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Abstract
Zonal distribution of hydrothermal alteration in and around geothermal fields is important for understanding the hydrothermal 
environment. In this study, we assessed the performance of three unsupervised classification algorithms—K-mean clustering, 
the Gaussian mixture model, and agglomerative clustering—in automated categorization of alteration minerals along wells. 
As quantitative data for classification, we focused on the quartz indices of alteration minerals obtained from rock cuttings, 
which were calculated from X-ray powder diffraction measurements. The classification algorithms were first examined by 
applying synthetic data and then applied to data on rock cuttings obtained from two wells in the Hachimantai geothermal 
field in Japan. Of the three algorithms, our results showed that the Gaussian mixture model provides classes that are reli-
able and relatively easy to interpret. Furthermore, an integrated interpretation of different classification results provided 
more detailed features buried within the quartz indices. Application to the Hachimantai geothermal field data showed that 
lithological boundaries underpin the data and revealed the lateral connection between wells. The method’s performance is 
underscored by its ability to interpret multi-component data related to quartz indices.

Keywords Hydrothermal alteration · X-ray powder diffraction · Quartz index · Machine learning · Unsupervised 
classification

Introduction

Mapping the zonal distribution of hydrothermally altered min-
erals in and around a geothermal field is important for under-
standing the geothermal system and selecting a promising site. 
The distribution of alteration minerals can be linked to physical 
and chemical conditions, such as temperature and fluid acid-
ity, which predominate in geothermal systems (e.g., Browne 
1978; Reyes 1990; Yang et al. 2001; Lutz et al. 2011). The 
zonal distribution of alteration minerals can also be used to sup-
port interpretation of geophysical data, such as resistivity (e.g., 
Yoneda 2014), as petrophysical and mechanical properties are 
affected by secondary mineralization attributed to alteration and 
by host rock properties (e.g., Frolova et al. 2010, 2015; Wyering 
et al. 2014; Mielke et al. 2015; Delayre et al. 2020).

Machine learning is a suitable approach for automated 
zonation and characterization of multi-dimensional data, 
with several examples of its successful application to 
geophysical logs, such as seismic velocity, resistivity, 
gamma ray, and average neutron density porosity (e.g., 
Raeesi et al. 2012; Grana et al. 2017; Caté et al. 2017; He 
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et al. 2020; Feng 2020). Machine-learning classification 
of geophysical data can help with objectively classifying 
the subsurface’s physical properties and has also been used 
to identify natural-resource reservoirs (e.g., oil/gas). How-
ever, the application of machine-learning classification to 
alteration minerals has been limited, with only a few stud-
ies that have focused on characterizing alteration minerals 
along wells via machine learning (e.g., Caté et al. 2018; 
Hood et al. 2018; Chen et al. 2018). Application of the 
machine-learning classification to characterize alteration 
minerals along wells would also be beneficial in terms of 
understanding the zonation of hydrothermal alteration in 
depth as well as comparing the classifications of geophysi-
cal logs.

X-ray powder diffraction (XRD) is a versatile tech-
nique based on the basal spacing of mineral crystals that 
facilitates the identification of mineral species. It has 
been used to document the species of alteration miner-
als in geothermal fields (e.g., Schiffman and Fridleifsson 
1991; Fulignati et al. 1997; Inoue et al. 2004). One of the 
quantities obtained from XRD is the quartz index (QI), 
which is a measure of the ratio of the peak intensity of 
a mineral’s XRD value to that of pure quartz minerals 
(Hayashi 1979; Takahashi et al. 2007). As XRD uses pow-
der material, QI measurement can be performed based 
on rock cuttings. Cuttings are generally available along 
wells, and thus, the QI can be measured sequentially 
along any well. Additionally, compared to earlier stud-
ies on geochemical classification using machine learning 
with elemental composition data (e.g., Caté et al. 2018; 
Ueki et al. 2018), the QI indicates the mineral type, which 
may be useful in interpreting the environment in which 
the mineral was formed.

In this study, we used unsupervised classification 
methods to characterize hydrothermal alteration miner-
als based on the QI and temperature (Fig. 1). We used 
unsupervised classification as it does not require training 
data to define each class and therefore can be applied to 
fields for which the amount of training data is insuffi-
cient. These approaches facilitate automatic detection of a 
group of minerals that had experienced similar hydrother-
mal alteration processes, because each hydrothermal envi-
ronment contains a conformable set of altered minerals. 

