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ABSTRACT

Serendipity Shape Function for Hybrid Fluid/Kinetic-PIC Simulations

by

Trevor V. Taylor, Doctor of Philosophy

Utah State University, 2022

Major Professor: Eric D. Held, Ph.D.
Department: Physics

Wave-particle resonances can have significant effects on magnetically confined plasma

stability even in cases of small, resonant sub-populations. In tokamak plasmas, long-wavelength

modes interact with energetic particles produced by neutral beams, external radio fre-

quency (RF) sources, or fusion-produced alphas. This leads to uncertainty in plasma sta-

bility boundaries and enhanced energetic particle transport. Energetic particle closures

based on the particle-in-cell (PIC) algorithm have long been used in extended magneto-

hydrodynamic (MHD) codes to capture this important physics. The extended MHD code,

NIMROD, has δf-PIC drift kinetic closure capability. In the linear δf-PIC approach, large

samples (1-20 million) of evolving particle weights are pushed along gyro-averaged drift ki-

netic orbits in the equilibrium fields of NIMROD’s MHD fluid model. Particle weights and

velocity vectors are then used to construct the energetic particle anisotropic pressure tensor

moment which appears in (closes) NIMROD’s equation for the center-of-mass flow evolu-

tion. In NIMROD’s MHD fluid model, Lagrange or Gauss-Lobbatto-Legendre polynomials

are traditionally used in the spatial discretization. In this work, a reduced set of Lagrange

polynomials called Serendipity basis functions are introduced for the δf-PIC approach where

nodal locations coincide with each other. This allows for a convenient communication be-

tween NIMROD’s finite-element fluid and δf-PIC code when pushing the particles. These
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Serendipity basis functions are introduced into the δf-PIC drift kinetic approach to increase

the accuracy while maintaining the efficiency and keeping the memory footprint small. Up

to sixth order of Serendipity basis functions have been implemented in the δf-PIC drift ki-

netic approach in an attempt to provide more accurate integration of particle trajectories.

Such an approach may be vital for accurate integration near the separatrix (the boundary

between closed and open magnetic flux surfaces) of a diverted tokamak and for preserv-

ing the second-adiabatic invariant. Often, lowest-order bilinear basis functions are used in

NIMROD’s PIC simulations. Therefore, a careful comparison is made of the performance

of Serendipity basis functions against the bilinear and the full 2D Lagrange polynomials.

We present the improvements in accuracy, efficiency, and memory reduction when using the

Serendipity basis functions. Performance of Serendipity shape functions in test application,

sawtooth instability, is also presented.

(146 pages)
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PUBLIC ABSTRACT

Serendipity Shape Function for Hybrid Fluid/Kinetic-PIC Simulations

Trevor V. Taylor

The Sun in our solar system and stars are capable of generating enormous amounts of

energy. The process by which these gaseous, celestial bodies are able to produce such large

amounts of energy is called thermonuclear fusion. Fusion happens when particles collide

with one another at energy levels high enough to overcome the Coulomb force and then

release vast amounts of energy. Plasma, the fourth state of matter, is the natural state of

stars. Plasma is an ionized gas that consists of negatively and positively charged particles.

Stars, which have immense mass, can confine the plasma through their gravity to sustain

the fusion process. Laboratory plasma cannot be confined by gravity. Magnetic fields can

be used instead. For the past 70 years, scientists and engineers have been working on

harnessing energy from magnetized thermonuclear fusion. Current research contributes to

creating a device capable of supporting fusion reactions and producing a clean sustainable

energy source.

Sustaining a burning or ignited plasma through fusion reactions is not an easy task.

These complex systems can result in many instabilities that limit plasma temperatures and

densities and prevent significant thermonuclear fusion from taking place. An important

piece of the physics puzzle that either stabilizes or destabilizes the plasma is the interaction

of energetic particles with the bulk plasma. This is called the wave-particle interaction or

energetic particle interaction with magnetohydrodynamic (MHD) modes. Another example

of this would be the solar wind from the sun (energetic particles) interacting with Earth’s

magnetosphere (bulk plasma).

This thesis focuses on an approach to more accurately and efficiently resolve the en-

ergetic particle motions using a computer code. This thesis will also compare two very
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different approaches to wave-plasma interaction problem by looking at the grow-rate of an

instability that has been used to benchmark several computer codes used by the magnetic

fusion energy community.



vii

To my loving wife

Zoe Taylor



viii

ACKNOWLEDGMENTS

This thesis and my academic development would not have been possible without the

help and encouragement of so many. First and foremost, I am grateful for my major

professor, Eric Held, for his countless hours of mentoring and encouragement. His concern

for me extended beyond academics, allowing me to pursue my goals and ambitions. His

selflessness has given me a brighter future, for which I am truly thankful. I am grateful

for Jeong-Young Ji who spent hours teaching me physics. He always encouraged me to

gain a deep understanding of the fundamentals, which I hope to continue to do throughout

my life. I am grateful for the meaningful insights I received from Andrew Spencer. His

thoughtful explanations and suggestions helped me grow as a physicist and gave me the

encouragement to pursue it even further. I am thankful to Oscar Varela. Taking his class

on General Relativity and the help I received from him was insightful and valuable. I am

thankful to Joseph Koebbe for the encouragement and valuable advice. This thesis would

not have been possible without my committee members.

I appreciate all those who have helped in my academic development and given me

valuable advice. I am grateful for Karalee Ransom and Vanessa Chambers who have been

there since day one of graduate school. Without their invaluable help, this accomplishment

would not have been possible. I am grateful for the Utah State University, Physics depart-

ment and all those who have contributed to my academic development. I am grateful for

the NIMROD team allowing me to use the NIMROD code for my thesis. This project and

my Research Assistantship (RA) was supported by the Department of Energy, Office of

Fusion Energy Sciences (DOE-OFES). This research used resources of the National Energy

Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of

Science User Facility located at Lawrence Berkeley National Laboratory, operated under

Contract No. DE-AC02-05CH11231 using NERSC award ERCAP0013952.

I thank my parents for encouraging me in pursuing my dreams and their endless sup-

port. They have taught me to pursue my curiosity. I am truly in debt to the selfless



ix

sacrifices they made. Lastly, I am especially grateful to my wife. She brings me joy every

day and without her support I would not have achieved my Ph.D.

Trevor V. Taylor



x

CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

PUBLIC ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 PRELIMINARIES TO PLASMA PHYSICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Lagrangian and Hamiltonian Mechanics . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Lagrangian for a Particle in an Electromagnetic Field . . . . . . . . 11
2.1.2 Hamiltonian for a Particle in Electromagnetic Field . . . . . . . . . 13
2.1.3 Non-canonical Mechanics . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Classical Statistical Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Single Particle Distribution Function . . . . . . . . . . . . . . . . . . 20
2.2.2 The Vlasov Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 The Drift Kinetic Equation . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Axisymmetric Magnetic Field Configuration . . . . . . . . . . . . . . . . . . 27
2.3.1 Axisymmetric Toroidal Magnetic Field . . . . . . . . . . . . . . . . . 29

3 SINGLE PARTICLE MOTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1 Motion in a Static Uniform Magnetic Field . . . . . . . . . . . . . . . . . . 32
3.2 Magnetic Moment in Static Uniform Magnetic Field . . . . . . . . . . . . . 34
3.3 Motion in Static Uniform Electric and Magnetic Fields . . . . . . . . . . . . 35
3.4 Motion in Slowly Varying Magnetic Field: Guiding Center Motion . . . . . 37

3.4.1 Gyro-frequency in Slowly Varying Magnetic Field . . . . . . . . . . . 37
3.4.2 Gyro-average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.3 Guiding Center Motion . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Motion in Axisymmetric Tokamak . . . . . . . . . . . . . . . . . . . . . . . 43
3.5.1 Trapped/Passing Condition . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.2 Banana Orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Numerical Results for Motion in Axisymmetric Tokamak . . . . . . . . . . . 52

4 SERENDIPITY SHAPE FUNCTIONS IN NIMROD’s PARTICLE SIMULATION 57
4.1 Gathering and Scattering of Particles on the Finite Element Grid . . . . . . 59

4.1.1 Bilinear Shape Functions . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Serendipity Shape Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 Construction of the Biquartic Serendipity Shape Functions . . . . . 69
4.3 Numerical Results for Serendipity Basis Functions . . . . . . . . . . . . . . 73
4.4 The Method of Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . 80



xi

5 THE δf-PIC APPROACH IN NIMROD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.1 Initial Setup: Particle Load onto Computational Domain . . . . . . . . . . 85
5.2 The δf-PIC Approach in NIMROD . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.1 Deposition of Energetic Particle Pressure Tensor . . . . . . . . . . . 92
5.3 Numerical Results from NIMROD PIC Simulations . . . . . . . . . . . . . . 95

6 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
A The Dirac Delta Function in Curvilinear Coordinates . . . . . . . . . . . . . 113
B Particle in Magnetic Field: Non-canonical Variables . . . . . . . . . . . . . . 115
C Derivation of Guiding Center Velocity . . . . . . . . . . . . . . . . . . . . . 119
D Trapped/Passing Particle: Orbit Period . . . . . . . . . . . . . . . . . . . . 121
E Serendipity Shape Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



xii

LIST OF FIGURES

Page

Figure 1.1 An energetic particle orbit in Earth’s magnetic dipole field is indicated
by the dashed line. (a) Projection onto the North-South (poloidal) plane,
where the gyro-motion, bounce motion and the poloidal angle are shown.
(b) Shows the view from above the North Pole. The azimuthal precession
motion from East to West is shown. The color red through violet shows
the trajectory advancing in time. The figure was taken from Heidbrink and
White (2020). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 1.2 Typical bouncing particle motion in a tokamak. The dotted line shows
the guiding center motion along the toroidal direction. When the particle
“feels” a stronger magnetic field, it bounces. Note that this bounce behavior
can be projected onto the poloidal (R,Z) plane. Some projections of the
guiding center motion into the poloidal plane are shown in Fig. 1.3. Shown
for part of the trajectory is the gyro-motion where the particle travels in a
helix about the magnetic field line. The East-West (azimuthal) procession in
Fig. 1.1(b) manifests when the bounce tips (where two dotted curves come
together) moves in toroidal angle φ. . . . . . . . . . . . . . . . . . . . . . . 3

Figure 1.3 A contour plot of normalized poloidal magnetic flux ψ̄p is plotted and
overlayed by three different particle orbits. The innermost orbit (1) is called
a barely trapped particle, the middle orbit (2) is a passing particle since
it circumnavigates the entire flux surface, and the outermost orbit (3) is a
deeply trapped particle. This shows the poloidal projection of these particle’s
guiding center trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 1.4 Data from DIII-D experiment, discharge #96043. (a) Time at which
the neutral beam and the RF wave were injected into the plasma. (b) Elec-
tron central temperature and neutron reaction rate vs. time. (c) Plasma
density and plasma stored energy given as functions of time. The figure was
taken from Choi et al. (2007) . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 2.1 The major radius R0 points from the origin to the magnetic axis.
The minor radius a is the radius of the last closed magnetic flux surface.
The dotted line indicates flux surfaces that are within the minor radius. The
angles θ and φ are refered to as the poloidal and toroidal angles, respectively. 28

Figure 2.2 The helical magnetic field, due to the poloidal and toroidal compo-
nents, wraps around the flux surfaces. . . . . . . . . . . . . . . . . . . . . . 29



xiii

Figure 3.1 Gyro-motion in the plane perpendicular to the static uniform magnetic
field where the magnetic field is pointing into the page. . . . . . . . . . . . 33

Figure 3.2 Guiding center motion, particle gyrating about the magnetic field line. 38

Figure 3.3 Potential energy for a particle in a magnetic mirror field. This mirror
field is realized in tokamaks as particles travel radially inwards (in major
radius R) to stronger magnetic field (see Eq. (2.64)), causing particles with
not enough parallel kinetic energy to be trapped inside the magnetic potential. 43

Figure 3.4 Depending on the initial parallel velocity, a particle in an axisymmet-
ric field (an ion is depicted here) will bounce inward or outward due to the
magnetic curvature and gradient drifts. . . . . . . . . . . . . . . . . . . . . 47

Figure 3.5 Trapped (banana) and passing orbits on the poloidal plane. . . . . . 50

Figure 3.6 NIMROD uses a left-hand cylindrical coordinate system. The mag-
netic flux ψ is plotted as the contours and the particles are pushed in the equi-
librium fields only. The vc and v∇B drifts point in the negative Z-direction
causing the ion with initial negative parallel velocity to bounce outward off
its starting flux surface and the ion with the positive initial parallel velocity
to bounce inward from the same starting point. . . . . . . . . . . . . . . . . 52

Figure 3.7 A contour plot of normalized poloidal magnetic flux ψ̄p is overlayed by
three different particle orbits. The innermost orbit (1) is barely trapped, the
middle orbit (2) is passing since it circumnavigates the entire flux surface,
and the outermost orbit (3) is deeply trapped. . . . . . . . . . . . . . . . . 53

Figure 3.8 Figure (a) shows the orbit of barely trapped (1) and deeply trapped
(3) particles overlayed on a contour plot of ψ̄p. Figure (b) shows the corre-
sponding safety factor qs where the value of qs is shown for orbits 1 and 3 at
their initial flux surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 4.1 Figure (a) shows the logical grid that the fields are defined on in
terms of either the 2D Lagrange or Serendipity basis sets. Figure (b) shows
the physical grid for DIII-D geometry. Here computational domain is divided
up amongst 16 different processors. The magnetic axis indicated by a black
dot on the physical grid corresponds to the η-axis (ξ = 0) on the logical grid. 58

Figure 4.2 The top two cells are the node location for the Serendipity sets (left:
bicubic and right: biquartic) while the bottom two cells are the node locations
for the Lagrange sets (left: bicubic and right: biquartic). The nodal locations
for both are the same except the Serendipity has fewer nodes in the center
of the finite element cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



xiv

Figure 4.3 A square finite element cell with a bilinear decomposition consists of
4 vertex node locations at the corners of the cell. The finite element cell is
defined on the interval [−1, 1] for both ξ and η. The center of the cell is
placed at the location (0, 0). The locations of the nodes are indicated by dots. 64

Figure 4.4 Terms that are included in P2
4 are shown in red. . . . . . . . . . . . 66

Figure 4.5 Terms that are included in S2
4 are shown in red. Notice the extra two

terms
{
ξ4η, ξη4

}
that were added to the set. . . . . . . . . . . . . . . . . . . 67

Figure 4.6 Terms that are included in R2
4 are shown in red. Notice that the two

terms
{
ξ4η, ξη4

}
are still included in the set but the term

{
ξ2η2

}
, which

results in an interior node, is removed. . . . . . . . . . . . . . . . . . . . . . 68

Figure 4.7 A square finite element cell with complete fourth-order (biquartic)
Serendipity decomposition consists of 17 node locations with one in the mid-
dle of the cell. The center of the cell is placed at the location (0, 0). The
location of the nodes are indicated by dots. . . . . . . . . . . . . . . . . . . 70

Figure 4.8 A linear combination of the adjacent mid-side nodes and the cen-
ter node is subtracted from the bilinear Lagrange polynomial L1

1 (ξ, η) to
make the Serendipity biquartic polynomial S4

1 (ξ, η). This insures that these
Serendipity polynomials satisfies the conditions stated in Eqs. (4.24) and
(4.25). Note that an example for node k = 1 is shown. . . . . . . . . . . . . 72

Figure 4.9 From left to right, the nodal representations are: bilinear, Serendip-
ity biquadratic, Serendipity biquartic, and 2D Lagrange biquartic (“exact”).
The circle around the nodes indicates the coinciding nodes from the previous
representation. Thus for example, when running the Serendipity biquartic
case, the 2D Lagrange coefficients at the circled nodes are directly used in
the Serendipity basis representation. . . . . . . . . . . . . . . . . . . . . . . 74

Figure 4.10 The error ϵD between the different representations (see Eq. (4.37))
is shown. The three errors relative to the “exact” 2D Lagrange are: bilin-
ear (biline), Serendipity biquadratic (biquad), and the reduced Serendipity
biquartic (biquar). Note that the y-axis is log-scaled. . . . . . . . . . . . . . 75

Figure 4.11 The error ϵD for the reduced Serendipity biquartic case does worse
than the biquadratic case. However, both are still more accurate than the
bilinear (biline) approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 4.12 Average error in the physical R (m) coordinate for all Serendipity
(complete/reduced) sets compared against the ”exact” 2D Lagrange poly-
nomials. The errors were averaged over ∼ 30000 particles. The cases were
run for 35, 350, and 3500 time steps with each time step ∆t = 2.0 × 10−8

seconds. The resutls shown are for bilinear (biline), biquadratic (biquad),
bicubic (bicube), reduced biquartic (biquar), biquartic (cmplt4), reduced
biquintic (biquin), and reduced bisextic (bisext). . . . . . . . . . . . . . . . 77



xv

Figure 4.13 Average error in the parallel velocity v∥ (m/s) for all Serendipity (com-
plete/reduced) sets compared against the “exact” 2D Lagrange polynomials.
The errors were averaged over ∼ 30000 particles. The cases were run for 35,
350, and 3500 time steps with each time step ∆t = 2.0×10−8 seconds. The re-
sutls shown are for bilinear (biline), biquadratic (biquad), bicubic (bicube),
reduced biquartic (biquar), biquartic (cmplt4), reduced biquintic (biquin),
and reduced bisextic (bisext). Note that the biquartic case with the central
node (cmplt4) outperforms the fifth and sixth order representations. . . . . 78

Figure 4.14 The total memory used for each representation is plotted as a function
of polynomial degree. The Serendipity (complete or reduced) cases use much
less memory than the full 2D Lagrange polynomials. Memory is given in
Megabits (Mb). Roughly 30000 particles were used, thus the memory used
will increase with more particles, but the overall trend between different cases
will remain similar. The total memory consists of the basis functions Np

k , the
global field array, and the computational particle structure that stores the
particle information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 4.15 Comparing the total run-time (s) for different representations as a
function of polynomial degree. The data points with ▼ indicates the load-
balanced and • indicates the non-load-balanced cases. Note that y-axis is
given in log-scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 5.1 Figure (a) shows the equilibrium pressure P0 and the normalized safety
factor qs vs. the normalized poloidal flux ψ̄p. Portion of the plasma where
qs < 1 (roughly at ψ̄p < 0.168) undergoes the 1/1 kink. Figure (b) shows the
magnetic flux surface geometry for DIII-D (value decreases from green to red). 87

Figure 5.2 (Left) shows data from DIII-D experiment, discharge #96043. (a)
Time at which the neutral beam and the RF wave were injected into the
plasma. (b) Electron central temperature and neutron reaction rate vs. time.
(c) Plasma density and plasma stored energy given as functions of time.
(Right) shows the energy dependence of the energetic particle distribution
function. It shows the energetic slowing down distribution function fslow with
Ecrit = 50 keV and the more energetic tail ftail driven by RF waves. Here the
injection energy of the neutral beam, Einj = 80 keV. The left figure figure
was taken from Choi et al. (2007). . . . . . . . . . . . . . . . . . . . . . . . 96

Figure 5.3 Shows the growth rate vs. time graph for the ideal fluid only calcu-
lation. Polynomial degree 1 (green) has a growth rate of γ = 35, 344 Hz,
polynomial degree 2 (blue under pink) has a growth rate of γ = 32, 810 Hz,
and polynomial degree 4 (pink) has growth rate of γ = 32, 809 Hz. . . . . . 97

Figure 5.4 Shows the error in divergence of magnetic field (div(B)) vs. time
graph, i.e. div(B) diagnostic plot. The polynomial degree 1 (green) case
has much greater error associated with the converged eigenfunction. The
polynomial degree 2 (blue) and 4 (green) do a better job preserving ∇ ·B = 0
condition beyond 10−4 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . 98



xvi

Figure 5.5 (Top left) Contour plot of VR for polynomial degree 1 case. (Top right)
Contour plot of Te for polynomial degree 1 case. (Bottom left) Contour plot
of VR for polynomial degree 4 case. (Bottom right) Contour plot of Te for
polynomial degree 4 case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 5.6 Figure (a) shows the growth rate of four different calculations. Figure
(b) shows the blow up of the converged part of the growth rate plot. The fluid
only calculation (pink) is given as a reference to show that with energetic
particles present the growth rate is slightly lower. This shows increased
stabilization using a slowing down distribution with βfrac = 0.20. Note that
with increasing particle number for the simulation the noise of the particle
simulation goes down (blue, green, and teal). . . . . . . . . . . . . . . . . . 100

Figure 5.7 Figure (a) shows the load-balanced case. Particle distribution among
processors is uniform where the processor with the maximum number of
particles has 41,766 and the processor with the minimum number of particles
has 41,574. Figure (b) shows the not load-balanced case. We can see that
the outer, low pressure region has very few particles while the core with the
highest pressure has the most particle per processor. At the 1/1 surface, the
particle per processor amount drops due to the smaller finite element cells
used combined with the technique of importance sampling. For both cases 8
million particles were used. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Figure 5.8 Compares the growth rates for the PiC and newpart routines. The top
most pink line (above 30,000 Hz) is the growth rate for fluid only calculation.
The two calculations right below 30,000 Hz are the growth rates for PiC
(green) and newpart (blue) for βfrac = 0.2. The two calculations right above
20,000 Hz are the growth rates for PiC (green) and newpart (purple) for
βfrac = 0.4. Finally, the two calculations right above 10,000 Hz are the
growth rates for PiC (teal) and newpart (magenta) for βfrac = 0.6. . . . . . 101

Figure 5.9 Pressure contour plots for the newpart using a representation in the
push (evaluation of fields) and find (mapping from real to logical coordinates).
(Top left) Contour plot of δP⊥ for newpart bilinear. (Top right) Contour
plot of δPani for newpart bilinear. (Bottom left) Contour plot of δP⊥ for PiC
bilinear. (Bottom right) Contour plot of δPani for PiC bilinear. The contour
plots were taken at 4000 time steps and show similar structure. . . . . . . . 102

Figure 5.10 Contour plots of the anisotropic part of the pressure tensor, δPani,
4000, 5000, 6000, 7000, and 8000 time steps indicate a propagating mode with
the anisotropic pressure contours rotating in a counter-clockwise direction in
the poloidal plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 5.11 Shows the blow up of the growth rate for fluid only (green), bilinear
(purple), biquadratic (magenta), and complete biquartic (teal). The higher-
order bases do not have an effect on the 1/1 internal kink mode. . . . . . . 103



xvii

Figure 6.1 Figure (a) shows growth rates for NIMROD’s δf-continuum and δf-
PIC approaches where Ecrit = 50 keV and Einj = 80 keV were used for the
calculation. Figure (b) also shows growth rates for δf-continuum and δf-PIC
approaches but with Ecrit = 28 keV and Einj = 227 keV. Need RF tail in
NIMROD’s PIC routine to resolve the higher β cases. . . . . . . . . . . . . 107



CHAPTER 1

INTRODUCTION

In magnetized fusion experiments such as tokamaks, an extremely high temperature

(∼ 1.5×108 K) plasma is confined using magnetic fields. Since plasma consists of negatively

(electrons) and positively (ions) charged particles and these particles follow the magnetic

field lines in a helical trajectory, magnetic confinement is possible. Through magnetic

confinement, the high temperature plasma does not come in contact with the walls of the

device. If it did, the walls of the tokamak would melt or even evaporate from the extreme

heat load. Extreme temperatures are needed for thermonuclear fusion to occur in these

devices for net positive output of energy (Ongena et al., 2016). That being said, magnetic

confinement is not an easy task. This complex system gives rise to many instabilities from

many different sources. Energetic particles introduced through fusion reaction or from

neutral beams impinging on the plasma alter the stability properties.

Although all particles in plasma can be considered energetic, what we mean by en-

ergetic particles are those with energies much greater than the bulk plasma temperature.

For example, when the energetic plasma from the solar wind hits the Earth’s colder mag-

netosphere, i.e. plasma, we have interaction between the bulk plasma and the energetic

particles. In laboratory plasma, such as ITER, energetic particles are produced by neu-

tral beams (Stix, 1972), external radio-frequency (RF) sources (Stix, 1975), or α-particles

created by fusion reactions between deuterium and tritium (Ongena et al., 2016). These

sub-populations of energetic particles can resonate with long-wavelength MHD modes and

can have significant effect on plasma stability and particle transport.

In Earth’s magnetosphere, regions of energetic particles originating from the Sun’s

solar wind are called the Van Allen radiation belt. The motion of energetic particles in the

Earth’s magnetic dipole field has three main components: (i) fast gyro-motion about the

magnetic field line, (ii) slower bounce motion in the North-South plane, and (iii) slowest
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Figure 1.1: An energetic particle orbit in Earth’s magnetic dipole field is indicated by the
dashed line. (a) Projection onto the North-South (poloidal) plane, where the gyro-motion,
bounce motion and the poloidal angle are shown. (b) Shows the view from above the North
Pole. The azimuthal precession motion from East to West is shown. The color red through
violet shows the trajectory advancing in time. The figure was taken from Heidbrink and
White (2020).

azimuthal precession motion in the East-West plane (see Fig. 1.1). The gyro-motion is

characterized by the gyro-frequency Ω = qB/m, where q is the charge of the particle, m

the mass of the particle, and B the magnetic field strength. The bounce motion arises

from the magnetic field gradient that exists along field lines in the North-South plane. A

particle with inadequate parallel energy (with respect to the magnetic field) will bounce

and change directions when it reaches a region of stronger magnetic field. This motion is

typically characterized in the poloidal (R,Z) plane by the bounce frequency ωθ. Finally,

the azimuthal precession motion, which is the slow East-West percession of the particle

around the Earth, is typically characterized by the toroidal angle φ with a frequency ωφ.

