
ADAPTING SINGLE-VIEW VIEW SYNTHESIS WITH MULTIPLANE IMAGES

FOR 3D VIDEO CHAT

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Anurag Uppuluri

December 2021

© 2021

Anurag Uppuluri

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Adapting Single-View View Synthesis with

Multiplane Images for 3D Video Chat

AUTHOR: Anurag Uppuluri

DATE SUBMITTED: December 2021

COMMITTEE CHAIR: Jonathan Ventura, Ph.D.

Assistant Professor of Computer Science

COMMITTEE MEMBER: Zoë Wood, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Franz Kurfess, Ph.D.

Professor of Computer Science

iii

ABSTRACT

Adapting Single-View View Synthesis with Multiplane Images for 3D Video Chat

Anurag Uppuluri

Activities like one-on-one video chatting and video conferencing with multiple par-

ticipants are more prevalent than ever today as we continue to tackle the pandemic.

Bringing a 3D feel to video chat has always been a hot topic in Vision and Graphics

communities. In this thesis, we have employed novel view synthesis in attempting

to turn one-on-one video chatting into 3D. We have tuned the learning pipeline of

Tucker and Snavely’s single-view view synthesis paper [55] — by retraining it on Man-

nequinChallenge dataset [32] — to better predict a layered representation of the scene

viewed by either video chat participant at any given time. This intermediate repre-

sentation of the local light field — called a Multiplane Image (MPI) — may then be

used to rerender the scene at an arbitrary viewpoint which, in our case, would match

with the head pose of the watcher in the opposite, concurrent video frame. We dis-

cuss that our pipeline, when implemented in real-time, would allow both video chat

participants to unravel occluded scene content and “peer into” each other’s dynamic

video scenes to a certain extent. It would enable full parallax up to the baselines

of small head rotations and/or translations. It would be similar to a VR headset’s

ability to determine the position and orientation of the wearer’s head in 3D space and

render any scene in alignment with this estimated head pose. We have attempted

to improve the performance of the retrained model by extending MannequinChal-

lenge with the much larger RealEstate10K dataset [60]. We present a quantitative

and qualitative comparison of the model variants and describe our impactful dataset

curation process, among other aspects.

iv

ACKNOWLEDGMENTS

Thanks to:

• My advisor, Dr. Ventura, and all the other faculty and staff members here

at Cal Poly I am fortunate to interact with, faculty and staff at Fresno State,

Sathyabama University, and all the other schools I am an alumnus of, my family,

and my friends for going above and beyond in helping me set sail in and even

course through uncharted potential with oft-increasing frequency. It’s as they

say: you tend to a sapling until it takes firm root and starts bearing fruit. I feel

all these people have been doing all that and more all along, and I can’t wait

to give back in ways that far surpass my imagination.

• Richard Tucker (Google), for his selfless and infectious enthusiasm in guiding

our project.

• Robert Downey Jr. as Tony Stark in Iron Man (2008) saying, “Jarvis, sometimes

you gotta run before you can walk,” before pushing the limits of the Mark II

armor.

• dhamma.org for helping me realize that there could indeed be something more

to all this than meets the eye.

• Echkart Tolle for making me wonder about Presence.

• A Panda Express fortune cookie fortune for prophesizing “Love first — then

everything will follow.”

• Andrew Guenther, for uploading this template.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1 Introduction . 1

1.1 Motivation . 1

1.2 Contribution . 5

2 Related Work and Background . 7

2.1 Learning MPIs . 8

2.1.1 Seminal Work . 9

2.1.2 Influential Work . 12

2.1.3 Base Papers . 15

2.2 3D Video Chat . 26

3 Methods . 30

3.1 Approach . 31

3.2 Data . 35

3.3 Implementation . 37

4 Experiments and Results . 42

5 Discussion . 56

5.1 Conclusion . 58

5.2 Future Work . 58

BIBLIOGRAPHY . 61

APPENDICES

vi

A Code Sources and Snippets . 69

vii

LIST OF TABLES

Table Page

4.1 Classifications of Procured Videos 44

viii

LIST OF FIGURES

Figure Page

1.1 Google’s Project Starline [12, 30] 2

1.2 The Volumetric/Layered MPI Representation [60] 3

1.3 Disparity Used in Triangulating 3D Points [18] 4

2.1 Plane Sweep Volume Representation [7] 10

2.2 MPI Inferred by Zhou Et Al.’s Network [60] 16

2.3 Standard Inverse Homography or Reprojection [23] 19

2.4 Tucker and Snavely’s Single-View View Synthesis Pipeline [55] . . . 22

2.5 Project Starline’s Data Flow [30] 28

3.1 Disparity Heat Maps Synthesized by Tucker and Snavely’s Model [55]
for Real Estate and Video Chat Frames 31

3.2 MPI Training Pipeline . 32

3.3 3D Video Chat Rendering Pipeline 34

3.4 Photogrammetry Workflow Used in COLMAP [42] 36

3.5 Cumprod Occurring in Single-View MPI Model [55] as Shown in
Google Colaboratory Model Summary 39

3.6 A Snapshot of OpenFace 2.2 [11] Outputs 40

4.1 Some Variants’ Disparity Maps Turn Gray Faster Than Others . . . 46

4.2 Model Variants’ Mean PSNR, SSIM, and LPIPS Evaluation Values
Over 300 Testing Instances . 48

4.3 Typical Mean Loss Chart for Any of Our Training Runs 49

ix

4.4 Baseline and (MannequinChallenge + RealEstate10K)-Based Model
Variants’ Output Visualizations With a MannequinChallenge Target
Frame . 50

4.5 MannequinChallenge-Based Model Variants’ Output Visualizations
With a MannequinChallenge Target Frame 51

4.6 Our Variants’ MPI Layers Don’t All Pick Up Each Input Frame,
Whereas The Pretrained Baseline Model’s Ones Do 52

4.7 3D Video Chat Simulation Snapshots — Sample I 53

4.8 3D Video Chat Simulation Snapshots — Sample II 54

x

Chapter 1

INTRODUCTION

From pertinent work meetings to casual conversations with family and friends, an

ever-increasing number of people use video chatting/conferencing applications such

as FaceTime, Zoom, Google Meet, Microsoft Teams, and Skype, to name a few.

One way of improving video chat experience is to bring in a feel of 3D by providing

alternate views of each viewed scene, rendered at different viewpoints. To fortify the

3D experience, each novel view would have to be rendered at the right angle such

that it aligns with the viewpoint of the viewer. This would require taking the viewer’s

transient head pose1 into account. In this way, we can seek to get an ideal feel of

3D by, essentially, simulating what happens when we move our heads. Whenever we

move our heads, what we see in terms of the extent of the foreground, the background,

and everything in between changes based on our changing head poses. These changes

need to be reflected in rendered novel views. In this work, we attempt to emulate 3D

video chatting via targeted, high-quality novel view synthesis.

1.1 Motivation

Currently, synthesis of high-quality novel views — the basis of Image-Based Rendering

(IBR) systems — is difficult to achieve end-to-end without some form of an interme-

diate representation of the structure2 of the scene depicted by the given image(s). For

1Pose refers to the combination of any object’s (including a camera’s) position and orientation
in 3D world space. In contrast, we only use the orientation of the viewer’s head in the world as the
head pose for viewed scenes to be rerendered at.

2such as 3D world points

1

Project Starline uses a groundbreaking light field rendering system that is projected to

improve glasses-free 3D / automultiscopic video chat experience by leaps and bounds.

Figure 1.1: Google’s Project Starline [12, 30]

instance, Google’s Project Starline (Figure 1.1) uses a dense 3D representation to go

from known views to novel views. One impressive variation of such an intermediate

representation is called a Multiplane Image (MPI) — first reintroduced in Zhou et

al. [60] (Figure 1.2). It is a volumetric representation in which the 2D points making

up an image are reprojected onto multiple 2D planes situated one behind the other

at successive depths along the z-axis. This reprojection is done in accordance with

the computed depth/disparity value(s)3 at each point to be mapped. MPI planes are

parallel to each other and also to a reference coordinate frame centered at a reference

camera/viewpoint looking down positive z-axis (assuming a left-handed coordinate

system). The reference camera can be that of the image itself or of a different view of

the scene captured by the image. An MPI can thus be formulated as a set of RGBA

layers {(C1, α1), (C2, α2), . . . , (CD, αD)}, where Ci refers to the RGB map of each

3Since pixels can be smaller than the 2D points they are supposed to represent, there can be
multiple RGBA and depth/disparity values corresponding to the multiple pixels/sub-pixels that
might make up a 2D point on an image.

2

A given image is reprojected onto multiple fronto-parallel MPI planes within the view

frustum of a common reference viewpoint that may or may not match with the given

image’s viewpoint. A novel image is synthesized by alpha-blending all layers of the MPI in

back-to-front order. The layers are numbered in back-to-front order as well, with the

farthest layer 1 being at depth d1 and the nearest layer D being at depth dD.

Figure 1.2: The Volumetric/Layered MPI Representation [60]

layer (Ci, αi) and αi, the alpha map. D refers to the total number of depth planes

used in the MPI. To render from an MPI, one simply needs to alpha-blend all lay-

ers in back-to-front order, as explained in section 2.1. One popular instance of such

depth planes used in an MPI is a set of 32 planes positioned at equidistant disparity,

with the near and far planes being at 1 m and 100 m in 3D world space, respectively.

Since disparity is inversely proportional to depth, the points on the nearer MPI planes

are closer to the reference camera than the ones on the farther planes. However, as

expected, these nearer points will have greater disparity values than the farther ones.

3

In this birds-eye view down the y-axis, Ol and Or are the optical/camera centers of the

left and right images of a stereo pair. pl and pr are the 2D projections of the same 3D

world point p onto the stereo pair. xl and xr are the x-coordinates of these 2D image

points (y-coordinates are the same for corresponding points on a stereo pair). f is the

common focal length of the stereo cameras. T is the horizontal translation or baseline of

the stereo cameras. And, Z is the perpendicular depth of p from the common reference

coordinate frame of the stereo cameras and is inversely proportional to the disparity

xr − xl. Taking similar birds-eye perspectives down the z and x axes, we can compute the

x and y coordinates of the 3D point as well.

Figure 1.3: Disparity Used in Triangulating 3D Points [18]

Disparity refers to the number of pixels that each point on an image shifts over by

in any of the image’s warped/transformed counterparts that can relate to it via a

homography (projective transform function). Disparity is required for triangulating

the depth(s) at each point on the image with respect to its warped version(s). Tri-

angulating depth and estimating the 3D scene structure is easier when two or more

of the scene’s images are subjected to either stereo or multi-view image rectifica-

tion, respectively. Such image rectification procedures typically involve rotating and

shifting the optical centers of each image, so they become collinear, and scaling4 the

images themselves, so they become coplanar. Rectified image sets are characterized

4adjusting the focal lengths of the cameras of

4

by point displacements only in the horizontal/row-wise x direction. Properties of

similar triangles can then be applied to the rectified images to get at the z-coordinate

of each 3D world scene point most agreed upon by all the images containing the

point’s projections, after accounting for reprojection mismatches. Figure 1.3 shows

the triangulation process for a stereo pair. This is akin to how the human visual sys-

tem5 is able to triangulate depth from binocular vision. The brain is backed by prior

knowledge, heuristics, and biases6 that it is able to use to infer depth to some degree

of approximation even with one eye closed. Since Artificial Neural Networks (ANNs)

are basically trying to replicate and someday even surpass the workings of the human

brain, we are actually trying to fill in for this prior knowledge acquired by the brain

when we provide ANNs with copious amounts of data to learn from and devise their

own heuristics out of. Therefore, we may only generate an MPI for an image when

we are provided either with one or more shifted and/or rotated reprojections of the

scene in the image, or with the homographies for generating each of these transformed

images from the original image. Otherwise, we would need to be supplied with the

sparse/dense 3D point cloud of the image’s scene itself. In any case, the viewpoint

parameters of all views involved are also required.

1.2 Contribution

To give a gist of our work, it began by attempting to retrain Tucker and Snavely’s

state-of-the-art end-to-end fully-convolutional single-view view synthesis with MPIs

CNN [55] on the MannequinChallenge dataset [32]. We hypothesized — as was also

hinted at in the paper — that such retraining would be sufficient to generate high-

5including the eyes, their ganglia, the dorsal and ventral streams of the brain, and the visual
cortex

6made apparent by optical illusions

5

quality MPIs of scenes involving close-up shots of people, typical of video chat settings.

The original model is able to do the same for real estate scenes. We then went on

to compare the inference results of this primary model variant with those of another

variant trained on the MannequinChallenge dataset extended by the RealEstate10K

dataset [60], taking the pretrained Tucker and Snavely model as the baseline. This

was so we could determine the best variant to apply to the domain of 3D video chat.