In this study, we tested three unsupervised classification 
algorithms: K-means clustering (MacQueen 1967), the 
Gaussian mixture model (GMM) (McLachlan and Peel 
2000), and agglomerative clustering (AC) (Gower and 
Ross 1969; Lior and Maimon 2005). These unsupervised 
algorithms have previously demonstrated their effective-
ness in classifying geophysical and geochemical data 
(e.g., Templ et al. 2008; Grana et al. 2017; Saporetti et al. 
2018) but have not been evaluated for the classification 
of hydrothermal alterations along wells. We further pro-
posed using a decision tree (Breiman 2001) to deline-
ate each classified group’s characteristics (Fig. 1). The 
application site was the Hachimantai geothermal field, 
located in Iwate Prefecture, northeast Japan (Fig. 2a) 
(NEDO 2007, 2008).

Local geology and data used in this study

Local geology

The geology of the Hachimantai geothermal field com-
prises a Quaternary formation that overlies a Tertiary 
formation (Kimbara 1985). The Tertiary formation con-
sists of dacitic and andesitic tuff, and the Quaternary 
formation is approximately 450 m thick (Fig. 2b) (Kim-
bara 1985). The tonalite, which is encountered at depths 
of approximately 1500–1800 m, intrudes beneath the 
Tertiary formation (Fig. 2b) and is considered a heat 
source for the geothermal field. The metamorphism 
of the Tertiary wall rocks around the tonalite includes 
extensive development of biotite, cordierite, talc, mag-
netite, ilmenite, and other metamorphic minerals. The QI 
values in this study were obtained from cuttings along 
two neighboring wells called N19-HA-1 and N19-HA-2 
that were drilled down to approximately 1750 and 
1600 m, respectively. The QI values were reported in 
NEDO (2007, 2008). The ground facilities of the two 
wells are at almost the same position, but N19-HA-1 
was drilled in an NW direction, whereas N19-HA-2 was 
drilled toward the NNW (NEDO 2007, 2008). Evidence 
of high-temperature fluid circulation can be found in the 
zonation of altered minerals around wells N19-HA-1 and 

Fig. 1  The work flow used in 
this study
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N19-HA-2. These can be sub-divided into the Silica-
Rutile, Silica-Anatase, and Tridymite-Cristobalite zones 
(around well N19-HA-1). Temperature logs mainly show 
patterns of conduction, with maximum temperatures of 
approximately 300 °C at the bottoms of the wells (NEDO 
2007, 2008).

X‑ray powder diffraction data and the quartz index

The rock cuttings (e.g., Fig. 3) were first crushed manually 
using a pestle and then disaggregated using a planetary mill 
(NEDO 2007). XRD analyses were subsequently performed 
on basally and randomly oriented samples using a diffrac-
tometer with CuK �1 radiation at 40 kV and 25 mA. The ran-
domly oriented samples were scanned between 2–62◦

2� at a 
scan speed of 2◦

2�∕min . Minerals were identified based on 
the International Centre for Diffraction Data (ICDD) PDF-2 
database.

The QI of a mineral is defined as follows (Hayashi 1979):

where Im is the peak intensity of the XRD value of a mineral 
and Iq is the peak intensity of the XRD value of pure silica. 
The peak intensity of XRD is influenced not only by the 
amount of minerals but also by the crystallinity and pref-
erential growth of the crystal structure. We thus used the 
normalized values (see Sect. 3) for machine-learning classi-
fication and did not take the absolute QI value into account.

Table 1 presents the 24 mineral types for which QI val-
ues were calculated: four clay minerals (smectite, chlo-
rite, sericite, kaolinite), two zeolite minerals (laumontite, 
wairakite), two silica minerals (tridymite, cristobalite), 
seven silicate minerals (clinopyroxene, epidote, prehnite, 
anthophyllite, biotite, cordierite, talc), five oxide min-
erals (magnetite, ilmenite, hematite, anatase, rutile), 
one sulfide mineral (marcasite), two sulfate minerals 
(anhydrite, alunite), and one carbonate mineral (calcite) 