These types of orbits exists in tokamaks as well (see Fig. 1.2). The gyro-motion sets the

fastest timescale, 1/Ω ∼ 2 × 10−8 s, of these energetic particles. The bounce period,

τb ∼ 5× 10−5 s, describes the motion projected onto the poloidal plane. The motion in the

precessing toroidal direction is characterized by a timescale τφ ∼ 2×10−4 s. These motions

are associated with the first, second, and third adiabatic invariants (respectively) in plasma

physics.

From Hamiltonian mechanics, nearly periodic systems with slowly varying parameters

have associated, approximate constants of motion (Landau and Lifshitz, 1976) called adia-
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Figure 1.2: Typical bouncing particle motion in a tokamak. The dotted line shows the
guiding center motion along the toroidal direction. When the particle “feels” a stronger
magnetic field, it bounces. Note that this bounce behavior can be projected onto the
poloidal (R,Z) plane. Some projections of the guiding center motion into the poloidal
plane are shown in Fig. 1.3. Shown for part of the trajectory is the gyro-motion where
the particle travels in a helix about the magnetic field line. The East-West (azimuthal)
procession in Fig. 1.1(b) manifests when the bounce tips (where two dotted curves come
together) moves in toroidal angle φ.

batic invariants. Hence, from each degree of freedom that exhibits periodicity, an adiabatic

invariant can be formulated. In plasma physics, three main adiabatic invariants, related to

the particle motions mentioned above, are introduced (Gurnett and Bhattacharjee, 2017).

The first is associated with the fast gyro-motion about a magnetic field line, which is related

to the approximately conserved magnetic moment µ. The second is associated with the par-

allel (with respect to the magnetic field) periodic motion, i.e. the bounce motion which

is projected in the poloidal plane in Fig. 1.3. The third is associated with the azimuthal

drift motion due to the magnetic gradient drift and the magnetic curvature drift. The third

adiabatic invariant states that the magnetic flux through the locus of points created by the

azimuthal drift is constant. Besides the adiabatic invariants, when considering energetic

ions, we have the exact invariant of energy for these particles. Often binary collisions of

energetic ions with themselves or the background plasma can be neglected. Also, if the

kinetic energy is much greater than the potential energy, we can assume that the kinetic

energy (hence the total energy) of these ions is constant. In this thesis, we push particles

in equilibrium axisymmetric tokamak fields and assume that the lowest order electric field
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Figure 1.3: A contour plot of normalized poloidal magnetic flux ψ̄p is plotted and overlayed
by three different particle orbits. The innermost orbit (1) is called a barely trapped particle,
the middle orbit (2) is a passing particle since it circumnavigates the entire flux surface,
and the outermost orbit (3) is a deeply trapped particle. This shows the poloidal projection
of these particle’s guiding center trajectories.

vanishes. Kinetic energy conservation is exact for this case. It is also worth mentioning

that in axisymmetric tokamaks, the toroidal canonical momentum is another exact invariant

that gives greater insight into the physics of these energetic ions.

Why are we interested in energetic ion physics and the single particle picture? The

interaction between energetic ions and the bulk, MHD plasma requires the details of the ion

orbits. The energetic ions interact with the MHD modes to either stabilize or destabilize

the plasma as a whole. One example is the so-called giant sawtooth discharge (Choi et al.,

2007) which was observed (Heidbrink et al., 1999) in the DIII-D tokamak (Luxon et al.,

2005; Luxon, 2002). In magnetic confinement schemes such as the tokamak, neutral beams

are used to impart toroidal momentum which can help in plasma confinement by inducing

plasma rotation (Hopf et al., 2021). When the neutral beam comes in contact with the
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Figure 1.4: Data from DIII-D experiment, discharge #96043. (a) Time at which the neu-
tral beam and the RF wave were injected into the plasma. (b) Electron central temperature
and neutron reaction rate vs. time. (c) Plasma density and plasma stored energy given as
functions of time. The figure was taken from Choi et al. (2007)

plasma in the fusion device, it is ionized, thereby introducing an energetic ion population.

Typical injection energies are on the order of 100 keV. It is possible to increase the energy

of these ions further to roughly 600 keV by using RF waves that resonate with the energetic

ions. This can help stabilize the plasma against an instability known as the internal kink.

It is speculated that the conservation of the third adiabatic invariant of these energetic

ions, after the use of RF waves, is the stabilizing factor of the internal kink or sawtooth

mode. Figure. 1.4 shows an increase in the electron temperature after the neutral beam is

injected into the plasma. Once the electron temperature reaches a certain value it starts

to drop and climb exhibiting small sawtooth behavior due to the internal kink modes, a

kinking of the plasma column inside the hot core. The RF waves help stabilize these small

sawteeth by driving a high energy tail in the energetic ion population. It is believed that

the conservation of the third adiabatic invariant is responsible for this stabilization. But,

eventually another instability takes place which results in giant sawteeth. Understanding
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the behavior of energetic ions and how they interact with MHD modes so instabilities such

as the giant sawtooth can be better understood and accounted for is imperative to improving

tokamak confinement.

Inter-species collisions between a diffuse population of energetic ions are rare and often

can be neglected. This implies that the collisionless Vlasov equation can be used. This is

due to the high energy and the typical low density of these populations. The result is a

small population of energetic particles does not obey the Maxwellian distribution; therefore,

a fluid approach cannot be used for these particles. This means that kinetic theory needs

to be employed. We consider timescales of several wave periods, which is less than the

timescale over which collisions cause the distribution to evolve. The distribution function

of energetic particles can have complex dependence on energy and direction. Also, small

differences in a particle’s velocity can yield very different trajectories (Heidbrink and White,

2020).

The task when considering energetic particle effects on the bulk plasma, is to first

predict their motion and then couple them into the fluid MHD equations via velocity mo-

ments of the energetic particle distribution function. This is referred to as closing the MHD

equations. The approach is called the hybrid kinetic-MHD model (Cheng, 1991; Cheng and

Johnson, 1999). This is not an easy task and requires sophisticated analytical and numer-

ical techniques. Two main approaches exist when considering the interaction between the

bulk plasma and the sub-population of energetic particles: the (i) current-coupling scheme

and the (ii) pressure-coupling scheme (Tronci et al., 2014). The current-coupling scheme is

more general and uses the energetic particle momentum and the density to introduce these

energetic particles into the MHD equations. The pressure-coupling scheme only applies in

cases where the energetic population is small enough that the inertia of these particles does

not have to be considered. This requires the density of the energetic particles to be much

less than the density of the bulk plasma (nhot ≪ nMHD). Their energy, however, can be

high enough so that they have a significant anisotropic pressure moment that alters the

center-of-mass flow evolution for the bulk plasma.
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The bulk plasma is described by the MHD fluid equations and the energetic particles

are introduced into the flow evolution equation as an energetic particle pressure tensor

moment. NIMROD specifically uses the δf approach for the PIC method (Kim, 2008). The

δf-PIC is a control variates method (Aydemir, 1994), where the distribution function for the

energetic particles is separated into a larger time-independent equilibrium part and a small

time-dependent perturbation. The control variates method tends to lower the noise for

PIC simulations, since the larger portion of the distribution function, i.e. the equilibrium

portion, is specifically chosen so that it can be integrated fairly easily either numerically

or sometimes even analytically. The perturbed part of the energetic distribution function,

i.e. the particle weights, is evolved in time (Parker and Lee, 1993). Information from the

perturbed part is used in the update of the center-of-mass flow evolution equation in the

form of the energetic particle pressure tensor moment.

There are two approaches that are implemented in NIMROD to solve the kinetic equa-

tion and close the MHD fluid equations—(i) a continuum approach and (ii) the particle-in-

cell (PIC) method. The continuum approach (Held et al., 2015) directly solves the kinetic

equation using a discretization of the two-dimensional (2D) velocity space. For the PIC

approach, which is the main concern for this thesis, computational particles with associated

weights are pushed along the equilibrium fields. The particle weights and the velocity vec-

tors are then used to construct the energetic particle pressure tensor moment, which then

closes the MHD equation by appearing in the center-of-mass flow evolution equation (Kim,

2008). Note that in both cases the pressure-coupling scheme, discussed previously, is used.

NIMROD (Non-Ideal Magnetohydrodynamics with Rotation—Open Discussion) solves

the extended MHD equations by using 2D finite elements in the poloidal plane and a Fourier

decomposition in the periodic toroidal direction (Sovinec et al., 2004). For the time advance

of the MHD equations, NIMROD has both semi-implicit and implicit time discretization for

various terms. Higher order, 2D Lagrange polynomials are utilized in the poloidal plane for

the 2D finite element discretization. This and the semi-implicit time advance, helps resolve

the complex, extended MHD equations.
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We begin in Chapter 2 by discussing some preliminaries of plasma physics. A brief

discussion of Lagrangian and Hamiltonian mechanics is given. In some situations, a crude

understanding of non-canonical mechanics is useful, thus we briefly discuss that as well. A

distribution function is constructed using the particle position and momentum or velocity

for non-relativistic particles. These also can be non-canonical variables, e.g., with magnetic

field present the particle momentum is no longer the canonical momentum. Therefore,

we build Liouville’s equation using non-canonical notation. Once Liouville’s equation is

presented with the non-canonical notation, we can easily simplify it to the more convenient

and familiar form. From Liouville’s equation, the evolution for a single particle distribution

function can be obtained. We then present conditions that allow us to drop the collisional

term, which gives us the Vlasov equation. The Vlasov equation is further reduced to the drift

kinetic equation by averaging out the gyro-motion of the particles. Finally, an axisymmetric

magnetic field configuration is briefly mentioned. This will be used in Chapter 3 to discuss

the analytical results of single particle motion in axisymmetric tokamak geometry.

In Chapter 3, we consider single particle motion both analytically and numerically. We

start from the most simple case of a static, uniform magnetic field and then build up to

deriving the guiding center velocity. The two main orbit types, passing and trapped, are

considered. The analytical form for the banana width and the bounce period are derived.

The analytical results are compared to the numerical results from NIMROD’s PIC algorithm

with the computational particles pushed along the equilibrium fields for an axisymmetric

tokamak case.

Chapter 4 introduces Serendipity basis sets. These basis sets are subsets of the 2D La-

grange polynomials already implemented in NIMROD. Up to sixth order for the Serendipity

basis are implemented for testing. The Serendipity bases in NIMROD’s PIC algorithm are

used for the particle gather and scatter in the hopes of obtaining more accurate particle tra-

jectories while still keeping a small memory footprint and run-time. The Serendipity bases

are compared to the 2D Lagrange polynomials, and the results for accuracy, efficiency, and

memory footprint are presented.
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Chapter 5 discusses the initial sampling of energetic ion population using importance

sampling (Birdsall and Langdon, 2018; Hammersley and Handscomb, 1964). We discuss

sampling from a slowing down distribution function and the application of the δf-PIC

method implemented in NIMROD. The energetic particle information is dumped onto the

finite element grid via the energetic particle pressure tensor, a process known as deposition.

We consider, carefully, the deposition process. Also, the numerical results of the Serendipity

basis sets are presented in how well they resolve the growth rate of 1/1 internal kink mode.

Finally, in Chapter 6 we conclude this thesis and suggest future work. Many improve-

ments can be made to the δf-PIC approach implemented in NIMROD. One such improve-

ment would be to extend this work to allow for non-linear simulations as was discussed

by Parker and Lee (1993). Another improvement would be to more properly couple the

energetic particles into the MHD equations (Liu et al., 2022a; Tronci et al., 2014). This

becomes important when the density of the energetic ions becomes comparable to that of

the thermal ions. It is estimated that 30% of the ion population in the ITER tokamak will

be energetic α-particles (Putvinski, 1998) born in deuterium–tritium fusion events. Clearly,

the ordering nhot ≪ nMHD would not hold. Implementing a different coupling scheme would

allow NIMROD’s δf-PIC code to study the important effects that a substantial population

of energetic ions could have on the MHD plasma stability. We would also like to compare

NIMROD’s drift kinetic δf-PIC and drift kinetic continuum approaches to other kinetic-

MHD (both gyrokinetic and drift kinetic) codes and validate them against experimental

results from the DIII-D tokamak, as was done in Brochard et al. (2022).
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CHAPTER 2

PRELIMINARIES TO PLASMA PHYSICS

A fundamental approach to classical mechanics is the use of a dimensionless represen-

tation of bodies called point particles. In a perfectly ionized plasma, the point particles are

negatively charged electrons and positively charged ions. If their motion can be described

without considering of their dimensions, then the point particle approximation can be used.

A vector describes a particle’s position with three Cartesian coordinates as its components.

The total time derivative of such a vector is the velocity and the total time derivative of

the velocity is the acceleration. Through the classical (non-quantum) empirical experience,

it is understood that if the position and velocity of a particle are known simultaneously at

a particular instant in time, then any subsequent motion can be obtained. In other words,

the acceleration is uniquely determined via the equations of motion (Landau and Lifshitz,

1976). If a system of N particles is considered, the position of each particle in space is

specified by its own vector. The number of vector components needed to uniquely specify

the position and orientation of a system is called the degrees of freedom. For example, a

system of N point particles, where each particle needs s number of coordinates to describe

its position completely, has sN degrees of freedom. Therefore, to uniquely determine the

motion of the system, the position and velocity of each particle needs to be specified. If the

number of particles is large, which is the case in a confined plasma where N is of the order

of Avagadro’s number, this approach is impractical and unnecessary. Instead, an ensemble

of systems is considered to obtain a statistical average.

2.1 Lagrangian and Hamiltonian Mechanics

When considering an ensemble of N -particle systems, it is advantageous to introduce

a phase space of 2sN dimensions and employ Hamiltonian mechanics. Lagrangian and

Hamiltonian mechanics are related via the Legendre transformation. The independent vari-
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ables for the Lagrangian formulation are
(
qi, q̇i, t

)
where q̇i is referred to as the generalized

velocity. For the Hamiltonian formulation, the canonical momenta are used instead of the

generalized velocities
(
qi,P i, t

)
. Therefore, via Legendre transform the generalized coor-

dinates, qi and the canonical momenta P i are placed on an equal footing. First, we will

construct the Lagrangian and the Hamiltonian formulations for a charged particle in an

electromagnetic field. Then we will use a non-canonical formulation of Hamiltonian me-

chanics to show that the original equations of motion can be obtained using the particle

momenta pi = mvi, instead of the canonical momenta P i. Throughout this section we will

let the charge of a particle be represented by e instead of q.

2.1.1 Lagrangian for a Particle in an Electromagnetic Field

The Lagrangian of a charged particle in an electromagnetic field can be obtained by

considering the equations of motion from the fundamental Lorentz force,

F (x,v, t) = e (E+ v ×B) . (2.1)

The force is acting on a particle with charge e, which causes it to accelerate. We use vector

notation here for simplicity. The electric field and the magnetic field can vary in space and

time, E(x, t) and B(x, t). The case where the sources of the fields, i.e. charge density ρ

and current density J, are far from the charged particle is considered. Using the Lorentz

force, the following equations of motion for a charged particle is obtained

m
dv

dt
= e (E+ v ×B) . (2.2)

The fields E and B are expressed in terms of the potentials in the Lagrangian formulation.

We use the Lorenz gauge

E = −∇ϕ− ∂A

∂t
(2.3)

and

B = ∇×A , (2.4)
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where ϕ is the electrostatic scalar potential and A is the vector potential. Therefore, the

equations of motion is expressed in terms of the potentials as

m
dv

dt
= e

(
−∇ϕ− dA

dt
+ (∇A) · v

)
, (2.5)

where d/dt = ∂/∂t + v · ∇ was used to introduce the total time derivative for the vector

potential. The customary approach for deriving the Lagrangian from the equations of

motion is to multiply it by some spatial variation δx and integrate over time

m

∫ t2

t1

δx · dv
dt

dt = e

∫ t2

t1

δx ·
(
−∇ϕ− dA

dt
+ (∇A) · v

)
dt . (2.6)

We integrate by parts and note that the “surface” terms vanish if the end points are not

varied. Thus, we end up with the expression

∫ t2

t1

1

2
mδ (v · v) dt = e

[∫ t2

t1

δϕ dt−
∫ t2

t1

δv ·A dt−
∫ t2

t1

δA · v dt

]
, (2.7)

where δϕ = δx · ∇ϕ is the variation of the scalar potential, δx · (∇A) · v = δA · v is the

variation of the vector potential and

dδx

dt
· v = δv · v =

1

2
δ (v · v) .

Finally, noting that δ(v · A) = δv · A + δA · v, we end up with a variation of the action

integral for a charged particle in an electromagnetic field

δS = δ

∫ t2

t1

(1
2
mv2 − e (ϕ− v ·A)

)
dt = 0 . (2.8)

The integrand in the above equation minimizes the action and is the Lagrangian for a

particle in an electromagnetic field, namely,

L (x,v, t) =
1

2
mv2 + ev ·A− eϕ . (2.9)
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If we express the Lagrangian in terms of the generalized coordinates, we have

L
(
qi, q̇i, t

)
=

1

2
mq̇iq̇i + eq̇iAi − eϕ , (2.10)

where q
.
= qi and q̇

.
= q̇i are the generalized position and velocity vector components. Also,

A
.
= ηijAj where Aj is the contravariant component that is related to the vector component

via the metric ηij for the Cartesian coordinates.

The canonical momentum is needed when developing Hamiltonian mechanics and is

useful when considering conserved quantities. Canonical momentum can be obtained from

the Lagrangian by

P i =
∂L

∂q̇i
= pi + eAi , (2.11)

where pi = mq̇i is the particle (linear/angular) momentum. The canonical momentum

differs from the particle momentum when a non-conservative field, like the magnetic field,

is involved.

2.1.2 Hamiltonian for a Particle in Electromagnetic Field

The Hamiltonian of a system is obtained from the Lagrangian via a Legendre transform

(Landau and Lifshitz, 1976). The Legendre transform of the Lagrangian maps
(
qi, q̇i

)
→(

qi,P i
)
; therefore,

H
(
qi,P i, t

)
= P iq̇i − L

(
qi, q̇i, t

)
. (2.12)

Using the Lagrangian from Eq. (2.10) and the canonical momentum from Eq. (2.11), the

Hamiltonian for a particle in electromagnetic field comes out to be

H
(
qi,P i, t

)
=

1

2m

(
P i − eAi

)
(Pi − eAi) + eϕ . (2.13)

In the Hamiltonian formulation the equations of motion are given by Hamilton’s equations

q̇i =
∂H

∂P i
, Ṗi = −∂H

∂qi
, (2.14)
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which are first order differential equations in the variables
(
qi,P i

)
.

Consider a function g = g
(
qi,P i, t

)
of the generalized coordinate, canonical momenta,

and time. The total time derivative of such a function, utilizing Hamilton’s equations

Eq. (2.14), is

dg

dt
=
∂g

∂t
+ {H, g} , (2.15)

where the Poisson bracket can be expressed as

{H, g} =
∂H

∂P i
ηij

∂g

∂qj
+
∂H

∂qi
ηij

∂g

∂Pj
. (2.16)

Note that ηij is the metric for the Cartesian coordinate.

2.1.3 Non-canonical Mechanics

We saw that the Hamiltonian can be obtained from the Lagrangian via a Legendre

transform. We can rearrange Eq. (2.12) to get

L
(
qi, q̇i, t

)
= P iq̇i −H

(
qi,P i, t

)
, (2.17)

where recall that P i is the canonical momentum, see Eq. (2.11). We define a set of new

variables zα =
(
xi, pi

)
that are not necessarily canonical variables. Note α spans from 1 to

2s where s is the number of coordinates needed to completely describe the position. For

example, in non-relativistic mechanics, we let i = 1, 2, 3 and i′ = i+ 3; therefore, zα=i = xi

and zα=i′ = pi. Using the chain rule, we rewrite q̇i as

q̇i (zα) =
∂qi

∂t
+ żα

∂qi

∂zα
. (2.18)

We insert this expression for q̇i (zα) into Eq. (2.17) to write the Lagrangian in terms of the

variables zα, thus

L = Λαż
α −H , (2.19)
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where

Λα = P i ∂qi
∂zα

(2.20)

and

H = H − P i∂qi
∂t

. (2.21)

We now use the Euler-Lagrange equation in terms of the new variables zα and żα, in order

to obtain a new expression for the equations of motion (Cary and Brizard, 2009)

d

dt

(
∂L
∂żα

)
=

∂L
∂zα

, (2.22)

which becomes

ωαβ
dzβ

dt
=
∂H
∂zα

+
∂Λα

∂t
. (2.23)

The symplectic form ωαβ is given by

ωαβ =
∂Λβ

∂zα
− ∂Λα

∂zβ
=
∂P i

∂zα
∂qi
∂zβ

− ∂P i

∂zβ
∂qi
∂zα

. (2.24)

Here β spans the same indices as α. Note that the symplectic form is an expansion of

the Poisson bracket. We invert the symplectic form to get a more convenient equations of

motion

dzα

dt
= ωαβ

(
∂H
∂zβ

+
∂Λβ

∂t

)
= ωαβ

(
∂H

∂zβ
+
∂P i

∂t

∂qi
∂zβ

− ∂qi
∂t

∂P i

∂zβ

)
, (2.25)

where the last expression is in terms of the original Hamiltonian H and the canonical

variables qi and P i. The tensor ωαβ is called the inverse symplectic form. Note that it

is usually easier to compute the symplectic form and then invert it to obtain the inverse

symplectic form. Thus, using Eq. (2.25), we can construct the equations of motion even

though zα may not consist of canonical coordinates. This new expression for the equations

of motion (see Eq. (2.25)) reduces to Hamilton’s equations when zα consists of canonical

variables

dzα

dt
= σαβ

∂H

∂zβ
≡ {zα, H} , (2.26)
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where {, } is the Poisson bracket and σαβ is the fundamental (inverse) symplectic form

σαβ
.
=

 0 ηij

−ηij 0

 . (2.27)

Notice that σαβ is in block matrix form. In terms of the Poisson bracket, the fundamental

symplectic form can be expressed as

{
zα, zβ

}
= σαβ or

{
qi,P i

}
= ηij (2.28)

Particle in Magnetic Field

For a particle in a magnetic field, recall that the canonical momentum is given by

P i = pi + eAi .

Using the symplectic form in Eq. (2.24) for the non-canonical variables zα =
(
xi, pi

)
, particle

position and momentum, come out to be

ωαβ
.
=

 eFij −ηij

ηij 0

 , (2.29)

where Fij is the spatial part of the Faraday tensor

Fij =
∂Aj

∂xi
− ∂Ai

∂xj
= εijkB

k . (2.30)

Inverting the above expression gives us the inverse symplectic form for a particle in magnetic

field

ωαβ .
=

 0 ηij

−ηij eF ij

 . (2.31)
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To obtain the equations of motion we first rewrite the Hamiltonian given in Eq. (2.13) in

terms of the new, non-canonical variables, xi and pi, thus

H
(
xi, pi, t

)
=

1

2m
pipi + eϕ , (2.32)

where the expression for the canonical momentum (see Eq. (2.11)) was used. Hence, by

evaluating each term (for details on calculating each term, see Appendix B) in Eq. (2.22),

we can obtain the equations of motion we started out with in the beginning in Eq. (2.2),

namely,

dp

dt
= e (E+ ẋ×B)

where ẋ = v and p = mv. Recall that the Lorenz gauge was used to write the potentials

in terms of electric and magnetic fields.

2.2 Classical Statistical Mechanics

A classical system consisting of N interacting dimensionless point particles has 3N

degrees of freedom, where three coordinates are sufficient to describe the position of each

particle. To fully determine the state of such a system, the position (q1, q2, ..., q3N ) and the

velocity (q̇1, q̇2, ..., q̇3N ) of every particle in the system needs to be known. The subsequent

motion of all the particles is determined by the equations of motion. Such an approach

is not feasible nor wise since the microscopic fluctuations from each particle motion can-

not be measured experimentally. Experimentally, only the macroscopic quantities such as

temperature, pressure, volume, etc., are known. This leads to statistical averaging over an

ensemble of isolated microscopic systems, each with the same macroscopic quantities.

In order to formulate the N particle system’s dynamical state, we construct a 6N di-

mensional space called the phase space. Typically, phase space is specified by 3N spatial

coordinates (q1, q2, ..., q3N ) and their corresponding 3N particle momenta (p1, p2, ..., p3N ).

Together they yield a point, which we call a phase point, in the 6N dimensional phase space.