Such application was conceived to be by way of a two-way rendering of appropriate

novel views of concurrent dynamic scenes viewed by one-on-one video chat partici-

pants in both directions simultaneously. In the two-way pipeline, a novel view of a

video frame would be rendered every time a change in head pose is detected in the

participant in the opposite frame. To our knowledge, MPIs have not been used in

3D video chat so far. We publish the code used to fill in the missing parts of Tucker

and Snavely’s publicly available training and testing pipelines, along with highlights

regarding curating and taking advantage of both datasets for view synthesis in video

chats.

6

Chapter 2

RELATED WORK AND BACKGROUND

In this thesis, we have not created novel models or datasets but have rather curated

preexisting datasets and retrained a state-of-the-art CNN. Data curation has been an

essential part of our work as the datasets’ YouTube videos are subject to modifications

over time. These modifications are in terms of the videos being taken down from

YouTube1 or the required 1280×720 pixel (720p) resolution versions of them becoming

unavailable, etc. The curation process included action items such as downloading and

training only on 720p versions of the datasets’ videos so as to minimize chances of

running into training errors, etc., as explained in section 3.2. As for simulating the 3D

video chat experience itself, we linked up the API of OpenFace 2.2 [11] — a preexisting

head pose estimation model — to the MPI inference procedure so the MPI inference

may generate novel views rendered at the head pose evaluated by OpenFace 2.2, as

explained in section 3.3.

This chapter explores related work in two areas: MPIs and 3D video chat, while

providing clarifications on background concepts along the way. The research papers

of particular interest to us as far as the MPI component of our work is concerned are

2018’s Zhou et al. [60] and 2020’s Tucker and Snavely [55], which we consider to be

our base papers. This is because we have attempted to adapt and apply Tucker and

Snavely’s work to the purposes of video chatting, and their work directly draws from

Zhou et al. We have also sought to differentiate 2016’s DeepStereo [20] and Kalantari

et al. [27] from Zhou et al. as it, in turn, is inspired by them and surpasses them

performance-wise. As for progress in the field of 3D video chat, we have mentioned

1For example, 22 dataset videos were taken down from YouTube in a year’s time.

7

the state-of-the-art 3D video chat system: Google’s Project Starline [30], among other

projects.

2.1 Learning MPIs

Some substantial challenges in high-quality novel view synthesis include synthesizing

pixels occluded in one or more of the provided views, disentangling and localizing

ambiguous pixels at/near the boundaries of foreground and background objects, and

localizing pixels at transparent, translucent, reflective, or texture-less surfaces. More-

over, whereas interpolating novel views at desired viewpoints lying within the convex

hull of given viewpoints is easier to achieve than extrapolating significantly beyond

the baselines2 of input views, these challenges can emerge in either case. So far, it

has been found that learning view synthesis is the way to go for tackling them all in

one shot.

Before the Machine Learning (ML) boom in Computer Vision (CV) circles in 2012,

convolutional filters had to be handcrafted and dexterously layered one atop the

other, before input views could be subjected to them and various types of features

could be extracted in the process of rendering novel views. All the aforementioned

view synthesis challenges had to be manually targeted by way of devising various

combinations of these filters. This meant that a high proportion of artifacts induced

in novel views could go unresolved. Since the time that the efficacy of CNNs in

CV was proven by Krizhevsky, Sutskever, and Hinton [29] in 2012, to the delight

of the CV community, the need to handcraft filters was obviated by ML models

that learned to design all required convolutional filters on their own in their various

hidden layers. These self-taught filters are defined by the weights and biases in each

2distances between camera centers

8

hidden layer neuron. The weights and biases constantly improve during training,

and the convolutional filters defined by them are specific to the datasets they are

trained on, with some degree of generalizability to other datasets. If trained well

under effective hyperparameter tuning, learned filters can evolve to surpass manual

filters in addressing occlusion, transparency, reflection, and other image synthesis

challenges.

View synthesis can lend itself to being a semi-well-posed to well-posed learning prob-

lem where two or more images of a scene can be shot, and an ML model can be

exposed to one or more of these images while being expected to predict one or more

of the remaining views that have been withheld from it as ground truth. The quanti-

tative difference between the corresponding predicted and withheld views will then be

the loss the ML training seeks to minimize. Since effective end-to-end view synthesis

without an intermediate representation is still largely unrealized, the popular way to

synthesize novel views is to learn an intermediate representation of the scene com-

mon to the input views and use this intermediate representation to render novel views.

The MPI intermediate representation has proven to be one of the most optimal con-

temporary representations, with implications as significant as real-time high-quality

spatially-consistent view synthesis.

2.1.1 Seminal Work

The roots of the MPI representation may be traced back to seminal papers such

as 1996’s Collins [16], 1998’s Shade et al. [49], and 1999’s Szeliski and Golland [51].

Collins perfected the concept of Plane Sweep Volumes (PSVs), Shade et al. introduced

layered depth images, and Szeliski and Golland introduced the actual MPI represen-

tation. These groundbreaking techniques have also been compared in Scharstein and

Szeliski [45].

9

Figure 2.1: Plane Sweep Volume Representation [7]

Collins [16] applied the PSV representation to the problem of reconstructing the 3D

scene from multiple views while simultaneously performing feature matching across

all views sharing common features. Feature matching is the process of matching cor-

responding “features of interest” characterized by their repeatability across multiple

views of the same world scene. Examples of features include keypoints, corners, edges,

objects, etc. Matched views can be rectified and used for triangulating depth, etc.,

as mentioned in section 1.1. In the author’s implementation, he did not go for a

resource-intensive 3D representation that would require splitting the entire 3D scene

space into voxels and reprojecting3 all feature points from all views in such manner

that the reprojected light rays passed through this uniformly partitioned space. In-

stead, he sampled the 3D scene space at various 2D planes along the depth (z) axis,

as if capturing just one 2D plane sweeping through it at various instants in time. He

partitioned the sweeping plane into cells and allowed each reprojected light ray to

3projecting to a target plane by unapplying and applying the homographies needed to project
to the source and target planes, respectively, while accounting for surface normals, plane offsets,
camera rotations and translations, etc., as described in subsection 2.1.3

10

vote for a group of cells that fell within a certain radius of the point of intersection of

the light ray with the plane. This accounts for the fact that rays from corresponding

feature points across all views may not converge most of the time due to reprojection

errors. He then chose the z-coordinate of the sampled plane containing the cell with

the maximum votes for a feature point to be the z-coordinate of the feature point in

the world scene. The x and y world coordinates would be defined by this winning

cell. The victor cell would also determine the 2D feature point correspondences si-

multaneously just by virtue of the converging rays being retraced to their respective

originating views. PSVs, in their various reimplemented forms, have become almost

synonymous with layered volumetric representations these days (Figure 2.1).

Shade et al.’s [49] Layered Depth Image (LDI) scene representation is similar to

MPI scene representation in that both MPI and LDI consist of a series of fronto-

parallel planes facing a chosen reference viewpoint and placed at varying depths from

it. These planes contain the RGB information of the original pixels of the scene’s

image(s), segregated according to depth. MPI differs from LDI (and PSV) in that it

has alpha masking effects at each layer, as it is generated with alpha transparency

maps for each layer. Also, MPIs have fixed depths for each layer as opposed to the

variable layer depths of LDIs (and PSVs). Nevertheless, in both cases, by virtue of

layering, users are able to experience a simulation of what happens when they move

their heads while looking at a scene in the world — they are able to look around

foreground objects that occlude background ones.

Szeliski and Golland [51] first introduced the MPI representation for stereo matching

with simultaneous RGBA estimation at each matched pixel. Stereo matching, oth-

erwise called disparity mapping, uses feature matching techniques such as SIFT4 in

pixel-and-sub-pixel-wise disparity estimation for 3D scene reconstruction from recti-

4Scale-Invariant Feature Transform [33]

11

fied stereo images. The authors’ framework was the first to extract high-accuracy

depth, color, and transparency maps for multiple images at once, operating even at

sub-pixel levels. They were able to enforce sub-pixel accuracy and perform effective

matte separation of foreground and background elements despite the usual 3D vision

challenges such as occlusions, etc., because they came as close to modern ML reimple-

mentations as possible. They implemented various loss functions such as a pixel-wise

weighted photometric L1 norm between the input and reprojected images, a per-pixel

smoothness constraint on the RGBA values allowed in the reprojected images, etc.

They then performed an iterative refinement of the estimated RGBA values with the

help of a gradient5 descent algorithm designed to optimize a combination of all these

losses, but sans the explosive power of neural networks.

2.1.2 Influential Work

DeepStereo [20] was the first to apply CNNs in an end-to-end manner to novel view

synthesis from diverse collections of indoor and outdoor imagery in the wild, given the

availability of camera parameters6 for each input image. Their paper describes why

it would be unwise to expect a typical present-day CNN to synthesize any ground-

truth target image without being provided with the pose of the view as well: it would

be tantamount to the network needlessly learning epipolar geometry itself! Epipolar

geometry — the geometry of binocular and multi-view stereo vision — gives us the

epipolar constraint x′TFx = 0 between all corresponding points x and x′ on a stereo

pair. Here, F is called the fundamental matrix and is derived from the intrinsic

and extrinsic parameters of the stereo cameras involved. To circumvent such an

indeterminable and expensive pixel-to-pixel training scenario, the authors had PSVs

5vector of partial derivatives of the function(s) to be optimized

6camera intrinsics such as focal length and principal point, and camera extrinsics/pose such as
position and orientation

12

(Figure 2.1) come to the rescue. They supplied all input views required to synthesize a

target view as separate PSVs to their network. Each input plane sweep would contain

all pixels of the respective input view reprojected onto a chosen number of planes at

chosen depths in the usual “stack of acetates” manner, with the planes all having

their viewpoints match with the target view’s. The plane that each RGB pixel gets

reprojected onto will also determine the availability7 of the pixel to the surrounding

voxels of the PSV. The plane sweep of each input view has the pose information of the

view implicitly encoded in it just by virtue of its construction. Moreover, the plane

sweeps of all input views of the same scene trivially enforce the epipolar constraint,

as all matching pixels across these originating input views may be located in the same

depth-wise column of each plane sweep. Each of these depth-wise columns may then

be computed upon by the network independently of other columns in producing the

corresponding synthesized target pixel. The network learns to predict the best weight

and color for each reprojected pixel on all input planes, so it may perform a weighted

summation of these estimated pixel colors and obtain a final predicted target pixel

color. Such averaging has a smoothing effect over the color values of the synthesized

target image. The error signal that is iteratively minimized by the training is given

by the pixel-wise L1 (absolute difference) loss between the actual target color Ct
i,j and

the synthesized target color Cs
i,j at each pixel (i, j):

L =
∑
i,j

|Ct
i,j − Cs

i,j|

Kalantari et al.’s [27] model learns to interpolate novel views in the 8x8 central view

grid of a Lytro camera containing a microlens array. It was the state-of-the-art

learning-based view synthesis model prior to Zhou et al.’s [60] stereo magnification

7as alpha values ranging from 0 to 1

13

MPI model. It comprises disparity and color predictor components in the form of

simple 4-layered sequential CNNs. The training signal it optimizes is given by the

L2 (squared difference) pixel reconstruction loss between each pair of original and

interpolated target views.

Both DeepStereo and Kalantari et al. are unable to train on training images in

their entirety. Instead, they extract patches of training images for their models to

train on. This is because these models are designed to predict each novel view in

an end-to-end fashion independently of other novel views and so have to rerun their

prediction pipelines every time, making novel view synthesis prohibitively slow for

high-resolution and real-time applications. Conversely, Zhou et al.’s model is de-

signed to predict a global scene representation once for a pair of views belonging

to the same scene and render many novel views with it at near-real-time speeds.

Moreover, when rendering nearby views, the former methods produce much more

artifact-ridden, spatially-incoherent views than those inferred by Zhou et al. What

Zhou et al. has going for it in these scenarios is an implicit smoothness prior imposed

by the common scene representation over the color and depth values being inferred

for each synthesized spatially-nearby view.

What also comes close to the MPI representation is the layered representation of

Penner and Zhang [40]. But then again, in all these prior methods, a unique scene

representation is predicted in the reference coordinate frame of each target view to be

rerendered, thereby negatively impacting view synthesis efficiency. Other innovative

MPI-related papers released subsequently to Zhou et al. and leading up to Tucker

and Snavely’s [55] single-view MPIs are 2019’s Srinivasan et al. [50], Mildenhall et

al. [36], and DeepView [19]. Srinivasan et al. improved the quality and increased

the disparity and baseline ranges of predicted MPIs and rendered views. They did

so by bringing in a 3D CNN architecture, training on random-resolution views, and

14

introducing an optical flow constraint over the appearance of occluded content in

rendered views. Mildenhall et al.’s model converts a grid of irregularly sampled

views into MPIs, i.e., mini-light-field representations, and blends such nearby local

light fields to render novel views. They were able to establish a minimum density

of sampled views required for robust rendering, which turned out to be 4000× less

than the Nyquist frequency required to prevent aliasing. DeepView [19] replaced the

update step8 of the network’s gradient descent algorithm with a CNN that learns the

various gradient descent parameters instead. Consequently, the network takes much

larger strides in the direction of optimization and converges much sooner and more

accurately than a network using standard gradient descent. However, like Zhou et

al., these methods do not tackle the monocular-image approach for generating MPIs.

