5, we set the top half ⌈|A|/2⌉
conformers in A to be A. SR and SH are well designed such
that the total number of iterations for geometry optimization

Figure 2. Flowcharts of four GBO-based algorithms: LAQA (a), sLAQA (b), SH (c), and SR (c). The step numbers assigned for each algorithm
are shown in parentheses. In (4) of (a,b), we initially calculate the LAQA score for each conformer. Thereafter, the LAQA score is updated for the
conformer on which the geometry optimization has been performed.
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does not exceed Nmax. In this study, there was often a large
difference between Nmax and the total number of iterations
after the calculation in steps 4−5 because a conformer may be
fully relaxed in fewer steps than in step 5. In such cases, we
calculated the scores in step 4 for conformers that are not fully
relaxed and additionally performed geometry optimization
starting from the candidate with the lowest score, as long as the
total number of iterations for geometry optimization does not
exceed Nmax.
Geometry Optimization by DFT. All DFT calculations

were performed with the Gaussian 16 RevA.03 program.32 The
wB97XD functional,33 which includes empirical dispersion
interactions, was used with the ultrafine numerical integration
grid. The 6-31G(d)34−36 basis functions were used as the
spherical Gaussian basis functions. The hybrid geometry
(Berny) optimization algorithm,37 which is the default
algorithm in Gaussian 16 employing the energy-represented
direct inversion in the iterative subspace (GEDIIS) search37

and the rational function optimization/linear search,38 was
used with the tight convergence criterion (i.e., opt = tight
option). The convergence is judged by the values of the
maximum force, RMS force, maximum displacement, and RMS
displacement whose respective thresholds were set to less than
4.5 × 10−4, 1 × 10−5, 1.8 × 10−3, and 1.2 × 10−2 a.u. We

performed the vibrational analysis for confirming that the most
stable conformer lies at a stationary point.

Data Set and Code Implementation. To evaluate the
performance of the implemented algorithm, we used two types
of reference data that have been extensively investigated in
previous simulation studies. The first reference data set is seven
amino acid dipeptides (glycine, alanine, valine, isoleucine,
leucine, phenylalanine, and tryptophan, Figure 3) extracted
from a database of computational data for amino acid
dipeptides.3,39 The properties of the dipeptide data set
(number of atoms, number of rotatable bonds, number of
cis/trans bonds, statistical summary of initial conformer
generation, and DFT geometry optimization of all generated
conformers) are summarized in Table 1. The second reference
data set is MPA (Figure S1), which is present in the collection
of X-ray crystal structures of complexes containing ligands
from the Protein Data Bank (PDB),40 and its conformers were
obtained with three different conformation search techniques:3

(1) a genetic algorithm with fafoom, (2) random search with
fafoom, and (3) systematic search with Confab.41 MPA (target
protein: 1MEH) has 43 atoms, eight rotatable bonds, and one
cis/trans double bond. This molecule is very flexible and
presents a challenging example for a conformation search. If a
coarse systematic grid search is performed for six grids (every

Figure 3. Structures of the seven amino acid dipeptides in the data set. The rotatable bonds are indicated in red. Double arrows indicate the cis/
trans bonds.

Table 1. Basic Information of the Seven Dipeptides Used to Evaluate the GBO-Based Conformation Search

glycine alanine valine isoleucine leucine phenylalanine tryptophan

abbreviations Gly Ala Val Ile Leu Phe Trp
num. of atoms 19 22 28 31 31 32 36
num. of rotatable bonds 2 2 3 4 4 4 4
num. of cis/trans bonds 2 2 2 2 2 2 2
initial conformers 564 644 1358 1123 1699 2005 1875
num. of succeeded DFT calculations 556 644 1340 1110 671 1977 1875
total geometry optimization steps 25,589 24,304 56,859 50,448 74,659 90,365 92,367
average geometry optimization steps 46.02 37.74 42.43 45.45 44.68 45.73 49.26
most stable structures (%) 54 (9.71) 23 (3.56) 45 (3.58) 32 (2.88) 13 (0.78) 40 (2.02) 6 (0.32)
unique conformers (UFF optimized, dmm = 0.2) 47 45 84 240 255 145 249
unique conformers (DFT-optimized, dmm = 0.2) 22 31 68 173 212 89 175
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60°) for six rotatable torsion dihedrals, two patterns of one cis/
trans double bond, and two patterns of two X−X−O−H
torsions, 66 × 2 × 2 × 2 = 373, 248 conformers should be
tested. The properties of the MPA data set (number of atoms,
number of rotatable bonds, number of cis/trans bonds,
statistical summary of initial conformer generation, and DFT
geometry optimization of all generated conformers) are
summarized in Table S1. We also show the lowest energy
conformer of each dipeptide in Figure S2 of Supporting
Information. All the DFT-optimized conformers are available
in Supporting Information (Optimized_conformers_SI.zip).
The GBO-based geometry optimization code was imple-

mented using Python with the numpy and rdkit libraries. The
initial random geometry generation code was implemented by
modifying modules in the fafoom code using Python.