Hence, a phase point in phase space completely specifies the dynamics of the microscopic
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state for the N particle system. A great number of microscopically distinct systems results

in a “cloud” of phase points all with the same macroscopic variables. Letting the number

of members in the ensemble approach infinity permits treating the cloud as a continuous

distribution of phase points in phase space. This is denoted by the N -particle distribu-

tion fN (q1, ...q3N , p1, ..., p3N , t), which when integrated over all phase space gives the total

number of particles

∫
fN (q1, ..., q3N , p1, ..., p3N , t) d

3Nq d3Np = N . (2.33)

The collection of phase points flows through the phase space like an incompressible

fluid. That is, the phase points in any infinitesimal volume will be the same after some time

dt,

fN (q1, ..., q3N , p1, ..., p3N , t)

= fN (q1 + q̇1dt, ..., q3N + q̇3Ndt, p1 + ṗ1dt, ..., p3N + ṗ3Ndt, t+ dt) . (2.34)

If we expand the right side in terms of the small time interval dt and neglect terms O
(
dt2
)

or higher, we end up with the Liouville equation

∂fN
∂t

+
3N∑
j=1

q̇j
∂fN
∂qi

+
3N∑
j=1

ṗj
∂fN
∂pj

= 0 . (2.35)

The above expression is sufficient if the particle momentum is the same as the canonical

momentum, which is true for a free particle. In this case, we can express it in terms of the

Poisson bracket (see Eq. (2.16))

∂fN
∂t

+ {fN , H} = 0 . (2.36)

Since each of the isolated phase points, i.e. microscopic states, obeys Hamilton’s equations,

the distribution of phase points obeys the 6N Hamilton’s equations of motion thereby,

conserving the phase space volume (McQuarrie, 2000).
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If a magnetic field is present, for example, the particle and canonical momenta are

no longer the same. For this case, we will use the non-canonical formulation to rewrite

Eq. (2.35). First, let zα =
(
xi, pi

)
where i = 1, 2, 3 represents the vector components

and α represents both of the vector components, meaning α = i for x and α = i′ for p

where i′ = i + 3. This lets us conveniently write the Liouville’s equation in terms of the

non-canonical coordinates

∂fN
∂t

+

N∑
j=1

∂fN
∂ (zj)

α
d (zj)

α

dt
= 0 , (2.37)

where recall that żα are the equations of motion for the non-canonical formulation (see

Eq. (2.25)). Here, summation over N particles is indicated by the index j. The repeating

indices α are summed over. If we expand the above expression using Eq. (2.25), we can

write it in terms of the Poisson bracket and the time-dependent transformation part

∂fN
∂t

+ {fN , H}+
N∑
j=1

(
∂fN
∂ (zj)

αω
αβ ∂P i

∂t

∂qi

∂ (zj)
β
− ∂fN
∂ (zj)

αω
αβ ∂P i

∂ (zj)
β

∂qi
∂t

)
= 0 , (2.38)

where {, } is the general Poisson bracket written in terms of the inverse symplectic form

ωαβ,

{fN , H} =
∂fN
∂ (zj)

αω
αβ ∂H

∂ (zj)
β
. (2.39)

Therefore, if we have a time-independent transformation, the term inside the parentheses

vanishes giving us a form similar to Eq. (2.36). Although, for example, if there is a magnetic

field present, then the ∂qi/∂t term vanishes but the ∂P i/∂t term remains due to the time

dependence in the vector potential. Note that Eq. (2.36) holds even for the non-canonical

particle momentum for a particle in uniform static electric and magnetic fields since the

time derivatives of the fields vanish. If the spatial and temporal dependence of the fields

is kept, the Liouville’s equation needs to be expanded to include these effects when using

particle momenta as one of the phase space coordinates.
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The Liouville equation in the non-canonical form (see Eq. (2.37)) reduces to a simple,

familiar form when considering non-relativistic particles in Cartesian coordinates

∂fN
∂t

+
N∑
j=1

pj

mj
·∇xjfN +

N∑
j=1

Fj ·∇pjfN = 0 . (2.40)

Here we have used the vector notation with the phase space coordinate (xj ,pj) for the jth

particle. In the above expression, ∇xj is the gradient with respect to the spatial coordinates

and ∇pj is the gradient with respect to the jth particle momentum. The quantity Fj is the

total force on the jth particle.

2.2.1 Single Particle Distribution Function

As stated at the beginning of this section, tracking the dynamical behavior of all N

particles is unnecessary. The quantities that can be measured experimentally, such as

temperature, pressure, volume, etc., are macroscopic quantities that only require one or

two particle distribution functions. Fortunately, most macroscopic quantities in a plasma

can be described by the first two reduced distribution functions (Harris, 2004). To a good

approximation, the total internal force can often be modeled via the sum of pair-wise forces

between two particles i and j, namely Fij ≡ F (xi,xj). We define the reduced distribution

function as

f (n) (x1, ...,xn,p1, ...,pn, t) ≡
∫
fN (x1, ...,xN ,p1, ...,pN , t) dΓn+1 , (2.41)

where dΓ ≡ dx1...dxNdp1...dpN and dΓn+1 ≡ dxn+1...dxNdpn+1...dpN . This reduces the

N particle distribution function to n particle distribution function by integrating over the

coordinates of the n+1st to N th particles. We can think of the reduced distribution function

as giving the expectation value of finding any of the N particles in one of the dΓn volume

elements.

We want to reduce the Liouville equation to that of a single particle distribution func-

tion. First, we note that the force that appears in Eq. (2.40) can be broken up into the sum
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of pair-wise inter-particle forces Fij , and an external force F
(ext)
j ; hence

∫ (
∂fN
∂t

+

N∑
i=1

pi

m
·∇xifN +

N∑
i=1

F
(ext)
i +

N∑
j=1

Fij

 ·∇pifN

)
dΓR+1 = 0 . (2.42)

When performing the integral, we need to keep in mind that the surface integral that

appears vanishes after integration by parts when integrating over all phase space. This is

because: (i) particles cannot have infinite momentum, and (ii) spatially, the boundary can

be extended beyond the limit of the volume occupied by the system, thus the probability

of finding a particle outside that volume is zero. Also, we can break up the integrals into

particles being integrated over, i.e. n+ 1 to N particles, and those that are not integrated

over, i.e. 1 to n particles. Finally, we let the inter-particle force be represented via the

gradient of a potential, namely

Fij = −
N∑
i=1

N∑
j=1

∇xiϕij , (2.43)

where the potential ϕij is a function of the distance between the two particles i and j,

rij = |xi − xj |. In the case of a fully ionized plasma, ϕij is the Coulomb potential between

two charged particles. After careful integration of each of the terms, we get

∂f (n)

∂t
+

n∑
i=1

pi

m
·∇xif

(n) +
n∑

i=1

F
(ext)
i ·∇pif

(n) −
n∑

i,j=1

∇xiϕij ·∇pif
(n)

= (N − n)

∫ ∫ n∑
i=1

∇xiϕi,n+1 ·∇pif
(n+1) dxn+1dpn+1 . (2.44)

This is the BBGKY (Bogoliubov, Born, Green, Kirkwood, Yvon) hierarchy that gives the

time evolution of the reduced distribution function f (n). Note that on the right of the

above equation, the f (n+1) term appears. This indicates that this equation is not closed.

The time evolution for f (n) requires the f (n+1) distribution. Equation (2.44) was obtained

by assuming that the distribution function is symmetric when permuting the particles. This

reduces the N -n interactions to interactions with just the n + 1 particle. With n = 1, we
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get the time evolution equation for the single particle distribution function f ≡ f (1),

∂f

∂t
+

p

m
·∇f + F ·∇pf = (N − 1)

∫ ∫
∇ϕ12 ·∇pf

(2) dx2dp2 . (2.45)

For the case of no self interaction, ϕii = 0, the fourth term in Eq. (2.44) vanishes

for the single particle distribution function. Note that for simplicity, we have ∇x1 ≡ ∇,

∇p1 ≡ ∇p, and F
(ext)
1 ≡ F in the above expression. The right side of Eq. (2.45) is the particle

interaction term, commonly called the collision term. The left side is the “streaming” term

that is governed by the external force. The single particle distribution function gives the

expectation value of any of the N particles having location x with momentum p at time t

in the phase space volume element dxdp.

In order to close the time evolution equation for the distribution (single particle distri-

bution) function, we need to “close” for the f (2) dependence. The approach that Boltzmann

took (Boltzmann, 1970) was to express the collisional term on the right side of Eq. (2.45) in

terms of the product of fi and fj , the single particle distribution function for species i and

j. This assumes that the particle position and velocities are uncorrelated, i.e. the molecu-

lar chaos assumption or Stosszahlansatz. Effectively, it only considers short ranged binary

interactions between species i and j. The Boltzmann equation is not considered further in

this thesis. A brute force approach to closure is to completely neglect the collision term

and just have the streaming term. This leads us to the Vlasov equation used in modeling

collisionless plasmas.

2.2.2 The Vlasov Equation

In the Vlasov equation, it is assumed that the effect of collisions is negligible; hence

we ignore the two-particle correlation in Eq. (2.45). We will apply this collisionless limit

to the energetic particles in the hybrid kinetic-MHD model. In the hybrid model, the

energetic particles are fast enough that they do not “see” the bare Coulumb potential of

the particles in the bulk MHD plasma. This holds so long as the collision time scale is much

longer than the streaming and MHD time scales of interest. Note that from here on we will
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express the distribution function in velocity space instead of momentum space f (x,v, t).

For non-relativistic, classical particles, this gives equivalent results.

For the purpose of building some physical intuition, we again consider the N -particle

distribution function. We return to the Liouville’s equation (see Eq. (2.40)) written as

〈
∂fN
∂t

+
N∑
j=1

vj ·∇xjfN +
N∑
j=1

aj ·∇vjfN

〉
= 0 (2.46)

where we now use velocities and the angle brackets to indicate the reduction to the single

particle distribution function. The difficulty here, as we saw previously, was the acceleration

term. For example, if we were to consider the Lorentz force, the exact electromagnetic field

depends on the particle trajectories; thus, the fields are not statistically independent of fN ,

meaning 〈
aj ·∇vjfN

〉
̸= ⟨aj⟩ ·

〈
∇vjfN

〉
. (2.47)

We end up with a correlation term with collisions accounting for the missing part of

Eq. (2.47). This lets us write

〈
aj ·∇vjfN

〉
= ⟨aj⟩ ·

〈
∇vjfN

〉
− C (f) . (2.48)

Therefore, when we say there are no collisions, we are assuming that the electromagnetic

field and the distribution function are statistically independent of each other. This means

that the averaged out N particle distribution function (that appears as a mist in phase

space) is influenced only by the averaged fields. Unlike the case with collisions, where each

particle may, occasionally, feel a sharp change of the field from the mean that could cause

the particle to depart from the streaming motion.

We now carefully consider the Lorentz force, Fj = q (E(x, t) + vj ×B(x, t)), in the

BBGKY reduction process. Recall that the fields considered are the averaged macroscopic

quantities since we are neglecting collisions. Thus no statistical correlation between the

fields and the particle trajectories is considered. Therefore, the third term in Eq. (2.46)
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with the Lorentz force comes out to be

〈
N∑
j=1

q

m
(E+ vj ×B) ·∇vjfN

〉
=

∫ [ q
m

(E+ v1 ×B) ·∇v1fN

]
dΓ2

+

∫ N∑
j=2

[ q
m

(E+ vj ×B) ·∇vjfN

]
dΓ2 , (2.49)

where dΓ2 = dx2...dxNdv2...dvN . The operator in the first expression on the right side

comes out of the integral because the integration is over particles 2 to N . Using the

definition of reduced distribution function (see Eq. (2.41)), we end up with the operator

simply acting on the single particle distribution function

∫ [ q
m

(E+ v1 ×B) ·∇v1fN

]
dΓ2 =

q

m
(E+ v1 ×B) ·∇v1f

(1) .

The second expression in Eq. (2.49) requires more careful consideration. Note that we

can rewrite the integrand as the divergence of the whole quantity by using the following

reasoning: (i) ∇vj · (fNE) = E ·∇vjfN because ∇vj · E = 0 since the electric field is only

a function of the spatial coordinates and (ii) ∇vj · (vj ×B) = 0 because ∇vj ×B = 0 and

∇vj × vj = 0. This allows us to write for the second term

∫ N∑
j=2

[ q
m

(E+ vj ×B) ·∇vjfN

]
dΓ2 =

∫ N∑
j=2

∇vj ·
[ q
m

(E+ vj ×B) fN

]
dΓ2 .

Using Gauss’s theorem, we can rewrite the the above expression in terms of a surface integral

that vanishes since particles cannot exist at infinity and have an infinite velocity, meaning

the N particle distribution function approaches zero as the surface is moved out to infinity.

Therefore, the second term on the right side of Eq. (2.49) vanishes

∫ N∑
j=2

[ q
m

(E+ vj ×B) ·∇vjfN

]
dΓ2 = 0 .
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Thus, we have shown that the average fields vanish for particles 2 to N in the BBGKY

reduction to the single particle distribution function. This again yields the Vlasov equation

∂f

∂t
+ v ·∇f +

q

m
(E+ v ×B) ·∇vf = 0 , (2.50)

where the subscript 1 has been dropped and f ≡ f (1) as before.

The average electromagnetic fields are governed by Maxwell’s equations

∇ ·E =
ρc
ϵ0

, ∇×E = −∂B
∂t

,

∇ ·B = 0 , ∇×B = µ0J+ µ0ϵ0
∂E

∂t
.

(2.51)

Often in plasma physics, the displacement current µ0ϵ0∂E/∂t is neglected. In order to solve

for the fields via the Maxwell’s equations, the sources, charge ρc and current J densities,

must be known. These sources are related to the distribution function via the moments

ρc(x, t) = q

∫
f(x,v, t) dv (2.52)

and

J(x, t) = q

∫
vf(x,v, t) dv . (2.53)

Therefore, the evolution of the distribution function is governed by the given fields, which

are governed by Maxwell’s equations. Given sources that are appropriately specified via

the distribution function, this together with the assumption that collisions are negligible,

provides closure to Maxwell equations.

2.2.3 The Drift Kinetic Equation

In devices such as tokamaks, where the plasma is strongly magnetized, the guiding

center drift is heavily characterized by a motion along the magnetic field B. Drifts such

as E ×B, magnetic field gradient, and curvature drifts are first-order terms in the guiding

center motion of a particle. These first order terms are significant in a tokamak and give rise
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to interesting physics due to the complex magnetic geometry. Magnetized plasmas satisfy

the condition that the gyro-radius ρ is much smaller than plasma scale lengths L and the

period of gyro-motion Ω−1 is much shorter than streaming and MHD timescales ω−1. The

condition for plasma to be magnetized is indicated by the parameter δ that is defined as

δ ≡ ρ

L
∼ ω

Ω
∼ ω

(qB/m)
. (2.54)

If δ ∼ 1, the plasma is no longer strongly magnetized and the drift ordering cannot be

applied. For magnetized plasmas, the drift ordering forbids the rapid time variation of the

fields and considers only the slowly varying part of the distribution function by suppressing

the rapid gyro-motion. Averaging over the short length and time scales of gyro-motion still

allows the drift kinetic equation to describe phenomena such as confined plasma equilibrium,

transport processes, and various plasma instabilities (Hazeltine and Meiss, 2003), making

it a powerful tool for analyzing magnetized plasmas.

The guiding center velocity in the drift kinetic regime, which will be derived later in

Chapter 3, can be expressed as

vgc = v∥b+
E×B

B2
+

1

Ω
b×

(
v∥
∂b

∂t
+ v2∥κ+

v2⊥
2

∇B

B

)
, (2.55)

where b = B/B is the unit vector along the local magnetic field and κ is the magnetic

curvature vector. Note that the magnetic curvature can be expressed in terms of the current

density

κ = b ·∇b = µ0
J×B

B2
+

1

B
∇⊥B , (2.56)

where ∇⊥ = ∇−∇∥ is the component of the gradient that is perpendicular to the magnetic

field and we have used the pre-Maxwell form of Ampere’s law. Note that Eq. (2.56) will

be used later when considering the δf implementation in NIMROD. This is because the

current density and the magnetic field are more readily available in NIMROD than the

magnetic curvature.
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Gyro-averaging allows the plasma kinetic equation to be cast into a drift kinetic equa-

tion with the lowest order distribution function only depending on the position and the

energy. A few subtle approximations are used for the magnetic moment, µ = mv2⊥, when

deriving the lowest order drift kinetic equation. The main idea is that the quantity dµ/dt is

small compared to other terms and that the lowest order distribution function is dependent

only on the position and the energy Hazeltine and Meiss (2003). The result is

∂f

∂t
+ vgc ·∇f +

dU

dt

∂f

∂U
= C(f) , (2.57)

where U is the total energy. This allows the distribution function f(x, U, µ, t) to be expressed

in terms of five degrees of freedom x, U , and µ, instead of the usual six dimensions of phase

space. The above drift kinetic equation can be written in terms of the kinetic energy

w = mv2/2 instead of the total energy U as

∂f

∂t
+ (v∥ + vD) · ∇f +

(
µ
∂B

∂t
+ e(v∥ + vD) ·E

) ∂f
∂w

= C(f) . (2.58)

Note that v∥ = v∥b is the parallel streaming term along the magnetic field and vD is the

drift portion of the guiding center velocity, hence vgc = v∥+vD. Equation (2.58) is the first-

order approximation to the kinetic equation. Assuming that the collisions are negligible,

i.e. set the right side to zero, yields the Vlasov form for the drift kinetic equation. The

form of the drift kinetic equation given in Eq. (2.58) is the most common form. For a more

detailed discussion see Hazeltine and Meiss (2003).

2.3 Axisymmetric Magnetic Field Configuration

The magnetic field configuration of tokamaks is complex, hence difficult to consider

analytically. When analyzing particle motion it is easiest to consider a large aspect ratio

tokamak with circular poloidal cross section. The aspect ratio is given by the major radius
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Figure 2.1: The major radius R0 points from the origin to the magnetic axis. The minor
radius a is the radius of the last closed magnetic flux surface. The dotted line indicates flux
surfaces that are within the minor radius. The angles θ and φ are refered to as the poloidal
and toroidal angles, respectively.

R0 divided by the minor radius a (see 2.1)

A =
R0

a
. (2.59)

Analytical considerations benefit from the small limit of the inverse aspect ratio

ϵa =
a

R0
≪ 1 . (2.60)

There are different regions in the tokamak confinement volume: (i) the confinement region

r < a, a region of closed magnetic flux surfaces; (ii) separatrix, r = a, last closed flux

surface; and (iii) the scrape-off layer (SOL), r > a, the region where magnetic field lines

intersect the walls. Flux surfaces, defined as surfaces that are everywhere tangential to

the magnetic field, are shown as the dashed and solid curves in 2.1. These surfaces extend

toroidally from φ = 0 to φ = 2π. Note that in the small aspect ratio limit, if a≪ R0 then

automatically r ≪ R0, where r is the radius of a circular flux surface (see Fig. 2.1).

In toroidal plasma confinement devices, it is necessary to have a poloidal magnetic

field as well. The toroidal and poloidal conponents of B cause the magnetic field to twist

around the tokamak allowing for particle confinement. It is useful to introduce the rotational
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Figure 2.2: The helical magnetic field, due to the poloidal and toroidal components, wraps
around the flux surfaces.

transform ι, defined as the number of poloidal transits per toroidal transit (see Fig. 2.2).

The inverse of the rotational transform is the safety factor

qs =
1

ι
. (2.61)

In a linear tokamak, i.e. periodic cylinder, the safety factor is given by the following

expression

qs =
rBt

R0Bp
(2.62)

where Bt is the toroidal magnetic field and Bp is the poloidal magnetic field. Safety factors

are important in toroidal confinement devices since low-order rotational surfaces, qs = 1/1,

3/2, 2/1, . . . are more susceptible to certain instabilities. In this thesis, we will be examining

the effect of energetic particles on the linear growth rate of the ideal internal kink mode

which resides at the qs = 1/1 surface.

2.3.1 Axisymmetric Toroidal Magnetic Field

Let us consider an axisymmetric toroidal magnetic field. Using the pre-Maxwell form

of Ampere’s law, we can find an expression for the toroidal magnetic field from

∇×Bt = µ0J (2.63)
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by integrating Ampere’s law using Stoke’s theorem. Here the current I is carried by toroidal

field coils and integrating along an Amperian loop of radius R yields

Bt =
µ0NℓI

2πR
φ̂ , (2.64)

where Nℓ is the number of coil turns with Itot = NℓI. Since the toroidal magnetic field is

proportional to 1/R, we may express it as

Bt =
B0R0

R
=

B0R0

R0 + r cos θ
(2.65)

where B0 is the magnetic field strength at the magnetic axis. For the second expression, we

have expressed R in terms of the poloidal variables (r, θ). In the large aspect ratio limit,

we can further simplify the expression for Bt by using the inverse aspect ratio, ϵ = r/R0,

Bt = B0 (1 + ϵ cos θ)−1 ≈ B0 (1− ϵ cos θ) . (2.66)

We see from the expression of the toroidal magnetic field that the gradient of the

magnetic field points radially inward. This radially inward gradient of the magnetic field

causes a drift that points perpendicular to ∇Bt and Bt. This causes a drift that is up

(ions) or down (electrons) in the Z-direction. Due to the curvature in the toroidal magnetic

field, the particles also experience a curvature drift (often thought of as a drift due to a

centrifugal force) perpendicular to the R-direction and Bt. This drift is also up (ions) or

down (electrons) along the Z-direction. The drift due to the gradient and curvature causes

charge separation that leads to an electric field perpendicular to Bt. The result is a rapid

E × B drift towards the wall of the tokamak, hence particles cannot be confined by the

toroidal magnetic field only. The combined drift is

vD =
E×B

B2
+
W⊥
qB

b×∇B

B
+

2W∥

qB

b× R̂c

Rc
, (2.67)

where W∥ is the parallel and W⊥ the perpendicular particle kinetic energy (Gurnett and



31

Bhattacharjee, 2017). Note that this drift velocity is like Eq. (2.55) only written in terms

of the parallel and perpendicular energy and the magnetic curvature vector, R̂c.

In order to confine the plasma, the magnetic field must be twisted. In tokamaks, an

axial current is induced to produce a poloidal magnetic field. Thus, a toroidal plasma

current produces a poloidal magnetic field Bp that is typically much smaller in magnitude

than Bt. An added benefit of the toroidal current is resistive (Joule) heating of the plasma.

Unfortunately, gradients in the toroidal current are also a source of free energy that can

drive instabilities like the 1/1 ideal internal kink mode.
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CHAPTER 3

SINGLE PARTICLE MOTION

3.1 Motion in a Static Uniform Magnetic Field

Fundamentally, the descriptions of plasma can be traced back to the motion of particles

that form the plasma. We start by considering the most simple case of a charged particle

in a static uniform magnetic field. Doing so will build intuition, which will help when

constructing the guiding center motion of a charged particle. Later, we will treat the more

difficult case of spatially and temporally varying fields.

A charged particle in a static uniform magnetic field obeys Newton’s second law

m
dv

dt
= qv ×B , (3.1)

from which we can obtain an expression for the particle energy by dotting the equations of

motion with the particle velocity

d

dt

(
1

2
mv2

)
= 0 . (3.2)

Thus, the kinetic energy in a static uniform magnetic field is conserved. When describing

the particle motion in a magnetic field it is convenient to express the particle velocity in

terms of the parallel and perpendicular components with respect to the magnetic field

v = v∥ + v⊥ . (3.3)

In doing so we can easily see that v∥ · (v ×B) = v∥b · (v ×B) = 0, where b = B/B;

hence v∥ is constant. Since v and v∥ are constants, v⊥ must be a constant. Therefore, from

the energy conservation we get a fundamental result, a charged particle in magnetic field

performs a circular motion around the magnetic field line.
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Figure 3.1: Gyro-motion in the plane perpendicular to the static uniform magnetic field
where the magnetic field is pointing into the page.

In order to find the radius of the circular motion, the magnitude of the perpendicular

component of Eq. (3.1) is considered. Note that since we have circular motion in the

plane perpendicular to the magnetic field, the acceleration in this plane is the centripetal

acceleration, thus we have the expression

mv2⊥
ρ

= q |v⊥ ×B| .

From the definition of v⊥, we know it is always perpendicular to B; therefore, we solve for

the gyro-radius, i.e. the radius of the circular motion,

ρ =
mv⊥
qB

. (3.4)

The periodic motion in the plane perpendicular to the magnetic field is expressed in

vector form using the gyro-radius

ρ = ρ (sin γ x̂+ cos γ ŷ) , (3.5)

where the static uniform magnetic field was chosen to be in the z-direction, B = Bẑ, of

a local Cartesian coordinate system. The angle γ is the gyro-angle that characterizes the
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circular motion, see Fig. 3.1, where this angle is time-dependent, γ = γ (t); thus taking the

total time derivative of ρ gives us an expression for the perpendicular velocity

ρ̇ = v⊥ = v⊥ (cos γ x̂− sin γ ŷ) , (3.6)

where v⊥ = ργ̇. Since the particle undergoes a circular motion, the characteristic frequency

is constant; therefore, we let γ̇ = Ω, the gyro-frequency, which by using Eq. (3.5), gives the

form

Ω =
v⊥
ρ

=
qB

m
, (3.7)

where B is the magnitude of the field. Later on, when studying non-uniform fields, this

form for the gyro-frequency at the center of the gyro-motion becomes important. The vector

form of the gyro-radius ρ can be written in terms of v⊥ and b, where b is the unit vector in

the magnetic field direction, b = B/B. Note that if we cross b into v⊥, this gives a vector

in the direction of ρ. This is because for a circular motion b, ρ, and v⊥ are all orthogonal

to each other; hence, the gyro-radius can be expressed as

ρ =
b× v⊥

Ω
, (3.8)

where the magnitude of this equation satisfies Eq. (3.5).