(1)QI =
Im

Iq
× 100

Fig. 2  a Location of the 
Hachimantai geothermal field. 
b Lithological characteristics 
of the Hachimantai geothermal 
field (based on NEDO 2008)
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(NEDO 2007, 2008). These minerals are not components 
of the host rock and are likely to have formed as a result 
of hydrothermal alteration. A total of 43 QI values were 
obtained based on XRD of cuttings from N19-HA-1, and 
a total of 45 QI values were obtained from N19-HA-2 
(NEDO 2008). The average depth spacing of the values 
was approximately 38 m. Depth profiles based on the QI 
showed that each mineral had its own characteristic depth 
range (Fig. 4). We confirmed that the standard deviations 
of QI values were in the range of 0.01–0.17, as calculated 
from three measurements using different samples at the 
same depth. Such low values indicate the validity of the 
QI values.

Synthetic data for the evaluation of classification 
methodologies

We compared and evaluated three classification meth-
ods—K-means clustering, the GMM, and AC—using 
synthetic QI data. In this synthetic dataset, we assumed 
four different mineral distributions along a well down 
to 1000 m with a depth spacing of 10 m. Mineral dis-
tributions exhibited a Gaussian shape across the depth 
range, with mean �i ( i = 1,⋯ 4 ), standard deviation �i 
( i = 1,⋯ 4 ), and maximum amplitude Ampi ( i = 1,⋯ 4 ), 
as shown in Table 2. Gaussian noise with a mean of 0 
and a standard deviation of 0.25 was added to each data 

Fig. 3  Example of rock cuttings obtained from the N19-HA-1 well at 
a depth of 1165 m

Table 1  List of 24 minerals identified from X-ray diffraction

Clay 

minerals

Smec�te Chlorite Sericite Kaolinite

Zeolite 

minerals

Laumon�te Wairakite

Silica 

minerals

Tridymite Cristobalite

Silicate 

minerals

Clinopyroxene Epidote Prehnite Anthophyllite Bio�te Cordierite Talc

Oxide 

minerals

Magne�te Ilmenite Hema�te Anatase Ru�le

Sulfide 

minerals

Marcasite

Sulfate 

minerals

Anhydrite Alunite

Carbonate 

minerals

Calcite
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point, to simulate the fluctuation in QI value. The depth 
profile of the synthetic data indicates that each mineral 
is distributed within a characteristic depth interval, and 
some depth intervals contain multiple minerals (Fig. 5a). 
We assumed temperature increases with depth at a con-
stant rate of 0.2 degrees C/m.

Fig. 4  Depth profiles of the quartz index (QI) of all minerals evaluated in this study. The horizontal axis indicates the QI, and the vertical axis 
indicates depth in the N19-HA-1 (blue dots) and N19-HA-2 (green dots) wells

Table 2  List of parameters used to create synthetic data

Mineral 1 Mineral 2 Mineral 3 Mineral 4

�i(m) 200 450 700 780
�i(m) 80 80 30 80
Ampi 1.5 1.0 0.7 0.5
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Methods for classification and interpretation

As described above, K-means clustering, the GMM, 
and AC were applied to categorize the characteris-
tics of hydrothermal alteration along wells. The data 
used for classification were the QI, temperature, and 
depth. Decision tree classification was then applied 
to the QI datasets to delineate each category’s quan-
ti tative character istics.  This process was imple-
mented using Python 3.7.3 and scikit-learn 0.19.2, a 
machine-learning library for Python (Pedregosa et al. 
2011).

Preprocessing

Data classification typically entails preprocessing of 
observed data. A common preprocessing method is to nor-
malize both the mean and standard deviation of the data. The 
effectiveness of this method is well-known, but normaliza-
tion of the mean value produces negative QI values that are 
not found in the original data. To assess the impact of this 
preprocessing strategy, we applied additional preprocessing 
to normalize only the standard deviation of the observed 
data and compared the classification results of these two 
preprocessing methods.

