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ABSTRACT 

Viability and Implementation of a Vector Cryptography Extension for RISC-V 

Jonathan Skelly 

 

RISC-V is an open-source instruction-set architecture (ISA) forming the basis of 

thousands of commercial and experimental microprocessors. The Scalar Cryptography extension 

ratified in December 2021 added scalar instructions that target common hashing and encryption 

algorithms, including SHA2 and AES. The next step forward for the RISC-V ISA in the field of 

cryptography and digital security is the development of vector cryptography instructions.  

This thesis examines if it is viable to add vector implementations of existing RISC-V 

scalar cryptography instructions to the existing vector instruction format, and what improvements 

they can make to the execution of SHA2 and AES algorithms. Vector cryptography instructions 

vaeses, vaesesm, vaesds, vaesdsm, vsha256sch, and vsha256hash are proposed to optimize 

AES encryption and decryption, SHA256 message scheduling, and SHA256 hash rounds, with 

pseudocode, assembly examples, and a full 32-bit instruction format for each. Both algorithms 

stand to benefit greatly from vector instructions in reduction of computation time, code length, and 

instruction memory utilization due to large operand sizes and frequently repeated functions. As a 

proof of concept for the vector cryptography operations proposed, a full vector-based AES-128 

encryption and SHA256 message schedule generation are performed on the 32-bit RISC-V Ibex 

processor and 128-bit Vicuna Vector Coprocessor in the Vivado simulation environment. Not 

counting stores or loads for fair comparison, the new Vector Cryptography extension completes a 

full encryption round in a single instruction compared to sixteen with the scalar extension, and 

can generate eight SHA256 message schedule double-words in a single instruction compared to 

the forty necessary on the scalar extension. These represent a 93.75% and 97.5% reduction in 

required instructions and memory for these functions respectively, at a hardware cost of 19.4% 

more LUTs and 1.44% more flip-flops on the edited Vicuna processor compared to the original. 

 

Keywords: RISCV, Cryptography, Vector, ISA, Verilog, AES, SHA, Security, SIMD, Assembly 
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Chapter 1  

INTRODUCTION 

1.1 Statement of Problem 

RISC-V is an open-source instruction set architecture (ISA) developed at UC Berkeley in 

2010 [1]. The ISA was of years of years of reduced instruction set computer (RISC) development, 

with the goal of creating a global open-source engineering standard for microcontroller 

architecture. Development and improvement of the standard are completed through open 

involvement by members of the engineering community, which has resulted in the creation of 

over twenty extensions to the base instruction set [2]. 

In December of 2021, the RISC-V Foundation ratified the Vector and Scalar 

Cryptography Extensions to the RISC-V ISA [3]. This marked a huge step forward for the 

architecture, streamlining parallel data processing and execution of popular security algorithms. 

However, cryptography algorithms usually handle data widths larger than what the base RISC-V 

scalar architecture can handle, including 128 bits for AES and 256 bits for SHA256, two 

operations the Scalar Cryptography extension targets specifically [4][5][6]. Cryptography 

algorithms also feature significant data-level parallelism, especially when encrypting large 

amounts of data, that cannot be exploited with the scalar instructions. 

One solution is to use the new Vector Extension to draft vector instructions that would 

better handle these large data widths and parallel processes. Commercial processors like those 

sold by Intel already use similar SIMD instructions for encryption solutions. Vector cryptography 

instructions could potentially be used to complete entire encryption rounds of a given algorithm in 

a single instruction, as opposed to the scalar cryptography instructions which target only one or 

two recurring equations. Assigning the increased data widths of cryptography algorithms to the 

vector portion of a RISC-V processor also allows the main microcontroller to keep the smaller 

standard 32- or 64-bit sizes that are acceptable for many other operations [7][8].  The RISC-V 

Foundation has noted their intension to add vector cryptography instructions to RISC-V 

themselves thorough future ratification of a Volume II to the RISC-V Cryptography Extension that 
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would include vector instructions, and had originally aimed to do so in Q1 2022, though it has not 

yet been completed [6]. 

This thesis poses the question: what new vector cryptography instructions should be 

added in a future extension? A new set of instructions must be detailed and tested. High-level 

cryptography functions must be broken down to observe how they may be implemented in 

hardware and defined by instructions in a way that is standardized, efficient, and an improvement 

on the current scalar instructions. This thesis will attempt to identify what vector cryptography 

instructions can be added to streamline the two most commonly used algorithms targeted by the 

original scalar cryptography extension: AES and SHA256. As with instructions in previous RISC-V 

Extensions, the new instructions will require a description of the instruction, a 32-bit format to be 

read by microcontrollers, pseudocode describing what operations the instruction will complete, 

and assembly-level code showing how the instruction may be used.  

 

1.2 List of Terms 

• AES: Advanced Encryption Standard. A block-cypher that encrypts data with a user-

specified key. Can be decrypted using the same key. 

• ALU: Arithmetic Logic Unit. A circuit in a computer's central processing unit that performs 

basic mathematical calculations. 

• Byte: A unit of computer information or data-storage that consists of a group of eight bits. 

• CPU: Computer Processing Unit. The component of a computer that performs the basic 

operations of the system, that exchanges data with the system's memory or peripherals, 

and that manages the system's other components. 

• Cryptography: The enciphering and deciphering of messages in secret code or cipher. 

Specifically referring to modern-day security algorithms. 

• Decoder: A circuit in the central processing unit in charge of interpreting what instructions 

are being read from memory. 

• Double-word: Four bytes, or thirty-two bits of data or memory storage. 

• Extension: An addition to a base ISA specifying new instructions or functionality. 
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• Hash: A value produced through mathematical functions that is unique to a certain set of 

data used for verification and authentication. The data which the hash refers to cannot be 

decoded from the hash itself. 

• Instruction: Low-level, bit-mapped data stored in read-only memory that specifies a 

singular register-level function. 

• ISA: Instruction Set Architecture. A standard set of register-level instructions that define 

hardware-level functionality of a microprocessor and how it can be controlled by software. 

• RISC: Reduced Instruction Set Architecture. A computer processor designed to execute 

a small set of instructions quickly. 

• Register: A read-write memory location in a CPU that holds a single set of data. Data 

length held by a register is determined by the CPU architecture but is usually 32 or 64 

bits. 

• Round: A set of mathematical equations that is repeated a set number of times during an 

encryption algorithm. 

• SHA: Secure Hashing Algorithm. A standardized mathematical process for producing a 

hash for a given input. 

• SIMD: Single-Instruction Multi-Data. Refers to instructions that perform functions on 

multiple data at once. 

• Vector Register: A register that represents a one-dimensional array of data. Other 

instructions are used to specify the length of both the array and the data within, but the 

vector register itself does not contain this information. Functions are executed on each 

piece of data in a vector register simultaneously. 

• VLEN: The length of vector registers in the RISC-V vector specification. Must be a power 

of 2.  

• Word: Two bytes, or sixteen bits of data or memory storage. 
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1.3 Purpose of Study 

This thesis aims to suggest meaningful vector cryptography instruction additions to the 

RISC-V architecture that are realizable in real hardware. AES and SHA will be the main focus of 

this thesis, as they are both popular algorithms backed by the National Institute of Technology for 

general use in today’s tech industry, and are both already supported by the RISC-V Scalar 

Cryptography extension [6][9]. Any new instructions aim to follow the conventions established in 

existing RISC-V specifications, and to provide a performance and ease-of-use improvement over 

the scalar cryptography instruction set. 32-bit instruction formats will be suggested for all new 

instructions, and any hardware requirements to run the instructions will also be noted. 

Pseudocode will be provided for every suggested instruction to detail its functions, and an 

example using the instruction use will be written in RISC-V assembly code. This will ensure that 

any future contributors or users will understand how the instructions work and should be used. 

This thesis does not aim to convince the reader of the benefits of SIMD instructions, the 

usefulness of cryptography instructions on RISC-V, or the role of cryptography in society at large, 

nor does it attempt to produce a complete Vector Cryptography extension. Future work will be 

necessary to tun the few instructions suggested here into a full standard ready for ratification. 

To begin, The AES and SHA algorithms are examined step-by-step to identify parallel 

processes, repeated calculations, and other aspects that can be streamlined by the addition of 

vector calculations. RISC-V itself is examined to keep instruction suggestions within the scope of 

the goals, format, and limitations of the existing architecture. The RISC-V Vector Extension is 

looked at to note the limits placed on vector sizes and hardware, the types of instructions 

currently available, and the standardized instruction format. The RISC-V cryptography extension 

is referenced to understand which cryptography algorithms the RISC-V community find to be 

most important, and how these instructions might benefit from being expanded through vector 

implementation. Intel’s own AES and SHA SIMD instructions are analyzed as a point of 

comparison. A RISC-V vector coprocessor, Vicuna, is used to test hardware limitations and 

observe how existing vector instructions handle data and execution [10]. 
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This thesis suggests six vector cryptography instructions looking to streamline the AES 

and SHA 256 algorithms: vaesesm, vaeses, vaesdsm, vaesds, sha256sch, and sha256hash. 

Descriptions, instruction formats, pseudocode, and suggested assembly use of all six are 

provided. A Verilog implementation of vaesesm, vaeses, and vsha256sch follow, demonstrating a 

complete AES encryption and SHA256 message schedule generation in hardware. Instructions 

vaesds and vaesdsm are not implemented due to their computational similarity to vaeses and 

vaesesm, and vsha256hash is left out due to its architectural complexity when compared to the 

other instructions.  
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Chapter 2  

LITERATURE REVIEW 

2.1 Advanced Encryption Standard (AES) 

A look at the math behind AES will help decide what kinds of vector instructions could 

benefit the process. 

The Advanced Encryption Standard, also known as the Rijndael Cipher, was invented in 

1998, and replaced the Data Encryption Standard (DES) in 2002, which at the time was severely 

outdated and easily cracked due to its short key length of 56 bits [11]. AES, in contrast, supports 

key lengths of 128, 192, or 256 bits, denoted by monikers of AES-128, AES-192, and AES-256, 

all of which have yet to be cracked [4]. Using 8-bit ASCII characters, the three key lengths allow 

passwords of sixteen, twenty-four, and thirty-two characters respectively, with longer keys being 

more secure. 

AES is currently one of two block cyphers supported by the National Institute of Science and 

Technology, and is used in most data security channels including passwords, WIFI security, 

VPNs, compression tools, and operating system components [9][11]. 

AES encryption is byte-oriented and takes data input as 128-bit blocks. The data is 

encrypted in repeated processes, called rounds – ten for AES-128, twelve for AES-192, and 

fourteen for AES-256. Each round involves a unique 128-bit round key derived using a key-

expansion algorithm from the original encryption key. A single encryption round is identical for all 

three variants, with the original key length only affecting the number of rounds of key-expansion 

and encryption/decryption, summarized in Table 1 [4]. 

 
Table 1: AES Type Information 

AES Version Encryption 
Key Length 

Input Data 
Length 

Number of Key 
Expansion 

Rounds 

Number of 
Encryption/Decryption 

Rounds 

AES-128 128 128 10 10 

AES-192 192 128 9 12 

AES-256 256 128 7 14 
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The 128-bit input is stored in memory as a column-major matrix of sixteen bytes, known as a 

state array [12]. The cipher output after all rounds is also 128 bits. The key-expansion algorithm, 

encryption rounds, and decryption rounds are described in the next three sections. 

 

2.1.1 AES Key Schedule 

The encryption key, decided by the user, is restricted to either 128, 192, or 256 bits as 

needed, and is input to a key-expansion algorithm that creates subsequent 128-bit round keys for 

each encryption round – ten for AES-128, twelve for AES-192, and fourteen for AES-256, plus a 0 

round key taken directly from the first four words of the original key [4]. 

The key-expansion algorithm for a 128-bit encryption key follows the format in Figure 1, with the 

required double-words per round simply expanded to six for 192-bit and eight for 256-bit [12]. The 

full algorithm results in forty words for the 128-bit key, forty-eight for 192-bit, and fifty-six for 256-

bit, that are then grouped by fours into the requisite round keys, summarized in Table 2. 