Finally, for the parallel motion of Eq. (3.1), there is no force acting on the particle in

this direction; therefore, a particle with an initial parallel velocity, v∥0, will maintain that

velocity throughout the motion. The result is a helical motion about a magnetic field line

v = v∥0b+ ρΩ (cos γ x̂− sin γ ŷ) . (3.9)

3.2 Magnetic Moment in Static Uniform Magnetic Field

As we saw above, a particle in a uniform magnetic field performs a circular gyro-motion

about that field. This circular motion of the particle can be thought of as an infinitesimal
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ring of current with charge q. Thus, the magnetic moment µ can be defined as

µ = IA = q

(
v⊥
2πρ

)(
πρ2
)
=

1

2
qρv⊥ .

Using the expression for the gyro-radius in Eq. (3.5) gives the result that will be used

extensively, namely,

µ =
mv2⊥
2B

. (3.10)

The gyro-motion of electrons and ions leads to a diamagnetic effect, with the magnetic

moment pointing in the opposite direction of the magnetic field. Hence, the magnetic

moment vector can be expressed as

µ = −µb . (3.11)

3.3 Motion in Static Uniform Electric and Magnetic Fields

We now consider a charged particle in static uniform electric and magnetic fields. The

particle’s motion is governed by Newton’s second law with the full Lorentz force

m
dv

dt
= q (E+ v ×B) . (3.12)

If we dot the above equation of motion with the particle velocity, like we did for the static

magnetic field case, we end up with a kinetic energy evolution equation

d

dt

(
1

2
mv2

)
= qv ·E , (3.13)

thus the kinetic energy is no longer constant in time. The electric field does work on the

particle, changing the particle’s energy over time. In order to study the particle motion in

this case, it is convenient to express Eq. (3.12) in terms of the parallel and perpendicular

components to the magnetic field

m
dv∥

dt
= qE∥ (3.14)
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and

m
dv⊥
dt

= q (E⊥ + v⊥ ×B) . (3.15)

When the parallel component of the equation of motion is integrated with static fields, we

end up with the following expression for the parallel velocity

v∥ (t) = v∥0b+
qE∥

m
t . (3.16)

Here the electric field parallel to the magnetic field accelerates the particle along the mag-

netic field line.

Now we consider the perpendicular component of the equations of motion. Consider

an inertial reference frame moving with velocity vE with respect to the original frame

vE = v⊥ − u , (3.17)

where u is the particle velocity in the frame moving with vE . When we substitute the

expression for the velocity above into the perpendicular equation of motion, Eq. (3.15), we

end up with two separate equations because of the definition of vE , hence

m
dvE

dt
= qE⊥ + qvE ×B (3.18)

and

du

dt
= qu×B . (3.19)

Since vE is constant, the left side of Eq. (3.18) vanishes, and solving for vE yields the

expression for the E ×B drift velocity

vE =
E×B

B2
, (3.20)

which arises from the perpendicular (to B) component of the electric field. This drift does

not depend on the particle charge, hence electrons and ions will drift in the same direction
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across the magnetic field lines. Note that Eq. (3.19) will give the same result that was

obtained above for a static uniform magnetic field. Thus, combining all the velocities,

namely Eqs. (3.6), (3.16), and (3.20), we get

v (t) = v∥0b+
qE∥

m
t+

E×B

B2
+ ρΩ (cos γ x̂− sin γ ŷ) (3.21)

for the particle velocity in static uniform electric and magnetic fields.

3.4 Motion in Slowly Varying Magnetic Field: Guiding Center Motion

If the magnetic field varies slowly in space and time, then the motion of the parti-

cles can overall be characterized by a drift motion. By slowly varying, we mean that the

characteristic length ℓB and time scale τB of the magnetic field

ℓB ∼
∣∣∣∣∇B

B

∣∣∣∣−1

and τB ∼
∣∣∣∣ 1B ∂B

∂t

∣∣∣∣−1

∼ ω−1
B (3.22)

are much larger than the gyro-radius and gyro-frequency

ρ

ℓB
≪ 1 and ΩτB ≫ 1 or

ωB

Ω
≪ 1 . (3.23)

In a magnetically confined plasma, such as those in tokamak devices, the above con-

ditions for the magnetic field hold. Therefore, it is often sufficient to model the energetic

particles using the drift motion. Gaining an insight into the transport of these energetic

particles that can have significant effects on the bulk, fluid type, MHD plasma is paramount

in understanding the behavior of a magnetically confined plasma.

3.4.1 Gyro-frequency in Slowly Varying Magnetic Field

In a uniform magnetic field, we saw that the energy of the particle is conserved. This

leads to circular motion with a constant characteristic frequency, namely the gyro-frequency

Ω = qB/m. Note that in a spatially non-uniform magnetic field, the energy is still con-

served, although for time-dependent magnetic field it is not. Nevertheless, the characteristic
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Figure 3.2: Guiding center motion, particle gyrating about the magnetic field line.

frequency is not constant due to the fact that it is dependent on the magnitude of the mag-

netic field, see Eq. (3.7). In Fig. 3.2 the relationship between the guiding center position

X, the gyro-radius ρ, and the actual position vector x is shown,

X = x− ρ . (3.24)

For a strong, slowly varying magnetic field, we can expand the magnitude of the field about

the guiding center motion

B (x) = B (X+ ρ) = B (X) + ρ ·∇B
∣∣∣
X
+ · · · . (3.25)

If we assume that in the strong, slowly varying magnetic field limit, the zeroth order fre-

quency is the gyro-frequency, we can expand the varying frequency Ω̃ by plugging in the

Taylor expanded field into the expression for Ω (see Eq. (3.7)),

Ω̃ =
qB (x)

m
=

q

m

(
B (X) + ρ ·∇B

∣∣∣
X
+O

(
ρ2
))

.
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Therefore, we see that to the lowest order, the varying frequency Ω̃ is the frequency evaluated

at the center of the gyro-motion, namely

Ω̃ → Ω =
qB (X)

m
. (3.26)

Thus we see that Ω̃ is the gyro-frequency evaluated at the guiding center. A couple of

comments on Ω̃ are appropriate: (i) the first order term has gyro-angle dependence that

comes from ρ (see Eq. (3.5)), and (ii) making a magnitude comparison of the expansion for

Ω̃ gives

Ω̃ ∼ q

m

(
B +

ρ

ℓB
B +

(
ρ

ℓB

)2

B +O
(
δ3
))

= Ω+ δΩ+ δ2Ω+O
(
δ3
)
,

where δ = ρ/ℓB and the approximation ∇ ∼ 1/ℓB was used. Thus as long as δ ≪ 1, the

lowest-order approximation for the characteristic frequency may be used. Note that we

really don’t care to expand the gyro-angle, since it is a coordinate quantity rather than a

physical one. The gyro-frequency Ω, on the other hand, is a physical quantity, thus it makes

sense to expand it in a Taylor series.

3.4.2 Gyro-average

In the guiding center model the fast gyro-motion is averaged out, leaving the slower

guiding center motion. The gyro-motion, which is approximated as circular motion, has

a periodicity of 2π; therefore, we can average a quantity A (γ) that depends on the fast

motion by

⟨A⟩ = 1

2π

∫ 2π

0
A (γ) dγ . (3.27)

For a system with constant frequency ω, we can write the gyro-average as an integral over

time instead of the angle, dγ = d (ωt) = ωdt, thus

⟨A⟩ = ω

2π

∫ 2π/ω

0
A (t) dt . (3.28)
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Consider the gyro-average of the particle velocity ⟨v⟩. The parallel motion has no

gyro-dependence, which leads to the perpendicular component being averaged out, leaving

only the motion along the magnetic field line. Using Eq. (3.6), the gyro-average of the

perpendicular component of the particle velocity comes out to be

⟨v⊥⟩ =
v⊥Ω

2π

∫ 2π/Ω

0
(cos (Ωt)− sin (Ωt)) dt = 0 ,

where we have assumed Ω is constant to lowest-order. This indicates that v⊥ is constant

due to the conservation of kinetic energy since to the lowest-order, we have circular motion

about the magnetic field line. Therefore, the gyro-averaged particle velocity gives only the

parallel streaming term

⟨v⟩ = ⟨v∥⟩+ ⟨v⊥⟩ = v∥ . (3.29)

3.4.3 Guiding Center Motion

If the magnetic field is slowly varying in space according to Eq. (3.22), we can again

Taylor expand the magnetic field about the guiding center

B (x) = B (X+ ρ) = B (X) + ρ ·∇B
∣∣
X
+ · · · , (3.30)

where we see that to the lowest order the magnetic field is evaluated at the guiding center.

Note that if we assume B (X) ≫ ρ ·∇B|X we have circular motion; therefore, the guiding

center velocity to zeroth order in ρ, i.e. all fields evaluated at X, can be written in terms

of parallel and perpendicular components with respect to the local magnetic field

v = v∥b+ ρΩ (cos (Ωt) e1 − sin (Ωt) e2) . (3.31)

Previously, we placed the origin of the position vector to be at the center of the circular

motion and we used Cartesian unit vectors x̂, ŷ, and b, where b was chosen to be in the

z-direction, i.e. b = ẑ (see Eq. (3.5)). Now we have placed the origin of the position vector

at an arbitrary point and have introduced local unit vectors that are dependent on the
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position and the slow time scale of the magnetic field, e1 (x, t) and e2 (x, t), centered at the

guiding center. These local coordinates obey the orthogonality relation

b · e1 × e2 = 1 . (3.32)

Here the guiding center velocity is derived in the usual coordinates (x, t).

In these coordinates, the gyro-angle is not an independent variable, which means we

have to assume Ω is constant in order to gyro-average, since t is an independent variable.

Another approach is to use the guiding center coordinates (R, γ, t), where γ is an inde-

pendent variable, hence gyro-averaging is easier. If we use the guiding center coordinate,

however, a perturbation theory is used instead of the more physical argument of Taylor

expansion of the magnetic field.

For slowly varying magnetic fields, we can write the position vector of a particle in

terms of the fast gyrating motion ρ and the slow guiding center motion X. Taking the total

time derivative and gyro-averaging will give the guiding center velocity; therefore, using

Eq. (3.24) we get

dX

dt
=
dx

dt
+
d

dt

(
v × b

Ω

)
, (3.33)

where ρ was rewritten using Eq. (3.8). Note that dx/dt = v is the particle velocity which

is given by Eq. (3.31). We now take the gyro-average and simplify (see Appendix C for the

complete derivation of the guiding center velocity) to get the guiding center velocity

⟨Ẋ⟩ = v∥b+
E×B

B2
+

1

Ω
b×

(
v∥
∂b

∂t
+ v2∥κ+

v2⊥
2

∇B

B

)
+
µ0µ

qB
J∥ , (3.34)

where κ = −b × (∇× b) = b ·∇b is the magnetic curvature vector. For magnetic fields

that vary slowly in time, the partial time derivative of b is small, i.e.

1

Ω

∂b

∂t
∼ 1

ΩτB
≪ 1 (3.35)

and can be neglected in many cases. In magnetic confinement tokamak devices, a typical fuel
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for fusion reaction is a Deuterium-Tritium mixture (Putvinski, 1998). A D-T fusion reaction

yields an α-particle. For the ITER experiment, it is predicted that at peak performance,

the magnetic field strength will be ∼ 11.8 Tesla. This means the gyro-frequency of the

α-particles is roughly Ω ≈ 5.64 × 108 Hertz. Thus for α-particles the condition Eq. (3.35)

holds for slowly varying magnetic fields (see Eq. (3.23)), in which case we can neglect the

∂b/∂t term.

In the low β-limit, where β is the plasma pressure over magnetic energy

β =
P

B2/2µ0
, (3.36)

the parallel current density, J∥, term can be neglected since it is essentially proportional to

∼ βJ∥. Therefore, in many cases, the guiding center velocity, which we will call vgc from

now on, can be simplified to

vgc = v∥b+
E×B

B2
+

1

Ω
b×

(
v2∥κ+

v2⊥
2

∇B

B

)
. (3.37)

We encountered the first two terms in the above vgc expression for the more simple case of

streaming along the magnetic field line and the drift motion perpendicular to the magnetic

fields due to the electric field. The last two terms come from the curvature, vc, and the

gradient of the magnetic field strength, v∇B. These also cause a drift perpendicular to the

magnetic field. Notice that vc and v∇B depend on particle charge via Ω. This causes a

charge separation that results in an electric field and a rapid E×B drift. This E×B drift,

if left unchecked, will rapidly propel the entire plasma radially outward to hit the wall of

the tokamak. Again, equilibrium plasma confinement in a tokamak cannot exist with only

a purely toroidal magnetic field. If a poloidal magnetic field is introduced, a twist in the

magnetic field to neutralize the charge separation, i.e. the opposite charges can now travel

poloidally along the magnetic field to neutralize the charge build-up (Freidberg, 2014).
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Figure 3.3: Potential energy for a particle in a magnetic mirror field. This mirror field
is realized in tokamaks as particles travel radially inwards (in major radius R) to stronger
magnetic field (see Eq. (2.64)), causing particles with not enough parallel kinetic energy to
be trapped inside the magnetic potential.

3.5 Motion in Axisymmetric Tokamak

In larger aspect ratio tokamaks, particles move under the joint influence of toroidal

magnetic field and the much smaller poloidal magnetic field induced by the toroidal plasma

current. We saw that the toroidal magnetic field was proportional to 1/R (see Eq. (2.65)).

When looking at the poloidal cross section, the magnetic field is greater on the inside of a

flux surface, hence we have a magnetic mirror setup. This leads to populations of trapped

and passing particles. Unlike the magnetic mirror setup, though, for tokamaks, the passing

particles are still confined. A magnetic mirror with no electric field acceleration means

kinetic energy is conserved

E =
1

2
mv2 =

1

2
mv2∥ + µB . (3.38)

At bounce points, v∥ = 0 (see Fig 3.3) and all the energy is in the effective potential term,

i.e. E → µBmax. Energy conservation then dictates that

1

2
mv2∥ + µB = µBmax . (3.39)

It is useful to consider the pitch angle α that measures the pitch away from the magnetic

field. In doing so, we can come up with an approximate value for the parallel velocity to

determine if the particle is trapped or passing. The pitch angle has the relation
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sin2 α =
v2⊥
v2

=
B

Bmax
. (3.40)

Here we can relate the magnetic fields at the bounce point and some other point where

the parallel velocity is non-zero. We will specifically consider the point where the parallel

velocity is the greatest, which means the effective potential is minimum, i.e. µB → µBmin.

First, we evaluate the toroidal magnetic field at θ = π on some flux surface with radius

r = r0, where the magnetic field strength is maximum; thus, via Eq. (2.65)

Bmax =
B0R0

R0 − r0
. (3.41)

Now at θ = 0 where the magnetic field strength is minimum on the same flux surface

Bmin =
B0R0

R0 + r0
. (3.42)

Using the pitch angle relation (see Eq. (3.40)) we can introduce the parallel velocity via

trigonometric identity cos2 θ + sin2 θ = 1 and the expressions for Bmin and Bmax to get

v2∥,max

v2
= cos2 α = 1− R0 − r0

R0 + r0
. (3.43)

Hence, simplifying and introducing the large aspect ratio limit (r0 ≪ R0), we get an ap-

proximate condition for a trapped particle

v∥,max ≈ v
√
2ϵ . (3.44)

Therefore, if a particle’s maximum parallel velocity, i.e. parallel velocity at θ = 0, is equal

to or less than the quantity v
√
2ϵ, the particle will be trapped.

3.5.1 Trapped/Passing Condition

In the above explanation, we derived the condition for a trapped particle. Essentially,

we used the conservation of particle energy in a magnetic field without acceleration by an
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electric field. Since the particle energy is conserved, we have ∆E = 0 that allows us to say

that the energy difference between two points along the orbit is zero. Choosing the point

θ = 0 that corresponds to Bmin, and θ = π that corresponds to Bmax on a flux surface, we

have the energy conservation statement

1

2
mv2∥,max + µBmin = µBmax , (3.45)

with the parallel velocity a maximum at Bmin. We divide Eq. (3.45) by E to get the

expression we essentially had above (see Eq. (3.43)),

v2∥,max

v2
= 1− Bmin

Bmax
∼ 2ϵ . (3.46)

Therefore, as explained above, we have the conditions

v2∥,max

v2
= 2ϵ (barely trapped) ,

v2∥,max

v2
< 2ϵ (trapped) . (3.47)

Let us analyze this another way. As before, we have Bmax at θ = π and Bmin at θ = 0

on a flux surface. For a passing particle, the particle energy is greater than the maximum

effective potential, Veff,max = µBmax, thus we have

E
µBmax

> 1 ,

which means the particle escapes the potential and is no longer trapped. Now consider a

case where the particle energy is barely smaller or even equal to Veff,max. In this case the

particle is said to be barely trapped, i.e. barely not enough energy to escape the potential.

This gives the condition

E
µBmax

≤ 1 .

Now consider the case where the parallel velocity is maximum, v∥,max, which means from

the energy conservation, the effective potential is minimum, Veff,min = µBmin. Since E is
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the combination of v∥,max and Veff,min, E can never be less then µBmin; therefore, we have

the condition

E
µBmin

> 1 .

By introducing the pitch angle variable, λ = µB0/E , and using Eq. (2.66) for the large

aspect ratio, 1 ≫ ϵ = r/R0, we can write the trapped/passing condition (Helander and

Sigmar, 2005) as

passing if: 1− ϵ > λ > 0

trapped if: 1− ϵ < λ < 1 + ϵ .

(3.48)

3.5.2 Banana Orbit

Banana orbits are due to the combined effects of guiding center motion parallel to

the magnetic field together with the curvature and gradient drift caused by the toroidal

magnetic field. Recall the guiding center velocity given in Eq. (3.37) is

vgc = v∥b+
1

Ω
b×

(
v2∥κ+

v2⊥
2

∇B

B

)
,

where the E ×B drift has been omitted. Assuming the lowest-order toroidal field is domi-

nant, i.e. B ≈ Btφ̂, the gradient and curvature drifts are

v∇B =
v2⊥
2Ω

b×∇B

B
=

v2⊥
2RΩ

Ẑ (3.49)

and

vc =
v2∥

Ω
b× κ =

v2∥

RΩ
Ẑ , (3.50)

where Ω = qBt/m since we assumed Bt ≫ Bp. Note that the curvature of the magnetic field

in this simple geometry is purely radially inward, κ = −R̂. Therefore, the banana orbit in

the axisymmetric field is governed by the velocity (Gurnett and Bhattacharjee, 2017)

vgc = v∥b+
1

RΩ

(
v2∥ +

v2⊥
2

)
Ẑ . (3.51)
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Figure 3.4: Depending on the initial parallel velocity, a particle in an axisymmetric field
(an ion is depicted here) will bounce inward or outward due to the magnetic curvature and
gradient drifts.

Thus, we see that as the particle moves along the toroidal magnetic field line, it drifts

in the Z-direction. We can analyze this in the poloidal plane by considering an ion with

v∥ in the positive φ-direction. Initially, the parallel velocity points opposite to the drift

velocity (see Fig. 3.4). Therefore, it will not stay on the flux surface but rather drift up.

A trapped particle encounters a stronger magnetic field and bounces. The particle travels

up, it again encounters a stronger magnetic field as it travels along a different flux surface

and bounces again, and thus the cycle continues. Therefore, what determines whether the

particle is reflected inwards or outwards is the initial parallel velocity and the gradient and

the curvature drifts.

Banana Orbit Width

The banana orbit width, measured across θ = 0 to θ = π, can be found by using the

conservation of canonical toroidal angular momentum. Recall that the canonical toroidal

angular momentum is given by

Pφ = mR2φ̇+ qRAφ . (3.52)

We introduce the poloidal flux variable ψp, which is related to the toroidal component of the

vector potential. The poloidal magnetic flux, i.e. flux through a ribbon wrapped around
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toroidally, is

Φp =

∫
B · θ̂ dS =

∮
A · dℓ . (3.53)

Integration leads to the definition of ψp,

Φp = 2πRAφ ≡ −2πψp . (3.54)

We also use vφ ≡ Rφ̇ to rewrite the toroidal canonical angular momentum in terms of vφ

and ψp,

Pφ = mRvφ − qψp . (3.55)

We are interested in the average width of the banana orbit, thus the guiding center motion

of these trapped particles suffices. Taking the gyro-average of Eq. (3.55), the toroidal

canonical angular momentum (Helander and Sigmar, 2005) gives

⟨Pφ⟩ = mRv∥bφ − qψp , (3.56)

where bφ = b · φ̂ = Bφ/B. Since Pφ is a conserved quantity in toroidally symmetric

magnetic geometry, we know ∆Pφ = 0. Thus, we can say ∆⟨Pφ⟩ = 0 to obtain a relation

between the change in parallel velocity and the change in poloidal flux variable

∆ψp =
mg

qB
∆v∥ . (3.57)

Here we have neglected the variation of the toroidal flux quantity g = RBφ along the

particle trajectory.

Now we want to express ∆ψp in terms of the mid-plane banana width ∆rb. In order to

do so, we go back to the poloidal magnetic flux introduced in Eq. (3.53). First, we Taylor

expand Bθ, since it is assumed to be small compared to the toroidal magnetic field Bφ,

about the center of the banana orbit r = r0

Bθ (r) = Bθ (r0) + (r − r0)
∂Bθ

∂r

∣∣∣
r0
+ · · · ,
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where r0 is the radius of the flux surface the particle started out at. Recall, we assume

that the poloidal magnetic field was small and roughly constant; therefore, taking only the

lowest order term is a good rough estimate when calculating the banana orbit width. We

now integrate the lowest order Bθ = Bθ (r0) expansion to find the poloidal magnetic flux

between θ = 0 and θ = π, thus

∆Φp ≈ 2πBθ

∫ R′

Rπ

R dR = πBθ

(
R

′2 −R2
π

)
.

Here we have used R = R0 + r cos θ to define R′ = R0 + r cos (0) = R0 + r′ and Rπ =

R0 + r cos (π) = R0 − rπ; with the result ∆rb = r′ − rπ. Therefore, ∆Φp comes out to be

∆Φp = 2πBθR0

(
∆rb +

∆r2b
2R0

)
≈ 2π∆rbBθR0 , (3.58)

where we assumed ∆r2b ≪ R0 in the large aspect ratio limit. Also, note that ∆Φp =

−2π∆ψp, from Eq. (3.54). Combining these results and using Eq. (3.44) for the approximate

value of v∥, we end up with the final approximation for the banana orbit width

∆rb =

√
2qsv

Ω
√
ϵ
, (3.59)

where the safety factor qs appearing in Eq. (2.62), and the inverse aspect ratio, ϵ = r/R0,

is introduced.

Banana Orbit Period

Trapped particles bounce between two bounce points caused by the gradient in the

magnetic field strength along the magnetic field line of a tokamak. For the bounce period

τb, we want the velocity in the poloidal direction v ·∇θ, where ∇θ is the contravariant form

of the θ unit vector. But, since we are mostly concerned with the drift motion along the

magnetic field, we get the parallel velocity in the poloidal direction upon gyro-averaging

⟨v ·∇θ⟩ = v∥b ·∇θ =
v∥bθ

r
. (3.60)
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Figure 3.5: Trapped (banana) and passing orbits on the poloidal plane.

Ignoring the particle deviation from a flux surface (White, 2013), the bounce period of a

trapped particle, in general, is given by

τb =

∫
dt =

∮
dθ

θ̇
=

∮
dθ

v∥b ·∇θ
. (3.61)

For the parallel velocity, we use an expression that can be obtained from Eq. (3.38)

v∥ =

√
2

m
(E − µB) . (3.62)

Throughout our derivation for trapped/passing particles, we have used the assumption that

Bt ≫ Bp, hence B ∼ Bt. Also, we have assumed a large aspect ratio and expressed the

magnetic field according to Eq. (2.66). With these assumptions, the parallel velocity can

be written as

v∥ =

√
2E
m

√
1− λ (1− ϵ cos θ) ,

where λ = µB0/E . Using the identity cos θ = 1−2 sin2 (θ/2) and rearranging gives the form

which will be used for the integration

v∥ = v
√
2ϵλ

√
κ2 − sin2 (θ/2) . (3.63)
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Note that v =
√
2E/m and we have introduced a parameter κ that has the form

κ2 =
1− λ (1− ϵ)

2ϵλ
. (3.64)

For passing particle, κ > 1, and for trapped particle ,0 < κ < 1. Therefore, κ is a parameter

that distinguishes if a particle is trapped or not since it is related to λ. We now substitute

the parallel velocity into the integral for the bounce period (see Eq. (3.61))

τb =

∮
rdθ

bθv∥
=

1

v
√
2ϵλ

rB0

Bθ

∮
dθ

σ
√
κ2 − sin2 (θ/2)

. (3.65)

Since we are neglecting the deviation from the flux surface both r and bθ come out of

the integral (we are assuming that bθ is constant along the θ-direction). Notice that the

parameter σ = ±1 was introduced into the integral. For trapped particle, when it bounces,

the velocity changes signs; therefore, σ accounts for the change of sign of the parallel velocity

(Helander and Sigmar, 2005). We now introduce the safety factor (see Eq. (2.62)) to get

the expression (for a careful consideration of the integral Eq. (3.66), see Appendix D)

τb =
qsR

v
√
2ϵλ

∮
dθ

σ
√
κ2 − sin2 (θ/2)

. (3.66)

Once the integral above is evaluated for the case of trapped (0 < κ < 1) and passing (κ > 1)

particles, we get the following two time periods. The first is for the full orbit of the passing

particles

τb =
4qsR

v
√
2ϵλ

K
(
κ−1

)
κ

. (3.67)

The second is for the full orbit of the trapped particles

τb =
8qsR

v
√
2ϵ
K (κ) . (3.68)
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Figure 3.6: NIMROD uses a left-hand cylindrical coordinate system. The magnetic flux
ψ is plotted as the contours and the particles are pushed in the equilibrium fields only. The
vc and v∇B drifts point in the negative Z-direction causing the ion with initial negative
parallel velocity to bounce outward off its starting flux surface and the ion with the positive
initial parallel velocity to bounce inward from the same starting point.