2.1.3 Base Papers

Zhou et al. [60] was the first to implement view extrapolation to significantly larger

baselines9 than prior work — a process they call stereo magnification. They use stereo

pairs to learn an MPI (Figure 1.2) prediction network in the following manner:

• The camera parameters c1 = (p1, k1) and c2 = (p2, k2) of the stereo pair (I1, I2)

are also needed for the prediction process, along with the target image It and

its parameters ct. Here, p’s and k’s refer to the camera extrinsics and intrinsics

of the respective images, respectively.

• The viewpoint of one image of the stereo pair, I1, is used as the reference

viewpoint for the MPI to be predicted at. Hence, p1 would be the identity pose

[I|0].

8involving step size and other parameters such as priors/biases

9up to 8× input baselines

15

Figure 2.2: MPI Inferred by Zhou Et Al.’s Network [60]

• The goal is to learn a network that generates an MPI representation (Figure 2.2)

with inputs (I1, I2, c1, c2) such that when the MPI is rendered at viewpoint

ct, target image It would be produced.

• As demonstrated by DeepStereo [20], an effective way to encode pose informa-

tion for training is via a PSV (Figure 2.1). Hence, the input to their customized

encoder-decoder type network includes a PSV version of I2, i.e., Î2, with the

planes all reprojected into the output MPI’s viewpoint c1 and with the entire

plane sweep concatenated internally and with an unaltered I1 along the three

color channels. The depth planes of Î2 are also chosen to coincide with the ones

of the output MPI.

• The 3D structure of the scene depicted by I1 and I2 is automatically learned by

the network by merely being able to compare I1 with each of the reprojected

images of I2 in the input stack (Î12 , Î
2
2 , . . . , Î

D
2 , I1), where D is the total

16

number of MPI depth planes. The depth at each pixel of any known or novel

view of the scene must be the depth of the plane where I1 and Î2 concur.

• In order to reduce resource consumption due to network over-parameterization,

the network’s initial outputs do not consist of separate RGBA maps for each

MPI layer but rather just a “background” image intended to capture pixels

occluded in I1, along with a set of color blending weight maps and alpha maps

for each MPI layer.

• The actual RGB values in each layer Ci are then easily computed by taking the

per-pixel weighted average of I1 and the predicted background image Îb:

Ci = wi � I1 + (1− wi)� Îb

Here, � is the Hadamard product, and wi refers to the RGB blending weights

from the initial network output, specific to MPI layer i.

• Îb need not itself be a natural image, as the network can selectively and softly

blend each Îb pixel with I1, based on respective layer α’s and w’s. Intuitively,

I1’s contribution would be more in foreground layers than in the background

ones; and conversely for Îb.

The rest of the training pipeline consists of the rendering of the MPI at the target

viewpoint ct, and the gradient descent algorithm involving a VGG perceptual10 loss

function between the rendered view and ground-truth target view. The perceptual

loss is proven to be more robust than unmodified pixel reconstruction losses such as

L1 and L2 norms. Adam gradient descent algorithm is used11 to optimize this loss.

10similar to LPIPS [59]

11similarly to Tucker and Snavely [55]

17

Adam [28] is better than regular stochastic gradient descent but is still not superior

to DeepView’s [19] implementation of learned gradient descent. Rendering an MPI

first involves warping each RGBA MPI layer onto the target camera’s image plane

using the standard inverse homography / reprojection operation [24], as illustrated in

figure 2.3. However, anticipating usual reprojection mismatches, they resample each

pixel to be warped, using bilinear interpolation with respective four-grid neighbors.

These rerendered MPI layers are then alpha-composited in back-to-front order to get

the final predicted target view. All elements of the rendering process are differentiable.

Zhou et al.’s methods are ingenious in many ways. They trained their model to predict

novel views at varying distances from input views, to not overfit to predicting only

up to a limited number of baselines. They used assorted and apt convolutional layers

such as dilated convolutions to bring back larger scene contexts at lower computa-

tional costs, and fractionally-strided convolutions [43] with skip connections [10] from

preceding layers to capture even the finer texture details. The use of VGG percep-

tual loss allowed them to retain these intricate micro textures together with macro

object geometries in the synthesized views. Also commendable is their meticulous

RealEstate10K dataset creation process, later continued by Tucker and Snavely [55]

in bringing the dataset to its current state [60]. Since state-of-the-art Structure from

Motion (SfM) and bundle adjustment12 algorithms such as COLMAP [46, 47] are not

yet fully optimized for camera tracking in videos, they first subject candidate real

estate YouTube videos to Simultaneous Localization And Mapping (SLAM) tech-

niques such as ORB-SLAM2 [37] to obtain initial camera parameter estimates for

all consecutive frames tracked. “Consecutive” here implies that each tracked frame’s

viewpoint is no farther than a certain percentage of the average of its two neighbor-

12initial scene reconstruction, camera calibration (including field of view estimation), and pose
estimation for a candidate pair of scene views, followed by simultaneous iterative refinement of the
3D scene structure and all estimated camera parameters, using each additional view of the scene, as
well, for feature matching

18

Here, the 3D point X on the MPI plane in the world is the homogeneous version

(determined up to scale) of its projection x on the reference camera’s image plane in

camera coordinates, i.e., with the camera’s image plane centered at the camera center

cref . More precisely, X = [X,Y, dm]T ∼ x̃ = [X/dm, Y/dm, 1]. This is because all MPI

world planes are fronto-parallel to the reference camera and their equations can be given

by nm · x̃ + a = 0, where nm = [0, 0, 1] is the plane normal and a = −dm is the plane

offset from cref . The projection u on the reference camera’s image plane in regular image

coordinates is attained by applying reference camera intrinsics Kref to x. Since the MPI

is not necessarily fronto-parallel to the target camera ck, x̃′ need not be [X/dm, Y/dm, 1]

even though X ∼ x̃′ as well. u′ and Kk similarly belong to the target camera, as does

target camera pose (relative to reference camera) [Rk|tk]. The world plane induces the

homography H = Kk(Rk − tknm
T /a)Kref

−1 between the image planes of cref and ck, so

we can go from u to u′. To go from u′ back to u, we’d use H−1 [62].

Figure 2.3: Standard Inverse Homography or Reprojection [23]

ing viewpoints. This process naturally breaks a video apart into clips with smoother

camera motion. They then process all video clips obtained this way with COLMAP

to get a sparse 3D point cloud reconstruction of the scene in each clip, along with

a refined set of camera parameter estimates for all frames. As a final step, they

19

scale-normalize each subsequence and its reconstructed camera parameters and 3D

points in one shot by scaling the point cloud up or down, so the nearest set of points

is at a fixed distance from the cameras. Points clouds are discarded by Zhou et al.

after scale-normalizing the dataset. In contrast, point clouds are used by Tucker and

Snavely [55] to “scale-normalize,” effectively, their entire single-view training process

itself. This is because they do not have the luxury of inferring parameter and scene

scale from more than one view at a time like how Zhou et al. does. SfM involves the

estimation of the (generally sparse) 3D structure of a static scene from the multiple

(usually unstructured) views of an (often uncalibrated) camera moving around the

scene, accompanied by the simultaneous estimation of the respective camera param-

eters. It is essentially a more generic version of Multi-View Stereo (MVS), which

itself is an extension of stereo matching and requires known camera parameters to

reconstruct (mostly) dense 3D points clouds. COLMAP is capable of both SfM and

MVS. Both SfM and MVS can utilize bundle adjustment similarly to SLAM from the

Robotics community. SLAM does not stop at bundle adjustment but rather proceeds

to map out the entire terrain a robot encounters, by making connections between

camera trajectories, viewed scenes, etc. [3].

Zhou et al. made some noteworthy observations in their various ablation studies.

They found that their model trained better on their preferred MPI prediction for-

mat in which each MPI layer is formed by blending a predicted background image

with the reference image (taken as foreground) using a set of predicted color blend-

ing weights. This format beat other, more-expressive formats, such as ones with an

additional predicted foreground or with fully predicted MPI layers. They speculate

that the network’s somewhat diminished performance with the latter formats could

be because of network over-parameterization, more utilization of synthesized layers

than the original reference image itself, and perhaps even because of lesser camera

movement between the synthesized layers than is necessary for the network to ef-

20

ficiently learn depth complexity from. Moreover, they were able to verify that the

greater the number of MPI planes used, the higher would be the model’s training

performance and the quality of synthesized views. Their model presents considerable

scope for improvement when it comes to accurately localizing and fixing the depths

of multiple overlapping fine textures, avoiding “stacks of cards” edges in synthesized

views when the disparity between the neighboring layers of an MPI exceeds one pixel,

etc.

Tucker and Snavely [55] was the first to implement learning-based single-view view

synthesis on videos in the wild. It is fascinating to see how they achieved efficient

single-view view synthesis — an objective coveted by Vision and Graphics communi-

ties. Moreover, there are numerous other perks to their model. It produces byprod-

uct disparity maps that can be used in imposing a smoothness prior over synthesized

views, in computing a global scale factor, etc. It learns to inpaint occluded content

behind foreground objects without requiring ground truth 3D or depth, mainly due

to their utilization of scale-invariant view synthesis for supervision. As mentioned

previously in this subsection, although Tucker and Snavely extended RealEstate10K

dataset by adopting the same methods as Zhou et al. [60], yet they had to incor-

porate scale-normalization/scale-invariance into their training in order to circumvent

the global scale factor ambiguity that arises when attempting to infer scene geometry

from monocular views. They accomplish this in the following manner (Figure 2.4):

• The sparse point cloud of the scene depicted by each group of sequential video

frames, the lists of all 3D points visible from each frame, the camera parameters

of each frame, and the video frames themselves are all needed for training. All

these input components result from the ORB-SLAM2, COLMAP, and scale-

normalization procedures of Zhou et al.

21

Figure 2.4: Tucker and Snavely’s Single-View View Synthesis Pipeline [55]

• Pairs of source and target frames (Is, It) and respective camera parameters

(cs, ct) are randomly picked for training, along with the respective visible point

sets of source frames. The sets of visible points are converted from world co-

ordinates to camera coordinates to get a final point set Ps = {(x, y, d), . . .}

for each source frame, where the z-coordinate of each world point becomes the

depth d of the world point from the source camera, and the mapped 2D points

are denoted by the positions (x, y) within the source image.

• Similarly to Zhou et al., Tucker and Snavely’s chosen reference camera for the

MPI planes (Figure 1.2) is cs, and their preferred MPI prediction format consists

of a predicted background image Îb, a set of layer-wise predicted alphas, and a

set of layer-wise color blending weights that (unlike Zhou et al.) are calculated

from the alphas and not predicted by the network. Tucker and Snavely derives

color blending weights wi for each MPI layer i as wi =
∏
j>i

(1− αj)︸ ︷︷ ︸, and final

color values Ci for each layer as Ci = wiIs + (1− wi)Îb.

• Like Zhou et al., when rendering an MPI, Tucker and Snavely’s warping function

W uses bilinear sampling and standard inverse homography (Figure 2.3) to warp

22

each layer from source viewpoint cs to target viewpoint ct: C
′
i =Wcs,ct(σdi, Ci);

α′i =Wcs,ct(σdi, αi). The only difference is that Tucker and Snavely’s W scales

the depths by a factor σ, which they compute separately for each training

instance.

• To get the final rerendered target Ît, the warped layers (C ′i, α
′
i) are alpha-

composited as usual:

Ît =
D∑
i=1

C ′iα′i D∏
j=i+1

(1− α′j)︸ ︷︷ ︸
 (2.1)

Furthermore, the disparity map D̂s of the source image can also be similarly

synthesized from the MPI using the inverse depths d−1 of visible points Ps:

D̂s =
D∑
i=1

d−1i αi

D∏
j=i+1

(1− αj)︸ ︷︷ ︸
 (2.2)

• DeepView [19] describes the under-braced terms in all previously mentioned

formulae as the net transmittance at respective depth planes i. They reason

that the terms represent the fraction of the color/disparity that persists in layer

i after getting attenuated through all prior layers.

• Learning the 3D scene structure from a single view is trickier than from multiple

views, for only the relative pose between multiple views can implicitly resolve

global scale ambiguity. Nonetheless, Tucker and Snavely’s method is able to

accept source and target inputs of unknown scale and still make rerendered

images match ground truth because they solve for the unknown scale factor as

part of their MPI generation. They observe that RealEstate10K-dataset-derived

inputs cs, ct, and Ps are consistent in scale for each training instance. Therefore,

23

they compute σ to be the scale factor that minimizes the log-squared error

between the predicted disparity map D̂s, bilinearly sampled at each position

(x, y), and the point set Ps:

σ = exp

 1

|Ps|
∑

(x,y,d)∈Ps

(lnD̂s(x, y)− ln(d−1))

After σ is applied in warping with W , as shown before, the rendered image no

longer varies with the scale of the input viewpoints and point set and can be

used in the various loss functions.