 

Table 2: AES Key Expansion Information 

AES 
Version 

Encryption 
Key Length 

Number of Key 
Expansion 

Rounds 

Double-Words 
Generated per 

Expansion Round 

Total Generated 
Double-Words 

Round 
Keys 

Created 

AES-128 128 10 4 40 10 

AES-192 192 8 6 48 12 

AES-256 256 7 8 56 14 
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Figure 1: AES Key Schedule Generation Workflow 

 

 

Each round of the key expansion generates the same number of words as are input. With AES-

128 as an example, a round consists of taking the previous four words 𝑤𝑖 , 𝑤𝑖+1, 𝑤𝑖+2 and 𝑤𝑖+3 as 

input. The first generated word, 𝑤𝑖+4, is calculated using equation (1) [12].  

 

𝑤𝑖+4 = 𝑤𝑖  ⨁ 𝑔(𝑤𝑖+3)        (1)  
where: 

𝑔(𝑋) = 𝑆𝑏𝑜𝑥(𝑅𝑂𝐿(𝑋, 8)) ⨁ {𝑅𝐶𝑖,0𝑥00, 0𝑥00, 0𝑥00} 

and: 
𝑅𝐶1 = 0𝑥01 

𝑅𝐶𝑖 = 0𝑥02 ∗ 𝑅𝐶𝑖−1 

 

The Sbox operation in g() is a Rijndael byte-swap that will be discussed in detail in Section 2.1.2. 

The last three words generated per round are derived with equations (2), (3), and (4) by XOR’ing 

previous words [12]. 

 

𝑤𝑖+5 = 𝑤𝑖+4 ⨁ 𝑤𝑖+1        (2) 

𝑤𝑖+6 = 𝑤𝑖+5 ⨁ 𝑤𝑖+2        (3) 

𝑤𝑖+7 = 𝑤𝑖+6 ⨁ 𝑤𝑖+4        (4) 
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This process of generating four words from the previous four continues until forty words have 

been created for AES-128, in addition to the original four words for a total of forty-four. 

While vector instructions could speed up the generation of the round keys due to the 

vector registers’ ability to hold the four double-words needed every round, it should not be a 

priority instruction. Generation of the key schedule only happens once, and can be used in as 

many encryptions as the user sees fit until they change the original encryption key. Likewise, 

speeding up key scheduling is not a current feature of the 32-bit scalar cryptography instructions 

this thesis is looking to adapt, so vector implementation of this portion of AES will be left to future 

work. 

 

2.1.2 Encryption  

As encryption for AES-128, -192, and -256 are identical save for the number of rounds, 

AES-128 will be referenced exclusively in this section. 

Encryption begins with bitwise-adding round key 0 (the first four key words) to the input 128-bit 

block, followed by ten encryption rounds, shown in Figure 2 [12]. Each round consists of the 

same four steps: Substitute Bytes, Shift Rows, Mix Columns, and Add Round Key [4]. 

 

Figure 2: AES Encryption Workflow 
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The Substitute Bytes step consists of substituting every byte in the input block with that of the 

corresponding byte in the Rijndael Substitution Box (S-box). The S-box, splitting the input and 

output bytes into eight input bits “b” and eight output bits “s,” is calculated using the affine 

transformation in equation (5) [13]. 

 

[
 
 
 
 
 
 
 
𝑠0

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

𝑠7]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1]

 
 
 
 
 
 
 

×

[
 
 
 
 
 
 
 
𝑏0

𝑏1

𝑏2

𝑏3

𝑏4

𝑏5

𝑏6

𝑏7]
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
1
1
0
0
0
1
1
0]
 
 
 
 
 
 
 

     (5) 

 

However, this calculation is usually simplified to a lookup table. In the S-Box of Table 3, the least 

significant nibble of each input byte determines the column of substitution, and the most 

significant nibble determines the row [13]. Once all sixteen bytes have been substituted in this 

fashion, the step is complete. 

 

Table 3: AES Substitution Lookup Table 
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The next step, Shift Rows, circularly shifts the second row of the substituted state array one byte 

to the left, the third row two bytes to the left, and the fourth row three bytes to the left, shown in 

equation (6) [12]. 

 

[

𝑠0.0 𝑠0.1 𝑠0.2 𝑠0.3

𝑠1.0 𝑠1.1 𝑠1.2 𝑠1.3

𝑠2.0 𝑠2.1 𝑠2.2 𝑠2.3

𝑠3.0 𝑠3.1 𝑠3.2 𝑠3.3

]  ⟹  [

𝑠0.0 𝑠0.1 𝑠0.2 𝑠0.3

𝑠1.1 𝑠1.2 𝑠1.3 𝑠1.0

𝑠2.2 𝑠2.3 𝑠2.0 𝑠2.1

𝑠3.3 𝑠3.0 𝑠3.1 𝑠3.2

]      (6) 

 

Mix Columns step computes the determinant in equation (7) with the output of the Shift Rows 

[12]. This step is not performed in the final round. 

 

[

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

] × [

𝑠0.0 𝑠0.1 𝑠0.2 𝑠0.3

𝑠1.1 𝑠1.2 𝑠1.3 𝑠1.0

𝑠2.2 𝑠2.3 𝑠2.0 𝑠2.1

𝑠3.3 𝑠3.0 𝑠3.1 𝑠3.2

] =

[
 
 
 
𝑠′0.0 𝑠′0.1 𝑠′0.2 𝑠′0.3

𝑠′1.0 𝑠′1.1 𝑠′1.2 𝑠′1.3

𝑠′2.0 𝑠′2.1 𝑠′2.2 𝑠′2.3

𝑠′3.0 𝑠′3.1 𝑠′3.2 𝑠′3.3]
 
 
 

   (7) 

 

Finally, Add Round Key XORs the output of the Mix Columns step with the next round key. This 

set of steps (excluding Mix Columns in the final round) is repeated until all rounds have 

completed and the input is fully encrypted. 

The 128-bit inputs and round keys lend themselves well to the increased data width 

offered by vector registers. Substitute Bytes, Shift Rows, Mix Columns, and round key addition 

steps could be completed together for the full input array, as all necessary data for a given round 

would be available. This makes AES encryption rounds a good choice for vector integration. For 

vector register widths larger than 128-bits, multiple encryptions could even be done in parallel – 

though not multiple rounds of the same encryption, as they are completed serially. 

 

2.1.3 Decryption 

As with encryption, decryption for AES-128, -192, and -256 are identical save for the 

number of rounds. AES-128 again will be referenced exclusively in this section for simplicity. 
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Decryption uses the same key schedule as encryption, but in reverse. Decryption begins with 

adding round key 10 (the last four key words) to the input 128-bit block, followed by ten 

decryption rounds, shown in Figure 3. Each round consists of the same four steps as encryption, 

but inverted and in a different order: Inverse Shift Rows, Inverse Substitute Bytes, Add Round 

Key, and Inverse Mix Columns [4]. 

 

 

Figure 3: AES Decryption Workflow 

 

The decryption steps are nearly identical to encryption, but inversed. Inverse Shift Rows rotates 

the second row one byte to the right, the third row two bytes to the right, and the fourth row three 

bytes to the right, shown in equation (8) [12]. 

 

[

𝑠0.0 𝑠0.1 𝑠0.2 𝑠0.3

𝑠1.0 𝑠1.1 𝑠1.2 𝑠1.3

𝑠2.0 𝑠2.1 𝑠2.2 𝑠2.3

𝑠3.0 𝑠3.1 𝑠3.2 𝑠3.3

]  ⟹  [

𝑠0.0 𝑠0.1 𝑠0.2 𝑠0.3

𝑠1.3 𝑠1.0 𝑠1.1 𝑠1.2

𝑠2.2 𝑠2.3 𝑠2.0 𝑠2.1

𝑠3.1 𝑠3.2 𝑠3.3 𝑠3.0

]      (8) 
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Inverse Substitute Bytes uses the Inverse Rijndael S-Box in Table 4 [13]. 

 

Table 4: AES Inverse Substitution Lookup Table 

 
 

 

Inverse Mix Columns uses a different determinant, shown in equation 9. [12]. 

 

[

𝑒 𝑏 𝑑 9
9 𝑒 𝑏 𝑑
𝑑 9 𝑒 𝑏
𝑏 𝑑 9 𝑒

] × [

𝑠0.0 𝑠0.1 𝑠0.2 𝑠0.3

𝑠1.3 𝑠1.0 𝑠1.1 𝑠1.2

𝑠2.2 𝑠2.3 𝑠2.0 𝑠2.1

𝑠3.1 𝑠3.2 𝑠3.3 𝑠3.0

] =

[
 
 
 
𝑠′0.0 𝑠′0.1 𝑠′0.2 𝑠′0.3

𝑠′1.0 𝑠′1.1 𝑠′1.2 𝑠′1.3

𝑠′2.0 𝑠′2.1 𝑠′2.2 𝑠′2.3

𝑠′3.0 𝑠′3.1 𝑠′3.2 𝑠′3.3]
 
 
 

  (9) 

 

And finally, Add Round Key reverses the key schedule order. The output is a 128-bit decrypted 

data block. 

AES decryption would benefit from vector instructions for the same reason as encryption: 

full state arrays could fit in a single register, allowing rounds to be completed in full, and in parallel 

with other decryptions if register width allowed. 
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2.2 Secure Hashing Algorithm 2 (SHA2) 

A look at the SHA256 algorithm will help decide what functions to target with vector 

instructions. 

Secure Hashing Algorithm 2 (SHA2) is a set of cryptographic hash functions, primarily referring to 

SHA256 and SHA512 [14]. Unlike encryption, hashing algorithms produce outputs that cannot be 

decrypted. SHA2 is currently used in TLS and SSL security protocols, and is the method of 

choice for verifying transactions in popular blockchain applications, including Bitcoin [14]. 

SHA256 is used for generating 256-bit hashes, and SHA512 is used for generating 512-bit 

hashes. The length of the output hash does not depend on input message length [5]. 

SHA256 and SHA512 are similar, with the former using 512-bit block inputs and 256-bit 

outputs, and the latter using 1024-bit block inputs and 512-bit outputs. SHA256 is also primarily 

computed through 32-bit constants and features fewer rounds than SHA512, which uses 64-bit 

constants in its computation of the output [5]. For simplicity, SHA256 will be the focus of this 

section. 

 

2.2.1 Secure Hashing Algorithm 256 (SHA256) 

The SHA256 algorithm calculates a 256-bit hash from any message up to 264 bits in total 

length. The message must be broken into input blocks of 512-bits each, which are hashed 

sequentially. The input of 512 bits being reduced to an output of 256 bits is one of the features 

that makes the algorithm irreversible. The final input block must also be 512 bits, even if the 

original input message is not a factor of 512, and is thus padded to ensure correct length. 

Padding of the final block involves appending a 1, followed by 0’s until the block length is 448 

bits. The bit-length of the total message is then appended as a 64-bit value, to create a final block 

length of 512 bits. If the final block is less than 512 bits but more than 448, the final message is 

appended with a 1 and followed by 0’s until it is 512 bits, and an extra block is added to the 

message that is 448 0’s plus the 64-bit total message length [5]. The block separation and 

padding process is summarized in Figure 4, where L is the message length [15]. 
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Figure 4: SHA256 Message Decomposition and Padding 

 

Two tables of values are initialized. Sixty-four 32-bit standardized round constants 𝐾𝑖 

(given by the 32 first bits of the fractional parts of the cube roots of the first sixty-four prime 

numbers) are defined for each hashing round, and 8 32-bit standard initial hash values 𝐻1
0 

through  𝐻8
0 (given by the first 32 bits of the fractional part of the square roots of the first eight 

prime numbers) are necessary to give the hashing process starting values. 𝐻1
0 through 𝐻8

0 are 

only necessary for the first block hashed, as initial hash values of every subsequent round will be 

the output hash values of the previous round [5]. The round keys and initial hashing values are 

listed in Tables 5 and 6. 

 

Table 5: SHA256 Round Constants 
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Table 6: SHA256 Initial Hash Values 

 

 

The padded input message is hashed one 512-bit block at a time. The hashing process is 

summarized in Figure 5. 

 

 

Figure 5: SHA256 Hashing Workflow 

 

When a block begins hashing, a message schedule of sixty-four double-words 𝑊𝑖 of 32 

bits each is generated. The first sixteen double-words 𝑊1 through 𝑊16 of the schedule are formed 
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by splitting the 512-bit input block into 32-bit chunks [5]. The next forty-eight are calculated in 

equation (10), with 𝜎0 and 𝜎1 referred to as the Sigma 0 and Sigma 1 functions. 