Fig. 5  Unsupervised clas-
sification based on a synthetic 
QI data using b, c K-means 
clustering, d, e the Gaussian 
mixture model (GMM), and f, g 
agglomerative clustering (AC). 
Synthetic data with different 
noise amounts were used, and 
classification was performed 
with b, d, f normalization of the 
mean and standard deviation 
(STD) or c, e, g normalization 
of the STD only. Blue, green, 
red and black curves in a indi-
cate the synthetic QI values of 
different mineral types
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K‑means clustering

Suppose that the QI values are measured for N  sam-
ples along a depth profile, and the data are represented 
as the matrix �⃗x =

(
���⃗x1,⋯ , ���⃗x

n
,⋯ , ���⃗x

N

)
 with the dimen-

sion of N × D , where ���⃗x
n
 is a D-dimensional vector 

���⃗x
n
=
(
xn,1,⋯ , xn,d,⋯ , xn,D

)T  that contains the QI values 
of D different minerals. We now consider the classifica-
tion of QI values from different samples into K  classes. 
We assign a sample to the kth class when the sample’s QI 
is at the minimum distance from the mean of the data in 
the kth class �k . This classification is attained by minimiz-
ing the following objective function J:

where rn,k ∈ {0,1} is the coefficient that becomes 1 if xn is 
classified into the kth cluster and otherwise becomes 0. rn,k 
and �k are generally unknown, and the classification problem 
can be defined as the estimation of optimal rn,k and �k that 
minimize the objective function. This procedure is called 
“K-means clustering” (MacQueen 1967).

Gaussian mixture model

The GMM is a type of unsupervised learning in Bayes-
ian modeling that assumes Gaussian distribution of classes 
(McLachlan and Peel 2000). The Gaussian mixture is defined 
as follows:

where N
(
�⃗x|𝜇k,Σk

)
 is the Gaussian distribution of the kth 

mixture component with a mean of �k and a mean and covar-
iance matrix of Σk . �k is the mixing coefficient that sums to 1 
( 
∑K

k=1
�k = 1 ) such that the integral of the Gaussian mixture 

p(���⃗x
n
) is 1. In terms of classifying data �⃗x , the GMM estimates 

the optimal �k , Σk, and �k by fitting the Gaussian mixture 
and categorizes �⃗x into K clusters. Therefore, the objective 
function to be minimized is as follows:

where �̂k, Σ̂k  , and �̂k indicate the optimal values of the 
mean, covariance matrix, and mixing coefficient, respec-
tively. Because Eq.  (4) cannot be solved analytically, 
numerical optimization is generally employed. In this 
study, the expectation–maximization algorithm was used for 

(2)J =

N�

n=1

K�

k=1

rn,k‖ ��⃗xn − ���⃗𝜇k‖
2

(3)p( ��⃗xn) =

K∑

k=1

𝜋kN
(
��⃗xn|𝜇k,Σk

)

(4)�̂k, Σ̂k, �̂k = argmax

{
N∑

n=1

ln

(
K∑

k=1

�kN
(
xn|�k,Σk

)
)}

numerical optimization (Dempster et al. 1977; McLachlan 
and Krishnan 1997).

The K-means classification method is theoretically 
interpreted as cases wherein the covariance of the Gauss-
ian mixture becomes zero and the classification depends on 
the distance from the mean (Bishop, 2006). This theoreti-
cal implication can be understood based on the distinction 
whereby the GMM method estimates both the mean and 
covariance matrix of the kth class, whereas the K-means 
algorithm estimates the mean only.

Furthermore, the GMM calculates the probability of the 
classification from the mean and covariance matrix, and 
the probability can be used to obtain the optimal number 
of classes based on an information criterion, such as the 
Akaike information criterion (AIC) (Akaike 1974) adopted 
here.

where ��⃗m is the parameters to be estimated, and M is the 
number of parameters. AIC enables the comparison of mod-
els that include different numbers of classes, and the opti-
mal number of classes has a minimum AIC value. The AIC 
values were obtained in cases where the number of classes 
ranged from 1 to 20.

Agglomerative clustering

AC classifies data by measuring the distances between data 
points (Lior and Maimon 2005). At the beginning of this 
algorithm, each data point forms its own class, leading to n 
single-object classes. Based on the measured distances, two 
classes with the shortest distance merge. The distances are 
measured again with the newly formed class, and a new class 
is created with the data points or clusters with the shortest 
distances. This procedure is repeated until the number of 
classes is identical to the a priori determined value or all 
distances are over a certain threshold. In this algorithm, the 
classification result is influenced by the choice of distance 
measure. In this study, Ward’s method was applied (Ward 
1963), which defines the distance of two clusters dzi,zj as 
follows:

where zi indicates the ith cluster and zi ∪ zj indicates a new 
cluster that is obtained after merging zi and zj . xzi and �zi

 are 
the data points in cluster zi and the mean of the data in clus-
ter zi , respectively. Ward’s method minimizes the variance 
of data in a new cluster with respect to the variance of data 
in two existing clusters.