• Their weighted aggregate loss function is given by

L = λpLpixel + λsLsmooth + λdLdepth (2.3)

Here, Lpixel is just the regular L1 photometric distance between synthesized and

ground-truth target views:

Lpixel =
∑

channels

1

N

∑
(x,y)

|Ît − It|

Lsmooth is the edge-aware smoothness loss that prevents the gradients of the

synthesized disparity map D̂s from crossing a certain threshold (gmin — usually

0.05) whenever there is no edge detected in the source image, like so:

Lsmooth =
1

N

∑
(x,y)

(
max

(
G(D̂s)− gmin, 0

)
� (1− Es)

)

where � is the Hadamard product, and G represents the L1 norm of the gradient

of an image summed over all three color channels, like so:

24

G(I) =
∑

channels

||∇I||1

where Sobel filters are used to compute the gradient, and Es represents a custom

edge detector for the source image. The edge detector signals the presence of

an edge whenever the gradient of the source image is at least a fraction (emin

— usually 0.1) of the gradient’s own maximum value over the entire image, like

so:

Es = min

(
G(Is)

emin ×max(x,y)G(Is)
, 1

)

And Ldepth is the sparse depth loss given by the L2 difference between the logs of

the disparities derived using the predicted alphas (i.e., the synthesized disparity

map) on the one hand and the input point set Ps on the other, like so:

Ldepth =
1

|Ps|
∑

(x,y,d)∈Ps

(
ln
D̂s(x, y)

σ
− ln(d−1)

)2

where the computed scale factor σ that minimizes Ldepth is itself included.

The network used is architecturally similar to DispNet [35]. In our work, in the

process of recreating Tucker and Snavely’s model and retraining it on video-chat-

relevant scenes, we have reimplemented their weighted aggregate loss function, among

other model features. We retained their chosen loss function weights of λp = 1 and

λs = 0.5. We chose λd to be 1 instead of their chosen value of 0.1. We also retained

their choice of optimizer — Adam — but used a different learning rate of 0.00001.

Even though there is still a lot of scope for improvement in performance with regard

to model-induced artifacts reducing the quality of synthesized views, Tucker and

25

Snavely’s authors share how the various aspects of the model contribute to it beating

the state-of-the-art. They show that the scale-invariant nature of the model’s super-

vision by view synthesis (i.e., usage of ground-truth target views) plays a massive

role in its success, which is compounded by the edge-aware smoothness prior and

the chosen MPI format involving a predicted background. Another triumph of their

model is that even though it does not use explicit depth supervision, it is comparable

to state-of-the-art depth prediction methods that do so. Their project presents ex-

citing future opportunities, such as turning the model into a Generative Adversarial

Network (GAN) [21] to possibly produce more extensive and realistic inpainting, and

so on, as explored in chapter 5.

2.2 3D Video Chat

Google’s Project Starline [30] (Figure 1.1) is state-of-the-art in 3D video chatting. It

is a real-time bidirectional communication system that lets two distant users experi-

ence a conversation as if they were copresent. Despite being state-of-the-art, Project

Starline is as yet unable to allow for more than a single participant to be present at

either end of the line. While there may still be a ways to go before such a high-fidelity

telepresence system can cater to more than two participants at a time, there are nu-

merous breakthroughs that Project Starline has achieved so far and will continue to

achieve with further prototype refinements/overhauls.

There has been a considerable amount of work [22] in the area of 3D video chatting

over the past 30 years, and prior research systems have been described that also use

freestanding displays and depth sensors. Some of these include 2011’s Maimone and

Fuchs [34], 2013’s Zhang et al. [58], and 2009’s Jones et al. [26]. More recent work

has investigated head-mounted displays for telepresence applications, including the

26

Holoportation project [39] from Microsoft Research in 2016. And more recently, the

line of research on codec avatars [15] is being pursued at Facebook Reality Labs.

The Project Starline system [22] (Figure 2.5) combines an autostereoscopic display

with a real-time 3D capture and real-time 3D audio pipeline to present the remote

person as they truly are, including faithfully reproducing important nonverbal cues

like eye contact. Their display and setup achieve a retina resolution of 45 pixels per

degree across the target field of view, showing the other person in greater detail than is

currently possible with today’s state-of-the-art VR headsets and AR glasses. Either

participant sits on a bench that is connected to a large infrared backlight located

directly behind them. And they see their conversation partner through a 60-hertz

65-inch 8K autostereoscopic display located roughly 1.2 meters in front of them. This

display conveys both stereo and parallax cues to the seated participant and shows the

remote person at their true physical size. They use four face-tracking cameras running

at 120 frames per second to steer this display to the viewer’s eyes. These estimate

the 3D location of the eyes, ear, and mouth within about 5 millimeters of precision.

They use a fast face tracker to find 2D spatial features and triangulate to find the

3D locations. These are used to render the appropriate viewpoints to steer the 3D

display and to drive free-space spatialized 3D audio. The spatialized audio system

uses two speakers and an array of four microphones. On the input side, face tracking

data enables dynamic beamforming, sharpening the microphones’ directionality to

combat noise and reverberation. On the output side, tracking enables the system

to spatialize playback at the location of the speaker’s mouth. Tracking also enables

binaural crosstalk cancellation to target the correct waveforms at the listener’s ears.

Thus, even though the speakers are spaced far apart, the sound appears to emanate

from the remote user’s mouth.

27

Figure 2.5: Project Starline’s Data Flow [30]

To capture a 3D video of the subjects, they use three groups of cameras they call

“pods,” each with two infrared cameras and one color camera. The bottom pod

contains an extra color camera zoomed into the face for higher resolution there. For

stereo reconstruction, they use time-varying infrared pattern generators that create

dot images only visible in infrared. They use windows of five infrared image pairs

— four with dot patterns and one with an infrared backlight — to compute depth

from space-time stereo using the ESPReSSo algorithm [38]. This algorithm takes

as input infrared image pairs at 180 frames per second and computes synchronized

output depth images at 60 frames per second. The infrared backlight is used to carve

noisy background data from the stereo images and provides a reliable boundary for

stereo estimation, improving accuracy at silhouette edges. In total, three depth and

four color streams are sent over WebRTC using GPU video codec hardware. On

the receiving side, after decompression, the system reprojects three depth images to

the local subject’s eye positions. A traditional volumetric fusion system [17] would

take these three depth images and fuse them into a voxel representation, extract

the isosurface using marching cubes, and then render the triangles. Instead, Project

Starline researchers use modern GPU hardware to eliminate the surface extraction

step and raycast the voxels directly. This eliminates the additional data structures

and unpredictable memory usage of a triangle mesh. However, it still requires a

lot of GPU memory to store that voxel grid and a lot of memory bandwidth for the

raycasting kernel to retrieve it. Hence they interleave the fusion and raycasting passes

28

into a single kernel, fusing the depth images on the fly as they step through rays.

This eliminates the need to store a voxel grid in GPU memory entirely, dramatically

reducing memory usage and improving runtime by a factor of 6 over separate fusion

and raycasting kernels. By eliminating this need to sample on an arbitrarily-aligned

voxel grid, it can also reduce aliasing artifacts such as those sometimes seen along

silhouette edges. Next, they project the color camera images onto the fused geometry

and combine the colors using blend weights calculated from surface normals.

Their system doesn’t work equally well for all scenes. Thin or frizzy hair is not well

reconstructed as it falls below the minimum size of objects that their stereo system

can detect. Similarly, fast motion can break up the reconstructed geometry, resulting

in holes and incorrect texture projections. Eyeglasses also have thin geometric fea-

tures and transparent surfaces that are missed by their 3D capture, causing incorrect

texture projections. Despite these limitations, Project Starline conveys a strong sense

of remote copresence.

Project Starline [30] is the first telepresence system that is demonstrably better than

2D videoconferencing, as measured using participant ratings (e.g., presence, atten-

tiveness, reaction-gauging, engagement), meeting recall, and observed nonverbal be-

haviors (e.g., head nods, eyebrow movements). This milestone has been reached by

maximizing audiovisual fidelity and the sense of copresence in all design elements, in-

cluding physical layout, lighting, face tracking, multi-view capture, microphone array,

multi-stream compression, loudspeaker output, and lenticular display. Their system

achieves key 3D audiovisual cues (stereopsis, motion parallax, and spatialized audio)

and enables the full range of communication cues (eye contact, hand gestures, and

body language), yet does not require special glasses or body-worn microphones/head-

phones. Other contributions include a novel image-based geometry fusion algorithm,

free-space dereverberation, and talker localization.

29

Chapter 3

METHODS

The objective of this work has been to freely rerender concurrent one-on-one video

chat frames from the points of view of both participants bidirectionally and in real-

time. This would help simulate the experience of conversing face-to-face with a person

in the real world. We adopted Tucker and Snavely’s [55] single-view MPI network, for

it is the first state-of-the-art open-source single-view view synthesis network, and it

has been quite popular among various enterprises and organizations since its release

in 2020. When we initially ran the publicly available inference part of the network on

a video chat frame, we found that the generated disparity map (Equation 2.2) was

visually inaccurate. Comparatively (Figure 3.1), the inferred disparity map would be

much more visually accurate whenever a real estate video frame would be processed.

The latter outcome is to be expected because Tucker and Snavely’s model was origi-

nally trained on RealEstate10K [60] video dataset. Specifically, certain aspects of the

synthesized views, such as image sharpness, would be pretty compelling for the real

estate category of video frames by virtue of the model having been efficiently tweaked

and extensively trained by the authors (given contemporary hardware limitations).

Yet, synthesized video-chat-related frames alone would seem unnaturally concave/-

convex at arbitrary positions within each rerendered frame, not to mention the loss

of perspectivity and the induction of random distortions occurring within the frame

as well.

30

The disparity map on the left encodes a real estate scene, and the one on the right

encodes a video chat scene. The real estate map successfully shows appropriate

heat/depth gradations from the hottest/closest armrest region on the bottom right to the

coldest window regions toward the back of the scene. The video chat map, on the other

hand, counterintuitively shows that the face of the girl in the scene is situated behind the

body, and the couch in it is somehow disjointed.

Figure 3.1: Disparity Heat Maps Synthesized by Tucker and Snavely’s
Model [55] for Real Estate and Video Chat Frames

3.1 Approach

As a primary step (Figure 3.2), we attempted to increase Tucker and Snavely’s depth

prediction accuracy for video-chat-relevant frames containing close-up shots of peo-

ple so that we may see a drastic reduction in the number of artifacts induced in

synthesized frames. This involved curating and utilizing both RealEstate10K [60]

and MannequinChallenge [32] datasets. The latter contains video frames that re-

semble video chat scenes: it is composed solely of scenes of people pretending to be

mannequins while a camera moves around them, flowing seamlessly from scene to

scene. Essentially, we performed transfer learning [44] with the pretrained weights of

Tucker and Snavely’s model, by fine-tuning/refitting them to a dataset other than the

one they were originally trained on. Secondly (Figure 3.3), we introduced the head

31

pose detection submodule of OpenFace 2.2 [11] into the inference pipeline of Tucker

and Snavely, so that “viewee” video frames may be rerendered at the head pose ob-

tained from “viewer” frames. We considered a few state-of-the-art open-source head

pose estimation models, including WHENet [61] — for its speed and consistency. We

ultimately chose OpenFace 2.2 because it works well with the Deep Learning frame-

work used by Tucker and Snavely (TensorFlow 2.2) and can be installed in the same

dockerized environment as COLMAP [46, 47] and the rest of the dependencies needed

by our comprehensive pipeline.

Figure 3.2: MPI Training Pipeline

Out of the non-exhaustive set of network components made publicly available by

Tucker and Snavely [55], a comprehensive inference pipeline on Google Colaboratory

(Appendix A) was one. It immensely helped us with our OpenFace integration and

gave us the ability to visualize and present our results and demos in chapter 4 and

everywhere else. They couldn’t reveal certain other aspects of their codebase due

32

to their proprietary natures. This prompted us to go about recreating Tucker and

Snavely’s DispNet-like model [35] first before retraining it on requisite datasets and

repurposing it for video chat view synthesis. We recreated parts of the model from

the code released (Appendix A) by the authors involving their network definition

(convolutional layers, kernel sizes, etc.) and the code used by them for rendering views

from new camera positions with homographies and related operations (Equation 2.1).

We then put together other aspects of the network that called for a more involved

recreation process, like the data loader part and the loss functions (Equation 2.3).

Requisite components of input data, including point clouds, had to be extracted and

loaded in. One of the key features of Tucker and Snavely is to use sparse point cloud

data to make the view synthesis loss scale-invariant (Subsection 2.1.3). To obtain

such inputs, we processed both datasets with COLMAP and wrote a custom data

loader. We took inspiration from Zhou et al.’s [60] stereo MPI paper for building the

data loader, for the code they tailored to load in data (Appendix A) was refactored

and reused by Tucker and Snavely as well. Their implementations of subsequence

selection and random cropping proved pretty useful.

We retrained the recreated network in two different ways. One group of model vari-

ants was fine-tuned exclusively on the video-chat-relevant MannequinChallenge video

dataset, which is∼96% smaller than RealEstate10K in training data as of this writing.