The elliptic integral, K(k), is defined on the interval 0 ≤ x < π/2, where k is called the

modulus that is defined on the interval 0 ≤ k < 1. The elliptic integral has the form

K (k) =

∫ π/2

0

dx√
1− k2 sin2 x

. (3.69)

3.6 Numerical Results for Motion in Axisymmetric Tokamak

The banana orbit width and the bounce period were derived with the following main

assumptions: (i) circular cross-section, (ii) small aspect ratio, i.e. ϵ = r/R0 ≪ 1, and

(iii) dominant toroidal magnetic field, i.e. B ∼ Bt. For the bounce period, an additional

assumption was made: when integrating, the particle does not deviate from the flux surface

during the transit of the banana orbit. These assumptions were made because particle

motion in more complex magnetic geometry is difficult and most often cannot be obtained

analytically. Nevertheless, Eqs. (3.59) and (3.68) give a rough estimate and some insight into
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Figure 3.7: A contour plot of normalized poloidal magnetic flux ψ̄p is overlayed by three
different particle orbits. The innermost orbit (1) is barely trapped, the middle orbit (2)
is passing since it circumnavigates the entire flux surface, and the outermost orbit (3) is
deeply trapped.

these behaviors. We will compare numerical results with the analytical expression for the

banana orbit width and the bounce period. We consider a case with circular cross-section

where the particles are pushed along the equilibrium fields. Note that in the numerical

simulation, which represent the exact solution to within numerical errors, the assumptions

ϵ≪ 1 and B ∼ Bt are not applied; also, the banana orbit does deviate from the flux surface

during the transit. Therefore, we should expect differences in the results from the analytic

expression and the numerical values we present here.

In Fig. 3.4, we saw that for vc and v∇B drifts pointing in the positive Z-direction with a

right-hand cylindrical coordinate system, the initial positive parallel velocity bounces inward

and initial negative parallel velocity bounces outward. In NIMROD, a left-hand cylindrical

coordinate system is used and the vc and v∇B drifts, due to the equilibrium magnetic field
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(a) (b)

Figure 3.8: Figure (a) shows the orbit of barely trapped (1) and deeply trapped (3)
particles overlayed on a contour plot of ψ̄p. Figure (b) shows the corresponding safety
factor qs where the value of qs is shown for orbits 1 and 3 at their initial flux surfaces.

orientation, point in the negative Z-direction. This results in similar behavior. Thus, as we

can see from Fig. 3.6, that we end up with the same underlying physics as predicted by the

numerical results.

Particles with different initial positions and initial parallel velocities were considered

numerically. In Fig. 3.7, three of those cases are shown. The innermost orbit is the barely

trapped particle, where the parallel velocity is large enough so that it travels farther along

the magnetic field line until it encounters a strong enough effective magnetic potential,

Veff = µB, and then bounces. The middle orbit is the passing particle, where the parallel

kinetic energy is always greater than magnetic potential, hence it never bounces. The

outermost orbit is the deeply trapped particle where the parallel kinetic energy is much

smaller than the magnetic potential (see Fig. 3.3).

The banana width and the bounce period for barely trapped (1) and deeply trapped (3)

particles are considered (see Fig. 3.7) and the results from Eqs. (3.59) and (3.68) with the

assumptions that were used in deriving the two expressions, are compared to the numerical

values. A Deuterium ion with mass m = 3.344× 10−27 kg and charge q = 1.602× 10−19 C

was pushed along the equilibrium fields. The deeply trapped particle is considered first.



55

The particle has an initial position of (Rinit, Zinit) = (1.284, 0) with initial velocity v⊥0 =

3.0 × 105 m/s and v∥0 = 1.0 × 105 m/s. From Fig. 3.8, we see that at (Rinit, Zinit), the

normalized poloidal magnetic flux has the value ψ̄p = 0.7708, which gives the safety factor

of qs = 1.677. Since we are assuming B ∼ Bt, the magnetic field strength at the magnetic

axis is roughly B0 = 0.9676 T and at the initial position (Rinit, Zinit), we have Bt = 0.7843 T.

The major radius for the equilibrium set up is R0 = 1.06 m; thus the inverse aspect ratio

for the flux surface given at (Rinit, Zinit) is ϵ = 0.2116, for which the small aspect ratio limit

does not hold. When using the values provided above the following analytical values are

obtained: ∆rb = 0.0211 m and τb = 1.171 × 10−4 s, for the banana width and the bounce

period, respectively. From the numerical simulation, the banana width is ∆rb = 0.0205 m

and the bounce period is τb = 0.772 × 10−4 s. Next we consider the barely trapped (3)

particle. The initial position of the barely trapped particle is (Rinit, Zinit) = (1.147, 0),

hence the inverse aspect ratio comes out to be ϵ = .08161. The initial velocities of the

particle are v⊥0 = 3.0 × 105 m/s and v∥0 = 1.281 × 105 m/s. Again, from Fig. 3.8 we

see that the normalized poloidal flux is ψ̄p = 0.2708 with the safety factor of qs = 0.8488.

The magnetic field strength at the axis is the same as before, while at the initial position,

we have Bt = 0.8935 T. Using these values, the analytical results for the barely trapped

particle comes out to be ∆rb = 0.0311 m for the banana width, where the numerical result

is ∆rb = 0.0376 m. For the bounce period we need a little more explanation of the results.

First, when

λ =
µB0

E
=
v2⊥B0

v2B
(3.70)

was calculated (recall Eq. (3.48)), the result came out to be λ = 0.916, which gave the

following value for κ = 1.03 (see Eq. (3.64)). Notice that κ > 1, which is the condition for

passing particles. Thus, we already see a discrepancy in the analytical results. Nonetheless,

in order to calculate the bounce time we let λ = 1 since as λ→ 1−ϵ = 0.9135, which is close

to the λ calculated from Eq. (3.70), the particle’s bounce period approaches infinity since

it becomes a passing particle as it reaches the boundary λ = 1− ϵ (see Eq. (3.48)). Letting

λ = 1, we end up with the analytical bounce period of τb = 9.84× 10−5 s which agrees with
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the numerical result fairly well, τb = 8.64× 10−5 s. As expected, these results do not agree

perfectly. This is due to the underlying assumptions, i.e. ϵ≪ 1, B ∼ Bt, and no deviation

from flux surface during orbit transit. Keep in mind that in the numerical simulations, the

particles are pushed along their trajectories to within small numerical errors. Nevertheless,

it is interesting to note that for the barely trapped case, which had the smaller ϵ value, the

analytical bounce time was closer to the numerical result.
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CHAPTER 4

SERENDIPITY SHAPE FUNCTIONS IN NIMROD’s PARTICLE SIMULATION

The particle-in-cell (PIC) approach uses the equations of motion to push computational

particles. Thus the fields, e.g. electric, magnetic (or current density), must be known at the

particle position (R,Z, φ). In NIMROD, the fields and the coordinates (R,Z) are discretized

on a two-dimensional (2D) finite element grid in the poloidal plane. This means that we

need to check if the particle is actually in the finite element cell in question or not. Thus, a

searching algorithm is needed to check if a particle’s logical coordinates (ξ, η) are within the

finite element cell, where each cell is defined on the interval [−1, 1] in both logical directions.

NIMROD has parallel algorithm capabilities. This means that a particle could leave

a discretized block in the poloidal plane (handled by a single compute node) and enter

another. In the original PIC implementation for NIMROD, this was handled by exchanging

particles between processors owning different blocks (Kim et al., 2004). This approach also

led to poor load balancing since processors owning blocks in the higher pressure core had

significantly more particles than those owning blocks in the low-pressure edge region of

the plasma. In order to avoid needing to exchange particles and permit almost perfect load

balancing, the field information was incorporated into global structures so that all processors

could push particles throughout the global domain. These structures eliminate the need

for the processors to hand-off particles whenever they leave one block in the computational

domain and enter another. These improvements on the previous code, where the field

information was stored in local structures, eliminated the time-intensive communication

between processors during the push and equalized the number of particles pushed by each

processor.

In Fig. 4.1, the logical and the physical grids for the DIII-D giant sawtooth case is

shown. The total computational domain is divided up between different processors, where

16 processors (blocks in the poloidal plane) were used for the case shown in the figure.
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(a) (b)

Figure 4.1: Figure (a) shows the logical grid that the fields are defined on in terms of either
the 2D Lagrange or Serendipity basis sets. Figure (b) shows the physical grid for DIII-D
geometry. Here computational domain is divided up amongst 16 different processors. The
magnetic axis indicated by a black dot on the physical grid corresponds to the η-axis (ξ = 0)
on the logical grid.

Each processor’s computational domain is discretized on a 2D finite element grid and each

finite element uses a basis of 2D Lagrange polynomials. When pushing the computational

particles, the full set of coefficients in the 2D Lagrange basis expansion could be used

to deposit particle information to the finite element nodes and evaluate the fields in the

push. Unfortunately, using the full set to deposit particle information onto NIMROD’s grid

requires evolving particle shape functions. This is time consuming. Instead, we choose to

assume δ-function, point particles, which make deposition easy and instead retain higher-

order accuracy in the field evaluation used for the particle push. Nevertheless, the 2D

Lagrange coefficients are directly used for the Serendipity basis sets. This is done since

the nodal location of the Serendipity set coincide with the Lagrange set (see Fig. 4.2).

Therefore, when gathering and scattering the computational particles using the Serendipity

basis, only the coefficients that coincide with the 2D Lagrange basis are used. This was

done to reduce memory in the global field storage yet allow for potentially higher order

accuracy compared to the existing bilinear implementation.

We now go into more details of the gathering and scattering process that is essential
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Figure 4.2: The top two cells are the node location for the Serendipity sets (left: bicubic
and right: biquartic) while the bottom two cells are the node locations for the Lagrange
sets (left: bicubic and right: biquartic). The nodal locations for both are the same except
the Serendipity has fewer nodes in the center of the finite element cell.

to the PIC method in a finite element code like NIMROD. We will also formally state how

the fields in NIMROD are represented and how the physical coordinates can be expanded

via the basis sets, 2D Lagrange or Serendipity. A Newton-Raphson iteration is used for the

nonlinear mapping between the logical and physical coordinates. A different form (more

convenient for NIMROD, than Eqs. (2.55) and (2.56)) for the equations of motion is used

for pushing the computational particles (see Eqs. (4.1) and (4.2)). The Serendipity shape

functions were tested with tracer particles pushed along the equilibrium fields. The terms

that appear in the equilibrium equations of motion are presented. For the computational

particles to alter the fields, particle information needs to be deposited onto the finite element

grid. We discuss this further in Chapter 5. Here we present the results of using the reduced

set of Serendipity shape functions for tracer particles compared to the full 2D Lagrange

polynomials.

4.1 Gathering and Scattering of Particles on the Finite Element Grid

In NIMROD, 2D finite elements are used in the poloidal plane and a Fourier series

decomposition is used in the periodic, toroidal direction (Sovinec et al., 2004). Higher order

Lagrange polynomials are used to represent the field quantities on the finite element grid



60

with scalar and vector quantities discretized as

a (R,Z, φ) =
∑
k,n

(
akne

inφ + a∗kne
−inφ

)
Lp
k (ξ, η) (4.1)

and

A (R,Z, φ) =
∑
k,ℓ,n

(
Akℓne

inφ +A∗
kℓne

−inφ
)
Lp
k (ξ, η) eℓ . (4.2)

The finite element basis functions Lp
k of polynomial degree p are defined on the logical (com-

putational) coordinates (ξ, η). The quantities akn and Akℓn, with their complex conjugates

a∗kn and A∗
kℓn, are the complex coefficients for the expansions in 3D. Each index in Eqs. (4.1)

and (4.2) represents the following: (i) k indicates the finite element basis function, which for

NIMROD’s nodal finite element representation corresponds to a point (node) in the poloidal

plane, (ii) ℓ gives the vector components, e.g. ℓ = R,Z, φ for cylindrical coordinates, and

(iii) n is the Fourier mode.

For PIC to operate inside a finite element code like NIMROD, a mapping from the

physical (R,Z) to logical (ξ, η) coordinates needs to take place. This central process of PIC

simulation, known as gathering and scattering (Kim et al., 2004), is essential in pushing

the particles along the fields. The computational particles in PIC may be pushed via the

guiding center equations of motion

Ẋgc = v∥ b+
E×B

B2
+

m

qB4

(
v2∥ +

v2⊥
2

)(
B×∇

(
B2

2

))
+
µ0mv

2
∥

qB2
J⊥ (4.3)

and

mv̇∥ = −b · (µ∇B − qE) , (4.4)

where the rapid gyro-motion has been averaged out and the force on a magnetic moment in

a non-uniform magnetic field is present in Eq. (4.4). In Eq. (4.3), the magnetic curvature

κ was expressed in terms of the current density via the pre-Maxwell form of Ampere’s law

(see Eqs. (2.56) and (3.34)). The guiding center velocity, Eq. (4.3) will be discussed again

in Chapter 5. Since the field quantities in the equations of motion are updated at each time
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step, the mapping from (R,Z) to (ξ, η) (i.e. gathering) and pushing via the equations of

motion (i.e. scattering) of computational particles on the finite element grid happens at

each time step.

The mapping between the physical and logical coordinates (or vice-versa) is nonlinear,

thus an iterative method is employed. The physical (R,Z) coordinates are expanded in

terms of continuous basis functions as follows:

R =
∑
k=1

RkN
p
k (ξ, η) , Z =

∑
k=1

ZkN
p
k (ξ, η) , (4.5)

where the coefficients (Rk, Zk) correspond to the coordinates (R,Z) at the finite element

node k and Np
k are the basis functions of polynomial degree p in ξ and η for the node k. Here

Np
k (ξ, η) represents a larger set of basis functions that include the Lp

k’s in Eqs. 4.1 and 4.2

as one possibility. For the PIC algorithm in NIMROD, either the Lagrange Lp
k, Serendipity

Sp
k , or the reduced Serendipity spk polynomials are implemented for the mapping and the

field evaluation.

For the nonlinear mapping between logical (ξ, η) and physical (R,Z) coordinates, the

Newton-Raphson method is utilized. Consider a vector function f (x0 +∆x) where ∆x =

x− x0 is a small displacement from x0. Using a Taylor expansion, the vector function (in

our case the coordinates R and Z) is expanded to first order as

fi (x0 +∆x) ≈ fi (x0) +
n∑

j=1

∂fi
∂xj

∆xj , i = 1, 2, ..., n , (4.6)

where n is the dimensionality of the problem. We can express the above Taylor expansion

in vector form


f1 (x0 +∆x1)

...

fn (x0 +∆xn)

 =


f1 (x0)

...

fn (x0)

+


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...

∂fn
∂x1

· · · ∂fn
∂xn




∆x1

...

∆xn

 . (4.7)

The matrix that appears on the right side is the Jacobian matrix J , which consists of the
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partial derivatives of the vector function f in terms of the variables xj . In a more compact

form

f (x0 +∆x) = f (x0) +J∆x . (4.8)

The task is to find the roots of the above expression. In order to do so, we demand that

f (x0 +∆x) = 0. Recall that ∆x = x− x0, thus solving Eq. (4.8) for x gives

x = x0 −J −1f (x0) , (4.9)

where J −1 is the inverse of the Jacobian matrix. The above expression allows for the

following iteration

x(i+1) = x(i) −J −1
(i) f

(
x(i)

)
, (4.10)

where i on the inverse Jacobian indicates that it is evaluated at that iteration. Using

Eq. (4.10), we can update the values x(i+1) if we know x(i), assuming that J −1
(i) can be

computed. The initial starting point of the iteration, i.e. x(0), is chosen to be at the center

of the finite element cell. The iteration for the Newton-Raphson method is continued until

some tolerance is met, at which point the logical coordinates (ξ, η) agree (to within the

desired tolerance) with the physical coordinates (R,Z) that the particle has been pushed

to.

In NIMROD’s PIC routine the physical coordinates are expanded in terms of the logical

ones (see Eq. (4.5)). Note that we have f
.
= (R,Z) and x

.
= (ξ, η), therefore via Eq. (4.6)

we get

R (ξ0 +∆ξ, η0 +∆η) ≈ R (ξ0, η0) +
∂R

∂ξ
∆ξ +

∂R

∂η
∆η ,

Z (ξ0 +∆ξ, η0 +∆η) ≈ Z (ξ0, η0) +
∂Z

∂ξ
∆ξ +

∂Z

∂η
∆η ,

(4.11)

where (ξ0, η0) are the logical value at the center of the finite element cell in the poloidal

plane. We solve these equations for the new logical variables
(
ξ(i+1), η(i+1)

)
in terms of

the old ones
(
ξ(i), η(i)

)
. This gives us the following iterative method of finding the logical
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coordinates for the known physical coordinates

 ξ(i+1)

η(i+1)

 =

 ξ(i)

η(i)

+
1

det
(
J (i)

)


∂Z

∂η
−∂R
∂η

−∂Z
∂ξ

∂R

∂ξ


(ξ(i),η(i))

 R−R(i)

Z − Z(i)

 . (4.12)

Here the determinant of the Jacobian matrix, det
(
J (i)

)
, and the derivatives in the matrix

are evaluated at
(
ξ(i), η(i)

)
. In order to evaluate the Jacobian matrix, we need to take the

derivatives of the polynomials Np
k (ξ, η) in Eq. (4.5). The determinant of the Jacobian for

Eq. (4.12) is simply

det (J ) =
∂R

∂ξ

∂Z

∂η
− ∂R

∂η

∂Z

∂ξ
. (4.13)

4.1.1 Bilinear Shape Functions

Consider the simplest example of the lowest polynomial order, i.e. bilinear case. This

means products of 1D linear functions in ξ and η. Similar steps can be taken for higher

order polynomials. The only difference is that more terms will be introduced making the

analytical (and computational) algebra more tedious. Note that the bilinear polynomials for

the Lagrange and Serendipity bases are the same. The bilinear polynomial can be expressed

as

N1
k (ξ, η) = a1 + a2ξ + a3η + a4ξη , (4.14)

where −1 ≤ ξ, η ≤ 1. In two dimensions, in order to indicate the location of the node, we

introduce two other variables {ξ′, η′} for each node k to clarify what the index k means. As

an example, consider the node at the lower left corner of a finite element, where this node

is indicated by k = 1 with ξ′ = −1 and η′ = −1, i.e. k = 1 =⇒ {−1,−1}, (see Fig. 4.3);

hence we have

N1
1 (ξ, η) ≡ N1

{−1,−1} = a1 − a2ξ − a3η + a4ξη = a (1− ξ) (1− η) . (4.15)

Note that {ξ′, η′} is essentially given by the value of (ξ, η) of the location of node k. The

simplifying assumption that all a’s are the same was made to obtain the last form in
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Figure 4.3: A square finite element cell with a bilinear decomposition consists of 4 vertex
node locations at the corners of the cell. The finite element cell is defined on the interval
[−1, 1] for both ξ and η. The center of the cell is placed at the location (0, 0). The locations
of the nodes are indicated by dots.

the above expression. This is true for simple square elements. The coefficient a is the

normalizing factor so that at the node location {−1,−1} we have N1
1 = 1.

Using the form given in Eq. (4.15), the polynomials for the bilinear case, which consists

of four nodes (see Fig. 4.3), are

N1
1 =

1

4
(1− ξ) (1− η) , N1

2 =
1

4
(1 + ξ) (1− η) ,

N1
3 =

1

4
(1 + ξ) (1 + η) , N1

4 =
1

4
(1− ξ) (1 + η) .

(4.16)

Using the above bilinear basis functions we can now express the partial derivatives of the

(R,Z)-expansion (see Eq. (4.5)). Letting Gk
.
= {Rk, Zk} represent the coefficients at node k
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for both R and Z, allows us to write the partial derivatives in terms of the coefficients

∂G

∂ξ
=

1

4

[
(G2 −G1 +G3 −G4) + η (G1 −G2 +G3 −G4)

]
∂G

∂η
=

1

4

[
(G4 −G1 +G3 −G2) + ξ (G1 −G4 +G3 −G2)

]
.

(4.17)

If we let ξ = 0 and η = 0, i.e. the center of the finite element cell, the two later terms

in Eq. (4.17) vanish. Thus we can, in general, separate the determinant of J into terms

evaluated at the center and at the ith iteration
(
ξ(i), η(i)

)
as

det (J ) =

(
∂R

∂ξ

∂Z

∂η
− ∂R

∂η

∂Z

∂ξ

)
(0,0)

+

(
∂R

∂ξ

∂Z

∂η
− ∂R

∂η

∂Z

∂ξ

)
(ξ(i),η(i))

(4.18)

This indicates that to start the Newton-Raphson iteration, it would be convenient to begin

the iteration from the origin of the finite element cell and then update the Jacobian via the

terms that have ξ and η dependence throughout the iteration.

4.2 Serendipity Shape Functions

As was mentioned above, Serendipity shape functions are implemented in NIMROD’s

PIC routine for the mapping from physical to logical coordinates (or vice-versa) and for

the field evaluation. Therefore, we will now give a few general comments regarding the

Serendipity polynomials. Afterward, we will give a method for constructing the nodal

Serendipity polynomials from the closely related Lagrange polynomials by considering the

fourth-order (biquartic) case.

In NIMROD’s nodal finite element approach, basis functions have C0 continuity be-

tween cells. By forming a tensor product of two Lagrange polynomials in two orthogonal

directions (logical (ξ, η)), one can build a Lagrange set in two dimensions. We define this

2D region Q2 as a bi-unit square

Q2
p = {−1 ≤ ξ, η ≤ 1} , (4.19)

where p indicates the polynomial degree that represents the 2D bi-unit square region. The
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ξ2 ξη η2

ξ3 ξ2η ξη2 η3

ξ4 ξ3η ξ2η2 ξη3 η4

ξ5 ξ4η ξ3η2 ξ2η3 ξη4 η5

ξ6 ξ5η ξ4η2 ξ3η3 ξ2η4 ξη5 η6

ξ7 ξ6η ξ5η2 ξ4η3 ξ3η4 ξ2η5 ξη6 η7

Figure 4.4: Terms that are included in P2
4 are shown in red.

Serendipity set that doesn’t include the full tensor product of the interior nodes as does the

Lagrange polynomials (Arnold and Awanou, 2011), is also defined on the similar bi-unit

square that we will call

S2
p = {−1 ≤ ξ, η ≤ 1} . (4.20)

The nodal Serendipity set can be built from the Lagrange polynomials; therefore, it can be

considered as a subset of the Lagrange polynomials with fewer degrees of freedom. Note

that as long as all the cell boundary nodes are kept in the Lagrange polynomial set, and

the Serendipity sets are built from them, C0 continuity will be valid for the Serendipity sets

as well. As for the interior nodes, there is some freedom in choosing the nodal locations

(Karniadakis et al., 2005). For the Serendipity biquartic case the interior node was placed

at the center of the finite element cell.

Figures 4.4 and 4.5 are examples of Pascal’s triangle that is useful when talking about

the terms considered in the Serendipity set. In order to build complete Serendipity sets,

we pick the order p that spans the bi-unit square S2
p and then add the two extra terms

{ξpη, ξηp}, thus

S2
p = P2

p + span {ξpη, ξηp} , (4.21)

where P2
p , also defined on the bi-unit square P2

p = {−1 ≤ ξ, η ≤ 1}, includes all the terms

in Pascal’s triangle up to the order p (see Fig. 4.4). Therefore, if we were to build the
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ξ2 ξη η2

ξ3 ξ2η ξη2 η3

ξ4 ξ3η ξ2η2 ξη3 η4

ξ5 ξ4η ξ3η2 ξ2η3 ξη4 η5

ξ6 ξ5η ξ4η2 ξ3η3 ξ2η4 ξη5 η6

ξ7 ξ6η ξ5η2 ξ4η3 ξ3η4 ξ2η5 ξη6 η7

Figure 4.5: Terms that are included in S2
4 are shown in red. Notice the extra two terms{

ξ4η, ξη4
}
that were added to the set.

fourth-order Serendipity set S2
4 , we would have the terms

S2
4 = span

{
1, ξ, η, ξη, ξ2, η2, ξ2η, ξη2, ξ3, η3, ξ2η2, ξ3η, ξη3, ξ4, η4, ξ4η, ξη4

}
. (4.22)

This is easier to see using Pascal’s triangle (see Fig. 4.5). The explicit forms of the Serendip-

ity basis sets are given in Appendix E.

The crucial point is that the Serendipity set has fewer terms than the Lagrange set.