(5)AIC
(
��⃗m
)
= −2lnL

(
�⃗x|��⃗m

)
+ 2M

(6)
dzi ,zj =

∑(
xzi∪zj − �zi∪zj

)2

−
∑(

xzi − �zi

)2
−
∑(

xzj − �zj

)2
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Decision tree

A decision tree is a type of unsupervised classification that 
uses a flowchart-like graph to represent each test of attrib-
utes to explain known classes (Breiman 2001). More specifi-
cally, heuristic criteria are applied to attributes as a plausi-
ble boundary of different classes, and the tests are applied 
continuously until classification is complete or the number 
of tests reaches a certain threshold. Heuristic criteria were 
selected based on the Gini coefficient G in this study, as 
follows:

where K is the total number of classes and p(k) is the ratio 
of data that are categorized into a class. One of the major 
advantages of the decision tree is that the classification flow 
is explainable because the optimal heuristic criteria can be 
visualized via a flowchart. For the optimization of the deci-
sion tree, K-fold cross-validation was applied, which is a ver-
satile and simple evaluation technique in machine learning. 
In K-fold cross-validation, the available dataset is divided 
into K subsets, with one subset used for validation and the 
other subsets used for training for supervised classification. 
Data in this study were divided into 10 non-overlapping sub-
sets, resulting in tenfold cross-validation (James et al. 2014).

Results

Classification results using synthetic data

Figure 5b–g shows the classification results of three algo-
rithms (i.e., K-means, the GMM, and AC), with each algo-
rithm producing two sets of results representing the different 
preprocessing methods (i.e., normalization of the mean and 
standard deviation or normalization of the standard devia-
tion). The boundaries of each class are depicted as horizon-
tal lines in Fig. 5a. Based on the AIC values obtained from 
the GMM, six classes were determined to be optimal. There-
fore, classification with six classes was performed for all 
three algorithms. Figure 5b–g shows that the classification 
results differed depending on the algorithm used, whereas 
the preprocessing strategies did not significantly influence 
the classification results. The reason for the variance in clas-
sification results among algorithms might have been each 
algorithm’s different mathematical background. For exam-
ple, Euclidean distance was used in the K-means algorithm, 
whereas Eq. (6) was used as a distance measure in the AC 
algorithm. Because no universal answer to unsupervised 
classification exists, different mathematical backgrounds 
can yield classification results from different viewpoints. 

(7)G = 1 −

K∑

k

p(k)2

Thus, an integrated interpretation of the classification from 
the different unsupervised algorithms may facilitate a more 
detailed extraction of the features inherent in the data.

Of the three classification results, the result of GMM clas-
sification is relatively easy to interpret. The first class (A′ 
and A″) corresponds to the shallowest synthetic QI (a blue 
line in Fig. 5a), and the second class (B′ and B″) roughly 
corresponds to the depth overlapping the shallowest and 
next shallowest synthetic QI values (blue and green lines in 
Fig. 5a). The following classes produced by the GMM also 
correspond to the QIs of various mineral types. Notably, this 
GMM classification result was similar to that of K-means 
clustering, possibly because the two algorithms share a simi-
lar mathematical background. On the other hand, the AC 
classification result was unique. The first class (A‴) covered 
a broader depth range compared with those of the K-means 
(A′) and GMM (A″) classifications, which corresponds to 
the shallowest synthetic QI (a blue line in Fig. 5a), and the 
classes at subsequent depths were similar to those from 
either the K-means or GMM classification. For example, the 
depth ranges for the classes C‴ and C″ were approximately 
equal, and the depth ranges for the classes D‴, E‴, and F‴ 
were similar to those for D′, E′, and F′. Overall, we showed 
that the classification results of the three algorithms were 
consistent with the distribution of the synthetic QI values. 
Thus, in the following application to real data, we used all 
three algorithms and compared their results to obtain the 
features buried within the data.