The other set of variants was retrained on a combination of both datasets by having

the model pick same-sized batches of training data (Subsection 2.1.3) randomly and

alternatingly from both datasets. We considered addressing this inherent data imbal-

ance problem by making the model pick an appropriate proportion of RealEstate10K

frames for every MannequinChallenge frame randomly selected. However, we ulti-

mately voted against it in favor of resolving more pressing issues such as the training

errors mentioned in section 3.3. We are grateful to the authors of Tucker and Snavely

for forewarning us that there is a risk of overfitting to the much smaller Mannequin-

33

Figure 3.3: 3D Video Chat Rendering Pipeline

Challenge dataset, even though it was generally mentioned in both Zhou et al. and

Tucker and Snavely that the stereo and single-view models were quite generalizable

to domains besides real estate footage. Hence, we felt the need to deploy the second

set of variants to help access this risk. We could also have taken another transfer

learning route of freezing all but the last few layers of the model to possibly reduce

overfitting, but we chose to unfreeze all layers in favor of making the variants wholly

robust. The layers were thus free to learn and evolve based on the MannequinChal-

lenge data they were newly exposed to. We stack these variants up against each other

and also against the pretrained single-view model and compare their performances in

chapter 4. Finally, after introducing the head pose estimation API of OpenFace 2.2

into the inference pipeline of the variants, we converted estimated head orientations

into a form amenable to rendering with MPIs. This involved manipulating yaw, pitch,

and roll head angles, and the MPI helper functions provided by Tucker and Snavely

went a long way in making this possible as well. We also visually verified for if the

34

rerendered frames were getting seemingly aligned with the extracted head poses or

not.

3.2 Data

Both MannequinChallenge [32] and RealEstate10K [60] datasets were created by

roughly the same group of researchers hailing from Google. They involved the same

ORB-SLAM2, COLMAP, and scale-normalization procedures as Zhou et al. [60] (Sub-

section 2.1.3). Hence, both datasets consist of the same kind of metadata in text files

pertaining to the downloadable videos. Each text file begins with the video’s YouTube

link on the first line and continues with the details of each COLMAP-processed video

frame from the second line onward. Frame details include the timestamp (in microsec-

onds), camera intrinsics, and camera extrinsics. As mentioned in subsection 2.1.3,

COLMAP consists of a 3D scene reconstruction pipeline. It attempts to recover the

3D scene structure from even those unstructured 2D images of the scene that do not

come tagged with any prior knowledge of camera intrinsics, extrinsics, and the nature

of objects captured. The extracted scene structure is either in the form of sparse 3D

points along with the camera parameters for each input 2D image or dense 3D points

with associated color information. COLMAP’s pipeline can be given by: feature de-

tection → pairwise feature matching → correspondence estimation → incremental

structure from motion (Figure 3.4). Fortunately, the model does not require absolute

camera poses; only the relative ones made available with the help of COLMAP in

these text files are needed. Our scripts to download and curate all these videos were

facilitated by our compilation of a comprehensive Docker container ensuring robust-

ness in code reusability and transferability. Resolving version compatibility issues

among our project dependencies, such as COLMAP and OpenFace 2.2, both in the

Docker container and in Google Colaboratory, proved paramount to the successful

35

running of our experiments. All our scripts, notebooks, sample renderings, demos,

and most other aspects of our code for this project can be found in our GitHub

repository (Appendix A).

Figure 3.4: Photogrammetry Workflow Used in COLMAP [42]

Although our training and testing scripts are designed to crop all incoming video

frames to 512×512 pixels, we ensured that we downloaded all videos with youtube-dl

at 720p resolution. This uniformity was so we could reduce the number of sources

of arbitrariness in the initial process of replicating Tucker and Snavely’s [55] work.

Linking youtube-dl with the download management utility aria2 [9] proved very useful

in bolstering youtube-dl’s download speed by optimizing resource utilization. With

this setup, we could download 300 videos in an hour. We then targeted address-

ing youtube-dl download errors. There would inevitably be several partial and/or

skipped downloads for various reasons ranging from the videos being taken down from

YouTube over time to fixable errors intrinsic to youtube-dl. Moreover, some videos

were unavailable in their 720p versions and were discarded by us to maintain consis-

tency. In favor of retaining the pristine versions, we chose not to manually convert the

varying resolutions to 720p. Although differently scaled videos should theoretically

not pose any problem to training or 3D point cloud generation with COLMAP, we

36

opted again to go with uniformity and consequent ease of reproducibility for one and

all.

We were finally able to procure 66861 RealEstate10K videos with 9095528 frames and

2364 MannequinChallenge videos with 117811 frames for processing. However, not

all downloaded videos could be processed. For instance, only ∼60000 RealEstate10K

videos were actually COLMAP-processed and used for training. The rest of the videos

did not meet COLMAP processing requirements. Moreover, it would have taken 200

days to process all 66861 videos with COLMAP with CPUs alone. Fortunately, we

could avail the benefits of NVIDIA Tesla V100 GPUs1 at Cal Poly and could bring

down the processing time to 25 days. In these ways, we obtained the required point

clouds and frames for training and testing.

3.3 Implementation

We attempted to generate accurate MPI representations for close-up targets such as

heads and upper bodies and improve the pixel accuracies of views synthesized from

these MPIs. After putting together the data loader to feed the datasets and point

clouds into the network, we recreated loss functions from the textual descriptions in

the single-view MPI paper [55]. As mentioned in subsection 2.1.3, we likened our

training process to Tucker and Snavely’s [55], with respect to various aspects such

as using TensorFlow 2.2, ADAM solver, a pixel loss weight of 1, a smoothness loss

weight of 0.5, etc. We experimented with choices of learning rate and depth loss

weight but generally picked 0.00001 and 1, respectively, contrary to the 0.0001 and

0.1 used in Tucker and Snavely. We reduced the learning rate because we were fine-

tuning the pretrained model rather than training from scratch. The requirement that

1rated the best server models in 2020

37

we had to have view synthesis quality as supervision was fulfilled by taking frames

one frame apart2 from each chosen training frame as target ground truth. We trained

for a certain number of steps rather than for a certain number of epochs. This is

because, generally, only smaller/faster-to-train datasets are used for training a model

in epochs, whereas it is easier to train larger, indeterminate-in-size datasets in steps.

Our data loader randomizes batch picking not only for testing but also for training.

Moreover, we have not yet been able to go beyond the model experimentation stage.

Exposing the model to a wide variety of frames is the way to go in this stage. For the

model to be trained sequentially on all frames clip by clip, covering entire datasets

multiple times in multiple epochs, it should be free of any errors that impede its

progress toward convergence. We have not been able to bring our model up to that

stage yet.

We used wandb.ai [14] for experiment tracking. It proved to be a valuable tool for our

entire process. It helped us spin out different model variants, chiefly characterized

by their being trained either on MannequinChallenge alone or on a combination of

both datasets. As with some notable attempts at model training in the community,

we encountered Not a Number (NaN) gradient errors that took a good chunk of

our resolution efforts in this work but ultimately could not be resolved. NaN losses

signal that the issue of vanishing/exploding gradients may be present. In this work,

NaN gradients could only be reduced in their frequency of occurrence from once in

several hundred steps to once in several thousand steps. wandb.ai helped immensely in

resuming not just the training runs themselves but also the activity of logging training

metrics right from when the run broke off due to a NaN error. What also helped bring

down the frequency of encountering NaNs, we believe, was the fact that we removed

all those videos from the training/testing process that had at least one frame with

2in the video sequence

38

a point cloud composed of less than two 3D points. Our Linux command to locate

such point cloud .txt files (Appendix A) would take about 3 hours to sift through

a set of 2500 point cloud directories with one .txt file per video frame. Replacing

cumprod used in several places in the single-view MPI source code (Figure 3.5) with

safe cumprod, as suggested to us by one of the authors of the single-view paper,

also helped reduce the frequency of encountering NaNs. One of the issues we could

completely resolve was the occasional throwing of ValueErrors by our data loader.

We also attempted to redress the rendered artifacts mentioned in section 3.1 and

determine if real-time, high-quality view synthesis was indeed possible without game

engines.

Figure 3.5: Cumprod Occurring in Single-View MPI Model [55] as Shown
in Google Colaboratory Model Summary

We used customized training loops with TensorFlow’s tf.GradientTape context [6].

Nevertheless, we found that the gradient calculation (Appendix A) would take about

a minute! We were using a batch size of 8 on an NVIDIA V100 GPU at the time.

The authors of the single-view MPI paper, however, informed us that even on a single

worker, their gradient calculation would take less than a second. They then astutely

diagnosed our issue to be that we were doing everything in eager mode, resulting

39

in excessive overhead. They suggested that using Keras’s model.fit, using the old

estimator system of TensorFlow, or just wrapping things in tf.function should allow

the critical parts to run in graph mode and be faster. They also suggested that things

were probably too big to fit on our GPU. Also, the authors had used a batch size of

4. We ultimately adopted the use of tf.function wrapper as well as a batch size of 4

and were able to complete implementing our training and testing pipelines.

Figure 3.6: A Snapshot of OpenFace 2.2 [11] Outputs

We then inserted OpenFace 2.2 [11] into the inference pipeline of one of our better-

performing model variants and attempted to emulate a video chat system, one half

at a time. Using OpenFace 2.2, we extracted the head pose from each frame of a

“viewer” video sequence, as shown in figure 3.3. We used one of the utility functions

in the single-view MPI modules, geometry.pose from 6dof, to extract the yaw, pitch,

and roll angles of the “viewer” frames in a manner conducive to being accepted by the

MPI inference. We then rendered the “viewee” video sequence at the head pose of the

“viewer” frames with matching timestamps. Even though it looks like more precision

could have been added by using not only head pose estimation but also gaze estimation

with OpenFace, a compelling argument can be made to the contrary that when we

look at people or at a scene, whatever we view does not seem to get “rerendered” in

40

our visual system based on our changing gaze. It seems to get “rerendered” based

(perhaps solely) on our changing head pose. A snapshot of OpenFace 2.2 outputs for

multiple frames in a sequence is shown in figure 3.6.

41

Chapter 4

EXPERIMENTS AND RESULTS

In this chapter, we present some quantitative and qualitative evaluations of the vari-

ants of the recreated single-view MPI model retrained on various combinations of

MannequinChallenge [32] and RealEstate10K [60] datasets. We use the pretrained

weights of the single-view MPI model as the benchmark and compare the abilities of

all model variants at hand to generate novel views. We adopt some of the quantitative

metrics from Tucker and Snavely’s single-view MPI paper [55] — PSNR, SSMI [56],

and LPIPS [59] — to give numeric values to the similarities between MPI-rendered

video frames and the corresponding ground truth target frames the rendering process

attempts to replicate. These metrics are computed over all image pixels at a time

during evaluation. We based some of our metrics-evaluation scripts on TensorFlow

Official Documentation [4, 5].

The model variants used to compute the metrics stated above are characterized by

the following hyperparameters/metadata:

• Depth loss weight, as explained in subsection 2.1.3.

• The number of disparity map channels specified in the tf.function input signa-

ture for the bilinear sampling function in our training script (Appendix A),

sample disparities(disparity, points), involving the predicted disparity and the

input visible points.

• The lower bound on the number of visible points required per frame; videos

with even one frame having the number of visible points below this threshold

would be removed from training.

42

• The choice of datasets used to train on — MannequinChallenge, RealEstate10K,

or both.

• Whether multiple GPU workers were engaged or not.

Even seemingly innocuous hyperparameter values such as those for the number of

disparity map channels specified, we believe, could have easily held sway over training

progress. Pitting these variants against each other in the three computed metrics

helped us select the best variant to simulate half a video chat with each time.

We manually sifted through the in-built test set of the MannequinChallenge dataset to

handpick a set of 333 videos. These ORB-SLAM2-curated sequences had video-chat-

relevant features. They mostly had the heads and torsos of people being focused upon

rather than having wide shots of entire bodies. It was mostly just one or two people

in the frames instead of several. Moreover, although not a strict requirement, the

head pose of people in these frames was roughly or even very loosely aligned with the

camera. There was hardly anybody in any frame that appeared to be looking directly

at the camera, as might be expected in an actual video chat. We put these cherry-

picked frames in the test-yes/ bin. We also curated test-maybe/ and test-no/ bins.

They consisted of the rest of the MannequinChallenge test set with sequences either

having no relevance to typical video chat settings (like there being hardly anyone

in the frames) in the case of the test-no/ directory or falling heavily in the gray

areas between test-yes/ and test-no/ in the case of the test-maybe/ folder. We even

occasionally interspersed the test-yes/ and test-maybe/ bins with videos containing

sequences that portrayed people facing diametrically opposite the camera. This was

just so that we could really challenge the model variant being tested. Table 4.1 shows

the classifications of procured videos.