Note that the last two terms
{
ξ4η, ξη4

}
in the expression above arise due to the edge nodes

when expanding these subset polynomials for a square cell. These two terms are required

for completeness of the quadrilateral expansion (Karniadakis et al., 2005). If we were to

construct Serendipity sets for fifth- or sixth-order and higher, we would have to introduce

more internal nodes. If we want to introduce a Lagrange-like nodal placement for order

p > 4, this would yield a non-symmetric nodal placement for these polynomials (Floater

and Gillette, 2017). Therefore, for order p > 4, we have constructed a set that has no

interior nodes. We call this the reduced Serendipity set R2
p = {−1 ≤ ξ, η ≤ 1} (also defined

on the bi-unit square). The terms that give rise to the interior nodes have been removed

from the Serendipity set in order to build these reduced sets. As an example, we consider

the fourth order case

R2
4 = span

{
1, ξ, η, ξη, ξ2, η2, ξ2η, ξη2, ξ3, η3, ξ3η, ξη3, ξ4, η4, ξ4η, ξη4

}
. (4.23)
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ξ η

ξ2 ξη η2

ξ3 ξ2η ξη2 η3

ξ4 ξ3η ξ2η2 ξη3 η4

ξ5 ξ4η ξ3η2 ξ2η3 ξη4 η5

ξ6 ξ5η ξ4η2 ξ3η3 ξ2η4 ξη5 η6

ξ7 ξ6η ξ5η2 ξ4η3 ξ3η4 ξ2η5 ξη6 η7

Figure 4.6: Terms that are included in R2
4 are shown in red. Notice that the two terms{

ξ4η, ξη4
}

are still included in the set but the term
{
ξ2η2

}
, which results in an interior

node, is removed.

Note that the
{
ξ2η2

}
term is missing from the above list. This is shown in Pascal’s triangle

for the reduced biquartic case in Fig. 4.6.

All of the polynomial sets discussed above are nodal, thus they satisfy the Kronecker

delta condition

Np
k (ξℓ, ηℓ) = δkℓ , (4.24)

where Np
k
.
=
(
Lp
k, S

p
k , s

p
k

)
represents the polynomials with degree p that coincides with the

appropriate bi-unit square space described above, meaning Lp
k (ξ, η) ∈ Q2

p, S
p
k (ξ, η) ∈ S2

p ,

and spk (ξ, η) ∈ R2
p. The above relation indicates that the nodal polynomial function is

equal to unity at node k while zero everywhere else. The second condition they satisfy is

the partition of unity ∑
k

Nk (ξ, η) = 1 , (4.25)

which says that when all the shape functions are added together, they equal 1 throughout

the unit cell. It is also important to note that for all of these polynomial basis sets, the

location of the nodes coincide with each other. Meaning, the node location for the Serendip-

ity and the reduced Serendipity polynomials are subset of the Lagrange polynomials. This

makes the communication between NIMROD’s finite element fluid formulation and the PIC

formulation more convenient. This is due to the fact that we can use the nodal coefficients

from the Lagrange basis for the Serendipity basis when gathering and scattering the compu-
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tational particles in the PIC formulation, while potentially obtaining a higher order spatial

convergence. Although other basis transformation between the different sets may prove to

be more accurate, we sought the most efficient one in terms of memory footprint and run-

time, especially when running PIC simulations with millions of computational particles. We

will see later that despite using the simplest basis transformation, higher order convergence

was obtained on average while keeping the memory footprint and the run-time sufficiently

low.

4.2.1 Construction of the Biquartic Serendipity Shape Functions

Nodal Serendipity shape functions can be constructed using the Lagrange polynomials

(Zienkiewicz et al., 2005). Here we will build the fourth order (biquartic) shape functions as

an example. The same approach can be taken to build any order of these nodal Serendipity

shape functions as long as the location of the nodes are known. First, we define the one

dimensional Lagrange polynomials

ℓnk (ξ) =
(ξ − ξ0) (ξ − ξ1) . . . (ξ − ξk−1) (ξ − ξk+1) . . . (ξ − ξn)

(ξk − ξ0) (ξk − ξ1) . . . (ξk − ξk−1) (ξk − ξk+1) . . . (ξk − ξn)
=

n∏
i=1
i ̸=k

ξ − ξi
ξk − ξi

. (4.26)

Polynomials for each node k can be constructed via the above expression. This gives an

amplitude of unity at the desired node and zero at the remaining nodes. In two dimensions,

we can construct these Lagrange polynomials for each dimension, say ξ and η, and multiply

them together in order to obtain a 2D Lagrange set at an arbitrary node k

Lp
k (ξ, η) = ℓni (ξ) ℓ

m
j (η) , (4.27)

where we will only consider the case of n = m which is hardwired into the NIMROD code.

The superscript p indicates the order of the 2D Lagrange polynomial; therefore, if p = 2 we

have a biquadratic 2D Lagrange set. The same notation will be used for the Serendipity

set, indicated by Sp
k . A reduced Serendipity set will also be mentioned, which will be

indicated by a lower case s, thus spk. These reduced Serendipity sets have no interior nodes.
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Figure 4.7: A square finite element cell with complete fourth-order (biquartic) Serendipity
decomposition consists of 17 node locations with one in the middle of the cell. The center
of the cell is placed at the location (0, 0). The location of the nodes are indicated by dots.

The goal is to reduce the degrees of freedom and thus lower the computational time and

memory but still obtain higher order spatial resolution when pushing the particles along

their trajectories. The lowest order (bilinear) Lagrange and Serendipity sets are the same,

L1
k = S1

k = s1k. In the case of k = 1 node, we have

L1
1 (ξ, η) =

1

4
(1− ξ) (1− η) , (4.28)

where 1/4 is the normalization factor.

We will now construct a complete Serendipity set, with one interior node in the middle

of the finite element cell. For the purpose of building the Serendipity sets, we introduce

further notation. For mid-side nodes (k = 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16) (see

Fig. 4.7), we will let k
.
= m. For the corner nodes (k = 1, 2, 3, 4) we will let k

.
= c; and

finally, for the center node (k = 17) we will let k
.
= o. The 1D Lagrange polynomials in ξ and

η, which we indicate them by ℓpξ,k ≡ ℓpk (ξ) and ℓpη,k ≡ ℓpk (η), respectively (see Eq. (4.27)),
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will also be used when constructing the fourth-order Serendipity shape functions.

Using the convention given above, we start by building the mid-side nodes. First, the

fourth order 1D Lagrange polynomials in either ξ or η, i.e. ℓ4ξ,k or ℓ4η,k, are multiplied by a

linear function of the opposite variable, meaning

S4
m (ξ, η) = ℓ4ξ,m (1± η) and S4

m (ξ, η) = ℓ4η,m (1± ξ) , (4.29)

where a minus sign is chosen for the −1 boundaries and a positive for the +1 boundaries

in (ξ, η). Before moving on to the corner nodes, it is imperative that these mid-side nodes

are normalized so that at the node k
.
= m, the amplitude is unity.

Once the mid-side nodes are built and normalized we can start the construction of the

corner nodes. The corner nodes can be constructed by subtracting the biquartic mid-side

shape functions from the bilinear corner Lagrange polynomials. This ensures that at each

node, other than that specific corner node, the function value is zero, and at that node the

amplitude is unity. Thus, we have

S4
c (ξ, η) = L1

c (ξ, η)−
∑
m

amS
4
m (ξ, η) , (4.30)

where am = S4
m (ξm, ηm) is the value of the mid-side node Serendipity polynomial (see

Eq. (4.29)) evaluated at the node location (ξm, ηm). The linear combination of the mid-side

nodes needs to be subtracted off so that S4
c is zero at those nodes. Note that only the mid-

side nodes that are adjacent to the corner node being constructed need to be considered.

For example, when constructing the corner node k = 1, we have

S4
1 (ξ, η) = L1

1 −
(
a5S

4
5 + a6S

4
6 + a7S

4
7 + a14S

4
14 + a15S

4
15 + a16S

4
16

)
, (4.31)

where a5 = 3/4, a6 = 1/2, a7 = 1/4, a14 = 1/4, a15 = 1/2, a16 = 3/4, see Fig. 4.8. If we

are considering the reduced Serendipity polynomials, we don’t have to consider the internal

node. Preforming the similar task for all corner nodes gives us the set.
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Figure 4.8: A linear combination of the adjacent mid-side nodes and the center node is
subtracted from the bilinear Lagrange polynomial L1

1 (ξ, η) to make the Serendipity biquartic
polynomial S4

1 (ξ, η). This insures that these Serendipity polynomials satisfies the conditions
stated in Eqs. (4.24) and (4.25). Note that an example for node k = 1 is shown.

For the complete set of fourth order Serendipity shape functions, we need to introduce

the central node, which has the form

S4
o (ξ, η) =

(
1− ξ2

) (
1− η2

)
. (4.32)

Since a new node has been added, we have to insure that all other biquartic shape functions

are zero at the central node; therefore, we find the value of the corner and mid-side node

shape functions at the central node and subtract that much of the central shape function

from all others. For the corner nodes

S4
c (ξ, η) = Sold,4

c − boS
4
o , (4.33)

where Sold,4 indicates the old previously found shape functions, and bo = Sold,4
c (ξo, ηo)

are the values of the corner Serendipity functions at the center (ξo, ηo). Similarly, for the

mid-side nodes

S4
m (ξ, η) = Sold,4

m − aoS
4
o , (4.34)

with ao = bo = 1/2. Once the above steps are taken in order to construct the biquartic
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Serendipity shape functions, we can see that they satisfy the conditions in Eqs. (4.24) and

(4.25). If we want to build the incomplete fourth-order Serendipity shape functions s4k, we

would just skip the part where we added the center node. The shape functions are given in

the Appendix E.

4.3 Numerical Results for Serendipity Basis Functions

The Serendipity shape functions were used for tracer particles moving according to

the equations of motion in the equilibrium fields. The goal here is to simply assess the

accuracy of using the reduced field information of the Serendipity sets compared to the

fall 2D Lagrange representation. The equilibrium fields associated with Fig. 4.1 for the

DIII-D giant sawtooth case were used. The Serendipity cases were tested against the full

2D Lagrange polynomials, where we treated the Lagrange cases as “exact” solutions for the

particle trajectories. The equations of motion (here subscript 0 indicates equilibrium fields)

Ẋgc0 = v∥ b0 +
m

qB4
0

(
v2∥ +

v2⊥
2

)(
B0 ×∇

(
B2

0

2

))
+
µ0mv

2
∥

qB2
0

J⊥0 (4.35)

and

mv̇∥0 = −µb0 ·∇B0 , (4.36)

were integrated using the predictor-corrector method. The E×B drift in Eq. (4.3) and the

E-term in Eq. (4.4) do not appear since we are assuming that the equilibrium electric field

is negligible, i.e. E0 = 0.

The fields and coordinates of each finite element in NIMROD are represented by 2D

Lagrange polynomials. Thus, when pushing the computational particles, the coefficients of

the 2D Lagrange basis expansion are directly used as the coefficients for the Serendipity

basis sets. This is done since the nodal location of the Serendipity set are a subset of the

Lagrange set (see Fig. 4.9). This cuts down on the computational time when evaluating the

fields and reduces global storage while allowing for processor to push particles throughout

the spatial domain. Therefore, when gathering and scattering the computational particles
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Figure 4.9: From left to right, the nodal representations are: bilinear, Serendipity bi-
quadratic, Serendipity biquartic, and 2D Lagrange biquartic (“exact”). The circle around
the nodes indicates the coinciding nodes from the previous representation. Thus for exam-
ple, when running the Serendipity biquartic case, the 2D Lagrange coefficients at the circled
nodes are directly used in the Serendipity basis representation.

using the Serendipity basis, the coefficients that are not part of the expansion are ignored

and the the coefficients that coincide with the Lagrange basis are used in hopes of achieving

a higher-order convergence while using fewer data points to represent the fields. Again,

we were looking for the most efficient approach that saves on the memory footprint and

run-time with the desire to run PIC simulations with millions of computational particles.

Therefore, the above approach was taken with the goal of achieving higher-order convergence

while keeping the memory foot print and the run time sufficiently low.

The difference in the poloidal position at each time step was considered for the Serendip-

ity and the Lagrange representations. In Fig. 4.10, the errors between the bilinear, Serendip-

ity biquadratic (biquad), and reduced Serendipity biquartic (biquar) and the “exact” 2D

Lagrange representation were calculated via

ϵD =

√
(R−R∗)2 + (Z − Z∗)2√

R2 + Z2
, (4.37)

where (R∗, Z∗) are used to represent the reduced sets and (R,Z) are used for the “exact”

set at each time step. Figure. 4.10 presents the errors as a function of time. We note that

the errors for the biquardratic and incomplete biquartic cases are significantly smaller than

the bilinear case which is used in NIMROD’s default PIC method. Thus by utilizing the

Lagrange coefficients mapped onto Serendipity basis sets, we were able to obtain better

convergence, at least for this case.
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Figure 4.10: The error ϵD between the different representations (see Eq. (4.37)) is shown.
The three errors relative to the “exact” 2D Lagrange are: bilinear (biline), Serendipity
biquadratic (biquad), and the reduced Serendipity biquartic (biquar). Note that the y-axis
is log-scaled.

For some particle trajectories, however, the biquadratic representation did better than

the biquartic (see Fig. 4.11). Many tracer particles were examined but no pattern was found.

At first it was speculated that near the magnetic axis, where the Jacobian (see Eq. (4.12))

can have issues, is where this was happening. But, as other trajectories were studied, the

effects appeared to be random. Since the behavior of the different basis representations

seemed random, an average error of the trajectories’ R coordinates

⟨∆R⟩ = 1

N

N∑
j=1

∆R∗
max,j (4.38)

was considered. The quantity ∆R∗
max,j represents the maximum error in the jth particle

trajectory for the reduced representations and N is the total number of computational

particles.

Roughly 30000 tracer particles were used to calculate the average error for the different
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Figure 4.11: The error ϵD for the reduced Serendipity biquartic case does worse than the
biquadratic case. However, both are still more accurate than the bilinear (biline) approach.

representations. The errors in the particle trajectories were calculated against the full 2D

Lagrange case as before and averaged using Eq. (4.38) to see how the trajectories were

being resolved overall in the PIC algorithm. The average error in the physical R coordinate

(see Fig. 4.12), and in the parallel velocity (see Fig. 4.13) are shown. These figures show

the results for all Serendipity (complete or reduced) sets. It is interesting to see that the

complete Serendipity biquaritc (cmplt4) case, which has the one interior node in the middle,

has the smallest error. This is indicative of how the interior node helps in resolving the

particle trajectory. Also, note the reduced Serendipity biquartic (biquar), biquintic (biquin),

and the bisextic (bisext) cases with no interior nodes have similar error on average, hence

adding more boundary nodes makes little difference in predicting the particle trajectory

more accurately. One odd result is that the error in the R coordinate from the Serendipity

biquadratic at time step 3500 does, on average, better than the Serendipity bicubic (see

Fig. 4.12). Note that this is not the case for the average error in the parallel velocity

⟨∆v∥⟩. While the results given in Fig. 4.12 and Fig. 4.13 show that all the higher order
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Figure 4.12: Average error in the physical R (m) coordinate for all Serendipity (com-
plete/reduced) sets compared against the ”exact” 2D Lagrange polynomials. The errors
were averaged over ∼ 30000 particles. The cases were run for 35, 350, and 3500 time steps
with each time step ∆t = 2.0 × 10−8 seconds. The resutls shown are for bilinear (biline),
biquadratic (biquad), bicubic (bicube), reduced biquartic (biquar), biquartic (cmplt4), re-
duced biquintic (biquin), and reduced bisextic (bisext).

representations do better than the bilinear case by a significant amount, the user would

still have to decide whether the extra effort was worth it for a PIC simulation in NIMROD.

NIMROD production runs often use a biquartic 2D Lagrange representation. For this

important case replacing the bilinear field representation with biquadratic or biquartic may

be desirable if greater accuracy is needed in the particle push.

Next, we looked at the memory footprint of each of the representations. The total

memory footprint given in Fig. 4.14 is the combination of memories used for the basis

functions Np
k , the global field array, and the computational particle structure that stores

the particle information. Since we are using fewer coefficients for the Serendipity sets, the

memory for these is significantly less. Figure 4.14 shows that as the polynomial degree

increases, the memory used for the full 2D Lagrange basis significantly increases due to

the increasing number of interior nodes that need to be added. While for the Serendipity

cases with no interior nodes, the memory used is much smaller. For the “cmplt4” case the
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Figure 4.13: Average error in the parallel velocity v∥ (m/s) for all Serendipity (com-
plete/reduced) sets compared against the “exact” 2D Lagrange polynomials. The errors
were averaged over ∼ 30000 particles. The cases were run for 35, 350, and 3500 time steps
with each time step ∆t = 2.0 × 10−8 seconds. The resutls shown are for bilinear (biline),
biquadratic (biquad), bicubic (bicube), reduced biquartic (biquar), biquartic (cmplt4), re-
duced biquintic (biquin), and reduced bisextic (bisext). Note that the biquartic case with
the central node (cmplt4) outperforms the fifth and sixth order representations.

interior node adds a bit more of memory (see Fig. 4.14), but this extra node gives us a

particle trajectory that has much less error than the reduced “biquar” case (see Fig. 4.12

and Fig. 4.13).

Finally, we looked at the run time of each of the representations. It is important to

note that two different setups were used, the load-balanced and the non-load-balanced cases.

When running the code in parallel, if we do not load-balance the computational particles,

the processors have different number of particles depending on whether their blocks in the

poloidal plane are in the high-pressure core or at the edge of the plasma. Recall that the

purpose of storing the fields for the particle push in structures that encompass the global

domain was to allow processors to push an equal number throughout the computational

domain. In the old algorithm, some processors worked much harder than others, which

slowed down the code. If we were to load-balance the particles, then the particles would
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Figure 4.14: The total memory used for each representation is plotted as a function of
polynomial degree. The Serendipity (complete or reduced) cases use much less memory
than the full 2D Lagrange polynomials. Memory is given in Megabits (Mb). Roughly 30000
particles were used, thus the memory used will increase with more particles, but the overall
trend between different cases will remain similar. The total memory consists of the basis
functions Np

k , the global field array, and the computational particle structure that stores
the particle information.

be evenly distributed among the processors, hence each would roughly perform an equal

amount of tasks. This can speed up the code by a good bit. The load-balancing will

be discussed in Chapter 5 in more details when we talk about the particle weights, the

sampling of physical and velocity space, and the time evolution of the weights. Figure 4.15

shows that the load-balanced cases, indicated by ▼, do better than the non-load-balanced

cases, indicated by • in terms of real-time. This is especially true for the “exact” case.

It is interesting to see that the run time for all Serendipity cases is fairly close while the

“exact” cases seem to increase exponentially. Also, note the “cmplt4” case, where the run

time is only slightly greater than the “biquar” and rest of the cases, obtains a much greater

accuracy than the rest of the Serendipity representations (see Fig. 4.12 and Fig. 4.13).

As a reminder, the results in this chapter use the coefficients from the full 2D Lagrange

basis for the Serendipity sets. A least-squares projection using the two bases may likely
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Figure 4.15: Comparing the total run-time (s) for different representations as a function
of polynomial degree. The data points with ▼ indicates the load-balanced and • indicates
the non-load-balanced cases. Note that y-axis is given in log-scale.

lead to better results for the reduced Serendipity sets. That being said, transforming the

basis at each time step could prove to be costly in run time for the gathering and scattering

process of the PIC algorithm. Perhaps one way to “truly” implement the Serendipity

sets would be to introduce it in the NIMROD routines. In which case the fields would

already be represented in terms of the Serendipity basis sets, thereby eliminating the need

for basis transform in the PIC algorithm. If the Serendipity basis sets were implemented

in NIMROD, an extensive study of the performance of these polynomials and how they

perform in plasma fluid equations would have to be considered. This approach is beyond

the scope of this thesis, hence it was not pursued. The least-squares projection approach,

though not implemented, is discussed briefly below.

4.4 The Method of Least Squares

The least squares method is widely used for fitting a predicted model to a data sample.

The parameters of the model are estimated so as to minimize the residual. In almost

all applications, the system is over determined; therefore, an exact fit to the data sample
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is impossible. The parameters that minimizes the residual is the best thing that can be

done. We will apply the least square method to two locally continuous basis functions,

namely Lagrange polynomials Lp
k (ξ, η) and the Serendipity shape functions Sp

k (ξ, η) where

k denotes the finite element nodes and p the polynomial degree as before.

We want to minimize the square of the residual

∫ (∑
k

akS
p
k (ξ, η)− f (ξ, η)

)2

dξdη = min , (4.39)

where we expand the function via the Serendipity basis. This means we have an optimization

problem where we optimize the square of the residual with respect to the parameters. The

parameters in this case are the coefficients of the Serendipity basis expansion ak’s. We take

the derivative with respect to the ak′ ’s and set it equal to zero to end up with the expression

∫
Sp
k′ (ξ, η)

∑
k

akS
p
k (ξ, η) dξdη =

∫
Sp
k′ (ξ, η) f (ξ, η) dξdη .

The above expression can be solved for the coefficients by introducing the mass matrix

Mk′k =

∫
Sp
k′ (ξ, η)S

p
k (ξ, η) dξdη (4.40)

and inverting it in order to get

ak =
∑
k′

M−1
k′k

∫
Sp
k′ (ξ, η) f (ξ, η) dξdη . (4.41)

Note that M−1
k′k is the inverse of the mass matrix. Equation (4.41) solves for the coefficients

of the Serendipity basis expansion. Now if the function f (ξ, η) is already expanded in 2D

Lagrange polynomials Lp
j (at node j) and their corresponding coefficients bj ’s, then we get

ak =
∑
j,k′

bjM
−1
k′k

∫
Sp
k′ (ξ, η)L

p
j (ξ, η) dξdη . (4.42)
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This allows us to transform from the Lagrange basis Lp
j , given its coefficients bj , and find

the Serendipity coefficients ak.
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CHAPTER 5

THE δf-PIC APPROACH IN NIMROD

Energetic particles can have significant effects on confined plasma stability, even when

the density of energetic particles is much smaller than that of the bulk magnetohydrody-

namics (MHD) plasma. Examples of such energetic particles are those produced by neutral

beams (Stix, 1972), external radio-frequency (RF) sources (Stix, 1975), or fusion-produced

α-particles. Although the bulk plasma can be well modeled by fluid-MHD, the energetic

particles require kinetic theory for an adequate description. This leads to the hybrid kinetic-

MHD model where energetic particles are coupled into the fluid model through either the

energetic pressure tensor or the current density (Tronci et al., 2014). This model allows

for a multi-scale approach where the bulk plasma can be modeled with the MHD timescale

and a kinetic timescale can be considered for the energetic particles. If the fast timescales

of gyro-motion is relevant, then the full Vlasov description is used. Although in tokamak

devices, where the plasma is strongly magnetized, we can use the drift kinetic regime where

the fast gyro-motion is averaged out.

The δf-PIC approach in NIMROD uses the energetic pressure tensor to couple the

energetic particles to the fluid equations in the drift kinetic regime. The bulk plasma is

modeled via the finite element fluid code NIMROD (Sovinec et al., 2004), while a particle-

in-cell (PIC) code (Kim, 2008) is used for the minority energetic particles. In order to couple

the kinetic energetic particles to the fluid-MHD equations, we dump the energetic particle

information onto the finite element grid via Phot, a process called deposition. Once deposi-

tion takes place, the MHD flow evolution equation is updated and includes the divergence

of the energetic pressure tensor

ρ

(
∂V

∂t
+V ·∇V

)
= J×B−∇P −∇ ·Phot . (5.1)
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Here ρ is the mass density and V is the center of mass flow velocity of the bulk plasma.

Formally, Phot is obtained through the second moment of the energetic particle distribution

function

Phot =

∫
mhot (v −Vhot) (v −Vhot) fhot d

3v , (5.2)

thereby closing the MHD flow equation for a system with minority energetic particles.

Often times the center-of-mass flow velocity of the energetic particles Vhot is neglected.

This can become an issue if the density of the energetic particles increases to a significant

amount. In a strongly magnetized plasma where the mean free path for particle collisions

is large compared to any parameters of the system (dilute plasma), we can use the CGL

(Chew-Goldberg-Low) form (Chew et al., 1956) of the pressure

P =


P⊥ 0 0

0 P⊥ 0

0 0 P∥

 . (5.3)

This can be written more generally, using magnetic field unit vector b, as

P = P∥bb+ P⊥ (I − bb) . (5.4)

The parallel component P∥, and the perpendicular component P⊥ with respect to the mag-

netic field can each be obtained by the moments of the distribution function using the first

and the second adiabatic invariants. They are written as

P⊥ =

∫
µBf (x,v, t) d3v (5.5)

and

P∥ =

∫
v2∥f (x,v, t) d

3v . (5.6)

The first adiabatic invariant corresponds to the magnetic moment µ while the second adi-

abatic invariant is related to the parallel motion of the particle along the magnetic field.
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It is important to note that if the population of energetic ions are small compared to the

bulk of the plasma, the energetic ion momentum is small compared to that of the plasma.