Classification results based on the quartz indices 
of Hachimantai geothermal field samples

For preprocessing, the standard deviation of the data was 
set to a value of 1 to normalize the data variation. The AIC 
values obtained from the GMM were larger for low numbers 

Fig. 6  Akaike information criterion (AIC) values as a function of the 
number of classes obtained from the GMM
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of classes, and the value decreased with an increase in the 
number of classes (Fig. 6). However, if the number of classes 
exceeds 7, the AIC values increase again (Fig. 6). Because 
low AIC values relate to a statistically optimal model, the 
class number with the minimum AIC value is optimal, which 
in this study corresponds to seven classes (Fig. 6). Because 
the optimal distribution of classes approximately followed 
depth, the classes were labeled A to G (shallow to deep) 
(Fig. 7). Single, double, and triple quotation marks attached 
to the class names in Fig. 7 indicate that the classes were 
obtained using the K-means, GMM, and AC algorithms, 
respectively.

Classification using K-means clustering and the GMM 
was similar. The shallow layer of N19-HA-1, down to 
approximately 400–500 m (in the Quaternary layer), was 

divided into the classes A′, B′, C′, and D′ (GMM: A″, B″, 
C″, and D″) (Fig. 7b and c). However, the same depth range 
in N19-HA-2 was categorized into the classes A′ and D′ (A″ 
and D″) (Fig. 7f and g). Depths from 450 m to 1300–1500 m 
were categorized as classes E′ and F′ (E″ and F″) (Fig. 7b, c, 
f and g). Most of the depth distribution for classes E′ and E″ 
was shallower than that for classes F′ and F″, and was found 
in the first, second, and third Tertiary layers (Fig. 1b). Most 
of the minerals in classes F′ and F″ are found in the fourth 
Tertiary layer. Classes G′ and G″ included the deepest min-
erals, with depths of > 1500 m in N19-HA-1 and 1400 m in 
N19-HA-2 (Fig. 7b, c, f and g). Notably, the classification 
result is consistent with the resistivity logs (Fig. 7a and e). 
For example, classes A′, B′, C′, and D′ (A″, B″, C″, and D″) 
correspond to a low resistivity zone (<  101.5 Ω∙m) in both 

Fig. 7  Classification results of well logs (N19-HA-1 and N19-HA-2) 
using b, f K-means clustering, c, g the GMM, and d, h AC. The let-
ters A–G denote the name of each cluster. Single, double, and triple 

quotations indicate that the classes were obtained from the K-means, 
GMM, and AC algorithms, respectively. Resistivity logs a, e are also 
attached to the classification results for comparison
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N19-HA-1 and N19-HA-2, and the resistivities of classes E′ 
and E″ were approximately  102 Ω∙m (Fig. 7).

Based on classification using the AC algorithm, the shal-
low part of N19-HA-1, down to approximately 400–500 m, 
was grouped into three classes (A‴, B‴ and C‴ in Fig. 7d). 
Comparison of the classification results across AC, K-means 
clustering, and the GMM showed that class B‴ included 
classes B′, B″, C′, and C″ from the K-means and GMM clas-
sifications (Fig. 7b, c and d). On the other hand, the class 
D‴ from AC classification did not correspond to any of the 
classes of the K-means and GMM classifications (Fig. 7). 
Class E‴ of AC roughly corresponded to classes F′ (F″) and 
E′ (E″) of the K-means (GMM) classification, whereas class 
F‴ did not correspond to any classes of the K-mean and 
GMM classifications (Fig. 7). Class G‴ of AC was compa-
rable with class G′ (G″) of the K-means (GMM) classifica-
tion (Fig. 7). Therefore, compared with the K-means and 
GMM classification results, unique information obtained 
from the AC algorithm were found in classes D‴ and F‴.

Based on the analysis of the synthetic data in Sect. 3.1 and the 
agreement with K-means clustering, we relied on GMM clas-
sification and illustrated cross-plots of the cluster classification 
using the GMM (Fig. 8). Figure 8 shows that most samples in 
class A″ were associated with large QI values corresponding to 
smectite and a certain amount of anhydrite. The low resistivity 
of class A″ minerals may be attributable to smectite. Class B″ 
contained relatively high concentrations of cristobalite, marca-
site, and alunite compared to class C″, which contained kaolinite 
in addition to smectite (Fig. 8). Class D″ contained smectite, but 
to a lesser extent than in class A″, and characteristically con-
tained tridymite, clinopyroxene, and magnetite (Fig. 8). The clay 
minerals in class E″ were largely chlorite and small amounts 
of sericite (Fig. 8). In addition, the QI values of wairakite and 
carbonate in class E″ were larger than those in the other clus-
ters. Epidote was only observed at depths below that of class 
E″ (Fig. 8). Class F″ was characterized by larger amounts of 
sericite than those found in the other clusters, although smaller 
amounts of chlorite and anhydrite were also present in class F″ 
(Fig. 8). Class G″ also contained a certain amount of chlorite and 
was characterized by the presence of epidote, prehnite, biotite, 
cordierite, talc, magnetite, and ilmenite (Fig. 8).