■ RESULTS AND DISCUSSION

Result of GBO-Based Conformation Search for the
Dipeptide Data Set. For the dipeptide data set (Table 1), we
evaluated the effectiveness of LAQA in searching for
energetically favorable conformations (Figure 4). First, we
performed ERs using DFT calculations for all of the generated
conformers. Details of the number of iterations required for
geometry optimization and the number of unique conformers
are listed in Table 1. The blue histograms and lines in Figure 4
show the energy distributions of the relaxed conformers and
the probability density functions estimated by the kernel
density estimation42 (KDE) method, respectively. Moreover,
we exhaustively optimized the filtered conformers (see the
Methods section for details). The estimated probability density
functions are shown as green lines in Figure 4. In Figure S3, we
show the details of the energy distributions of the relaxed
conformers as blue (all conformers) and green lines. From
Figures 4 and S3, it can be seen that there were a large number
of suboptimal conformers, and many energetically unfavorable
structures were obtained upon exhaustively relaxing the
generated structures.
The yellow, red, and blue lines in Figure 4 show the energy

distributions obtained by LAQA for the total number of
iterations required for geometry optimization of 50, 25, and
12.5% of the total number of iterations for the filtered
conformers (green lines), respectively. The purple histograms

represent the energy distributions of the relaxed conformers
using LAQA (12.5%). The details of the energy distributions
are shown as yellow, red, and blue lines in Figure S3. As an
example, the improved relaxation process for glycine is shown
in Figure S4. From Figures 4 and S3, the LAQA results show
that energetically favorable conformers could be preferentially
relaxed as the parameter for the total number of iterations
required for geometry optimization was reduced. The probable
distribution of energy could naively be the canonical
distribution through nonbias sampling, such as random
sampling. Hence, the probable of energy would distribute
around the center where the number of states is the largest
point because we did not consider the temperature. However,
the probable of energy sampled by LAQA produced a
distribution similar to that of the probable of states. This
means that LAQA can search stable structures effectively
against the distribution of a number of states. Additionally, the
most stable structure of each peptide was found in most cases,
except for LAQA (12.5%) for tryptophan. Tryptophan can be
regarded as the most difficult case among the dipeptide data
set because its population of conformers appears at much
higher energy levels (the main population of conformers is
located at 0.2 eV above the most stable structures) than the
other six dipeptides as shown in Figure 4. Conformer searches
of such kinds of examples often tend to be trapped in the local
minimum conformations in the main population and make it
difficult to find the most stable structure without conducting a
large number of search steps. By contrast, as shown in these
results, LAQA was able to dramatically reduce the number of
calculations while preferentially relaxing conformers with low
energy, including the most stable conformation. The vibra-
tional analysis shows that the most stable conformers of the
dipeptides obtained by LAQA lie at minima except for Ile. The
most stable conformer of Ile lies at the saddle point for the
rotation of a terminal methyl with a small imaginary frequency
(21i).
We also examined the effect of the filtering on the final

conformations obtained in detail. The numbers of unique
relaxed structures for all of the generated structures are listed
in Table 1; these numbers were similar to, or higher than,
those reported in a previous study.3 Figure S5 summarizes the
conformers obtained when the threshold for filtering was

Figure 4. Relative energy distributions of optimized conformers determined by the LAQA algorithm and exhaustive geometry optimizations for the
dipeptide data set. The relative energies to the energy of the most stable structure in each system were calculated. Each blue bar and line shows a
histogram of the relative energies optimized by DFT for all generated conformers and their probability density functions estimated by KDE,
respectively. The green lines show the probability density functions estimated by KDE for the filtered conformers. The yellow, red, and blue lines
show the probability density functions obtained by applying LAQA for the total number of geometry optimization steps of 50, 25, and 12.5% for
the total number of steps for the filtered structures, respectively. The purple histograms represent the energy distributions of the relaxed conformers
using LAQA (12.5%). The total numbers of all structures and the filtered structures are shown in Figure 5.
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changed from 0.2 to 2.0 × 105. When the threshold value was
low, both the number of conformers obtained after the filtering
and the final number of unique conformers increased. In
particular, when the threshold value was set to 0.02, the
average number of unique conformers was 96.2%, reducing the
number of conformation candidates by the filter to
approximately 15.1%. The green lines in Figure 4 show the
distributions when the threshold was set to 0.02. This result
indicates that, although there were some omissions, it is
possible to obtain sufficient conformations while reducing the
number of conformers by filtering the conformers relaxed by
UFF.
Performance for Finding the Most Stable Conforma-