 

𝑊𝑖 = 𝜎1(𝑊𝑖−2) + 𝑊𝑖−7 + 𝜎0(𝑊𝑖−15) + 𝑊𝑖−16,        17 ≤ 𝑖 ≤ 64   (10)  
where: 

σ0(𝑋) = 𝑅𝑂𝑅(𝑋, 7) ⨁ 𝑅𝑂𝑅(𝑋, 18) ⨁ 𝑆𝐿𝑅(𝑋, 3) 

σ0(𝑋) = 𝑅𝑂𝑅(𝑋, 17) ⨁ 𝑅𝑂𝑅(𝑋, 19) ⨁ 𝑆𝐿𝑅(𝑋, 10) 
 

64 hashing rounds are then performed. Each round, intermediate values 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔 and ℎ in 

equation (11) are defined as the previous round’s hash values, starting with 𝐻1
0 through 𝐻8

0 in the 

first hash’s first round [5]. 

 

𝑎𝑖−1,  𝑏𝑖−1,  𝑐𝑖−1,  𝑑𝑖−1,  𝑒𝑖−1,  𝑓𝑖−1,  𝑔𝑖−1,  ℎ𝑖−1     (11) 

=  𝐻1
𝑖−1, ,  𝐻2

𝑖−1,  𝐻3
𝑖−1,  𝐻4

𝑖−1,  𝐻5
𝑖−1,  𝐻6

𝑖−1,  𝐻7
𝑖−1,  𝐻8

𝑖−1  

 

The intermediate values 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔 and ℎ for the previous round, the round constant 𝐾𝑖, and 

the message schedule word 𝑊𝑖 are then used to calculate intermediate values for the next round 

“i”, described by equation (12), with Σ0 and  Σ1 referred to as the Sum 0 and Sum 1 functions [5]. 

 

𝑇1 = ℎ + Σ1(𝑒𝑖−1) + 𝐶𝐻(𝑒𝑖−1,  𝑓𝑖−1,  𝑔𝑖−1) + 𝐾𝑖 + 𝑊𝑖     (12) 

𝑇2 = Σ0(𝑎𝑖−1) + 𝑀𝐴𝐽(𝑎𝑖−1,  𝑏𝑖−1,  𝑐𝑖−1) 

ℎ = 𝑔𝑖−1 

𝑔 = 𝑓𝑖−1 

𝑓 = 𝑒𝑖−1 

𝑒 = 𝑑𝑖−1 + 𝑇1 

𝑑 = 𝑐𝑖−1 

𝑐 = 𝑏𝑖−1 

𝑏 = 𝑎𝑖−1 

𝑎 = 𝑇1 + 𝑇2 
where: 

𝐶𝐻(𝑋, 𝑌, 𝑍) = (𝑋 & 𝑌) ⨁ (~𝑋 & 𝑍) 

𝑀𝐴𝐽(𝑋, 𝑌, 𝑍) = (𝑋 & 𝑌) ⨁ (𝑋 & 𝑍) ⨁ (𝑌 & 𝑍) 

Σ0(𝑋) = 𝑅𝑂𝑅(𝑋, 2) ⨁ 𝑅𝑂𝑅(𝑋, 13) ⨁ 𝑅𝑂𝑅(𝑋, 22) 

Σ1(𝑋) = 𝑅𝑂𝑅(𝑋, 6) ⨁ 𝑅𝑂𝑅(𝑋, 11) ⨁ 𝑅𝑂𝑅(𝑋, 25) 
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Finally, the new intermediate values are added to the previous round’s hash values to create new 

hash values, as shown in equation (13). This encompasses a single SHA256 round [5]. 

 

𝐻1
𝑖 = 𝐻1

𝑖−1 + 𝑎         (13) 

𝐻1
𝑖 = 𝐻2

𝑖−1 + 𝑏 

𝐻1
𝑖 = 𝐻3

𝑖−1 + 𝑐 

𝐻1
𝑖 = 𝐻4

𝑖−1 + 𝑑 

𝐻1
𝑖 = 𝐻5

𝑖−1 + 𝑒 

𝐻1
𝑖 = 𝐻6

𝑖−1 + 𝑓  

𝐻1
𝑖 = 𝐻7

𝑖−1 + 𝑔 

𝐻1
𝑖 = 𝐻8

𝑖−1 + ℎ 

 
 

After all sixty-four rounds have completed, the final eight hash values are concatenated to create 

the 256-bit hash output in equation (14). If more blocks of the input message remain, these eight 

hash values are used as initial hash values 𝐻1
0 through 𝐻8

0 in the next block’s hash [5]. 

 

𝐻 = {𝐻1
𝑖 ,  𝐻2

𝑖 ,  𝐻3
𝑖 ,  𝐻4

𝑖 ,  𝐻5
𝑖 ,  𝐻6

𝑖 ,  𝐻7
𝑖 ,  𝐻8

𝑖 }       (14) 

 

The two overarching areas of SHA256 hashing that could benefit from vector instructions 

are the generation of the message schedule and the hashing rounds themselves. Unlike AES, the 

SHA message schedule changes for every new input. While not performed as frequently as 

hashing rounds, the message schedule generation would still be repeated for as many times as 

there are inputs, make it a clear candidate for a vector instruction. 

Hashing rounds, being ran sixty-four times per hash, are an obvious choice for a dedicated vector 

instruction. Because hashing rounds are ran serially and produce the input for the next hash, they 

could not be completed in parallel with other hashing rounds, unless entirely unrelated data is 

being hashed. Theses rounds could still make use of vector registers’ increased width to handle 

the full 256-bit intermediate hashing values at once. 
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2.3 RISC-V 

To implement new instructions on the RISC-V architecture, its current hardware abilities 

and standards must be examined so that the proposed instructions will meet the needs and 

expectations of existing RISC-V microcontrollers and the development community behind them. 

Reduced Instruction Set Computer V, or RISC-V, is a leading open-source instruction-set 

architecture (ISA) developed in 2010, currently overseen by the RISC-V Foundation [1]. The 

RISC-V ISA is open-source and has been widely embraced in recent years for research and 

academia, streamlining the development of experimental processors. Goals of the RISC-V ISA 

outlined by the Foundation, and subsequently goals supported by this thesis, include a free and 

open ISA description, functionality in real hardware implementation, avoidance of over-

architecting, and avoidance of implementation details where possible [2]. 

RISC-V features a base integer ISA in 32- and 64-bit register and address space 

variants, termed RV32I and RV64I, both featuring thirty-two general-purpose registers x0-x31. 

The base ISAs are kept simple to allow a high level of customizability [2]. 

Functionality outside of basic integer operations are performed through the addition of ISA 

extensions, both in the codebase and hardware. ISA Extensions are developed jointly by the 

community and go through an extensive review process before being officially frozen and ratified 

by the Foundation. Current ratified instruction extensions include Integer Multiplication (M), 

Atomic (A), Control and Status Register (Zicsr), Single-, Double-, and Quad-Precision Floating-

Point (F, D, and Q), Decimal Floating-Point (L), Compressed (C), Bit Manipulation (B), 

Dynamically Translated Languages (J), Transactional Memory (T), Packed-SIMD (P), Vector (V), 

and Cryptography (K) [2]. RISC-V processors that include any of the previously listed extensions 

are identified by appending the extension letter to the end of the base integer ISA – for example, 

adding integer multiplication and floating-point functionality to the base 32-bit ISA would result in 

an identifier of RV32IMF. 

The new instructions proposed in this thesis aim to be a combination of the format of the 

Vector extension with the functionality of the Cryptography extension. Both will be examined in 
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the next two sections to observe what instructions are currently available, how they’re 

implemented, and how new instructions may be integrated into these standards. 

 

2.3.1 RISC-V Vector Extension 

The Vector extension for RISC-V was ratified on December 2, 2021, adding thirty-two 

vector registers to the specification [3]. Vector operations allow single instructions to perform 

operations on multiple sets of data, much like arrays in higher level programming. The 

specification defines a vector register width, VLEN, as a power of 2 with a maximum width of 216 

bits [16]. 

Vector instruction formats are 32 bits wide, and are grouped under four categories: vector load, 

vector store, vector arithmetic, and vector configuration. Vector arithmetic instructions are further 

classified as integer, floating-point, or masked, and compose seven instruction types when paired 

with available operand combinations [16]. Because any potential vector cryptography instructions 

examined in this thesis would fall under the vector-arithmetic format with integer operands, this is 

the only type that will be examined in detail. 

The three types of integer arithmetic instructions, vector-vector (OPIVV), vector-

immediate (OPIVI), and vector-scalar (OPIVX), share formats summarized in Table 7. 

 

Table 7: Formats for Vector Integer Arithmetic Instructions 

 

 

Bits [6:0] are always the vector opcode of {1010111}. Bits {11:7} are usually the 

destination register for storing results, but occasionally represent a third operand for ternary 

instructions. Bits {14:12} are func3 and define what type of vector integer arithmetic instruction is 

being called. Bits {19:15} define operand one, and can be a vector register, scalar register, or 

immediate depending on the instruction type. Bits {24:20} are the second operand and are always 
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a vector register. Bit {25} is the masking bit, set high if normal and low if masked. Bits {31:26} are 

the func6 code that define specifically what vector instruction is being called from the func3 type 

category [16]. 

These instruction formats set certain limitations on the possible format and what is 

achievable with new instructions. At maximum, three inputs can be taken per instruction. The 

opcode {1010111} should be used to fit in with all other vector instructions and make integration 

to the existing extension easy. New func6 values must be unique to not overlap with decoding of 

any existing instructions. Operands will be vector-vector, so the func3 value will be locked to 

{000}. Evaluation of the Scalar Cryptography extension will further define the format of RISCV 

vector cryptography instructions. 

 

2.3.2 RISC-V Scalar Cryptography Extension 

The RISC-V Scalar Cryptography Extensions Volume I: Scalar & Entropy Source 

Instructions specification was ratified on December 2, 2021 [3]. The specification describes scalar 

cryptography instructions for both the 32- and 64-bit base architectures and provides architectural 

interface to an Entropy Source. Volume II, not yet published, will describe Vector Cryptography 

instructions for the 32- and 64-bit architectures, but was previously waiting on ratification of the 

base Vector extension [6]. 

The specification is aimed primarily at cryptographers and cryptographic software 

developers who would benefit most of the addition of cryptography instructions, but also the 

computer architects, digital design engineers, and verification engineers who would be 

responsible for their implementation [6]. 

Design of the RISC-V Scalar Cryptography extension follows four core policies. First, the 

cryptography extension will always prefer to target algorithm performance generalizability to other 

use cases. Second, the extension only aims to support current cryptographic algorithms, and 

does not aim to implement instructions for proposed or theoretical algorithms. Third, the 

extension will not attempt to implement low-level instructions that may be useful for future, 

unforeseen standards. Finally, the extension must aim to remove the possibility of timing side-
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channels, and therefore will not provide support for timing countermeasures implemented above 

the ISA [6]. 

Four primary cryptographic functions are targeted by the scalar cryptography extension: 

Advanced Encryption Standard (AES), Secure Hashing Algorithm 2 (SHA2), ShangMi 3 (SM3), 

and Shang Mi 4 (SM4). SHA2 and AES respectively represent the hashing and encryption 

algorithms supported by the National Institute of Science and Technology (NIST), while SM3 and 

SM4 are respectively hashing and encryption algorithms used primarily for certain Chinese 

standards. The SHA2 and AES algorithms and their associated instructions will be the focus of 

this thesis due to the standards’ common usage worldwide. 

 

2.3.2.1 RISC-V Scalar AES Instructions 

The RISC-V Scalar Cryptography Extension provides eleven instructions for AES; four for 

encryption, four for decryption, and three for the key schedule. The encryption suite has 32-bit 

instructions for the middle and final rounds of encryption (aes32esmi and aes32esi) and two 64-

bit equivalent middle and final round instructions (aes64esm and aes64es). Decryption features 

the inverses of the same instructions (aes32dsmi, aes32dsi, aes64dsm, aes64ds). Two 

instructions for key schedule generation (aes64ks1i and es64ks2) are used for both encryption 

and decryption, and a decrypt key schedule mix columns instruction (aes64im) is provided 

exclusively for decryption [6]. The 32-bit instructions aes32esmi, aes32esi, aes32dsmi, and 

aes32dsi will be exclusively analyzed for vector implementation in this thesis. 