Quantitative evaluation using a decision 
tree

A decision tree was further used to clarify the characteristics 
of the GMM classes (Fig. 9). In such a flowchart, informa-
tion about the criteria used for classification is shown, such 

as the number of data points that satisfied each criterion and 
the number of data points within and outside each class. For 
example, in the class A″ decision tree, the first box shows 
that the total number of data points is 88, of which 16 were 
categorized into class A″, whereas 72 were not (Fig. 9). 
When a QI criterion for smectite of 1.005 was applied, 15 
data points exceeded the criterion threshold, whereas the 
other 73 did not (Fig. 9). Of the 15 data points above the cri-
terion threshold, 11 were in class A″, whereas four were not 
categorized into class A″. Subsequently, when a tridymite 
value of 2.45 was applied, 12 data points (including the 11 
in class A″) were below the threshold (Fig. 9). Therefore, 
most of the data in class A have QI characteristics of smec-
tite (> 1.005) and tridymite ( ≤ 2.45) (Table 3). The decision 
trees support our qualitative interpretation described above, 
with the addition of quantitative QI information.

Other decision trees further delineated the class charac-
teristics. For example, the class B″ decision tree showed that 
one dataset classified into the category had a cristobalite QI 
exceeding 9.35, and the class C″ decision tree showed that 
the category was associated with a kaolinite QI exceeding 
5.978 (Fig. 9) (Table 3). In addition, the class D″ decision 
tree showed that the category was associated with a tridymite 
QI of more than 2.45 (Fig. 9) (Table 3), whereas the class 
E″ decision tree revealed more complex characteristics in the 
category. When the QI values of wairakite were > 0.1 and those 
of laumontite were < 0.65, 12 data points of 21 in class E″ 
were extracted (Fig. 9). However, when the wairakite QI val-
ues were < 0.1, nine data points of 21 were still considered to 
be in class E″ (Fig. 9). The complexity of the category agrees 
with the qualitative observations of the cross-plots in Fig. 8. 
Moreover, the class F″ decision tree showed that sericite was 
a major mineral that characterized the class. When the QI of 
sericite was > 0.28, most data points (30 of 34) in class F″ were 
extracted (Fig. 9) (Table 3). Interestingly, these 30 data satisfy 
the conditions of a wairakite QI value ≤ 0.1, cordierite QI 
value ≤ 0.1, and carbonate QI value ≤ 1.65 (Fig. 9) (Table 3). 
The class G″ decision tree indicated that nine out of 10 data 
points in class G had an ilmenite QI exceeding 0.1 (Fig. 9) 
(Table 3).

As Fig. 6c and g illustrate, classes B″ and C″ appear 
only at shallow depths in well N19-HA-1, but not in 
N19-HA-2. Because classes B″ and C″ are characterized 
by larger amounts of cristobalite and kaolinite, respec-
tively, the shallower part of N19-HA-1 had experienced 
relatively higher temperatures and more acidic conditions 
than did N19-HA-2. Some classes successfully captured 
the characteristics of clay minerals, such as the charac-
teristically large amounts of smectite in class A″ and the 
larger kaolinite, epidote, and sericite amounts character-
istic of classes C″, E″, and F″. Clay species are generally 
controlled by the temperature and acidity of the hydro-
thermal environment. Therefore, the results presented 

Fig. 8  Cross-plots of depth and QI values of minerals in N19-HA-1 
and N19-HA-2 well samples based on GMM classification. Note that 
the different colors represent different classes

◂
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demonstrate that the analytical method is capable of cap-
turing variations in temperature and acidity in the hydro-
thermal system. Comparison of depth within a given group 

illustrates the features of alteration. The deepest class 
(class G″) most likely corresponds to hornfels, which are 
formed by contact metamorphism of mafic igneous rock. 