Nevertheless, the pressure from the energetic ions can be large from the vv contribution as

seen in Eq. (5.2). In this situation, the δf approach to the energetic ions is valid. Consider

a situation where the population of the energetic ions is greater, e.g. for ITER ∼ 30% of the

plasma can become energetic α-particles (Putvinski, 1998). The macroscopic momentum

of these energetic ions becomes significant relative to the bulk, which indicates that the δf

approach could have issues. Therefore, in order for the hybrid kinetic-MHD model that uses

Phot to be valid additional assumptions must be made: (i) the density of energetic particles

is much less than the density of the bulk plasma (nhot ≪ nMHD), while (ii) the energy of

the energetic particles are significant enough so that the energetic particle plasma-β is on

the order of the bulk plasma-β (βhot ∼ βMHD).

5.1 Initial Setup: Particle Load onto Computational Domain

In PIC, the phase space is populated by computational particles. Particles are placed

so as to form a prescribed distribution in space and velocity, f0 (x,v). From the prescribed

distributions, the initial position and velocity (x0j ,v0j) for each particle j are determined

using a random number generator. This is the Monte Carlo method where random numbers

can be utilized for particle sampling in the computational domain (Birdsall and Langdon,

2018; Hammersley and Handscomb, 1964). The initial conditions for the computational

particles, found via the prescribed distribution function, give the starting point for the

governing equations of motion, namely Newton’s 2nd law. Therefore, the initial condition

on particle distribution function f0 is important in determining the behavior of the overall

system.

In NIMROD’s δf-PIC approach, the sampling of phase space for energetic ions, is done

using a slowing down distribution function, f0. The slowing down distribution function

assumes that these energetic ions have interacted with the bulk thermal electron and ion

populations which are Maxwellian distributions. Typically, the thermal velocity of electrons,

vTe, is much greater than that of the ions, vT i (where vT =
√
(2kBT/m)). The energetic
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ions will “feel” a drag from the thermal electrons first, thus slowing down to a critical energy

Ec. Once the energetic ions reach Ec, they begin to interact with the slower thermal ions as

well. This sort of process results in heating of the electrons and raising its thermal energy

(Helander and Sigmar, 2005). The slowing down distribution function (Kim, 2008) can be

expressed as

f0 =
p0 exp (pφ/qψn)

E3/2 + E3/2
c

, (5.7)

where p0 is a normalization constant, Ec is the critical slowing down energy, and ⟨Pφ⟩ ≡ pφ

is the gyro-averaged toroidal momentum (see Eq. (3.56)). Here, ψn is chosen for each

equilibrium in order to match the shape of the MHD pressure profile. Since the energy

dependence of the slowing down distribution function is written in terms of the canonical

variables it satisfies Eq. (5.16). Note that the slowing down distribution function arises

from solving the Fokker-Planck equation for the energetic beam Coulomb scattering off the

background plasma. Thus it makes sense to use it to sample the initial distribution function

in phase space. The perturbed (δf) part of the distribution function is advanced via the

weight equation (see Eq. (5.15)).

The δf-PIC in NIMROD samples the phase space via important sampling, i.e. a non-

uniform sampling, using the condition f (t = 0) ≈ f0. Here, we are assuming δf ≪ f0,

where δf is the time dependent perturbed part of the distribution function (see Eq. (5.13)).

Therefore, sampling from the steady state distribution function allows us to cover the more

“important” part of phase space. In order to sample the physical space, we consider the

pressure profile of the equilibriumMHD bulk plasma, which obeys the force balance equation

J0 ×B0 = ∇P0 . (5.8)

The initial pressure is assumed isotropic. Initially, when loading the energetic particles, the

equilibrium pressure Phot0 is constructed to be a fraction of the MHD equilibrium pressure

P0, namely,

Phot0 =
1

βfrac
P0 =

1

βfrac
(nekBTe + nikBTi) (5.9)
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(a) (b)

Figure 5.1: Figure (a) shows the equilibrium pressure P0 and the normalized safety factor
qs vs. the normalized poloidal flux ψ̄p. Portion of the plasma where qs < 1 (roughly at
ψ̄p < 0.168) undergoes the 1/1 kink. Figure (b) shows the magnetic flux surface geometry
for DIII-D (value decreases from green to red).

where βfrac = βhot/βMHD and we used the ideal gas law for the thermal electrons and ions.

This allows us to modify the force balance equation, Eq. (5.8), to include the equilibrium

pressure of the energetic particles

J0 ×B0 = (1− βfrac)∇P0 +∇Phot0 . (5.10)

Note that since the equilibrium pressure for the energetic particles is isotropic, when sam-

pling from Eq. (5.7), the term exp (pφ/qψn) is approximated as exp (ψ/ψn) so as to not yield

an anisotropic contribution to the pressure (Kim, 2008). Therefore, the velocity distribution

is sampled from

f0 =
p0 exp (ψ/ψn)

E3/2 + E3/2
c

(5.11)

and p0 is used to ensure that the isotropic pressure moment is

Phot0 =

∫
1

3
mv2f0 d

3v = βfracP0 . (5.12)
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Sampling the physical space with particles of weight w = 1, so that it fits the equilib-

rium pressure profile (see Fig. 5.1) inevitably places more particles near the center of the

tokamak since the pressure is greater there. This means that the processors handling the

grid blacks near the center, e.g. processors 1-4, would have many more particles than the

outer processors, e.g. processors 9-16. This slows down the code because some processors

work much harder than others. Therefore, a load balancing of the particles is done once the

computational domain is sampled. The load balancing passes the particles evenly to each

processors so that they all have, roughly, the same number. As we saw in Fig. 4.15, the

load balanced case ran faster than the case with no load balancing by roughly a factor of 2.

After the particles are sampled in the computational domain, they are advanced along

their orbits in time via the PIC algorithm. Then, the pressure tensor in Eq. (5.7) is computed

and deposited onto the finite element grid. Finally, the flow is advanced including the

energetic particle pressure tensor. In the δf-PIC approach, δf is evolved in time according

to the updated particle weights. We now discuss the derivation of the weight evolution

equation.

5.2 The δf-PIC Approach in NIMROD

The δf-PIC method, which can be interpreted as the control variates approach in Monte

Carlo schemes (Aydemir, 1994), separates the distribution function into a steady state

portion f0 and some small deviation δf from it

f (z, t) = f0 (z) + δf (z, t) . (5.13)

Here z
.
= (x,v) are the variables in position and velocity space and the steady state part is

time independent. We consider the Vlasov equation (see Eq. (2.50))

∂f

∂t
+ ż · ∂f

∂z
= 0 (5.14)

for the energetic particles, where collisions between themselves or off the bulk plasma are
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ignored. We can ignore collisional effects because we are mostly concerned with the mi-

crosecond, MHD timescale over which collisions have only a small effect. The collisional

timescale is on the order of ∼ 10−3 s for energetic ions in a dilute plasma. By sampling

from the slowing down distribution function (see Eq. (5.7)) for the equilibrium energetic

particle distribution function, we assume that collisions with the bulk plasma have given us

the energy dependence in Eq. (5.7) over a millisecond timescale. Then, a fast MHD event,

like the sawtooth mode, arises and grows over a much shorter timescale. The evolution

of the weights capture this rapid, nearly collisionless δf response in the energetic particle

distribution function.

Using Eq. (5.13) and breaking up z into the equilibrium and the perturbed parts,

z = z0+ δz, we can obtain a linear expression for the time evolution equation of δf , namely

˙δf = −δż · ∂f0
∂z

. (5.15)

The steady state distribution function f0 is constant along the characteristics

∂f0
∂t

+ ż0 ·
∂f0
∂z

= 0 , (5.16)

and the choice of f0 must satisfy Eq. (5.16).

The slowing down distribution function (see Eq. (5.7)) is in terms of the position x

and the kinetic energy E = mv2/2. In terms of these variables (x, E), Eq. (5.15) can be

expressed as

dδf

dt
= −δẋ ·∇f0 − δĖ ∂Ef0 , (5.17)

where we have expanded x = x0+ δx and E = E0+ δE into their equilibrium and perturbed

parts. We use the drift kinetic model for δẋ in Eq. (5.17); therefore, δẋ = δvgc, the

perturbed guiding center velocity. Instead of using the form given in Eq. (2.55), which is in

terms of the magnetic curvature,

vgc = v∥b+
E×B

B2
+

1

Ω
b×

(
v∥
∂b

∂t
+ v2∥κ+

v2⊥
2

∇B

B

)
,
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we will express the guiding center velocity using the current density. The magnetic curvature

vector κ can be expressed in terms of the current density via the pre-Maxwell form of

Ampere’s law,

κ = µ0
J×B

B2
+

1

B
∇⊥B . (5.18)

Once Eq. (5.18) is plugged into the expression for vgc and rearranged, we get a form that

can be more easily be implemented into NIMROD,

vgc = v∥ b+
E×B

B2
+

m

qB4

(
v2∥ +

v2⊥
2

)(
B×∇

(
B2

2

))
+
µ0mv

2
∥

qB2
J⊥+

mv∥

qB
b× ∂b

∂t
. (5.19)

This form of the guiding center velocity is more convenient since the current density, rather

than the magnetic curvature, is readily available in NIMROD. Recall that we need the

perturbed quantity δvgc for Eq. (5.17); therefore, we linearize Eq. (5.19). The equilibrium

fields are assumed to be time independent. Additionally, the equilibrium electric field is

assumed to be zero, E0 = 0. The result for the equilibrium guiding center velocity is

vgc0 = v∥b0 +
m

qB4
0

(
v2⊥
2

+ v2∥

)(
B0 ×∇

(
B2

0

2

))
+
µ0mv

2
∥

qB2
0

J0⊥ . (5.20)

Notice that the E ×B drift does not appear in the equilibrium term due to E0 = 0. Also,

∂b0/∂t = 0 since the equilibrium fields are time independent.

Linearizing δvgc, i.e. only considering first-order terms yields

δvgc = v∥δb+
δE×B0

B2
0

+
m

qB3
0

(
v2⊥
2

+ v2∥

)(
B0 ×∇δB + ((I− 3b0b0) · δB)×∇B0

)
+
µ0mv

2
∥

qB2
0

(
δJ⊥ − 2(B0 · δB)

B2
0

J0⊥

)
+
mv∥

qB0
b0 ×

∂δb

∂t
. (5.21)

A simplified expression is implemented in the δf-PIC formulation in NIMROD (Kim, 2008),

δvgc = v∥δb+
δE×B0

B2
0

. (5.22)

Note that the E×B drift term still appears in the reduced, perturbed guiding center velocity
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because it is technically a B−1
0 term. Here the existing implementation use δb ≈ δB/B0.

If we were to carefully linearize the perturbed magnetic unit vector, we would end up with

an extra term, δb = (I− b0b0) · δB/B0, where I is the identity matrix.

We now consider the δĖ term in Eq. (5.17), where recall that E = mv2/2 is the kinetic

energy. The time derivative of the kinetic energy gives us the work that is done on the

particle by the electromagnetic field. Since the magnetic field does not contribute to the

energy change,

dE
dt

=
dv

dt
· ∂E
∂v

= qv ·E . (5.23)

Therefore, the first-order perturbation for Eq. (5.23), recalling that E0 = 0, gives

δĖ = qvgc0 · δE . (5.24)

Using the results given above, Eq. (5.17) can be written as

˙δf = −δvgc ·∇f0 − qvgc0 · δE ∂Ef0 . (5.25)

Equation (5.25) gives the time evolution for δf in the new coordinates (x, E) for the drift

kinetic regime. By solving this equation, we are able to obtain δf at each time step through

updating the particle weights, wj = δf/f0. What remains is to find the derivatives of f0

(see Eq. (5.7)) in the coordinates (x, E). This calculation yields

∇f0 = − mgf0
qv∥B2ψp

(
v2∥ +

v2⊥
2

)
∇B − f0

ψn

(
∇ψn −

mv∥

qB
∇g

)
(5.26)

and

∂Ef0 =
gf0

qv∥Bψn
− 3

2

f0E1/2

E3/2 + E3/2
c

, (5.27)

where g = RBφ and Eq. (3.62) was used for v∥. For more details on the above expressions

see Kim (2008). For a similar implementation of the hybrid approach in a different code

(M3D-C1-K) see ?.
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5.2.1 Deposition of Energetic Particle Pressure Tensor

The energetic particle physics is merged with the fluid MHD model via the energetic

particle pressure tensor Phot in NIMROD’s δf-PIC formulation. In order to obtain the

pressure tensor, a moment of the distribution function is taken (see Eq. (5.2))

Phot = P0hotI+

∫
mhot (v −Vhot) (v −Vhot) δf d

3v , (5.28)

where we have used Eq. (5.13) and assumed isotropic pressure for the equilibrium. The

second term on the right is the perturbed pressure tensor δPhot. Note that the pressure

tensor is defined as a second moment of the distribution function and uses the random

velocity w = v − Vhot, where Vhot is the center-of-mass flow velocity for the energetic

particles. The energetic particle pressure tensor is then used in the MHD momentum

equation to update the flow evolution of the bulk plasma

ρ

(
∂V

∂t
+V ·∇V

)
= J×B−∇ ·P−∇ ·Phot . (5.29)

It is important to note that if the population of energetic ions is small compared to the bulk

of the plasma, the energetic ion momentum is small compared to the rest of the plasma

momentum. Nevertheless, the pressure from the energetic ions can be large from the vv

contribution in the definition of δPhot. In this situation, the δf approach for energetic ions

is valid.

We see that in order to introduce the effects of the energetic particles into an MHD

plasma, Phot needs to be updated. This is done using Eq. (5.28), where the evolving δf

is obtained via Eq. (5.25). To add a little more subtlety we express δf in term of the

Kilmontovich representation

δf =

N∑
j

g0w̄jδ
3 (x− xj) δ

3 (v − vj) . (5.30)

Here, j represents a particular computational particle. The Kilmontovich representation is
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composed of all the particle positions, velocities, corresponding weights w̄j , and uses a point

particle, δ-function representation. The scaling factor g0 is used to reproduce the desired

fraction of the MHD pressure profile. Plugging Eq. (5.30) into Eq. (5.28) and integrating

with the Dirac delta, we get

δP (x) =
N∑
j=1

g0mjw̄jδ
3 (x− xj) (vj −V) (vj −V) , (5.31)

where w̄j = wj/g0 is some normalized weight and the subscript ”hot” has been suppressed

for simplicity. Therefore, when Eq. (5.25) is used to update δf , we are actually updating

the weight w̄j that is used for the deposition.

In NIMROD, cylindrical coordinates (R,Z, φ) are used, where the right-hand rule ap-

plies in the order that the variables are written. The poloidal plane, i.e. (R,Z), is expanded

in the finite element basis and the toroidal direction φ is expanded in the Fourier represen-

tation. The Dirac delta function in these coordinates is

δ3 (x− xj) =
1

R
δ (R−Rj) δ (Z − Zj) δ (φ− φj) . (5.32)

We discuss this form in Appendix A. Plugging this into Eq. (5.30) and introducing the

Fourier expansion in the toroidal direction yields

δP (R,Z, φ) =

N∑
j=1

(vj −V) (vj −V)

×g0mjw̄j

R
δ (R−Rj) δ (Z − Zj)

(
1

2π

∫
δ (φ− φj) e

−inφ Rdφ

)
.

In the Fourier representation, a factor of R is introduced in the integral to correctly integrate

over the spatial volume. The above expression for δP simplifies to

δPn (R,Z) =
1

2π

N∑
j=1

(vj −V) (vj −V) g0mjw̄jδ (R−Rj) δ (Z − Zj) e
inφj , (5.33)
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where the particle’s φ information has been projected onto the Fourier mode n. The above

expression is the Fourier transform of δP, thus

δPn =
1

2π

∫
δPe−inφ dφ (5.34)

where

δP =
∑
n

δPn . (5.35)

The (R,Z) components of δP are now expanded in the finite element basis αk, with

the spatial basis expressed as eℓ. Here k represents the finite element expansion and ℓ

represents the vector direction, i.e. x̂, R̂, etc.; thus the expansion in the basis gives

δPn (R,Z) =
∑
k,ℓ,m

Lp
keℓem

(
δPkℓmne

inφ + δP ∗
kℓmne

−inφ
)
=
∑
k

δPn
kL

p
k (R,Z) (5.36)

where

δPn
k ≡

∑
ℓ,m

eℓem
(
δPkℓmne

inφ + δP ∗
kℓmne

−inφ
)
. (5.37)

Since this is a tensor, we have two vector basis indices ℓ and m. The Pn
k are the coefficients

of Fourier mode n at a finite element node indicated by k that has the corresponding spatial

basis that gives the tensor components.

Now that we have both the finite element and the PIC representation for the energetic

particle pressure, we can set the two equal to each other and put it into the weak form by

multiplying by a test function αk′ and integrating. By doing so we get an expression that

yields the coefficients of the pressure at the finite element nodes

δPn
k =M−1

kk′

N∑
j=1

g0mjw̄j (vj −V) (vj −V)Lp
k′ (Rj , Zj)

e−inφj

2π
. (5.38)

Here, M−1
kk′ is the inverse of the finite element mass matrix. Using the above equation we

can deposit the weights of the energetic particles onto the finite element grid. Note that we

have included the energetic ion flow throughout the derivation of δPn
k . The δf-PIC routine
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in NIMROD assumes that the flow is negligible. Therefore, the deposition is simpler where

the scalars in Eqs. (5.5) and (5.6) are computed from δf instead, namely,

δP⊥ =

∫
µBδf d3v (5.39)

and

δP∥ =

∫
v2∥δf d

3v . (5.40)

5.3 Numerical Results from NIMROD PIC Simulations

At this point, we include linear results that compare NIMROD’s fluid and hybrid

fluid/kinetic-PIC predictions of the giant sawteeth observed on the DIII-D tokamak. The

energetic particles in the continuum approach in NIMROD used the initial energy depen-

dence shown in Fig. 5.2 on the right. The simulations given below sample from the slowing

down part only and do not have the RF tail of the energetic particle distribution. These

ideal (zero resistivity) simulations were performed with mx×my = 80× 48 = 3, 840 finite

element cells (the same as was presented in Fig. 4.1b) and a poloidal block decomposition

of nxbl = 16 and nybl = 12. NIMROD performs linear calculations like these with relative

ease. Here we used 6 Cori Haswell nodes at NERSC (National Energy Research Scientific

Computing Center) for a total of 16× 12 = 192 cores and the run times for all three cases

presented below took about a minute. Note, the hybrid fluid/kinetic-PIC simulations that

we present later are significantly more computationally intensive. Figure 5.1 shows the

magnetic flux surface geometry on the right, and the temperature, density and qs profiles

on the left. Although MHD codes often assume a close, conducting wall at the last closed

flux surface, here we keep the open flux region, an approximate vacuum region with open

magnetic field lines that intersect the DIII-D wall. In NIMROD PIC simulations, particles

that drift across the divertor separatrix most often rapidly travel along magnetic field lines

to the wall and are assumed lost.

For this discharge, the central toroidal magnetic field strength, electron density and

electron temperature were BT = 1.925 T, ne = 4.18 × 1019 m−3 and Te = 4106 eV,
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Figure 5.2: (Left) shows data from DIII-D experiment, discharge #96043. (a) Time at
which the neutral beam and the RF wave were injected into the plasma. (b) Electron
central temperature and neutron reaction rate vs. time. (c) Plasma density and plasma
stored energy given as functions of time. (Right) shows the energy dependence of the
energetic particle distribution function. It shows the energetic slowing down distribution
function fslow with Ecrit = 50 keV and the more energetic tail ftail driven by RF waves.
Here the injection energy of the neutral beam, Einj = 80 keV. The left figure figure was
taken from Choi et al. (2007).

respectively. The Alfven time (roughly, the time it takes for shear Alfven waves to propagate

across the domain) was τA = 3.8× 107 s. NIMROD uses a semi-implicit leapfrog algorithm

to take time steps that are long compared to the compressional Alfven time, which is roughly

ten times larger than the shear Alfven time (Sovinec et al., 2004). Each of the above cases

were run for 4000 steps with a time step, dtm = 1.0 × 10−7 s, until a dominant, unstable

1/1 eigenmode was obtained.

Time traces of NIMROD’s fluid prediction for the 1/1 ideal kink growth rate for this

DIII-D giant sawteeth case are shown in Fig. 5.2. Here we performed a scan in polynomial

order (polynomial degree 1, 2, and 4) using NIMROD’s 2D Lagrange finite element basis

reconstruction of the DIII-D equilibrium. Recall that the ideal 1/1 mode is a kinking of

the plasma column inside the qs = 1 surface that leads to rapid crashes in the core electron

temperature. These are shown in the time traces of DIII-D discharge #96043 in Fig. 5.2

on the left. We take the force balance equilibrium from the reconstruction at t = 1900 ms,
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Figure 5.3: Shows the growth rate vs. time graph for the ideal fluid only calculation.
Polynomial degree 1 (green) has a growth rate of γ = 35, 344 Hz, polynomial degree 2 (blue
under pink) has a growth rate of γ = 32, 810 Hz, and polynomial degree 4 (pink) has growth
rate of γ = 32, 809 Hz.

after the RF waves have been used to drive the energetic ions to energies around 600 keV,

but just before the first giant sawtooth around t = 2000 ms. Rapid convergence in the

fluid-only growth rate is obtained with the polynomial degree 2 and 4 cases almost lying on

top of each other (see Fig. 5.3).

The growth rates are computed using the log of the total (kinetic, magnetic, and

internal) MHD energy. The error in the divergence of the magnetic field (div(B) diagnostic

versus t) shows how higher-order finite elements do a better job of preserving the law of

no magnetic monopoles. Although there are exact algorithms for enforcing ∇ · B = 0,

NIMROD’s algorithm instead adds a diffusive term to Faraday’s law (∂B/∂t = −∇ × E)

to diffuse div(B) error out of the computational domain and keep it at a tolerable level.

Finally, for the ideal fluid only calculation, we present the eigenfunctions using contours

of the R-component of the plasma flow, VR, and the electron temperature, Te. The top row

shows the results for the polynomial degree 1 case and the bottom row shows them for

the polynomial degree 4 case (see Fig. 5.5). In terms of physics, the linear flow response
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Figure 5.4: Shows the error in divergence of magnetic field (div(B)) vs. time graph,
i.e. div(B) diagnostic plot. The polynomial degree 1 (green) case has much greater error
associated with the converged eigenfunction. The polynomial degree 2 (blue) and 4 (green)
do a better job preserving ∇ ·B = 0 condition beyond 10−4 seconds.

inside the qs = 1 surface (roughly 1.5 < R < 2 m, see Fig. 4.1 where the finite element

is more finely packed on the 1/1 surface) is outward both above and below the magnetic

axis, indicating an outward shift of the plasma at toroidal angle ϕ = 0. A plot at ϕ = π/2

would show a down shift from the Z-component of the plasma flow, VZ . A plot at ϕ = π

would show an inward shift and ϕ = 3π/2 would show an upward shift, thus displaying the

Fourier mode, n = 1 signature of the 1/1 kink.

Nonlinear simulations are necessary to actually observe the dynamics of the kink in a

NIMROD simulation. This includes the actual sawtoothing behavior with electron thermal

energy being ejected from inside the qs = 1 surface. Although the amplitudes are arbitrary

(since we could continue to evolve the linearly growing eigenfunction), a comparison of

the values between polynomial degree 1, 2, and 4 (polynomial degree 2 calculations not

shown) indicates that polynomial degree 1 is under-resolved, although they do resemble

the polynomial degree 4 cases in Fig. 5.5 and the polynomial degree 2 and 4 cases agree

quite nicely with each other. We now present the results for the hybrid fluid/kinetic-

PIC simulations that aim to show increased stabilization using a slowing down distribution
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Figure 5.5: (Top left) Contour plot of VR for polynomial degree 1 case. (Top right) Contour
plot of Te for polynomial degree 1 case. (Bottom left) Contour plot of VR for polynomial
degree 4 case. (Bottom right) Contour plot of Te for polynomial degree 4 case.

as βfrac = βhot/βMHD is increased from 0 to 0.6. First, calculations with βfrac = 0.2 were

performed with different number of particles (see Fig. 5.6). The plasma is stabilized by using

a slowing down distribution function for the energetic ion population. Particle simulations

are inherently noisy (as an example, compare the pure fluid calculation to the rest of the

traces in Fig. 5.6), but by introducing more particles we can decrease the noise. Here the

sequence for the number of particles is 8× 104 (green), 8× 105 (blue), and 8× 106 (purple).

In Chapter 4, we gave runtime results for the load-balanced and the not load-balanced

cases (see Fig. 4.15). Figure 5.7 shows the results of particles per processor for load-balanced

(left) and not load-balanced (right) where 8 million particles were used for the simulation.
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(a) (b)

Figure 5.6: Figure (a) shows the growth rate of four different calculations. Figure (b)
shows the blow up of the converged part of the growth rate plot. The fluid only calculation
(pink) is given as a reference to show that with energetic particles present the growth rate
is slightly lower. This shows increased stabilization using a slowing down distribution with
βfrac = 0.20. Note that with increasing particle number for the simulation the noise of the
particle simulation goes down (blue, green, and teal).