43

Dataset Bin Videos Frames

RealEstate10K train/ 66861 9095528

MannequinChallenge train/ 2364 117811

MannequinChallenge validation/ 88 5928

MannequinChallenge test-yes/ 333 12595

MannequinChallenge test-maybe/ 300 12831

MannequinChallenge test-no/ 24 728

Enormous quantities of data help reduce overfitting. Also, subjecting the model to various

indoor and outdoor scenes and image collections used in prior work helps make it robust

and generalize well even in the presence of scene anomalies.

Table 4.1: Classifications of Procured Videos

Of the various aspects of the code that we modeled from the textual descriptions

and relevant code snippets obtained from both the single-view and stereo MPI pa-

pers, such as generator wandb.py, data loader.py, train wandb.py, and test.py, the

scripts relevant to the experiments in this section are test.py and generator wandb.py

(Appendix A). For testing, the generator first aggregates all video names from the

directory input to it, and for each of these, it picks various reference image and

target image pairs that are internally 5 frames apart. reference image is the frame

test.py uses to infer the MPI representation of the scene from, and target image is

supposedly a view of the same scene from a different angle. The possibility that,

when the camera moves from one scene to another in the same video, reference image

may depict a scene different from the one captured by target image is expected to

be extremely low as both datasets have been curated by similar ORB-SLAM2 [37]

and COLMAP [46, 47] processes. In such hypothetical cases, target image will be

erroneously rendered by mpi.render function as the corresponding rendered image.

Nevertheless, since we take the mean of the computed metrics over hundreds of test.py

processed reference image-target image pairs, we believe the final accuracies of a vari-

ant’s mean metrics will not be off the mark much and shall still be used to determine

a variant’s performance satisfactorily. Each of the three metrics is calculated between

44

target image and rendered image, which are situated 5 frames apart along the camera

trajectory of the respective clip. We did not repeat the same test process for frames

10 apart, which would just have been done to show1 that the longer the baseline

between reference/source and target views, the less the rendered image’s accuracy

will be. On the same note, we have also not calculated the metrics internally for

all processed (reference image, target image) pairs, which would just have been done

to catch the hypothetical anomalies of the complete scene changes within a clip, as

mentioned before.

We also took an interesting little detour in our project when we attempted to paral-

lelize training across multiple GPUs. We believe this would have allowed us to increase

the batch size2 and thereby let larger and larger parts of our 60000+ training-ready

sequences with associated point clouds be used for learning by our recreated model.

This would have assisted the model in better avoiding local minima and maxima. But,

since TensorFlow’s direct conversion procedure that would let standard single-GPU-

utilizing scripts become multi-GPU-faring is as yet still an evolving process requiring

careful attention to resource allocation issues among the various replicas of the paral-

lelizable aspects of the model3 spread across GPUs, our training got undercut after a

good start by a resource exhaustion error at training step 178. Nevertheless, we com-

puted all three metrics for this other model variant retrained on MannequinChallenge

data using tf.distribute.MirroredStrategy, capable of harnessing the power of multiple

GPUs.

The rest of this chapter presents the results of the experiments done with the various

model variants and the baseline pretrained model. We then cap it off by presenting the

1as in the case of the single-view MPI paper

2currently limited to 4 pairs of reference and target images and their respective camera poses
and intrinsics, along with the 3D points of the reference image

3such as the dataset generator, the loss functions aggregator, etc.

45

(a) Disparity Map —
gallant-eon-27

(b) Disparity Map —
gallant-eon-27

(c) Disparity Map —
gallant-eon-27

(d) Disparity Map —
gallant-eon-27

(e) Rerendered Tar-
get — gallant-eon-27

(f) Rerendered Tar-
get — gallant-eon-27

(g) Rerendered Tar-
get — gallant-eon-27

(h) Rerendered Tar-
get — gallant-eon-27

(i) Disparity Map —
sunny-grass-5

(j) Disparity Map —
sunny-grass-5

(k) Disparity Map —
sunny-grass-5

(l) Disparity Map —
sunny-grass-5

(m) Rerendered Tar-
get — sunny-grass-5

(n) Rerendered Tar-
get — sunny-grass-5

(o) Rerendered Tar-
get — sunny-grass-5

(p) Rerendered Tar-
get — sunny-grass-5

Outputs from left to right: for step 1, for step 1750, for step 14000, for step 15250. Source

of frames shown: MannequinChallenge dataset [32].

Figure 4.1: Some Variants’ Disparity Maps Turn Gray Faster Than Others

results of incorporating OpenFace 2.2 into the inference pipeline. As of this writing,

our generator is only able to pick random pairs of reference and target frames from

46

the 333 test-yes/ videos. Sequential pair-picking would avoid possible repetition of

selected pairs and allow for exhaustive coverage of the test set. Given that even the

smaller one of the two datasets has 100000+ frames and that we have not been able to

resolve the issue of the synthesized disparity maps becoming smudgier and smudgier

until they turn entirely gray/monochromatic even before some variants could hit

14000 training steps (Figure 4.1)), it is not very likely that the model may see the

same frame twice. So perhaps, computing evaluation metrics with training data can

double in as doing the same with validation data itself, even though we haven’t set

aside validation data. As for the metrics, an LPIPS value of 0 indicates there is either

a perfect match between the images being compared or the images being compared

are the same. On the other hand, SSIM values of 1 indicate a perfect match. Both

these metrics range from 0 to 1. PSNR values, measured in decibels (dB), don’t

generally have an upper limit, but values 20 dB and higher are considered acceptable.

In calibrating our implementations of these metrics, when we compared an image

with itself, we found the mean LPIPS, SSIM, and PSNR values over 300 images to

be close to 0, 1, and greater than 30, respectively.

We can see how the variants stack up against one another in figure 4.2. Perceptual

similarity comes closest to how humans judge an image’s picture quality. Hence,

we chose the variant northern-monkey-4 for the final step of simulating a video chat.

These catchy names are automatically allotted by wandb.ai at the start of any training

run. If the run is relatively successful, we use the final model produced by it as one of

our variants and evaluate its performance. All our variants have been trained to the

limit and to the point where the loss becomes less than 1, after having come down all

the way from 1188 and starting to stagnate. This has invariably occurred sooner than

25000 training steps for all our variants (Figure 4.3). This goes to show that had we

been entirely successful in our implementation of the model, we would also have been

47

Figure 4.2: Model Variants’ Mean PSNR, SSIM, and LPIPS Evaluation
Values Over 300 Testing Instances

able to train for way more than 100000 steps4. Besides, we couldn’t really compute

the accuracy metric for our models and variants to complement the loss metric as

we’re training in steps/batches, not epochs.

What further validates our choice of northern-monkey-4 is the set of output visu-

alizations for all relatively successful model variants shown in figures 4.4 and 4.5.

These outputs further reveal that even prior to all our fine-tuning, the pretrained

model found it hard to synthesize the disparity for video-chat-relevant frames. In

the sample test frame used in these figures, the person has clearly moved closer to

the camera, but the frame synthesized by the baseline model shows “stack of cards”

effects. This could potentially also be the reason that while the picture quality for

4similarly to Tucker and Snavely [55]

48

wandb.ai somehow always shows twice the number of actual training steps completed on

our server. Hence all our variants’ training stagnates at 30,000+ steps and not at the

60,000+ steps shown in this wandb.ai-logged loss chart.

Figure 4.3: Typical Mean Loss Chart for Any of Our Training Runs

the renderings seems to have been greatly improved by our fine-tuning5, the already

nebulous disparity synthesis (when it comes to video chat frames) has been rendered

asunder. It also stands to reason that perhaps depth/disparity is taken more into ac-

count by the SSIM metric than by the other two metrics, owing to the stark decrease

in SSIM values for the fine-tuned variants. It is structural similarity, after all, and we

have already established that depth is part of the 3D structure of the scene. Thus,

we have been further validated in our efforts to retrain the baseline model in the first

place.

5as is evident from the improved LPIPS values

49

(a) (b) PSNR ↑ Target vs
Rendered = 12.345

(c) SSIM ↑ Target vs
Rendered = 0.509

(d) LPIPS ↓ Target
vs Rendered = 0.520

(e) (f) PSNR ↑ Target vs
Rendered = 12.300

(g) SSIM ↑ Target vs
Rendered = 0.470

(h) LPIPS ↓ Target
vs Rendered = 0.338

(i) (j) PSNR ↑ Target vs
Rendered = 12.282

(k) SSIM ↑ Target vs
Rendered = 0.470

(l) LPIPS ↓ Target vs
Rendered = 0.338

Variants from top to bottom: baseline, gallant-eon-27, giddy-microwave-29.

Outputs from left to right: disparity map, reference frame, target frame, rerendered

target. Source of frames shown: MannequinChallenge dataset [32].

Figure 4.4: Baseline and (MannequinChallenge + RealEstate10K)-Based
Model Variants’ Output Visualizations With a MannequinChallenge Tar-
get Frame

However, even though the picture quality of the outputs of our fine-tuned variants

has greatly improved, yet only one of the 32 MPI layers is able to pick up6 each input

frame, as opposed to how all 32 MPI layers of the pretrained baseline are able to pick

up some part of the input frame or the other based on the (incorrectly (Chapter 3))

inferred depth (Figure 4.6). We theorize that this could directly be related to the

6or capture details from

50

disparity maps generated by our variants for each input frame becoming progressively

more monochromatic instead of progressively sharper in detail, which would have

meant the model was starting to surpass expectations on all levels, performance-wise.

(a) (b) PSNR ↑ Target vs
Rendered = 12.315

(c) SSIM ↑ Target vs
Rendered = 0.470

(d) LPIPS ↓ Target
vs Rendered = 0.337

(e) (f) PSNR ↑ Target vs
Rendered = 12.315

(g) SSIM ↑ Target vs
Rendered = 0.470

(h) LPIPS ↓ Target
vs Rendered = 0.337

(i) (j) PSNR ↑ Target vs
Rendered = 12.284

(k) SSIM ↑ Target vs
Rendered = 0.471

(l) LPIPS ↓ Target vs
Rendered = 0.339

Variants from top to bottom: northern-monkey-4, sunny-grass-5, fast-monkey-7.

Outputs from left to right: disparity map, reference frame, target frame, rerendered

target. Source of frames shown: MannequinChallenge dataset [32].

Figure 4.5: MannequinChallenge-Based Model Variants’ Output Visual-
izations With a MannequinChallenge Target Frame

To complete the simulation of one-half of a video chat pipeline with the help of

OpenFace 2.2, we have included a few video-chat-resembling frames of viewers and

viewees (Figures 4.7 and 4.8) and shown how viewee frames rerendered from the

perspective of the viewer vary with the viewer’s changing head pose. Similarly, to

51

(a) Pretrained Baseline Model’s [55] MPI Layers When Processing Sample Frame

(b) Variant northern-monkey-4’s MPI Layers When Processing Sample Frame

Source of frame shown: YouTube [25].

Figure 4.6: Our Variants’ MPI Layers Don’t All Pick Up Each Input
Frame, Whereas The Pretrained Baseline Model’s Ones Do

simulate the other half of the pipeline, we have switched the roles of viewers and

viewees and shown corresponding changes in respective frames occurring at the same

timestamps as the first half. We encourage the reader to head over to the GitHub

repository for this project for videos of said simultaneous changes occurring in a two-

way video chat. If this pipeline were to be deployed in a manner consistent with what

52

Google’s Project Starline [30] has going for it, we believe a 3D version of the video

chat, akin to Project Starline, would be simulated.

(a) Viewer Frame —
OpenFace-Tracked

(b) Viewee Frame —
northern-monkey-4-
Rerendered

(c) Viewer Frame —
OpenFace-Tracked

(d) Viewee Frame —
northern-monkey-4-
Rerendered

(e) Viewer Frame —
OpenFace-Tracked

(f) Viewee Frame —
northern-monkey-4-
Rerendered

(g) Viewer Frame —
OpenFace-Tracked

(h) Viewee Frame —
northern-monkey-4-
Rerendered

(i) Viewer Frame —
OpenFace-Tracked

(j) Viewee Frame —
Pretrained-Baseline-
Rerendered

(k) Viewer Frame —
OpenFace-Tracked

(l) Viewee Frame —
Pretrained-Baseline-
Rerendered

When the viewer looks top-left, the viewee goes bottom-right, and vice versa. All frames

in a row occur at the same timestamp. The rightmost columns show the same viewers and

viewees as the leftmost ones, but with their roles switched. This entire bidirectional

showcasing, technically, simulates an actual 3D video chat. Also,

northern-monkey-4-rerendered frames look much sharper than

pretrained-baseline-rerendered ones. Source of frames shown: YouTube [25, 53].