The 32-bit RISC-V scalar AES instructions follow the formats in Table 8 and use 32-bit 

operands. Each instruction executes on a single byte of input register RS2, selected using the BS 

bits. Register RS1 holds one column of the round key, and register RD stores the 32-bit result. 
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Table 8: Formats for 32-bit Scalar Cryptography AES Instructions 

 

 

2.3.2.1.1 AES32ESMI and AES32ESI 

Instructions aes32esmi and aes32esi perform the middle and final rounds respectively of 

AES encryption operations on a single byte of input RS2. The assembly implementations of these 

two instructions follow the syntax in Figure 6. 

 

 

Figure 6: RISC-V AES Encrypt Instructions Assembly Syntax 

 

Bits BS are used to select the input byte, which undergoes a Rijndael S-Box 

transformation, as described in Section 2.1.2. If running aes32esmi, a partial Mix Columns 

operation is then performed on the byte. Because there is no indication of byte placement in the 

state matrix, the byte is multiplied by 0x01, 0x01, 0x02, and 0x03 to account for all 4 possible 

multipliers during the usual Mix Columns step. This partial Mix Columns also ensures a 32-bit 

output. Instruction aes32esi does not perform this step. The set of bytes is then rotated left by 

BS*8 bits, XOR’ed with the round key column in RS1 and stored in RD. The pseudocode in 

Figure 7 summarizes the process of both instructions [6]. 
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Figure 7: SAIL Pseudocode for RISC-V AES Encrypt Instructions 

 

A full round of AES encryption requires sixteen calls of aes32esmi or aes32esi – one for 

every byte of the 128-bit input block. The assembly code in Figure 8 describes the standard 

assembly use case for middle and final rounds, where registers a0 through a3 initially hold the 

four round key columns and registers t0 through t3 initially hold the four input state matrix 

columns [6]. 

 

 
Figure 8: RISC-V AES Encrypt Instructions Assembly Use Case 

 

To adapt these instructions to the vector format, the most obvious advancement is to 

condense AES encryption rounds into a single instruction to avoid the repeated calls and reduce 
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space used in instruction memory.  Like the scalar extension, a separate instruction for middle 

and final rounds is needed to omit the mix columns step. 

 

2.3.2.1.2 AES32DSMI and AES32DSI 

Instructions aes32dsmi and aes32dsi perform the middle and final rounds respectively of 

AES decryption operations on a single byte of input RS2. The assembly implementations of these 

two instructions follow the syntax in Figure 9. 

 

 

Figure 9: RISC-V AES Decrypt Instructions Assembly Syntax 

 

Bits BS are used to select the input byte, which undergoes an Inverse Rijndael S-Box 

transformation, as described in Section 2.1.3. If running aes32dsmi, a partial Inverse Mix 

Columns operation is then performed on the byte. Because there is no indication of byte 

placement in the state matrix, the byte is multiplied by 0x0B, 0x0D, 0x09, and 0x0E to account for 

all 4 possible multipliers during the usual Inverse Mix Columns step. This partial Inverse Mix 

Columns also ensures a 32-bit output. Instruction aes32dsi does not perform this step. The set of 

bytes is then rotated left by BS*8 bits, XOR’ed with the round key column in RS1 and stored in 

RD. The pseudocode in Figure 10 summarizes the process of both instructions [6].  
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Figure 10: SAIL Pseudocode for RISC-V AES Decrypt Instructions 

 

A full round of AES decryption requires sixteen calls of aes32dsmi or aes32dsi – one for 

every byte of the 128-bit input block. The assembly code in Figure 11 describes the standard 

assembly use case for middle and final rounds, where registers a0 through a3 initially hold the 

four round key columns and registers t0 through t3 initially hold the four input state matrix 

columns [6]. 

 

 
Figure 11: RISC-V AES Decrypt Instructions Assembly Use Case 

 

As with the encryption instructions, the most obvious advancement to be made with 

vector instructions is to condense the decryption rounds into a single instruction to avoid the 
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repeated calls and reduce space used in instruction memory. A separate instruction for middle 

and final rounds is needed to omit the mix columns step. 

 

2.3.2.2 RISC-V Scalar SHA2 Instructions 

The RISC-V Scalar Cryptography Extension provides fourteen instructions for SHA2; four 

for SHA256 and seven for SHA512. The four SHA256 instructions for the 256-bit Sigma 0, Sigma 

1, Sum 0 and Sum 1 functions (sha256sig0, sha256sig1, sha256sum0, and sha256sum1) are 

viable for either 32-bit or 64-bit base architectures. Due to larger operand size, sha512sig0h, 

sha512sig0l, sha512sig1h, and sig512sig1l are exclusive to the 32-bit architecture and perform 

low or high half of the 512-bit Sigma 0 and Sigma 1 functions. Instructions sha512sum0r and 

sha512sum1r perform half of the 512-bit Sum 0 and Sum 1 functions and must be ran twice each 

for the full process. The 64-bit exclusive instructions perform full 512-bit Sigma 0, Sigma 1, Sum 0 

and Sum 1 functions (sha512sig0, sha512sig1, sha512sum0, and sha512sum1) [6]. The 32-bit 

SHA256 instructions will be analyzed for this thesis. 

The 32-bit RISC-V scalar SHA256 instructions follow the formats in Table 9 and utilize 

32-bit operands. Each instruction executes on the data in register RS1, and register RD stores 

the 32-bit result. 

 

Table 9: Formats for Scalar Cryptography SHA Instructions 

 

 

2.3.2.2.1 SHA256SIG0 and SHA256SIG1 

Instructions sha256sig0 and sha256sig1 perform the Sigma 0 and Sigma 1 functions 

used in the block decomposition step of the SHA256 hash function, defined in Section 2.2.1 Both 
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instructions operate on the data stored in RS1, and store the result in RD. The assembly 

implementations of these two instructions follow syntax in Figure 12. 

 

 

Figure 12: RISC-V SHA256 sig0 and sig1 Instructions Assembly Syntax 

 

The pseudocode in Figure 13 summarizes the process of both instructions [6]. 

 

 

Figure 13: SAIL Pseudocode for RISC-V SHA256 sig0 and sig1 Instructions 

 

The assembly code in Figure 14 describes a standard use case for the sha256sig0 and 

sha256sig1 instructions, used in generating a new double-word for the message schedule. 

Registers a0, a1, a2, and a3 hold previous double-words  𝑊𝑖−16, 𝑊𝑖−15, 𝑊𝑖−7, and 𝑊𝑖−2 

respectively, and sp holds the address of message schedule double-word 𝑊0. Adjusting the 

memory offsets for the loads and stores, this code could be repeated forty-eight times for 

generation of the entire message schedule. 

 
Figure 14: RISC-V SHA256 sig0 and sig1 Instructions Assembly Use Case 

 



29 

 

The reason the scalar instructions targets only two functions of the message scheduling 

process rather than whole double-word generation is because each new double-word requires 

the four previous, which are too many inputs for a scalar instruction. With the new vector 

instructions, generation of whole double-words (or multiple) can be targeted with a single 

instruction by using longer register widths. 

 

2.3.2.2.2 SHA256SUM0 and SHA256SUM1 

Instructions sha256sum0 and sha256sum1 perform the Sum 0 and Sum 1 functions used 

in the hashing rounds of the SHA256 hash function, defined in Section 2.2.1. Both instructions 

operate on the data stored in RS1, and store the result in RD. The assembly implementations of 

these two instructions follow the syntax in Figure 15. 

 

 

Figure 15: RISC-V SHA256 sum0 and sum1 Instructions Assembly Syntax 

 

The pseudocode in Figure 16 summarizes the process of both instructions [6]. 

 

 

Figure 16: SAIL Pseudocode for RISC-V SHA256 sum0 and sum1 Instructions 

 

The assembly code in Figure 17 describes a standard use case for the sha256sum0 and 

sha256sum1 instructions, used in completing a single SHA256 hash round. In this example, a0 

and a1 initially hold the round constant and message schedule double-word, and registers s0-s7 
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hold previous round hash values of 𝐻1
𝑖  through 𝐻8

𝑖 . Calculating intermediate values a-h and 

adding them to the previous hash values have been combined to reduce instructions. 

 

 
Figure 17: RISC-V SHA256 sum0 and sum1 Instructions Assembly Use Case 

 

The scalar instructions again targeted only two functions in a broader hash round due to 

lack of input space. Vector instructions instead can be used to complete the entire hash round, 

rather than just the sum0 and sum1 calculations. The multiple inputs required (hash, message 

schedule, and round key) make this challenging even for vector instructions, but the payoff will be 

worth it given how many scalar instructions the hash round takes to complete. 

 

2.4 Existing Vector Cryptography Instructions 

Existing cryptography instructions are examined from Intel’s ISA to determine what new 

instructions would be feasible to add to RISC-V. Intel’s publications detail use of AES and SHA 

instructions that utilize Intel’s 128-bit XMM SIMD registers available in some processors. 
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2.4.1 Intel AES Instructions 

Intel’s AES instructions were introduced with the 2010 Intel Core processor family [8]. 

Four instructions handle AES middle and final round encryption and decryption (AESENC, 

AESENCLAST, AESDEC, AESDECLAST), similar to the scalar RISC-V aes32esmi, aes32esi, 

aes32dsmi, and aes32dsi instructions respectively, but targeting completion of full rounds instead 

of single bytes. Two other instructions (AESKEYGENASSIST and AESIMC) support key schedule 

generation [8]. The encryption and decryption instructions will be examined. The key schedule will 

not be examined due to a potential RISC-V vector AES scheduling instruction having little overall 

effect on encryption/decryption runtime, as explained in Section 2.1.1. 

The four encryption and decryption instructions take in the entire 128-bit input block from register 

xmm1, and the entire 128-bit round key from xmm2/m128. The instructions are then capable of 

completing the full Substitute Bytes, Shift Rows, Mix Columns, and Add Round Key steps as 

needed in a single instruction (or the inverse operations for decrypt). Intel’s provided pseudocode 

in Figure 18 details these operations [8]. 

 

 
Figure 18: Pseudocode for Intel’s AES Instructions 

 

Assembly code in Figure 19 shows how Intel’s AES instructions can be used to complete 

a full AES-128 encryption [8]. The input is first added (XOR’ed) to round key 0, before one AES 

instruction is completed for each of the ten requisite encryption rounds. Xmm15, holding the data 

being encrypted, stays constant for every round, while the second operand iterates though the 

round keys in xmm0-10. 
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Figure 19: Intel’s AES Instructions Assembly Use Case 

 

This format of AES encryption instruction would also be desirable for RISC-V. Given 

proper vector register widths, inputs and round keys could be taken as 128-bit operands each 

round, reducing the number of required instructions for a single round to one, down from the 

RISC-V Cryptography extension’s sixteen. 

 

2.4.2 Intel SHA256 Instructions 

Intel’s Fast SHA256 Implementation instructions were introduced with the 2011 family of 

Intel Core Processors [7]. The specification features one SHA256 algorithm defined in four ways 

depending on instruction extensions present: SSE processors without AVX, processors with 

AVX1, processors with AVX2 and the RORX2 instruction, and processors with AVX2 and the 

RORX8 instruction [7]. 

Intel notes that the hashing rounds are inherently serial, depending directly on the hash 

values 𝐻1
𝑖−1 through 𝐻8

𝑖−1 to compute the next set, and thus cannot be parallelized and should 

likely just be calculated with integer instructions. Message scheduling can be parallelized in two 

ways: generating one message at a time for multiple parallel input blocks, or generating multiple 

words for a single input block. Because of the many circumstances in which there may not be 

enough parallel input blocks to fill out the entire 128-bit registers, Intel recommends parallelizing 

the message scheduling for a single input instead [7]. 
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Per the message scheduling description detailed in Section 2.2, the first sixteen double-

words 𝑤[0]  through 𝑤[15] are derived from splitting of the 512-bit input. The next forty-eight 

double-words use the message scheduling calculations in equation 15.  