tion. To verify the performance of the GBO algorithms,
including LAQA, we evaluated the total number of iterations of
geometry optimization required to find the most stable
structure. In Figure 5, the blue and orange bars show the
total number of iterations required to relax all of the generated
conformers and the filtered ones as baselines, respectively.
Figure 5 also shows the total number of iterations required to
find the most stable structures using the GBO-based
approaches. We summarize the obtained conformers by the
GBO algorithms in Figure S2. To evaluate the performances of
the GBO algorithms, we conducted conformation exploration
using RS, which is a method that repeats a procedure
consisting of a random selection of a conformer and its full
relaxation. We applied the GBO algorithms and RS to the
filtered structures. Figure 5 shows the results of sLAQA, SH,
and SR with 20, 50, and 50% of steps for the total number of
iterations of the filtered structures as inputs. As sLAQA and RS
are stochastic algorithms, we performed 50 trials by changing
the random seed and calculated the expected values and
standard deviations of the total number of iterations of
geometry optimization required to find a stable conformation
at least once. Figure 5 shows that the GBO algorithms
achieved better performances compared to RS in most cases
and drastically reduced the computational cost of finding the
most stable structure compared to naive ERs. In particular,
LAQA reduced the average number of steps to 0.989%
compared to the ERs (blue bars). For tryptophan, which has a
relatively complex structure, the reduction rate achieved by

LAQA was relatively low (3.78%). The efficiency of these
GBO algorithms compared to RS or exhaustive search is
considered to be due to the fact that computations for
energetically unfavorable structures can be omitted. In Figure
S7, we also show the relationship between total number of
iterations in geometry optimization and molecular weights.
From the plot, the total number of iterations (Tit) scales with
molecular weight (MW) as Tit = 3.62 × 100.0107×MW. These
results show the effectiveness of the GBO algorithms,
especially LAQA.
Among the GBO algorithms, as shown in Figure 5, LAQA

showed the largest reductions, followed by sLAQA, SH, and
SR. To analyze this tendency in detail, we have summarized
the performances of sLAQA, SH, and SR under different input
parameters in Figure S6. sLAQA has the advantage that the
number of structures allocated in memory can be smaller than
that of LAQA. The sLAQA results shown in Figure S6 reveal
that, although there were some exceptions, the number of
iterations required to find the most stable conformation could
be reduced as the size of the Kpool increased. As the cost (in
memory) of keeping the computational information increases
when Kpool is large, it is necessary to set an appropriate number
for Kpool according to the computational environment and the
target molecule. For SH and SR, it is confirmed that the
required number of iterations could be reduced as the number
of Nmax increases, as shown in Figure S6. On the other hand,
when Nmax is small, the search for the most stable
conformation may fail. For example, the case of SR (50%)
for tryptophan in Figure 5 actually failed. The calculation
process for this case is shown in Figure S7. As the optimization
process of the most stable structure (black line) had a relatively
high energy in the middle, its optimization was aborted by the
algorithm shown in the dashed box in Figure S7. When Nmax of
SR was 75% for tryptophan, the search was successful, as
shown in S5. In addition, comparing SH and SR reveals that
SH has a higher reduction rate. Overall, these results suggest
that SH with a relatively large Nmax value enables an efficient
search when computations can be executed in parallel.

Result of the GBO Approaches for MPA. We also
evaluated the performances of the GBO algorithms for MPA as
a more complex example. We generated 1000 initial candidate

Figure 5. Total number of iterations required to find the most stable conformation of each test with each GBO algorithm. The blue bars represent
the total number of iterations of geometry optimization required to relax all of the generated initial conformers. The orange bars indicate the total
number of iterations for the filtered conformers. RS, LAQA, sLAQA, SH, and SR were applied to the conformers after filtering. The green bars
show the expected values of the total number of iterations of geometry optimization required to find the most stable conformation at least one
using RS. The black bars denote the standard deviations. The red, purple, and pink bars show the total number of iterations required to find at least
one most stable structure by SR, SH, and LAQA, respectively. The blown bars indicate the expected values of total iteration numbers required to
find at least one of the most stable conformations. For SR (50%) of Trp, the bar is not shown because the algorithm could not find the most stable
structure under this parameter.
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conformers using fafoom and succeeded in relaxing 992
conformers using DFT calculations. In Figure 6, the estimated
probability density function [blue line in (a)] and energy
distributions [blue lines in (b)] of all of the relaxed 992
conformers are shown. A large number of conformers were
included within a difference of 1 eV from the stable
conformation. Figure 6a clearly shows that LAQA preferen-
tially relaxed structures with low energy (<0.4 eV), while many
conformers with energies of 0.5 eV or higher were obtained in
the ERs. Figure S8 shows the relationship between the RMSD
and energy values of the relaxed conformers from the reported
conformation.40 The number of unique conformers optimized
by DFT and filtered conformers were 333 and 483,
respectively. Here, the threshold and filtering-threshold values
were set to 0.02 and 0.00002, respectively, because the
structure of MPA was complicated and there were many
different structures, even though the RMSD threshold was
small. The yellow, red, and purple lines in Figure 6a,b show the
probability density functions and energy distributions of the
conformers obtained when the total number of iterations for
the geometry optimization were set to 50, 25, and 12.5%,
respectively, of the steps required to relax all of the filtered
conformers. Although some structures could not be found in
the region with relatively low energy, we succeeded in
discovering three structures using LAQA and confirmed that
the most stable structure of MPA lies at a minimum through
the vibrational analysis.
We evaluated the performances of the GBO algorithms to