Figure 4.7: 3D Video Chat Simulation Snapshots — Sample I

In reference to the qualitative results presented throughout this work, we invoke the

reader to adopt Tucker and Snavely’s [55] use of pointers, such as the handling of

53

(a) Viewer Frame —
OpenFace-Tracked

(b) Viewee Frame —
northern-monkey-4-
Rerendered

(c) Viewer Frame —
OpenFace-Tracked

(d) Viewee Frame —
northern-monkey-4-
Rerendered

(e) Viewer Frame —
OpenFace-Tracked

(f) Viewee Frame —
northern-monkey-4-
Rerendered

(g) Viewer Frame —
OpenFace-Tracked

(h) Viewee Frame —
northern-monkey-4-
Rerendered

(i) Viewer Frame —
OpenFace-Tracked

(j) Viewee Frame —
Pretrained-Baseline-
Rerendered

(k) Viewer Frame —
OpenFace-Tracked

(l) Viewee Frame —
Pretrained-Baseline-
Rerendered

The pipeline even covers cases of extreme viewer head rotations, as in the case of the girl

in red performing some neck exercises. Moreover, we don’t see “stack of cards” effects in

northern-monkey-4-rerendered frames primarily because not all of northern-monkey-4’s

MPI layers pick up the input frame, as shown in figure 4.6. Source of frames shown:

YouTube [52, 41].

Figure 4.8: 3D Video Chat Simulation Snapshots — Sample II

occluded content, the production of undesirable artifacts at the edges of foreground

objects, and so on, to qualitatively compare the discrepancies in the results generated

by each model variant. Similarly, visually checking for the accuracy of the synthe-

sized disparity maps, as illustrated at the beginning of chapter 3, is also useful in

verifying the quality of the MPIs produced. We encourage the reader to zoom into

54

the electronic version of this thesis or take to the GitHub repository accompanying

this work (Appendix A) for easier visual verification.

55

Chapter 5

DISCUSSION

Through this thesis, we have had the opportunity to simulate both halves of a 2-way

pipeline that can render novel views from the perspectives of both participants in a

video chat. Going by the synthesized monochromatic disparity maps and even by

the SSIM values shown in chapter 4, we found that our model variants struggled

to synthesize disparity sufficiently well. Going by the LPIPS values, we found that

they excelled at synthesizing the actual target view itself. This is indeed unexpected,

given that only one of the available 32 MPI layers is able to, essentially, duplicate the

reference image in its entirety. Further testimony to this improvement can be obtained

by inspecting the performance of even the prematurely halted multi-GPU variant

(Chapter 4). It performs at par with the original pretrained baseline model [55],

which indicates that the pretrained model successfully began to continue where it left

off and specialize in processing video-chat-like frames. We believe it would have run

properly if not for the aforementioned resource errors that could potentially point

to underlying issues like the possible unchecked growth of TensorFlow graphs per

pipeline replica and such. This seems to be the case even though the replicas seem to

be getting properly allocated inputs, and their respective outputs seem to be getting

well gelled together in the end.

Although the sharpness of the rerendered images is almost twice as good with our

chosen model variants as with the pretrained baseline, the predicted MPIs layers

have all but collapsed to a single depth layer. This is also evident from how the

training would start producing completely gray disparity maps from around step

14000 onward, as noted in chapter 4. We believe that the reason for this is more likely

56

to be found in the weights we assigned to our various loss functions that aggregate

into a mean loss. Ablation experiments involving taking out the pixel loss and/or

bringing the smoothness loss way down would help to isolate the issue even more.

Furthermore, we believe that if we can crack the reason for some model variants’

disparity maps turning gray faster than others (Figure 4.1), we will be able to nail

the root issue with these reconstructed models of ours. Although we did our best

to reconstruct the loss functions and the rest of the training setup as close to the

textual descriptions in the paper as possible, it would shine a lot more light on the

root cause of the problem if we were able to access the training script of the authors

— something that they have had to keep from the public. Also, since we were also

meticulous with our data curation, we do not believe it is likely that the input data

has any part to play in the generation of NaN loss errors.

One of the obvious next steps would be to perform hyperparameter sweeps with

wandb.ai to find optimal hyperparameters, including the weights of the loss func-

tions, and potentially solve the vanishing/exploding gradients problem, which could

very well be related to the issue of the swiftly saturating disparity maps. If we can

get this plan to work, it would reveal why the pretrained model found it hard to

synthesize disparity for video chat frames in the first place — the model turned out

to be not exactly as generalizable as the authors hinted it might be. However, if,

after running all possible hyperparameter sweeps with something like wandb.ai, we

still find that the model performs poorly, then the apparent next aspect to look at

would be the actual training scripts used by the authors to discover how way off the

mark we could have been in replicating their network.

57

5.1 Conclusion

We assembled 2020’s state-of-the-art single-view view synthesis pipeline [55]. We ap-

plied Multiplane Images (MPIs), which are essentially mini-local-light-field represen-

tations, to the field of 3D video chat because they are one of the first representations

capable of real-time, high-quality, spatially-consistent view synthesis. We completed

implementing both directions of a potentially real-time rendering pipeline that takes

in the head pose of each “viewer” video frame and rerenders the corresponding “vie-

wee” video frame — the one that is in sync with the timestamp of the “viewer.”

5.2 Future Work

We consider exciting future opportunities with this project in this section. Right

off the bat, we may increase the training speed of the MPI model by making it

a successful multi-GPU-utilizing model with the constantly-evolving, cutting-edge

tf.distribute.Strategy API for distributed training with TensorFlow/Keras. Such a

multi-GPU-harnessing model will potentially easily be able to accommodate a batch

size of 8 or more, not just 4, which, we believe, would have a positive impact even

on overcoming disparity-map-generation inaccuracies. Other beneficial system opti-

mizations include using Docker Multistage Builds [8] that allow for harnessing the

power of all software components highly efficiently from within a single Dockerfile

with multiple ‘FROM’ statements such as FROM tf/tf-gpu-2.2 and FROM nvidia-

cuda10.2-devel-ubuntu18.04.

Next, we could perhaps implement taking the average of the head poses of multiple

people in each video frame of multiple-participant video conferences, not just one-on-

one video chats, and making their average head pose change the rendering viewpoint

58

of the scene to be rerendered. Alternatively, perhaps we could do something like

a dynamic version of Apple’s Autofocus [2] wherein we can click/tap on the heads

of the multiple participants and make rerendering perspective/focus shift and flow

seamlessly. To facilitate these kinds of pipeline enhancements, we could make the

pipeline more real-time by involving a game engine or any other framework capable

of further improving real-time rendering.

When it comes to model optimizations, overfitting can further be reduced by using

a CNN in place of the gradient descent algorithm, similarly to Flynn et al.’s Deep-

View [19]. We may incorporate high-intuition-endowing projects like Grad-CAM [48]

into the wandb.ai [14] pipeline to locate the bottlenecks in the recreated MPI neural

net to optimize hyperparameter tuning and produce more accurate results, especially

for predicted depths/disparity. Going forward, we could incorporate more recent ad-

vancements in single-view MPI view synthesis, such as MINE [31] and NeX [57] MPIs.

Projects like these are fully open-source and will give us great insights into solving

some of our major issues, such as inaccurate depth resolution. To bring the project to

a whole another level, we can throw a discriminator component into the mix and turn

the model into a Generative Adversarial Network (GAN) [21] to possibly produce

more extensive and realistic inpainting, and so on.

And last but not least, when it comes to data optimizations, an effective future option

may be to consider freezing the first several layers of the pretrained baseline model [55]

that have already learned very well on the (more than) 9 million RealEstate10K [60]

frames and fine-tune just the remaining few layers on MannequinChallenge [32]. This

would help since MannequinChallenge is a much smaller dataset than RealEstate10K.

Besides, if there is ever going to be a MannequinChallenge version 2, and they get

to extend their dataset like how RealEstate10K has been able to, model performance

will improve even more when we train on such more-balanced dataset amalgamations.

59

As it is, we may try and improve performance by training on variable resolution video

frames, and not just on 720p ones only. Furthermore, as emphasized by Andrew Ng of

DeepLearning.AI, Coursera, and Stanford University fame [13], using advancements

in Deep Learning to optimize data curation [54] is sure to improve any ML model

such as ours.

60

BIBLIOGRAPHY

[1] Cal Poly Github. http://www.github.com/CalPoly .

[2] AVCaptureDevice.FocusMode.autoFocus.

[3] What is difference between multi view stereo (MVS) and structure from motion

(SFM) methods in 3D surface reconstruction? Quora.

[4] tf.image.psnr | TensorFlow v2.10.0.

[5] tf.image.ssim | TensorFlow v2.10.0.

[6] Custom training: walkthrough | TensorFlow Core.

[7] Svetlana Lazebnik, 2019.

[8] Advanced Dockerfiles: Faster Builds and Smaller Images Using BuildKit and

Multistage Builds - Docker, Apr. 2020. Section: Engineering.

[9] aria2 - The ultra fast download utility, Dec. 2021. original-date:

2010-11-27T09:41:48Z.

[10] N. Adaloglou. Intuitive Explanation of Skip Connections in Deep Learning. AI

Summer, Mar. 2020.

[11] T. Baltrusaitis, A. Zadeh, Y. C. Lim, and L.-P. Morency. OpenFace 2.0: Facial

Behavior Analysis Toolkit. In 2018 13th IEEE International Conference on

Automatic Face Gesture Recognition (FG 2018), pages 59–66, May 2018.

[12] C. Bavor. Project Starline: Feel like you’re there, together. Google, May 2021.

[13] P.-L. Bescond. A deep-dive into Andrew NG data-centric competition, Oct.

2021.

61

http://www.github.com/CalPoly
https://developer.apple.com/documentation/avfoundation/avcapturedevice/focusmode/autofocus
https://www.quora.com/What-is-difference-between-multi-view-stereo-MVS-and-structure-from-motion-SFM-methods-in-3D-surface-reconstruction
https://www.quora.com/What-is-difference-between-multi-view-stereo-MVS-and-structure-from-motion-SFM-methods-in-3D-surface-reconstruction
https://www.tensorflow.org/api_docs/python/tf/image/psnr
https://www.tensorflow.org/api_docs/python/tf/image/ssim
https://www.tensorflow.org/tutorials/customization/custom_training_walkthrough
https://slazebni.cs.illinois.edu/spring19/
https://www.docker.com/blog/advanced-dockerfiles-faster-builds-and-smaller-images-using-buildkit-and-multistage-builds/
https://www.docker.com/blog/advanced-dockerfiles-faster-builds-and-smaller-images-using-buildkit-and-multistage-builds/
https://github.com/aria2/aria2
https://theaisummer.com/skip-connections/
https://github.com/TadasBaltrusaitis/OpenFace
https://github.com/TadasBaltrusaitis/OpenFace
https://blog.google/technology/research/project-starline/
https://medium.com/geekculture/a-deep-dive-into-andrew-ng-data-centric-competition-eb2bc0886005

[14] L. Biewald. Experiment Tracking with Weights and Biases, 2020. Software

available from wandb.com.

[15] H. Chu, S. Ma, F. De la Torre, S. Fidler, and Y. Sheikh. Expressive

Telepresence via Modular Codec Avatars, Aug. 2020. arXiv:2008.11789 [cs].

[16] R. Collins. A space-sweep approach to true multi-image matching. In

Proceedings CVPR IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, pages 358–363, San Francisco, CA, USA,

1996. IEEE.

[17] B. Curless and M. Levoy. A volumetric method for building complex models

from range images. In Proceedings of the 23rd annual conference on

Computer graphics and interactive techniques, SIGGRAPH ’96, pages

303–312, New York, NY, USA, Aug. 1996. Association for Computing

Machinery.

[18] S. Fidler. Depth from Two Views: Stereo. pages 1–43.

[19] J. Flynn, M. Broxton, P. Debevec, M. DuVall, G. Fyffe, R. Overbeck,

N. Snavely, and R. Tucker. DeepView: View Synthesis With Learned

Gradient Descent. In 2019 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), pages 2362–2371, Long Beach, CA, USA,

June 2019. IEEE.

[20] J. Flynn, I. Neulander, J. Philbin, and N. Snavely. Deep Stereo: Learning to

Predict New Views from the World’s Imagery. In 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 5515–5524, 2016.

[21] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio. Generative Adversarial Nets. In Advances in

62

https://www.wandb.com/
https://arxiv.org/abs/2008.11789
https://arxiv.org/abs/2008.11789
http://ieeexplore.ieee.org/document/517097/
https://doi.org/10.1145/237170.237269
https://doi.org/10.1145/237170.237269
http://www.cs.toronto.edu/~fidler/teaching/2021/CSC420.html
https://augmentedperception.github.io/deepview/
https://augmentedperception.github.io/deepview/
https://ieeexplore.ieee.org/document/7780964
https://ieeexplore.ieee.org/document/7780964
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html

Neural Information Processing Systems, volume 27. Curran Associates,

Inc., 2014.

[22] Google AR & VR. Project Starline: A high-fidelity telepresence system, Nov.

2021.

[23] T. V. Haavardsholm. Forelesninger - UNIK4690 - V̊ar 2016 - Universitetet i

Oslo, 2016.

[24] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.

Cambridge University Press, Cambridge, 2 edition, 2004.

[25] Jimmy Kimmel Live. We Ask Kids How Trump is Doing, Jan. 2018.

[26] A. Jones, M. Lang, G. Fyffe, X. Yu, J. Busch, I. McDowall, M. Bolas, and

P. Debevec. Achieving eye contact in a one-to-many 3D video

teleconferencing system. ACM Transactions on Graphics, 28(3):64:1–64:8,

July 2009.