Because the furthest reference in the calculation of 𝑤[𝑖] is 𝑤[𝑖 − 16], Intel loads only the last 

sixteen double-words into XMM registers, shown in Table 10 [7]. 

 

Table 10: Intel’s Register Placement of SHA256 Message Schedule 

Register Double-word 

X3 w[i-1] w[i-2] w[i-3] w[i-4] 

X2 w[i-5] w[i-6] w[i-7] w[i-8] 

X1 w[i-9] w[i-10] w[i-11] w[i-12] 

X0 w[i-13] w[i-14] w[i-15] w[i-16] 

 
 

Using these sixteen double-words, 𝑤[𝑖 − 16], 𝑤[𝑖 − 7], and 𝑠0[𝑖] can be calculated for the 

next four double-words 𝑤[𝑖], 𝑤[𝑖 + 1], 𝑤[𝑖 + 2] and 𝑤[𝑖 + 3]. However, because calculation of 

𝑠1[𝑖 + 2] and 𝑠1[𝑖 + 3] require double-words 𝑤[𝑖] and 𝑤[𝑖 + 1], which have not been calculated 

yet, 𝑠1[𝑖] must be computed in pairs. This process allows two sets of two double-words to be 

calculated from four XMM registers, resulting in a 128-bit output to be used in calculation of the 

next four double-words of the message schedule [7]. 

All four SHA256 algorithm types follow this same basic loop for message scheduling, with 

the only difference being that the RORX2 variation can compute message schedules for two 

parallel input blocks, and RORX8 can compute for eight parallel input blocks [7]. 

RISC-V could likely run a similar instruction for message scheduling, computing multiple 

double-words per instruction to speed up the calculation. The lack of a hashing function in this 

paper is surprising, despite the serial nature, as it could likely still speed up the process by nature 

of the larger registers. A RISC-V instruction for completing, at the very least, as single hashing 
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round should still be investigated. Instructions that calculate Sum 0 and Sum 1 in parallel would 

be a backup instruction that could still help to streamline multiple parallel hashes. 

 

2.5 Vicuna Vector Coprocessor 

Implementation on an existing fully functional RISC-V processor is needed to provide a 

proof-of-concept for new vector cryptography instructions. Due to the newness of the vector 

extension, few open-source cores support the instructions. Vicuna is one of the only RISC-V 

vector coprocessor cores available online, and is fully synthesizable in System Verilog [10]. 

The Vicuna RISC-V Vector Coprocessor implements the Zve32x Suite of the RISC-V 

Vector extension. This suite lacks floating-point and ternary arithmetic support and has a max 

element width of 32 bits. The processor works in tandem with the Ibex core, an RV32IM 

processor also fully synthesizable in System Verilog [10]. 

As the only current point of hardware reference, all new vector cryptography instructions 

proposed by this thesis will target the 32-bit architecture of the Vicuna and Ibex processors.  

Vicuna uses default vector register width VMUL of 128 bits, and an ALU internal bus width 

ALUOP of 64 bits. Both VMUL and ALUOP are configurable by the user, but ALUOP must be less 

than or equal to one half VMUL, and both must be powers of two. Because the ALU bus width is 

half of VMUL, data in vector registers is also processed in halves, requiring at least two clock 

cycles in each pipeline stage for every instruction. Vicuna has no forwarding, branch prediction, 

out-of-order operation, and other optimizations in favor of timing predictability and demonstration 

of worst-case execution time [10]. 

Memory files in .vmem format with support for RISC-V vector instructions up to revision 

0.8 are compiled using the GNU toolchain for RISC-V, and can be run on Vicuna [10].  
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Chapter 3  

ANALYSIS 

3.1 Methods 

Recommendations for new vector cryptography AES and SHA instructions for RISC-V 

are informed by the outlined goals of RISC-V, the current scalar RISC-V cryptography 

instructions, the current RISC-V vector instructions, and the reasoning behind Intel’s vector 

cryptography instructions. 

From the goals outlined in the RISC-V Manual and RISC-V Scalar Cryptography 

Extension, proposed instructions aim to prioritize performance, though various possible hardware 

solutions are considered. Instructions avoid defining hardware where possible. Instruction 

recommendations target only existing, internationally recognized standards AES and SHA, and 

not attempt to guess at or support future theoretical standards [2][6]. 

The RISC-V Vector extension was referred to for instruction formats. Instructions utilize 

the existing OP-V major opcode, and utilize the same bit placement of func6, func3, RS1, RS2, 

and RD fields where possible to maintain standardization across instructions and uphold the ease 

of implementation RISC-V is grounded in [16]. 

The Scalar Cryptography extension was referenced for functions to implement. Vector 

versions of existing scalar AES and SHA instructions were given the most priority. SM3 and SM4 

were not adapted to vector formats due to their limited global use. Instructions for encryption 

standards not referenced in the scalar specification were not considered. Vector cryptography 

instruction viability was judged by the number of instructions necessary for a complete 

encryption/hash versus the number of scalar instructions necessary to perform the same task.  

Intel’s vector cryptography implementations of SHA and AES were referenced for ways to 

translate the scalar cryptography instructions to vector equivalents. The limitations and benefits of 

certain function implementations Intel described in their ISA documents were considered in the 

creation of the new RISC-V vector cryptography instructions [7][8]. 

A modified Vicuna vector coprocessor was used to observe real hardware 

implementations of proposed instructions. The processor was used to identify potential strengths 



36 

 

and weaknesses of potential vector cryptography instructions, including the need for baseline 

register widths and ALU bus sizes for certain instruction implementations. An instruction 

implementation and execution on the Vicuna processor was used to prove that the new 

instructions worked as predicted [10]. 

 

3.2 RISC-V Vector AES Instructions 

Because all versions of AES use 128-bit input blocks and round keys, vector AES 

instructions require vector lengths VLEN of at least 128 bits for maximum performance. By taking 

in the entire state array and round key as inputs, AES encryption instructions can likely perform 

full encryption rounds, as Intel’s instructions do. 

Vector AES instructions on RISC-V are all of the integer type, as the inputs, outputs, and 

calculations of AES do not use floating-point or masked operands. Vector AES instructions 

should utilize the existing vector arithmetic opcode of {1010111}, as the tables on pages 95 and 

96 of the RISC-V Vector Extension show that twenty-two new integer instructions can still fit 

under this opcode [16]. Using an existing opcode would streamline implementation and require 

fewer lookup tables for decoding the instructions.  

Both the input state and round keys of AES require 128 bits, so vector-vector is the only 

operand combination allowed. All vector AES instructions therefore have func3 values of {000} to 

denote integer vector-vector type.  

Unused func6 values listed by the tables on pages 95 and 96 of the RISC-V Vector 

Extension define which instruction is being called in memory [16]. Values will begin at {110010} 

for the new vector cryptography instructions. This is the first unused func6 value that features 

enough following unused func6 values to group all new vector cryptography instructions together. 

Two inputs VS1 and VS2 are required for the input state array and round key, and an 

output register VD is needed for the encrypted block. 

Together, these requirements grant the four instruction formats in Table 11 for new vector 

instructions vaesds, vaesdsm, vaeses, and vaesesm. The moniker “.vv” is used in the assembly 

syntax of RISC-V vector instructions to denote the input type – in this case, vector-vector. 
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Table 11: Formats for Vector Cryptography AES Instructions 

 

 

3.2.1 VAESESM and VAESES 

Like the scalar instructions, full-round vector AES encrypt instructions require both middle 

and end round instructions to account for the lack of Mix Columns in the last round. VS2 holds the 

state array, and VS1 holds the round key. VD is the destination register for the round result. To 

follow the assembly implementations of previous RISC-V instructions, these two instructions 

follow the syntax in Figure 20. 

 

 

Figure 20: RISC-V Vector AES Encrypt Instructions Assembly Syntax 

 

Both instructions take the 128-bit state array input from VS2 and perform the Shift Rows 

step. The Rijndael S-Box substitution is performed on all 16 bytes of the shifted input. The 

substituted array then undergoes a full Mix Column (this step is skipped during final round 

instruction vaeses) and is XOR’ed with the round key in VS1. The 128-bit result is stored in VD to 

serve as input to the next round. Pseudocode provided in Figure 21, mimicking the RISC-V 

Scalar Cryptography extension SAIL pseudocode examples, summarizes the operations of both 

instructions. Functions shiftrows_fwd, sbox_fwd, and mixcolumn_fwd are performed exactly as 

described in Section 2.1.2. 
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Figure 21: SAIL Pseudocode for RISC-V Vector AES Encrypt Instructions 

 

The assembly code in Figure 22 defines a full AES-128 encryption using the new vector 

instructions. Vector registers v1-v11 hold the round keys, and vector v0 holds the state array 

input. Upon code completion, v0 holds the encrypted output. 

 

 
Figure 22: RISC-V Vector AES Encrypt Instructions Assembly Use Case 

 

3.2.2 VAESDSM and VAESDS 

The full-round vector AES decrypt instructions also require both middle and end round 

instructions. VS2 holds the state array, and VS1 holds the round key. VD is the destination 

register for the round result. To follow the assembly implementations of previous RISC-V 

instructions, these two instructions follow the syntax in Figure 23. 

 

 

Figure 23: RISC-V Vector AES Decrypt Instructions Assembly Syntax 
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As before, the instructions execute the inverse rounds of the encryption instructions. Both 

instructions take the 128-bit state array input from VS2 and perform the Inverse Shift Rows step. 

The Inverse Rijndael S-Box substitution is performed on all sixteen bytes of the shifted input. The 

substituted array is XOR’ed with the round key in VS1, then undergoes a full Inverse Mix Column 

(this step is skipped during final round instruction vaesds). The 128-bit result is stored in VD to 

serve as input to the next round. Pseudocode provided in Figure 24, mimicking the RISC-V 

Scalar Cryptography extension SAIL pseudocode examples, summarizes the operations of both 

instructions. Functions shiftrows_inv, sbox_inv, and mixcolumn_inv are performed exactly as 

described in Section 2.1.3. 

 

 

Figure 24: SAIL Pseudocode for RISC-V Vector AES Decrypt Instructions 

 

The assembly code in Figure 25 defines a full AES-128 decryption using the new vector 

instructions. Vector registers v1-v11 hold the round keys, and vector v0 holds the state array 

input. Upon code completion, v0 holds the decrypted output. 
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Figure 25: RISC-V Vector AES Decrypt Instructions Assembly Use Case 

 

3.3 RISC-V Vector SHA256 Instructions 

As stated by Intel in their cryptography instruction publications, the SHA256 hashing 

rounds are largely serial [7]. Because they can’t be parallelized, the whole hash must be 

completed in a single function. Registers need to be 256 bits in length to store the operands and 

result. 

Message scheduling could be implemented exactly as in the Intel publication, generating 

four new double-words 𝑊𝑖 through 𝑊𝑖+3 per round form the previous sixteen [7]. This mandates at 

least 256-bit vector registers to hold all sixteen previous double-words as two inputs. In order to 

fill the entire 256-bit destination register, the new RISC-V message scheduling instruction will 

instead generate eight double-words instead of four.  

Both instructions are integer type with vector-vector operands, as the inputs, outputs, and 

operations of SHA256 do not use floating-point or masked operands. This is not defined explicitly 

by func3 as it is in other RISC-V vector instructions to allow room for double-word selection in the 

hash instruction, which will be discussed in Section 3.3.2. To properly identify the function of bits 

{14:12}, they are renamed DWS (double-word select) for the SHA instructions.  

Both RISC-V vector SHA instructions use the OP-V major opcode {1010111} for reasons 

defined in Section 3.2. Unused func6 values, beginning where the Vector AES instructions left off 

in Section 3.2 at {110110}, define which instruction is being called in memory.  

The purpose of VS2, VS1, and VD change based on the instruction due to the different 

number of operands for message schedule generation and hashing. All three registers are 

defined per-instruction in sections 3.3.1 and 3.3.2. All registers have to be at least 256-bits in 

length. 
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Together, these requirements grant the two instruction formats in Table 12 for new vector 

instructions vsha256hash and vsha256sch. The moniker “.vv” is used in the assembly syntax of 

RISC-V vector instructions to denote the input type. 