find the most stable structure of MPA (Figure 6c). Initially,
60,184 iterations (60.67 iterations on average) and 30,060
iterations were required to relax all 992 initial conformers and
the filtered 483 conformers, respectively. The RS and GBO
algorithms were applied to the filtered structure. LAQA
showed the best performance (2397 steps) as shown in Figure
6c, and the other GBO algorithms also performed better than
RS. This tendency was similar to that observed for the
dipeptide data set. In particular, LAQA succeeded in searching
for the most stable structure using only 3.9% of the number of
iterations numbers compared to when all of the initial
conformers were relaxed exhaustively.

■ CONCLUSIONS

To effectively search for energetically favorable conformations,
we introduced GBO algorithms LAQA, sLAQA, SH, and SR,
which can finely control geometry optimization among
multiple conformers. To validate the performances of these
GBO algorithms, we applied them to seven dipeptides and
MPA. The GBO algorithms were able to avoid making
computations for energetically unfavorable conformers and
could preferentially compute energetically favorable con-
formers, including the most stable structures. Consequently,
these algorithms efficiently obtained energetically favorable
conformations against a large number of metastable states. In
particular, when using LAQA, the most stable structure was
obtained using below 1% of the number of iterations of
geometry optimization in most systems, compared to the
exhaustive calculation of all generated conformers. The other
GBO algorithms, sLAQA, SH, and SR, performed worse than
LAQA in terms of searching for the most stable conformation.
However, they performed better than RS and have other
advantages compared to LAQA. The sLAQA approach
requires fewer conformers in memory at a time, and both
SH and SR can be parallelized. Therefore, we would benefit
from these GBO algorithms by their appropriate use
depending on the computational environment and target
molecules.
These GBO algorithms are applicable to various molecules

and computational methods because they are independent of
specific molecules and computational details. As shown in
Figures 5 and 6, if the size and complexity of a molecule
increases, the number of possible conformations will
dramatically increase, and thus, the required computational
cost will increase too, even if the GBO algorithms were to be
employed. If possible conformers that would reach the most
stable conformation are not in an initial pool of conformers,
the GBO algorithms fail to find the most stable one. On the
other hand, systematic methods, such as genetic algorithms3

and Monte Carlo-minimization,7 can find the most stable
structure even if such an initial structure is not prepared. The
reliability of the GBO algorithms is elevated only by increasing
the diversity of conformers that are prepared in the initial pool.
In this study, we prepared a large number of conformers in

Figure 6. Results of the conformation search by the GBO algorithms and an exhaustive search for MPA. (a) Estimated probability density functions
of the relaxed conformers’ energies obtained by an exhaustive search for all of the generated conformers (blue) and filtered ones (green), LAQA
with 50% (yellow), 25% (red), and 12.5% (purple) of the total number of iterations of the filtered conformers. The blue and red bars show
histograms of the relaxed conformers’ energies obtained by the exhaustive search for all generated conformers and the LAQA (12.5%) search. (b)
Detailed energy distributions of relaxed conformers using the exhaustive search and LAQAs. The colors correspond to those shown in (a). (c)
Total number of iterations required to find the most stable conformation of each test with each GBO algorithm. The black bars indicate the
standard deviations.
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advance using fafoom. Combining the GBO algorithms and
conformer generation with optimization methods such as
evolutionary algorithms and machine learning-based con-
formation predictions, the computational efficiency can be
improved, especially for complex molecules. In this work, we
used a minimum-energy search algorithm by evaluating
molecular potential energy for demonstrating the GBO
algorithms. However, the GBO algorithms would be applicable
to search any stationary points such as a saddle point on any
surfaces such as free energy surface as the application of the
basin-hopping method.43
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