Fig. 9  Flowcharts representing decision trees of the classification results from the GMM, where classes A″–G″ correspond to the names of the 
classes shown in Fig. 7
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In well N19-HA-2, class G″ appeared shallower than it 
did in N19-HA-1, indicating that intrusive rock, which 
is considered a heat source, is more shallowly distributed 
around well N19-HA-2 (Fig. 7). However, the depths of 

the boundaries between smectite, chlorite, and sericite are 
almost identical.

As described in Sect. 4.2, classes D‴ and F‴ from 
AC exhibited unique characteristics compared with the 
GMM classification. The class D‴ decision tree showed 

Table 3  Summary of the 
minerals and their QIs that 
characterize each class

Class K-means Class GMM Class AC

A′ Smectite > 0.88
Tridymite ≤ 2.45

A″ Smectite > 1.005
Tridymite ≤ 2.45

A‴ Smectite > 1.195
Tridymite ≤ 2.4

B′ Cristobalite > 9.35 B″ Cristobalite > 9.35 B‴ Cristobalite > 6.9
C′ Kaolinite > 2.235 C″ Kaolinite > 5.978 C‴ Tridymite > 2.25
D′ Tridymite > 2.45 D″ Tridymite > 2.45 D‴ Laumontite > 0.4

or
Laumontite ≤ 0.4
Wairakite > 4.45

E′ Wairakite > 0.1
or
Wairakite ≤ 0.1
Carbonate > 0.1
Chlorite > 0.82

E″ Wairakite > 0.1
Laumontite ≤ 0.65
or
Wairakite ≤ 0.1
Epidote > 1.35

E‴ Sericite > 0.175
Talc ≤ 0.3

F′ Sericite > 0.505
Cordierite ≤ 0.1
Carbonate ≤ 0.82

F″ Sericite > 0.28
Wairakite ≤ 0.1
Cordierite ≤ 0.1
Carbonate ≤ 1.65

F‴ Epidote > 0.95
Biotite ≤ 0.35

G′ Ilmenite > 0.1 G″ Ilmenite > 0.1 G‴ Cordierite > 0.1

Fig. 10  Flowcharts representing 
decision trees of the classifica-
tion results from AC. Classes 
D‴ and F‴ correspond to the 
names of the classes shown in 
Fig. 7
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that laumontite and wairakite were important minerals for 
characterizing this class (Fig. 10). When the QI of lau-
montite was > 0.40, most data points (3 of 4) in class D‴ 
were extracted (Fig. 10) (Table 3). When the QI of lau-
montite was ≤ 0.40 but the QI of wairakite was > 4.45, the 
data were classified into class D‴ (Fig. 10) (Table 3). The 
class F‴ decision tree showed that most data were clas-
sified as this class when the QI of epidote was > 0.95 and 
the QI of biotite was ≤ 0.35 (Fig. 10) (Table 3). These fea-
tures of classes D‴ and F‴ were not clearly identified by 
the GMM. Thus, our classification results demonstrated 
that AC is useful for extracting information that comple-
ments the GMM and K-means clustering. As the summary 
of the results by a decision tree, the minerals and their QI 
thresholds that characterize each class derived from the 
three classification algorithms are presented in Table 3.

Conclusions

In this study, we examined the performance of three unsu-
pervised classification algorithms—K-means clustering, the 
GMM, and AC—in automatically classifying the QI values 
and temperature logs of geothermal wells. These methods 
enable categorization of zones with similar mineral char-
acteristics. In particular, K-means clustering and the GMM 
provided similar classification results and were used to 
verify the classification results. On the other hand, AC pro-
vided unique classification outcomes that were not apparent 
in the results of the above two algorithms. Furthermore, 
the characteristics of each class could be delineated using 
a decision tree, which has the advantage of generating a 
comprehensive flowchart. The classification of QI values at 
the Hachimantai geothermal field revealed the connectivity 
of the two geothermal wells as they share similar character-
istics. Moreover, the classification analysis detected higher 
acidity in N19-HA-1 compared with N19-HA-2. As the QI 
can be measured from rock cuttings and the algorithms do 
not require training data, the proposed approach is applica-
ble to other boreholes in geothermal fields as well as bore-
holes in any other Earth science and engineering projects.

Abbreviations AC: Agglomerative clustering; AIC: Akaike informa-
tion criterion; GMM: Gaussian mixture model; ICDD: International 
centre for diffraction data; QI: Quartz index; XRD: X-ray powder 
diffraction
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