 

Table 12: Formats for Vector Cryptography SHA256 Instructions 

 

 

3.3.1 VSHA256SCH 

The vsha256sch instruction takes the previous sixteen double-words of the SHA 256 

message schedule and generates the next eight. To follow the assembly implementations of 

previous RISC-V instructions, this instruction follows the syntax in Figure 26. 

 

 

Figure 26: RISC-V Vector SHA256 Scheduling Instruction Assembly Syntax 

 

This instruction requires a vector register width of at least 256 bits. VS1 holds double-

words 𝑊𝑖−1 through 𝑊𝑖−8 of the message schedule, and VS2 holds the double-words 𝑊𝑖−9, 

through 𝑊𝑖−16. These double-words are used to generate the next eight 32-bit double words of 

the schedule. Sigma 1 and Sigma 0 as described in Section 2.2.1 are used to calculate the eight 

words, which are concatenated and stored in VD. Pseudocode provided in Figure 27, mimicking 

the RISC-V Scalar Cryptography extension SAIL pseudocode examples, summarizes the 

operation of the instruction. 
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Figure 27: SAIL Pseudocode for RISC-V Vector SHA256 Scheduling Instruction 

 

The assembly code in Figure 28 defines a full SHA256 message schedule generation 

using the new vector instructions. Vector register v0 initially holds the double-words 𝑊𝑖−9 through 

𝑊𝑖−16 and v1 initially holds double-words 𝑊𝑖−1 through 𝑊𝑖−8 The eight new double-words of the 

previous round are used to calculate the eight new double-words of the current round, granting 

the cyclical nature of the registers. Upon code completion, each register v0-v7 will hold eight 

double-words of the message schedule. 

 

 
Figure 28: RISC-V Vector SHA256 Scheduling Instruction Assembly Use Case 

 

3.3.2 VSHA256HASH 

The vsha256hash instruction takes the current eight hash values, eight message 

schedule double-words, and eight round constants, and completes one whole SHA256 hashing 

round. This requires a ternary instruction, like the existing vector add-multiply instructions of the 

RISC-V Vector extension, using VS1, VS2, and VD as operands.  To follow the assembly 

implementations of previous RISC-V instructions, this instruction follows the syntax in Figure 29. 
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Figure 29: RISC-V Vector SHA256 Hash Instruction Assembly Syntax 
 

This instruction requires a vector register width of at least 256 bits and is destructive to 

VD. VD holds the current hashing values 𝐻1
𝑖  through 𝐻8

𝑖 . VS2 holds eight consecutive message 

schedule double-words, and VS1 holds eight consecutive round constants. Message schedule 

and round constant for the current round, 𝑊𝑖 and 𝐾𝑖 are selected from VS2 and VS1 with DWS. 

T1 and T2 are calculated with Sum0, Sum1, Ch, and Maj as described in Section 2.2.1, and 

intermediate values 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔 and ℎ are calculated for the current round. Finally, the 

intermediate values are added to the current hash values to create the next eight hash values, 

which are concatenated and stored in VD, overwriting the previous data. Pseudocode provided in 

Figure 30, mimicking the RISC-V Scalar Cryptography extension SAIL pseudocode examples, 

summarizes the operation of the instruction. 

 

 
Figure 30: SAIL Pseudocode for RISC-V Vector SHA256 Hash Instruction 

 

 

The assembly code in Figure 31 defines eight SHA256 hashing rounds using the new 

vector instructions. This code can be repeated eight times for a complete hash. Vector register v1 

initially holds round constants 𝐾𝑖 through 𝐾𝑖+7 and v2 initially holds the double-words 𝑊𝑖, through 

𝑊𝑖+7 from the message schedule. DWS, the value at the end of each instruction, selects the 
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double-word to pull from v1 and v2, corresponding to the current round. Register v0 holds the 

previous round’s hashing values 𝐻1
𝑖−1 through 𝐻8

𝑖−1, and is overridden with the current round’s 

hashing values 𝐻1
𝑖  through 𝐻8

𝑖 . Because v1 and v2 can only hold eight double-words, they must 

be refreshed with the next set from memory every eight hashing rounds (or replaced with two 

other registers holding the new data). Upon code completion, v0 will hold the hashed output. 

 

 
Figure 31: RISC-V Vector SHA256 Hash Instruction Assembly Use Case 

 

3.4 Vivado Instruction Simulation on Vicuna 

To provide a proof-of concept for the instruction design choices made in this thesis, a full 

vector AES-128 encryption and SHA256 message schedule was performed using a modified 

Vicuna vector coprocessor in Vivado. An AES-128 decryption was not performed, as the 

calculations for encryption and decryption are identical save for constants and shift directions. A 

full SHA256 hash was not integrated, as the use of ternary functions requires use of the MUL 

block of Vicuna, requiring a separate and more intensive integration than that of the AES encrypt 

and SHA message schedule, which can both be performed in the ALU. 

Successful integration of the new instructions prove three key aspects of the proposed 

vector cryptography extension: that the vector arithmetic opcode {1010111} can still be used 

without overlap, that the unused func6 values listed in the RISC-V Vector Extension are freely 

usable, and that enough data can be received from memory to perform full encryption rounds in a 

single clock cycle on hardware.  Furthermore, the integration proves the functionality and 

usefulness of the vaeses, vaesesm, and vsha256sch instructions, and by extension the vaesds 

and vaesdsm instructions. While vsha256hash was tested directly, it can be assumed that if the 

method of determining opcodes, func6, and register widths for the other instructions are all 
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operational, that integration of vsha256hash with the same design decisions would require little to 

no deviation from the format recommended in this thesis. 

Vicuna uses a case statement in the decoder to interpret incoming func6 values when a 

vector opcode is detected. The type of vector opcode is then stored as a string in a nested struct 

that is passed through the coprocessor pipeline to the ALU [10]. Integration of each instruction 

requires adding vector cryptography instruction type definition strings to these structs so that they 

may be asserted when a vector cryptography instruction is identified, and so that the ALU can 

then perform the necessary functions [10]. RISC-V’s example substitution box System Verilog 

implementation was utilized to avoid remaking the same large lookup tables, which is available on 

the RISC-V Scalar Cryptography extension Github page [6]. Strings ALU_VAESE and 

ALU_VSHA were added to the structs to identify an vector AES encrypt or vector SHA type 

instruction, and strings ALU_VAES_ESMI, ALU_VAES_ESI, and ALU_VSHA_SCH were added 

to further identify which specific instruction is begin called. Because the vector opcode, VS1, VS2, 

VD, func3, and vm bits all act the same, the func6 value is the only portion of the instruction that 

requires new decoding hardware. 

The Vicuna ALU features 4 optional buffers, all of which are enabled by default: 

BUF_VREG, BUF_OPERANDS, BUF_INTERMEDIATE, and BUF_RESULTS [10]. Hardware for 

the calculation of the result of each new instruction is placed between the OPERANDS and 

INTERMEDIATE buffers, where most other ALU calculations including shifts and arithmetic are 

also conducted. 

The vproc_decoder, vproc_alu, and vproc_pkg (which defines the structs passed form 

the decoder to ALU) are the only files of Vicuna that need alteration for the new instructions to 

work [10]. Code additions made to each of these files are provided in Appendix A for future 

duplication of results.  

Simulated implementation utilization of the Vicuna processor updated with vector AES 

encrypt and SHA message scheduling indicated 43833 LUTs and 26064 flip-flops, up from 36717 

LUTs and 25693 flip-flops on the base processor. The 19.4% increase in LUTs is likely due to the 

sixteen parallel lookup tables for byte substitution during the AES encryption stage. If a scheduler 
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could be used to individually send bytes through a single substitute block, LUT’s could be 

reduced. The 1.44% increase in flip-flops is within the expected range for the logic added. 

Vicuna does not feature forwarding, branch prediction, or other timing acceleration 

hardware, resulting in many read-after-write hazards causing stalls in the execution of the new 

instructions [10]. Execution time of the instructions is largely based on the hardware they are 

running on and the quality of the implementation, and so will not be considered in the following 

simulations. Vicuna and the associated Ibex processor also do not support the scalar 

cryptography extension, so no timing comparison between the two extensions can be performed. 

It will be left to future research to calculate the energy per operation and execution time of these 

instructions to determine their viability in processors where these parameters are of greater 

consideration. 

 

3.4.1 Full Vector AES Encryption Hardware Simulation 

A full vector AES encryption requires integration of the vaeses and vaesesm instructions 

outlined in Section 3.2.1. Data memory is initialized with the example given in Table 13 [17]. The 

expected output after both the first and the tenth encryption rounds are also listed for comparison 

to the simulated results. 
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Table 13: AES Example Input, Round Keys, and Outputs 

 
 

Assembly code was written and compiled with the RISCV GNU toolchain compiler. 

Dummy instructions were inserted where new vector instructions would be placed in memory, as 

the compiler cannot recognize and translate them. The vaeses and vaesesm instructions were 

then formatted in binary according to the instruction formats proposed in Section 3.2, and 

converted to hex before manually replacing the dummy instructions in the .vmem file produced by 

the GNU compiler. Full assembly code for an AES encryption using the new instructions is 

available in Appendix B. 

The input and round keys were manually stored in column-major order in memory, each 

time starting with the last column of the state array and ending with the first. This is so that when 

they are loaded to the register file, the most-significant double-word of each register would store 

the first column, and so on, appearing as they do in Table 13. A vector register width of 256 bits 

and ALU width of 128 bits are used for the simulation. 

Figure 32 depicts the timing diagram of a full AES encryption after appropriate hardware 

has been added to Vicuna. The top two values ALU_VAESE and ALU_VAES_ESMI/ESI are 
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derived from the instruction func6 value and indicate that Vicuna has recognized the vector AES 

instructions. This proves the func6 and opcode choices for these instructions work.  

Due to Vicuna’s ALU taking half a vector register at a time, each instruction first operates only on 

the filled 128-bit half of the vector registers VS1 and VS2 containing the input and round keys. 

The same instruction then performs the operation on the second half the of the vector registers, 

which are unused in this simulation and simply hold all 0’s. Ten permutations of this half-half 

register calculation can be seen – one for each round – with stalls in between due to read-after-

write hazards. 

 

 

Figure 32: Vivado Wave Window Depiction of Vector AES-128 Encryption 

 

Zooming in on the first round in Figure 33, operand2_32 holds the input data (already 

XOR’ed with the encryption key) and operand1_32 holds round key 1. Registers “shiftrow,” “sbo,” 

and “mixo” hold the outputs of the shift rows, sbox, and mix columns steps respectively. Register 

“roundo” holds which value is the input to the final roundkey XOR, and is used to skip the mix 

columns step in the last round. The output, held in “cryptography_tmp_d”, adheres to the 

expected round 1 value from Table 13. From these signals, it is proven that vaesesm can be 

identified from memory, and that a 128-bit input and 128-bit round key can be used to complete a 

full encryption round in one clock cycle of Vicuna. 
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Figure 33: Vivado Wave Window Depiction of First AES Round 

 

 Zooming in on the last round in Figure 34, all signals behave the same, except “roundo” 

holds the sbox output instead of the mix columns output, as is required in the final round of AES 

encryption. This value is XOR’ed with the final round key and stored in “cryptography_tmp_d,” 

which matches our expected final round output in Table 13. Matching the expected output signals 

that a complete AES-128 encryption has been performed on the Vicuna coprocessor using the 

new vector instructions vaeses and vaesesm.  

 

 

Figure 34: Vivado Wave Window Depiction of Last AES Round 

 

Assuming no loads or stores, the new vector AES instructions have been proven capable 

of completing a full encryption round in a single instruction, compared to sixteen with the scalar 

cryptography extension – a 93.75% reduction in number of required instructions and memory 
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space. The difference in execution between vector and scalar instructions is summarized in Table 

14. 