[27] N. K. Kalantari, T.-C. Wang, and R. Ramamoorthi. Learning-Based View

Synthesis for Light Field Cameras. ACM Transactions on Graphics

(Proceedings of SIGGRAPH Asia 2016), 35(6), 2016.

[28] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization.

arXiv:1412.6980 [cs], Jan. 2017.

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with

Deep Convolutional Neural Networks. In Advances in Neural Information

Processing Systems, volume 25. Curran Associates, Inc., 2012.

[30] J. Lawrence, D. B. Goldman, S. Achar, G. M. Blascovich, J. G. Desloge,

T. Fortes, E. M. Gomez, S. Häberling, H. Hoppe, A. Huibers, C. Knaus,

B. Kuschak, R. Martin-Brualla, H. Nover, A. I. Russell, S. M. Seitz, and

63

https://www.youtube.com/watch?v=kDgToq5aXh0
https://www.uio.no/studier/emner/matnat/its/nedlagte-emner/UNIK4690/v16/forelesninger
https://www.uio.no/studier/emner/matnat/its/nedlagte-emner/UNIK4690/v16/forelesninger
https://www.cambridge.org/core/books/multiple-view-geometry-in-computer-vision/0B6F289C78B2B23F596CAA76D3D43F7A
https://www.youtube.com/watch?v=XYviM5xevC8
https://dl.acm.org/doi/10.1145/1531326.1531370
https://dl.acm.org/doi/10.1145/1531326.1531370
https://cseweb.ucsd.edu/~viscomp/projects/LF/papers/SIGASIA16/
https://cseweb.ucsd.edu/~viscomp/projects/LF/papers/SIGASIA16/
http://arxiv.org/abs/1412.6980
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

K. Tong. Project Starline: A high-fidelity telepresence system. ACM

Transactions on Graphics (Proc. SIGGRAPH Asia), 40(6), 2021.

[31] J. Li, Z. Feng, Q. She, H. Ding, C. Wang, and G. H. Lee. MINE: Towards

Continuous Depth MPI with NeRF for Novel View Synthesis, July 2021.

arXiv:2103.14910 [cs].

[32] Z. Li, T. Dekel, F. Cole, R. Tucker, N. Snavely, C. Liu, and W. T. Freeman.

Learning the Depths of Moving People by Watching Frozen People. In

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2019.

[33] D. G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints.

International Journal of Computer Vision, 60(2):91–110, Nov. 2004.

[34] A. Maimone and H. Fuchs. Encumbrance-free telepresence system with

real-time 3D capture and display using commodity depth cameras. In 2011

10th IEEE International Symposium on Mixed and Augmented Reality,

pages 137–146, Oct. 2011.

[35] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy, and

T. Brox. A Large Dataset to Train Convolutional Networks for Disparity,

Optical Flow, and Scene Flow Estimation. In 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 4040–4048, 2016.

[36] B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. K. Kalantari,

R. Ramamoorthi, R. Ng, and A. Kar. Local Light Field Fusion: Practical

View Synthesis with Prescriptive Sampling Guidelines. ACM Transactions

on Graphics (TOG), May 2019.

[37] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós. ORB-SLAM: A Versatile

and Accurate Monocular SLAM System. IEEE Transactions on Robotics,

64

https://research.google/pubs/pub50903/
http://arxiv.org/abs/2103.14910
http://arxiv.org/abs/2103.14910
https://mannequin-depth.github.io/
https://link.springer.com/article/10.1023/B:VISI.0000029664.99615.94
https://ieeexplore.ieee.org/document/6162881
https://ieeexplore.ieee.org/document/6162881
https://ieeexplore.ieee.org/document/7780807/
https://ieeexplore.ieee.org/document/7780807/
https://bmild.github.io/llff/
https://bmild.github.io/llff/
https://ieeexplore.ieee.org/document/7219438
https://ieeexplore.ieee.org/document/7219438

31(5):1147–1163, Oct. 2015. Conference Name: IEEE Transactions on

Robotics.

[38] H. Nover, S. Achar, and D. Goldman. ESPReSSo: Efficient Slanted PatchMatch

for Real-Time Spacetime Stereo. In 2018 International Conference on 3D

Vision (3DV), pages 578–586, Sept. 2018. ISSN: 2475-7888.

[39] S. Orts-Escolano, C. Rhemann, S. Fanello, W. Chang, A. Kowdle,

Y. Degtyarev, D. Kim, P. L. Davidson, S. Khamis, M. Dou, V. Tankovich,

C. Loop, Q. Cai, P. A. Chou, S. Mennicken, J. Valentin, V. Pradeep,

S. Wang, S. B. Kang, P. Kohli, Y. Lutchyn, C. Keskin, and S. Izadi.

Holoportation: Virtual 3D Teleportation in Real-time. In Proceedings of the

29th Annual Symposium on User Interface Software and Technology, UIST

’16, pages 741–754, New York, NY, USA, Oct. 2016. Association for

Computing Machinery.

[40] E. Penner and L. Zhang. Soft 3D reconstruction for view synthesis. ACM

Transactions on Graphics, 36(6):235:1–235:11, Nov. 2017.

[41] Perfect Balance Clinic - Pain Relief Specialists. Head rotations*, July 2018.

[42] C. Pinard and A. Manzanera. Does it work outside this benchmark?

Introducing the Rigid Depth Constructor tool, depth validation dataset

construction in rigid scenes for the masses. arXiv:2103.15970 [cs], Mar.

2021.

[43] P.-L. Pröve. An Introduction to different Types of Convolutions in Deep

Learning. Medium, Feb. 2018.

[44] P. Radhakrishnan. What is Transfer Learning? Medium, Oct. 2019.

65

https://ieeexplore.ieee.org/document/8491010
https://ieeexplore.ieee.org/document/8491010
https://doi.org/10.1145/2984511.2984517
https://ericpenner.github.io/soft3d/
https://www.youtube.com/watch?v=1sQ6YF5G3to
http://arxiv.org/abs/2103.15970
http://arxiv.org/abs/2103.15970
http://arxiv.org/abs/2103.15970
https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://towardsdatascience.com/what-is-transfer-learning-8b1a0fa42b4

[45] D. Scharstein and R. Szeliski. A Taxonomy and Evaluation of Dense

Two-Frame Stereo Correspondence Algorithms. International Journal of

Computer Vision, 47(1):7–42, Apr. 2002.

[46] J. L. Schönberger and J.-M. Frahm. Structure-from-Motion Revisited. In

Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[47] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm. Pixelwise View

Selection for Unstructured Multi-View Stereo. In European Conference on

Computer Vision (ECCV), 2016.

[48] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra.

Grad-CAM: Visual Explanations from Deep Networks via Gradient-based

Localization. International Journal of Computer Vision, 128(2):336–359,

Feb. 2020. arXiv:1610.02391 [cs].

[49] J. Shade, S. Gortler, L.-w. He, and R. Szeliski. Layered depth images. In

Proceedings of the 25th annual conference on Computer graphics and

interactive techniques - SIGGRAPH ’98, pages 231–242. ACM Press, 1998.

[50] P. P. Srinivasan, R. Tucker, J. T. Barron, R. Ramamoorthi, R. Ng, and

N. Snavely. Pushing the Boundaries of View Extrapolation With

Multiplane Images. In 2019 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), pages 175–184, Long Beach, CA, USA,

June 2019. IEEE.

[51] R. Szeliski and P. Golland. Stereo Matching with Transparency and Matting.

International Journal of Computer Vision, 32(1):45–61, July 1999.

[52] TheEllenShow. Kid Genius Brielle Shares Her Scientific Discoveries, Feb. 2018.

66

https://link.springer.com/article/10.1023/A:1014573219977
https://link.springer.com/article/10.1023/A:1014573219977
https://demuc.de/colmap/
https://demuc.de/colmap/
https://demuc.de/colmap/
http://arxiv.org/abs/1610.02391
http://arxiv.org/abs/1610.02391
https://grail.cs.washington.edu/projects/ldi/
https://github.com/google-research/google-research/tree/master/mpi_extrapolation
https://github.com/google-research/google-research/tree/master/mpi_extrapolation
https://www.microsoft.com/en-us/research/publication/stereo-matching-with-transparency-and-matting/
https://www.youtube.com/watch?v=m4riEU1_Bgo

[53] TheEllenShow. Adorable Xander Rynerson’s Brain Facts Leave Ellen

Speechless, May 2020.

[54] S. Thirumuruganathan, N. Tang, M. Ouzzani, and A. Doan. Data Curation

with Deep Learning [Vision], Mar. 2019. arXiv:1803.01384 [cs].

[55] R. Tucker and N. Snavely. Single-view View Synthesis with Multiplane Images.

In The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2020.

[56] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image quality assessment:

from error visibility to structural similarity. IEEE Transactions on Image

Processing, 13(4):600–612, Apr. 2004.

[57] S. Wizadwongsa, P. Phongthawee, J. Yenphraphai, and S. Suwajanakorn. NeX:

Real-time View Synthesis with Neural Basis Expansion, Apr. 2021.

arXiv:2103.05606 [cs].

[58] C. Zhang, Q. Cai, P. A. Chou, Z. Zhang, and R. Martin-Brualla. Viewport: A

Distributed, Immersive Teleconferencing System with Infrared Dot Pattern.

IEEE MultiMedia, 20(1):17–27, Jan. 2013. Conference Name: IEEE

MultiMedia.

[59] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The

Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In

CVPR, Apr. 2018.

[60] T. Zhou, R. Tucker, J. Flynn, G. Fyffe, and N. Snavely. Stereo Magnification:

Learning View Synthesis using Multiplane Images. In SIGGRAPH, 2018.

[61] Y. Zhou and J. Gregson. WHENet: Real-time Fine-Grained Estimation for

Wide Range Head Pose. arXiv:2005.10353 [cs], Sept. 2020.

67

https://www.youtube.com/watch?v=OVWb9aTUQmA
https://www.youtube.com/watch?v=OVWb9aTUQmA
http://arxiv.org/abs/1803.01384
http://arxiv.org/abs/1803.01384
https://single-view-mpi.github.io/
https://ieeexplore.ieee.org/document/1284395
https://ieeexplore.ieee.org/document/1284395
https://nex-mpi.github.io/
https://nex-mpi.github.io/
https://ieeexplore.ieee.org/document/6461359
https://ieeexplore.ieee.org/document/6461359
https://richzhang.github.io/PerceptualSimilarity/
https://richzhang.github.io/PerceptualSimilarity/
https://tinghuiz.github.io/projects/mpi/
https://tinghuiz.github.io/projects/mpi/
https://github.com/Ascend-Research/HeadPoseEstimation-WHENet
https://github.com/Ascend-Research/HeadPoseEstimation-WHENet

[62] zikuicai. Derivation of formula (2), inverse homography · Issue #19 ·

google/stereo-magnification. GitHub, 2019.

68

https://github.com/google/stereo-magnification/issues/19
https://github.com/google/stereo-magnification/issues/19

APPENDICES

Appendix A

CODE SOURCES AND SNIPPETS

Code Sources

• Tucker and Snavely’s [55] network definition: nets.mpi from image

• Tucker and Snavely’s rendering code: mpi.render

• Zhou et al.’s [60] data loader: loader.py ; datasets.py

• Tucker and Snavely’s comprehensive inference Google Colaboratory notebook:

single-view-mpi.ipynb

• The GitHub repository for this thesis including sample renderings and demos:

https://github.com/anuraguppuluri/view-synthesis.git

Code Snippets

• Gradient calculation:

grads = tf.GradientTape().gradient(loss, model.trainable weights)

• Linux command to locate point cloud .txt files with less than 2 3D points (took

us 3 hours for 2500 videos):

find −type f −exec bash −c ‘[$(grep −cm 2 ˆ “${1}”) != “2”] &&

echo “${1}”’ −− {} \;

69

https://github.com/google-research/google-research/blob/ea313c6e96acce6c863de41615c6cf4079b8ca94/single_view_mpi/libs/nets.py#L146
https://github.com/google-research/google-research/blob/ea313c6e96acce6c863de41615c6cf4079b8ca94/single_view_mpi/libs/mpi.py#L232
https://github.com/google/stereo-magnification/blob/f2041f80ed8c340173a6048375ba900201c1f1e7/stereomag/loader.py
https://github.com/google/stereo-magnification/blob/f2041f80ed8c340173a6048375ba900201c1f1e7/stereomag/datasets.py
https://colab.research.google.com/github/google-research/google-research/blob/master/single_view_mpi/example.ipynb
https://github.com/anuraguppuluri/view-synthesis.git

	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	1.1 Motivation
	1.2 Contribution

	2 Related Work and Background
	2.1 Learning MPIs
	2.1.1 Seminal Work
	2.1.2 Influential Work
	2.1.3 Base Papers

	2.2 3D Video Chat

	3 Methods
	3.1 Approach
	3.2 Data
	3.3 Implementation

	4 Experiments and Results
	5 Discussion
	5.1 Conclusion
	5.2 Future Work

	BIBLIOGRAPHY
	A Code Sources and Snippets