 

Table 14: AES Encryption Round Vector vs. Scalar 

 

 

3.4.2 Full Vector SHA Message Schedule Hardware Simulation 

A full vector SHA message schedule generation requires integration of the vsha256sch 

instruction outlined in Section 3.3.1. Data memory is initialized with the first two lines given in 

Table 15. This 256-bit initial message also serves as the first sixteen double-words of the 

message schedule per the message schedule calculation in Section 2.2.1. The expected first 8 

generated words, and the expected last eight generated words, are listed for comparison to the 

simulated results [18]. The first eight words should be generated after a single vsha256sch 

instruction, and the last eight will be generated after five subsequent scheduling instructions. 
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Table 15: SHA256 Example Input, First 8 Double-Words, and Last 8 Double-Words 

 

As with the AES simulation, assembly code was written and compiled with the RISCV 

GNU toolchain compiler. Dummy instructions were inserted where new vector instructions would 

be placed in memory, as the compiler cannot recognize and translate them. The vsha256sch 

instruction was then formatted in binary according to the instruction format proposed in Section 

3.3, and converted to hex before manually replacing the dummy instructions in the .vmem file 

produced by the GNU compiler. Full assembly code for a SHA256 message schedule using the 

new instruction is available in Appendix B. 

The input message, denoted as the first two rows of Table 15, were written manually in 

memory starting with the first double-word {706F7274} and ending with the last double-word 

{00000050}. This is organized such that the first double-word will be loaded into the least-

significant double-word of register VS2, and the last double-word will be in the most-significant 

double-word of VS1. These represent double-words 𝑊𝑖−16 through 𝑊𝑖−1 in the calculation of the 

first 8 new double-words of the message schedule. These eight new double-words are then used 

with the previous eight to calculate the next eight, and so on until all sixty-four double-words are 

created. A vector register width of 512 bits and ALU width of 256 bits was used for the simulation. 

Figure 35 depicts the timing diagram of a full SHA256 message schedule generation after 

appropriate hardware has been added to Vicuna. The top two values ALU_SHA and 

ALU_SHA_SCH are derived from the instruction func6 value and indicate that Vicuna has 
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recognized the vector SHA instructions. This proves the func6 and opcode choices for this 

instruction work.  

Due to Vicuna’s ALU taking half a vector register at a time, each instruction first operates 

only on the filled 256-bit half of the vector registers containing the previous double-words. The 

same instruction then performs the operation on the second half the of the vector registers, which 

are unused in this simulation and simply hold all 0’s. Six uses of the vsha256sch instruction can 

be seen, with stalls between for read-after-write hazards and a pause after three have completed 

to store the calculated values before they are overridden. 

 

 

Figure 35: Vivado Wave Window Depiction of Vector SHA256 Message Schedule Generation 

 

Zooming in on the first instance of vasha256sch in Figure 36, “operand2_32” holds the 

first eight double-words and “operand1_32” holds the second eight. These are used to calculate 

“dw1” through “dw8,” the next set of eight double-words. These double-words match the third row 

𝑊17 through 𝑊24 in Table 15 exactly, indicating a successful operation. Register 

“cryptography_tmp_d” then holds the concatenated output for use in the next calculation. 
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Figure 36: Vivado Wave Window Depiction of First 8 SHA256 Double-Words 

 

Looking at the last instance of vsha256sch in Figure 37 shows the last eight calculated 

double-words. These also match up with the last eight double-words 𝑊57 through 𝑊64 in Table 15, 

proving that this instruction, as well as the previous four instances between the first and last, were 

all successful. Six instructions generating eight double-words each equates to forty-eight 

calculated double-words, that in addition to the original sixteen make up the entire 64-entry 

message schedule. 

 

 

Figure 37: Vivado Wave Window Depiction of Last 8 SHA256 Double-Words 
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With proof vsha256sch works, eight double-words can be computed with a single 

instruction with the proposed Vector Cryptography extension. Assuming no loads or stores, this 

would require 40 instructions at minimum with the Scalar Cryptography extension – a 97.5% 

decrease in required instructions and memory space. The difference in execution between vector 

and scalar instructions is summarized in Table 16. 

 

Table 16: Generation of 8 SHA256 Message Schedule Double-Words Vector vs. Scalar 
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Chapter 4 

CONCLUSION 

Vector instructions are viewed as a way to improve cryptography algorithms by both the 

RISC-V Foundation and some of its commercial competitors. Vector instructions can easily 

handle the large bit-widths of cryptography operands and are capable of completing a number of 

encryption steps in parallel. AES and SHA2 represent two prolific cryptography standards 

supported by the original RISC-V Cryptography Extension that stand to benefit from vector 

instructions. Proposed instructions vaeses and vaesesm would be capable of completing whole 

AES encryption rounds in a single instruction with inputs of the state array and the round key if 

vector registers are longer than 128 bits, and inverted decryption rounds would be completed in 

the same way with vaesdsm and vaesds. The SHA256 message schedule can be generated 8 

double-words per vsha256sch instruction with the last 16 double-words as input and 256-bit 

registers. Whole SHA256 hashing rounds can also be completed with the hash values, current 

message schedule double-word and current round constant as inputs in a single ternary 

instruction vsha256hash with 256-bit registers. Successful implementation of vaeses, vaesesm, 

and vsha256sch in a RISC-V vector coprocessor Vicuna displays the ability of the architecture to 

complete whole encryption steps with large operands in single clock cycles, proves the suggested 

instruction formats are readable with no overlap or collisions with existing instructions, and 

highlights the potential of vector cryptography instructions in RISC-V by significantly reducing the 

memory space and coding time required to perform cryptography operations. Vector AES 

encryption rounds complete with 93.75% fewer instructions than the scalar equivalent, and vector 

SHA256 message schedule generation completes with 97.5% fewer instructions than the scalar 

equivalent, assuming no loads or stores. The hardware cost in this analysis was a 19.4% 

increase in LUTs and 1.44% increase in flip-flops on the edited Vicuna processor. 

These instructions provide only a suggested starting point for the upcoming Vector 

Cryptography Extension, and future work must aim at adapting instructions for SM3, SM4, and 

bit-manipulation functions into the vector format. Additionally, while the success of the vector AES 

instructions can be construed to the AES decryption instructions due to nearly identical execution, 
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implementation and testing of the vsha256hash instruction would be necessary before it could be 

seriously considered for addition to an official extension.  
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APPENDICES 

APPENDIX A 

Verilog Additions to Vicuna 

vproc_pkg.sv 

typedef enum logic [2:0] { 

    ALU_VAES_ESI, 

    ALU_VAES_ESMI, 

    ALU_VSHA_SCH, 

    ALU_VSHA_HASH 

} opcode_alu_aese; 

 

typedef enum logic [3:0] { 

    ALU_VADD, 

    ALU_VAADD, 

    ALU_VAND, 

    ALU_VOR, 

    ALU_VXOR, 

    ALU_VSHIFT, 

    ALU_VSEL, 

    ALU_VSELN, 

    ALU_VAESE, 

    ALU_VAESD, 

    ALU_VSHA 

} opcode_alu_res; 

 

 

 

 

vproc_decoder.sv 

{6'b110100, 3'b000}: begin  // vaesei 

    unit_o              = UNIT_ALU; 

    mode_o.alu.opx2.res = ALU_VAESE; 

    mode_o.alu.opx1.aese = ALU_VAES_ESI; 

    mode_o.alu.inv_op1  = 1'b0; 

    mode_o.alu.inv_op2  = 1'b0; 

    mode_o.alu.op_mask  = ALU_MASK_NONE; 

    mode_o.alu.cmp      = 1'b0; 

    mode_o.alu.masked   = instr_masked; 

end 

                         

                        

{6'b110101, 3'b000}: begin  // vaesemi 

    unit_o              = UNIT_ALU; 

    mode_o.alu.opx2.res = ALU_VAESE; 

    mode_o.alu.opx1.aese = ALU_VAES_ESMI; 

    mode_o.alu.inv_op1  = 1'b0; 

    mode_o.alu.inv_op2  = 1'b0; 

    mode_o.alu.op_mask  = ALU_MASK_NONE; 

    mode_o.alu.cmp      = 1'b0; 

    mode_o.alu.masked   = instr_masked; 

end 

                         

                         

{6'b110110, 3'b000}: begin  // vshasch 

    unit_o              = UNIT_ALU; 

    mode_o.alu.opx2.res = ALU_VSHA; 

    mode_o.alu.opx1.aese = ALU_VSHA_SCH; 

    mode_o.alu.inv_op1  = 1'b0; 

    mode_o.alu.inv_op2  = 1'b0; 

    mode_o.alu.op_mask  = ALU_MASK_NONE; 

    mode_o.alu.cmp      = 1'b0; 

    mode_o.alu.masked   = instr_masked; 

end  
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vproc_alu.sv 

//crypto 

    logic [ALU_OP_W    -1:0] crypto_tmp_q,     crypto_tmp_d;    //crypto output 

    logic [ALU_OP_W-1:0] shiftrow;  //shift rows output 

    logic [ALU_OP_W-1:0] sbo;       //sbox output 

    logic [ALU_OP_W-1:0] mixo;      //mix columns output 

    logic [ALU_OP_W-1:0] roundo;    //holds mixo or sbo to XOR'ed with round key  

    logic aes;              //enables AES sbox 

    logic sm4;              //enables SM4 sbox for future integration 

    logic dec;              //enables inverse AES sbox 

    logic [7:0] s0;         //first column byte 

    logic [7:0] s1;         //second column byte 

    logic [7:0] s2;         //third column byte 

    logic [7:0] s3;         //fourth column byte 

     

    logic [127:0] x0; 

    logic [127:0] x1;        

    logic [127:0] x2; 

    logic [127:0] x3; 

    logic [31:0] dw1;       //first generated SHA256 double-word 

    logic [31:0] dw2;       //second generated SHA256 double-word 

    logic [31:0] dw3;       //third generated SHA256 double-word 

    logic [31:0] dw4;       //fourth generated SHA256 double-word 

    logic [31:0] dw5;       //fifth generated SHA256 double-word 

    logic [31:0] dw6;       //sixth generated SHA256 double-word 

    logic [31:0] dw7;       //seventh generated SHA256 double-word 

    logic [31:0] dw8;       //eighth generated SHA256 double-word 

    logic [255:0] shao;     //concatonated output of 8 double-words 

 

     

    `define ROR(a,b) ((a >> b) | (a << 32-b)) 

    `define SRL(a,b) ((a >> b)              ) 

    `define Sig0(a) `ROR(a, 7)^`ROR(a,18)^`SRL(a, 3) 

    `define Sig1(a) `ROR(a, 17)^`ROR(a,19)^`SRL(a, 10) 

     

     

    always_comb begin 

        case (state_ex1_q.mode.opx2.res) 

        ALU_VAESE: begin  

             

            //shift rows 

            shiftrow      = {operand2_32[127:120], operand2_32[87:80], 

      operand2_32[47:40], operand2_32[7:0],  

operand2_32[95:88], operand2_32[55:48],  

operand2_32[15:8], operand2_32[103:96],   

                              operand2_32[63:56], operand2_32[23:16],  

operand2_32[111:104], operand2_32[71:64],  

operand2_32[31:24], operand2_32[119:112],  

operand2_32[79:72], operand2_32[39:32]}; 

  

            case(state_ex1_q.mode.opx1.aese) 

                ALU_VAES_ESMI: begin 

                    aes=1; 

                    sm4=0; 

                    dec=0; 

                    roundo=mixo; 

                end 

                ALU_VAES_ESI: begin 

                    aes=1; 

                    sm4=0; 

                    dec=0; 

                    roundo=sbo; 

            end 

            endcase 

             

            crypto_tmp_d=  roundo^operand1_32; 

        end  

        ALU_VSHA: begin 

            aes=0; 

            sm4=0; 
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            dec=0; 

            crypto_tmp_d=shao; 

        end  

        default: begin 

            aes=0; 

            sm4=0; 

            dec=0; 

        end  

        endcase 

    end 

     

//SHA256 message schedule calculation. Commented out for AES test 

    always_comb begin        

        x0=operand2_32[127:0]; 

        x1=operand2_32[255:128]; 

        x2=operand1_32[127:0]; 

        x3=operand1_32[255:128]; 

 

        dw1=x0[31:0]+x2[63:32]+(`Sig0(x0[63:32]))+(`Sig1(x3[95:64])); 

        dw2=x0[63:32]+x2[95:64]+(`Sig0(x0[95:64]))+(`Sig1(x3[127:96])); 

        dw3=x0[95:64]+x2[127:96]+(`Sig0(x0[127:96]))+(`Sig1(dw1[31:0])); 

        dw4=x0[127:96]+x3[31:0]+(`Sig0(x1[31:0]))+(`Sig1(dw2[31:0])); 

        dw5=x1[31:0]+x3[63:32]+(`Sig0(x1[63:32]))+(`Sig1(dw3[31:0])); 

        dw6=x1[63:32]+x3[95:64]+(`Sig0(x1[95:64]))+(`Sig1(dw4[31:0])); 

        dw7=x1[95:64]+x3[127:96]+(`Sig0(x1[127:96]))+(`Sig1(dw5[31:0])); 

        dw8=x1[127:96]+dw1[31:0]+(`Sig0(x2[31:0]))+(`Sig1(dw6[31:0])); 

        shao = {dw8, dw7, dw6, dw5, dw4, dw3, dw2, dw1};       

    end   

     

//AES encryption calculation 

 

    //sub bytes 

    sbox #( 

        .ALU_OP_W (ALU_OP_W)   // ALU operand width in bits 

    ) sboxtransform( 

        .si(shiftrow), 

        .aes(aes), 

        .sm4(sm4), 

        .dec(dec), 

        .so (sbo) 

    ); 

     

    //mix columns 

    always_comb begin 

        for (int i = 1; i <= ALU_OP_W / 32; i++) begin 

            s0=sbo[(32 * i)-8 +: 8]; 

            s1=sbo[(32 * i)-16 +: 8]; 

            s2=sbo[(32 * i)-24 +: 8]; 

            s3=sbo[(32 * i)-32 +: 8]; 

         

            mixo[(32 * i)-8 +: 8]= ((s0<<1)^(s0[7] ? 8'h1b : 8'h0))^(s1^((s1<<1)^ 

(s1[7] ? 8'h1b : 8'h0)))^s2^s3; 

            mixo[(32 * i)-16 +: 8]= s0^((s1<<1)^(s1[7] ? 8'h1b : 8'h0))^(s2^((s2<<1)^ 

(s2[7] ? 8'h1b : 8'h0)))^s3; 

            mixo[(32 * i)-24 +: 8]=s0^s1^((s2<<1)^(s2[7] ? 8'h1b : 8'h0))^(s3^((s3<<1)^ 

(s3[7] ? 8'h1b : 8'h0))); 

            mixo[(32 * i)-32 +: 8]=(s0^((s0<<1)^(s0[7] ? 8'h1b : 8'h0)))^s1^s2^((s3<<1)^ 

(s3[7] ? 8'h1b : 8'h0));        

        end 

    end 

 

 

sbox.sv 
 
module sbox #( 

        parameter int unsigned          ALU_OP_W         = 64   // ALU operand width in 

bits 

    )( 

        input logic [ALU_OP_W-1:0] si, 

        input logic aes, 
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        input logic sm4, 

        input logic dec, 

        output logic [ALU_OP_W-1:0] so 

    ); 

     

    //the riscv_crypto_aes_sm4_sbox is taken from the rtl folder 

    //on the official RISC-V Scalar Cryptography Github [6]  

     

    riscv_crypto_aes_sm4_sbox riscv_sbox1 ( 

        .aes (aes),  

        .sm4 (sm4),  

        .dec (dec),   

        .in (si[7:0]),  

        .out (so[7:0]) 

    ); 

     

    riscv_crypto_aes_sm4_sbox riscv_sbox2 ( 

        .aes (aes),  

        .sm4 (sm4),  

        .dec (dec),   

        .in (si[15:8]),  

        .out (so[15:8]) 

    ); 

     

    riscv_crypto_aes_sm4_sbox riscv_sbox3 ( 

        .aes (aes),  

        .sm4 (sm4),  

        .dec (dec),   

        .in (si[23:16]),  

        .out (so[23:16]) 

    ); 

     

    riscv_crypto_aes_sm4_sbox riscv_sbox4 ( 

        .aes (aes),  

        .sm4 (sm4),  

        .dec (dec),   

        .in (si[31:24]),  

        .out (so[31:24]) 

    ); 

     

    riscv_crypto_aes_sm4_sbox riscv_sbox5 ( 

        .aes (aes),  

        .sm4 (sm4),  

        .dec (dec),   

        .in (si[39:32]),  

        .out (so[39:32]) 

    ); 

     

    riscv_crypto_aes_sm4_sbox riscv_sbox6 ( 

        .aes (aes),  

        .sm4 (sm4),  

        .dec (dec),   

        .in (si[47:40]),  

        .out (so[47:40]) 

    ); 

     

    riscv_crypto_aes_sm4_sbox riscv_sbox7 ( 

        .aes (aes),  

        .sm4 (sm4),  

        .dec (dec),   

        .in (si[55:48]),  

        .out (so[55:48]) 

    ); 

     

    riscv_crypto_aes_sm4_sbox riscv_sbox8 ( 

        .aes (aes),  

        .sm4 (sm4),  

        .dec (dec),   

        .in (si[63:56]),  

        .out (so[63:56]) 

    ); 
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    riscv_crypto_aes_sm4_sbox riscv_sbox9 ( 

        .aes (aes),  

        .sm4 (sm4),  

        .dec (dec),   

        .in (si[71:64]),  

        .out (so[71:64]) 

    ); 

     

    riscv_crypto_aes_sm4_sbox riscv_sbox10 ( 

        .aes (aes),  

        .sm4 (sm4),  

        .dec (dec),   

        .in (si[79:72]),  

        .out (so[79:72]) 

    ); 

     

    riscv_crypto_aes_sm4_sbox riscv_sbox11 ( 

        .aes (aes),  

        .sm4 (sm4),  

        .dec (dec),   

        .in (si[87:80]),  

        .out (so[87:80]) 

    ); 

     

    riscv_crypto_aes_sm4_sbox riscv_sbox12 ( 

        .aes (aes),  

        .sm4 (sm4),  

        .dec (dec),   

        .in (si[95:88]),  

        .out (so[95:88]) 

    ); 

     

    riscv_crypto_aes_sm4_sbox riscv_sbox13 ( 

        .aes (aes),  

        .sm4 (sm4),  

        .dec (dec),   

        .in (si[103:96]),  

        .out (so[103:96]) 

    ); 

     

    riscv_crypto_aes_sm4_sbox riscv_sbox14 ( 

        .aes (aes),  

        .sm4 (sm4),  

        .dec (dec),   

        .in (si[111:104]),  

        .out (so[111:104]) 

    ); 

     

    riscv_crypto_aes_sm4_sbox riscv_sbox15 ( 

        .aes (aes),  

        .sm4 (sm4),  

        .dec (dec),   

        .in (si[119:112]),  

        .out (so[119:112]) 

    ); 

     

    riscv_crypto_aes_sm4_sbox riscv_sbox16 ( 

        .aes (aes),  

        .sm4 (sm4),  

        .dec (dec),   

        .in (si[127:120]),  

        .out (so[127:120]) 

    ); 

 

endmodule  
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APPENDIX B 

Assembly Code 

AES-128 Encryption 

    .text 

    .global main 

main: 

    la              sp, vdata_start 

    li              t0, 4 

    vsetvli         t0, t0, e32,m1,tu,mu 

     

    vle32.v         v0, (sp)  //load data and round keys 

    addi      sp, sp, 16 

    vle32.v         v1, (sp) 

    addi      sp, sp, 16 

    vle32.v         v2, (sp) 

    addi      sp, sp, 16 

    vle32.v         v3, (sp) 

    addi      sp, sp, 16 

    vle32.v         v4, (sp) 

    addi      sp, sp, 16 

    vle32.v         v5, (sp) 

    addi      sp, sp, 16 

    vle32.v         v6, (sp) 

    addi      sp, sp, 16 

    vle32.v         v7, (sp) 

    addi      sp, sp, 16 

    vle32.v         v8, (sp) 

    addi      sp, sp, 16 

    vle32.v         v9, (sp) 

    addi      sp, sp, 16 

    vle32.v         v10, (sp) 

    addi      sp, sp, 16 

    vle32.v         v11, (sp) 

     

    vxor.vv   v0, v0, v1 //add round key 

    vaesesm.vv   v0, v0, v2 //round 1 

    vaesesm.vv   v0, v0, v3 //round 2 

    vaesesm.vv   v0, v0, v4 //round 3 

    vaesesm.vv   v0, v0, v5 //round 4 

    vaesesm.vv   v0, v0, v6 //round 5 

    vaesesm.vv   v0, v0, v7 //round 6 

    vaesesm.vv   v0, v0, v8 //round 7 

    vaesesm.vv   v0, v0, v9 //round 8 

    vaesesm.vv   v0, v0, v10 //round 9 

    vaeses.vv   v0, v0, v11 //round 10 

 

 

    .data 

    .align 10 

    .global vdata_start 

vdata_start: 

    .word           0x2054776F //Data 

    .word           0x4E696E65 

    .word           0x4F6E6520 

    .word           0x54776F20 

     

    .word           0x67204675 //Round key 0 

    .word           0x204B756E 

    .word           0x73206D79 

    .word           0x54686174 

     

    .word           0xD679A293 //Round key 1 

    .word           0xB159E4E6 

    .word           0x91129188 

    .word           0xE232FCF1 
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    .word           0x00000000 //Round key 2 

    .word           0x00000000 

    .word           0x00000000 

    .word           0x00000050 

     

    .word           0xC3031EFB //Round key 3 

    .word           0x6339E901 

    .word           0x157ABC68 

    .word           0xD2600DE7 

     

    .word           0x1452495B //Round key 4 

    .word           0xD75157A0  

    .word           0xB468BEA1 

    .word           0xA11202C9 

     

    .word           0xC6429B69 //Round key 5 

    .word           0xD210D232 

    .word           0x05418592 

    .word           0xB1293B33 

     

    .word           0xAC2E0E4E //Round key 6 

    .word           0x6A6C9527  

    .word           0xB87C4715 

    .word           0xBD3DC2B7 

     

    .word           0xB2A8316A //Round key 7 

    .word           0x1E863F24 

    .word           0x74EAAA03 

    .word           0xCC96ED16 

     

    .word           0x56954B6C //Round key 8 

    .word           0xE43D7A06 

    .word           0xFABB4522 

    .word           0x8E51EF21 

     

    .word           0xF7F1CBD8 //Round key 9 

    .word           0xA16480B4 

    .word           0x4559FAB2 

    .word           0xBFE2BF90 

     

    .word           0x3B316F26 //Round key 10 

    .word           0xCCC0A4FE  

    .word           0x6DA4244A 

    .word           0x28FDDEF8  
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SHA256 Message Schedule Generation 

    .text 

    .global main 

main: 

    la              a0, vdata_start 

    li              t0, 8 

    vsetvli         t0, t0, e32,m1,tu,mu 

    vle32.v         v2, (a0) 

    addi      a1, a0, 32 

    vle32.v         v1, (a1) 

     

    vsha256sch.vv v0, v2, v1 //generate double-words 17-24 

    vsha256sch.vv v2, v1, v0 //generate double-words 25-32 

    vsha256sch.vv v1, v0, v2 //generate double-words 33-40 

     

    addi            a1, a1, 32 

    vse32.v         v0, (a1) 

    addi            a1, a1, 32 

    vse32.v         v1, (a1) 

    addi            a1, a1, 32 

    vse32.v         v2, (a1) 

    

    vsha256sch.vv v0, v2, v1 //generate double-words 17-24 

    vsha256sch.vv v2, v1, v0 //generate double-words 25-32 

    vsha256sch.vv v1, v0, v2 //generate double-words 33-40 

 

    addi            a1, a1, 32 

    vse32.v         v0, (a1) 

    addi            a1, a1, 32 

    vse32.v         v1, (a1) 

    addi            a1, a1, 32 

    vse32.v         v2, (a1) 

 

 

    .data 

    .align 10 

    .global vdata_start 

vdata_start: 

    .word           0x706F7274 //DW 0-3 

    .word           0x736D6F75 

    .word           0x74688000 

    .word           0x00000000 

     

    .word           0x00000000 //DW 4-7 

    .word           0x00000000 

    .word           0x00000000 

    .word           0x00000000 

     

    .word           0x00000000 //DW 8-11 

    .word           0x00000000 

    .word           0x00000000 

    .word           0x00000000 

     

    .word           0x00000000 //DW 12-15 

    .word           0x00000000 

    .word           0x00000000 

    .word           0x00000050 

 

 

 