(a) (b)

Figure 5.7: Figure (a) shows the load-balanced case. Particle distribution among proces-
sors is uniform where the processor with the maximum number of particles has 41,766 and
the processor with the minimum number of particles has 41,574. Figure (b) shows the not
load-balanced case. We can see that the outer, low pressure region has very few particles
while the core with the highest pressure has the most particle per processor. At the 1/1
surface, the particle per processor amount drops due to the smaller finite element cells used
combined with the technique of importance sampling. For both cases 8 million particles
were used.
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Figure 5.8: Compares the growth rates for the PiC and newpart routines. The top most
pink line (above 30,000 Hz) is the growth rate for fluid only calculation. The two calculations
right below 30,000 Hz are the growth rates for PiC (green) and newpart (blue) for βfrac = 0.2.
The two calculations right above 20,000 Hz are the growth rates for PiC (green) and newpart
(purple) for βfrac = 0.4. Finally, the two calculations right above 10,000 Hz are the growth
rates for PiC (teal) and newpart (magenta) for βfrac = 0.6.

We can see that the load-balanced case gives us a uniform distribution of particles for each

processor, which ultimately helps in runtime.

On the other hand, the not load-balanced case leads to a very uneven distribution

of particles on various processors. Due to how the particles are initially sampled, the low

pressure regime of the tokamak has very few particles while the processors handling the core

have a large load. Also, notice that near the 1/1 surface, fewer particles are loaded since the

finite element cells there are smaller due to the fact that we want higher spatial resolution

near the 1/1 surface in order to better resolve the eigenfunction. Lastly, even though load-

balancing leads to evenly distributed particles, it requires global field and (R,Z) data for

the particle push and find throughout the computational domain as discussed in Chapter 4.

This results in additional structures and storage in the code (see Fig.4.14).
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Figure 5.9: Pressure contour plots for the newpart using a representation in the push
(evaluation of fields) and find (mapping from real to logical coordinates). (Top left) Contour
plot of δP⊥ for newpart bilinear. (Top right) Contour plot of δPani for newpart bilinear.
(Bottom left) Contour plot of δP⊥ for PiC bilinear. (Bottom right) Contour plot of δPani for
PiC bilinear. The contour plots were taken at 4000 time steps and show similar structure.

Figure 5.10: Contour plots of the anisotropic part of the pressure tensor, δPani, 4000,
5000, 6000, 7000, and 8000 time steps indicate a propagating mode with the anisotropic
pressure contours rotating in a counter-clockwise direction in the poloidal plane.
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Figure 5.11: Shows the blow up of the growth rate for fluid only (green), bilinear (purple),
biquadratic (magenta), and complete biquartic (teal). The higher-order bases do not have
an effect on the 1/1 internal kink mode.

We now present results from NIMROD’s PIC routine, as presented in Kim (2008)

(which we will call PiC), and NIMROD’s PIC routine with the load-balancing capability

and the Serendipity basis function implementation (which we will call newpart). Figure 5.8

compares the growth rates between newpart and PiC where βfrac = 0, i.e. fluid only

calculation (top most line that is red), is given as a reference to show the stabilizing effect

of energetic ions on the ideal, kink 1/1 growth rate. We see that the results between PiC

and newpart are similar and the scan in βfrac shows that the linear growth rate decreases

with the introduction of an energetic ion slowing down distribution function.

Further analysis using the contour plots of δP⊥ and δPani = δP∥−δP⊥, again verify that

bilinear newpart and PiC are getting very similar answers (values at the top and structure

of the contours), where δPani, (see Fig. 5.9). The anisotropic part of the pressure modifies

the stability from just having an isotropic pressure from an energetic ion population. If one

does the linear theory (Fu et al., 2006), one finds that not only is δPani initially stabilizing
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(reduces the growth rate), but it also leads to a real frequency, i.e. a propagating (rotating)

mode (see Fig. 5.10). The ideal 1/1 kink with only MHD and isotropic pressure does not

have a real frequency, thus the rotating mode is one of the interesting phenomenon that

comes about because of the anisotropic part of the pressure tensor.

Finally, we compare growth rate calculations using a sequence of Serendipity basis

function. The bilinear (biline), Serendipity biquadratic (biquad), and complete Serendipity

biquartic (cmplt4) were considered for the comparison. Again, in Fig. 5.11 we show the fluid

only growth rate as a reference. Unfortunately, the higher-order Serendipity basis sets have

little effect on the growth rates. Perhaps the biggest reason for this is that a core mode like

the 1/1 internal kink does not depend so much on improving the trajectories and reducing

false particles losses. Hence, it does not effect core fluid modes. However, if we were to

utilize the higher-order Serendipity basis for edge localized modes or for the ion orbit loss

problem, perhaps improving the particle trajectories could have more of an effect. The

bottom line is that a numerical method that may work in one study does not necessarily

work for another. Proper methods must be carefully chosen to obtain meaningful results.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

Energetic particles interacting with magnetohydrodynamic (MHD) modes represents

crucial physics that must be understood in magnetic fusion devices such as tokamaks. In

these devices, a neutral beam is used to impart momentum and energy to the plasma and

RF waves are used to further increase the energy of these energetic ions. Energetic ions can

either stabilize or destabilize the plasma. Examples of such are the internal kink and the

giant sawtooth modes. It is believed that the third adiabatic invariant is a stabilizing effect

for the internal kink mode. Unfortunately, this stabilization can lead to giant sawteeth,

even more violent internal kink modes. The single particle picture is an important physics

that must be considered to understand the phenomenon of these instabilities.

Numerical studies of wave-particle interaction are challenging. Plasma as a whole

consists of physics operating on varying orders of timescale such as collision, MHD, and

particle transport to name a few. When we try to model such a system, we soon realize

the difficulty in doing so. The hybrid kinetic-MHD model allows the particle physics to

be evolved on the kinetic timescale of interest while evolving the MHD physics over the

MHD timescale. This helps separate the physics, which means we can use a time step for

the particle physics, for example a smaller, sub-cycled time step that pushes particles along

their orbits, which is different from the timestep used in the MHD evolution.

In NIMROD, the hybrid kinetic-MHD approach is implemented in the form of δf-

PIC and the δf-continuum. Both of these methods use the drift kinetic regime, where the

characteristics of the equilibrium distribution function are given by guiding center motion.

For both implementations, the energetic ions are coupled into the MHD equation via the

energetic particle pressure tensor in the center of mass flow evolution equation. The main

focus of this thesis was the δf-PIC. In the δf-PIC drift kinetic approach, the particles are

pushed along the equilibrium fields.
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Single particle motion was discussed in detail in Chapter 3. Understanding the physics

behind the single particle picture and gyro-averaged guiding center motion is an important

part of plasma physics since it plays a role in wave-particle interaction and particle transport.

Numerical results for particle motion in equilibrium fields for an axisymmetric tokamak

were provided. The analytical results were compared to the exact (up to numerical error)

solutions that were obtained from the PIC simulation in NIMROD. These results showed

decent agreement despite the assumptions made in the analytical formulation.

The Serendipity shape functions were introduced into the particle push in NIMROD’s

PIC algorithm. This was done in the hopes of obtaining higher accuracy in resolving the

particle push, while still keeping the algorithm efficient. In Chapter 4, the results of the

Serendipity functions compared to the 2D Lagrange polynomials implemented in NIMROD

were compared. We saw that on average, the higher-order Serendipity sets were resolving

the particle trajectories better than the bilinear case traditionally used in NIMROD’s PIC

routine. We also saw that the higher-order Serendipity sets had faster run time and less

memory was used.

The load-balance scheme was also discussed and shown to help in cutting down run-

time. In Chapter 5, a plot was shown of how the particles were distributed among the

processors. The not load-balanced case was shown to have very uneven particle distribu-

tion among processors were the low pressure edge region had hardly any particles pushed

by the processors operating there.

In Chapter 5, we also discussed the δf-PIC approach for the hybrid fluid/kinetic-PIC

scheme. We formally presented the deposition process for which the energetic particle flow

could be considered. Numerical results for NIMROD’s PIC simulations were presented. Two

PIC approaches were comparted, one mentioned in Kim (2008) (which we called PiC) and

the modified code with load-balancing capability with the Serendipity basis implementation

(which we called newpart). We saw that both PiC and newpart gave similar results and

that for both schemes the energetic ion population decreased the growth rates. It was

unfortunate to see that the higher-order Serendipity basis seemed to have no effect on the
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(a) (b)

Figure 6.1: Figure (a) shows growth rates for NIMROD’s δf-continuum and δf-PIC ap-
proaches where Ecrit = 50 keV and Einj = 80 keV were used for the calculation. Figure (b)
also shows growth rates for δf-continuum and δf-PIC approaches but with Ecrit = 28 keV
and Einj = 227 keV. Need RF tail in NIMROD’s PIC routine to resolve the higher β cases.

growth rate for a core 1/1 internal kink mode.

In NIMROD’s PIC routines, the RF tail of the energetic particle population is not

implemented, only the slowing down distribution part (see Fig. 5.2). Figure 6.1a shows the

correct physics in terms of initial stabilization as βfrac is increased. But, the destabilization

of the fishbone mode at higher βfrac is not correctly predicted. We are not sure why that is

but both NIMROD’s PiC and newpart approaches show this incorrect trend at higher βfrac.

This needs to be investigated further.

In Choi et al. (2007), the GATO code was used to show that at a window in βfrac,

complete stabilization, i.e. no growth of an unstable mode, was observed. The goal was

to do this with NIMROD as a linear, initial value problem solver; which is different from

the GATO code which does an energy principle eigenmode analysis. Figure 6.1b shows

that in going from Einj = 80 to 227 kev, an increased stabilization (lower growth rates) is

observed and the trough moving toward γ = 0. It seems the high energy RF tail is needed

in NIMROD’s δf-PIC. There are many improvements that can be made in the code and we

list few of them here as potential future work.
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• Optimize the existing algorithm for efficiency. By making the particle routines more

efficient, this would greatly help in potential GPU implementation for subcycling.

Subcycling will improve temporal accuracy in the trajectories.

• Adapt ACC compiler directives to push the particles off onto GPUs.

• Implement other projection techniques, such as the least squares approach, in the map-

ping between 2D Lagrange or non-uniformly spaced Gauss-Lobotto-Legendre bases

and the Serendipity basis functions.

• Apply the Serendipity bases to the ion-orbit-loss problem. This was attempted but

there were a few subtleties that needed to be considered and improved upon. One

improvement is implementing the least squares approach in the mapping between

bases.

• Implement the current coupling scheme and compare its predictions with the existing

energetic particle pressure tensor scheme. Also, improve the existing pressure tensor

scheme by incorporating a finite energetic particle flow, which was mentioned in the

general deposition process in Chapter 5.

• Carry out the kink benchmark problem and compare with M3D-C1 (Fu et al., 2006;

Liu et al., 2022b) and NIMROD PiC (Kim, 2008).

• Implement a sampling of an energetic tail in the δf-PIC algorithm to handle extremely

energetic ions driven by RF.

• Apply the δf-PIC to ITER simulations of α-particles interacting with MHD. This

would also require a different hybrid scheme then the one implemented since the α-

particle population is predicted to be significant in ITER.
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APPENDIX A

The Dirac Delta Function in Curvilinear Coordinates

The Dirac delta function in Cylindrical coordinates was used when deriving the finite

element coefficients of the energetic ion pressure tensor. The Dirac delta function was

used for the point particle representation of the distribution function. Here we give a brief

overview with few examples.

The Dirac delta function can be defined by the property

∫
V
f (x) δn

(
x− x′) d3x =


f (x′) if P (x′, y′, z′) is in V

0 if P (x′, y′, z′) is not in V
. (A.1)

There is no restriction on the number of dimensions involved and f (x) can be a scalar

function or a vector function. However, the function f (x) must be defined at the point

P (x′, y′, z′). The Dirac delta function is normalized and the integral of it over the coordi-

nates involved is unity.

Consider a three dimensional orthogonal curvilinear coordinate system with coordinates

(ξ1, ξ2, ξ3) and the scale factors

hi =

√(
∂x

∂ξi

)2

+

(
∂y

∂ξi

)2

+

(
∂z

∂ξi

)2

, (A.2)

then one can express the Dirac delta function δ3 (x− x0) as

δ3
(
x− x′)→ δ (ξ1 − ξ′1)

h1

δ (ξ2 − ξ′2)

h2

δ (ξ3 − ξ′3)

h3
. (A.3)

In spherical coordinates we have: ξ1 = r, ξ2 = θ, ξ3 = φ, where the mapping between the

Cartesian and the spherical coordinates are x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ.

This mapping gives the scale factors h1 = 1, h2 = r, h3 = r sin θ, which results in the
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volume element d3x = r2 sin θ drdθdφ. Therefore, the corresponding Dirac delta function is

δ3
(
x− x′) = 1

r2 sin θ
δ
(
r − r′

)
δ
(
θ − θ′

)
δ
(
φ− φ′) . (A.4)

If one considers azimuthal symmetry, then the φ-integral must be projected out

∫ 2π

0
r2 sin θ dφ = 2πr2 sin θ .

Therefore, the Dirac delta function becomes

δ3
(
x− x′) = 1

2πr2 sin θ
δ
(
r − r′

)
δ
(
θ − θ′

)
. (A.5)

If the problem involves further symmetry and now there is symmetry in both θ and φ, we

now must project out both of these coordinates

∫ π

0

∫ 2π

0
r2 sin θ dφdθ = 4πr2 .

Thus giving the Dirac delta function

δ3
(
x− x′) = 1

4πr2
δ
(
r − r′

)
. (A.6)

Similarly, in cylindrical coordinate, were we have ξ1 = ρ, ξ2 = φ, ξ3 = z. The mapping

between the Cartesian and the cylindrical coordinates is accomplished by x = r cosφ,

y = r sinφ, z = z. This gives the scale factors h1 = 1, h2 = r, h3 = 1, which gives, for

the volume element, d3x = r drdθdz. Therefore, the corresponding Dirac delta function in

cylindrical coordinate is

δ3
(
x− x′) = 1

r
δ
(
r − r′

)
δ
(
φ− φ′) δ (z − z′

)
. (A.7)
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Similar to the spherical case, if we have symmetry in φ we get

δ3
(
x− x′) = 1

2πr
δ
(
r − r′

)
δ
(
z − z′

)
. (A.8)

APPENDIX B

Particle in Magnetic Field: Non-canonical Variables

When using non-canonical variables, we need to find the symplectic form, which will

then allow us to find the equations of motion in those variables (recall Eq. (2.25))

dzα

dt
= ωαβ

(
∂H

∂zβ
+
∂P i

∂t

∂qi
∂zβ

− ∂P i

∂zβ
∂qi
∂t

)
.

Here we show the steps to obtain the equations of motion from the non-canonical formula-

tion. First, we rewrite the Hamiltonian in terms of the non-canonical variables zα =
(
xi, pi

)
(see Eq. (2.13) ) to get

H
(
xi, pi, t

)
=

1

2m
pipi + eϕ , (B.1)

where the expression for the canonical momentum (see Eq. (2.11)) was used. We now

calculate the symplectic form (see Eq. (2.24)) by first considering the α = i and β = j

terms

ωij =
∂Pk

∂zi
∂qk
∂zj

− ∂Pk

∂zj
∂qk
∂zi

=
∂Pk

∂xi
ηkℓ

∂qℓ

∂xj
− ∂Pk

∂xj
ηkℓ

∂qℓ

∂xi

= e
∂Ak

∂xi
ηkℓδ

ℓ
j − e

∂Ak

∂xj
ηkℓδ

ℓ
i

= e

(
∂Aj

∂xi
− ∂Ai

∂xj

)
= eFij ,
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where note that Akηkℓδ
ℓ
j = Akηkj = Aj . Now for the α = i and β = j′ terms, we perform

similar calculation to get

ωij′ =
∂Pk

∂zi
∂qk
∂zj′

− ∂Pk

∂zj
∂qk
∂zi′

=
∂Pk

∂xi
ηkℓ

∂qℓ

∂pj
− ∂Pk

∂pj
ηkℓ

∂qℓ

∂xi

= −δkj ηkℓδℓi

= −ηij .

Next, for the α = i′ and β = j terms

ωi′j =
∂Pk

∂zi′
∂qk
∂zj

− ∂Pk

∂zj
∂qk
∂zi′

=
∂Pk

∂pi
ηkℓ

∂qℓ

∂xj
− ∂Pk

∂xj
ηkℓ

∂qℓ

∂pi

= ηij .

Finally, for the α = i′ and β = j′ terms

ωi′j′ =
∂Pk

∂zi′
∂qk
∂zj′

− ∂Pk

∂zj′
∂qk
∂zi′

=
∂Pk

∂pi
ηkℓ

∂qℓ

∂pj
− ∂Pk

∂pj
ηkℓ

∂qℓ

∂pi

= 0 .

Therefore, the symplectic form comes out to be

ωαβ =

 eFij −ηij

ηij 0

 . (B.2)



117

We now calculate the ∂H/∂zβ terms in Eq. (2.25), where for β = j we have

∂H

∂zj
=

∂

∂xj

(
1

2m

(
P i − eAi

)
(Pi − eAi) + eϕ

)
=

∂

∂xj

(
1

2m
pipi + eϕ

)
= e

∂ϕ

∂xj
.

Note that the Hamiltonian was rewritten in terms of the independent variable pi. Next, for

the β = j′ we have

∂H

∂zj′
=

∂

∂pj

(
1

2m

(
P i − eAi

)
(Pi − eAi) + eϕ

)
=

1

2m

[(
∂P i

∂pj

)
(Pi − eAi) +

(
P i − eAi

)(∂Pi

∂pj

)]
=

1

2m

[
δij (Pi − eAi) +

(
P i − eAi

) (
ηiℓδ

ℓ
j

)]
=
pj
m

,

where note that his gives the same result as the Hamilton’s equation ∂H/∂P i = q̇i since

the new independent variable xi is the same as the old one. The term ∂qk/∂t is simply

∂qk
∂t

= ηkℓ
∂xℓ

∂t
= 0

since xℓ is our non-canonical independent variable, and has no explicit time dependence.

The term ∂Pk/∂t also simply comes out to be

∂Pk

∂t
=

∂

∂t

(
pk + eAk

)
= e

∂Ak

∂t
.
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We will now consider only the α = i′ terms, which the equation of motion for the non-

canonical variables comes from

dzi
′

dt
= ωi′β

(
∂H

∂zβ
+
∂Pk

∂t

∂qk
∂zβ

− ∂Pk

∂zβ
∂qk
∂t

)
dpi

dt
= ωi′j

(
∂H

∂zj
+
∂Pk

∂t

∂qk
∂zj

− ∂Pk

∂zj
∂qk
∂t

)
+ ωi′j′

(
∂H

∂zj′
+
∂Pk

∂t

∂qk
∂zj′

− ∂Pk

∂zj′
∂qk
∂t

)
= −ηij

(
∂H

∂xj
+
∂Pk

∂t

∂qk
∂xj

− ∂Pk

∂xj
∂qk
∂t

)
+ eF ij

(
∂H

∂pj
+
∂Pk

∂t

∂qk
∂pj

− ∂Pk

∂pj
∂qk
∂t

)
= −ηij

(
∂H

∂xj
+ e

∂Ak

∂t

∂qk
∂xj

)
+ eF ij

(
∂H

∂pj

)
= −ηij

(
e
∂ϕ

∂xj
+ e

∂Ak

∂t
ηkℓδ

ℓ
j

)
+ eF ij

(pj
m

)
= e

(
−ηij ∂ϕ

∂xj
− ηij

∂Aj

∂t

)
+ eεijkẋjBk

= e

(
− ∂ϕ

∂xi
− ∂Ai

∂t

)
+ eεijkẋjBk

= e
(
Ei + εijkẋjBk

)
,

which gives the Lorentz force. Note that we used the Lorenz gauge

Ei = − ∂ϕ

∂xi
− ∂Ai

∂t
, (B.3)

where ∂/∂xi is the gradient in Cartesian coordinates. The gradient can also be expressed

as

∇i =
∂

∂xi
= ηij∂j , (B.4)

where the scale factors would be included for curvalinear coordinates similar to the vector

components indicated by vi = ηijvj . Note that vj and ∂j are contravariant components.

Therefore, we get

dpi

dt
= e

(
Ei + εijkẋjBk

)
(B.5)

or in vector form

dp

dt
= e (E+ ẋ×B) . (B.6)
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APPENDIX C

Derivation of Guiding Center Velocity

The guiding center velocity Ẋ is obtained by taking the total time derivative of the

guiding center position X = x− ρ (recall Eq. (3.8)), which comes out to be

dX

dt
=
dx

dt
+
d

dt

(
v × b

Ω

)
= v +

d

dt

(
1

Ω

)
v × b+

1

Ω

dv

dt
× b+

1

Ω
v × db

dt
. (C.1)

We further expand the above expression, where the acceleration dv/dt is expressed in terms

of the Lorentz force and the total time derivative of the fields are expanded according to

d/dt = ∂/∂t+ v ·∇; therefore, we get

Ẋ = v − Ḃ

B

v × b

Ω
+

q

mΩ
E× b+ (v ×B)× b+

1

Ω
v ×

(
∂b

∂t
+ v ·∇b

)
, (C.2)

where the time derivative of Ω is Ω̇−1 = −Ḃ/ΩB. Now the above expression is gyro-averaged

⟨Ẋ⟩ = ⟨v⟩ −
〈Ḃ
B

v × b

Ω

〉
+
〈 q

mΩ
E× b

〉
+
〈
(v ×B)× b

〉
+
〈 1

Ω
v ×

(
∂b

∂t
+ v ·∇b

)〉
,

which we expand out to get

⟨Ẋ⟩ = v∥ −
〈

1

B

(
∂B

∂t
+ v ·∇B

)
v × b

Ω

〉
+

q

mΩ
E× b

+ (⟨v⟩ ×B)× b+
1

Ω
⟨v⟩ × ∂b

∂t
+

1

Ω
⟨v × (v⟩ ·∇b) . (C.3)

First, note that any term with ⟨v⟩ × b = v∥ × b = 0, vanishes. Next, let us consider the

third term above, which simplifies to

⟨(v ·∇B)v × b⟩ = ⟨(∇B) · vv × b⟩ = ∇B · ⟨vv⟩ × b , (C.4)
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where one can show ⟨vv⟩ = v2∥bb+ 1
2v

2
⊥ (I− bb), which allows us to further simplify

∇B · ⟨vv⟩ × b = ∇B ·
(
v2∥bb+

1

2
v2⊥ (I− bb)

)
× b

=
v2⊥
2
∇B · I× b

= −
v2⊥
2
b×∇B . (C.5)

Hence, we have the magnetic gradient drift from the third term. The other term that needs

careful consideration is the last term, which when expanded yields

⟨v × (v⟩ ·∇b) = v2∥b× (b ·∇b) +
1

2
v2⊥ (eα × (eα ·∇b)− b× (b ·∇b)) . (C.6)

We used the relation

⟨v ⋆ v⟩ = v2∥b ⋆ b+
1

2
v2⊥ (eα ⋆ eα − b ⋆ b) , (C.7)

where ⋆ indicate any vector multiplication, i.e. dot, cross, or outer product. Note that

summation is implied for repeating indices. We can further simplify this term by considering

the following

eα × (eα ·∇b) = eα × (∂αb) = ∇× b =
µ0J

B
, (C.8)

where the pre-Maxwell form of Ampere’s law was used for the last expression. We also note

that the magnetic curvature vector has the form

κ = −b× (∇× b) = b ·∇b . (C.9)
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Therefore, combining these results we get for the last expression of the guiding center

velocity

⟨v × (v⟩ ·∇b) = v2∥b× (b ·∇b) +
1

2
v2⊥

(
µ0J

B
+ b× (b× (∇× b))

)
= v2∥b× κ+

1

2
v2⊥

(
µ0J

B
+ b×

(
b×

(
µ0J

B

)))
= v2∥b× κ+

µ0v
2
⊥

2B
(J− J⊥)

= v2∥b× κ+
µ0v

2
⊥

2B
J∥ , (C.10)

where for any vector b× (b×A) = A∥b−A = −A⊥. Plugging these back into the guiding

center velocity gives the final result

⟨Ẋ⟩ = v∥b+
E×B

B2
+

1

Ω
b×

(
v∥
∂b

∂t
+ v2∥κ+

v2⊥
2

∇B

B

)
+
µ0µ

qB
J∥ . (C.11)

APPENDIX D

Trapped/Passing Particle: Orbit Period

The integral for the particle orbit period (recall Eq. (3.66)) is carefully considered here.

Both the passing and the trapped particle results are derived. We present the integral here

for convenience

τb =
qsR

v
√
2ϵλ

∮
dθ

σ
√
k2 − sin2 (θ/2)

. (D.1)

First, we consider the passing particle, where k > 1; thus, the quantity in the square root is

always positive, which gives us a real value for the integral. Since a passing particle never

bounces, σ does not change sign (here we use σ = 1). For a passing particle, we need to

integrate from −π to π. After some simplification we get the expression

τb =
2qsR

v
√
2ϵλ

∫ π

0

dθ

k
√

1− k−2 sin2 (θ/2)
=

4qsR

v
√
2ϵλ

1

k

∫ π/2

0

dy√
1− k−2 sin2 y

,
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where y = θ/2. Note that the integral in the last expression is an elliptic integral that is

defined on the interval 0 ≤ x < π/2

K (k) =

∫ π/2

0

dx√
1− k2 sin2 x

. (D.2)

Thus, for a passing particle, the period of one orbit comes out to be

τb =
4qsR

v
√
2ϵλ

K
(
k−1

)
k

. (D.3)

Now for the trapped particle where 0 < k < 1, we have λ ∼ 1 due to the trapped

condition (see Eq. (3.48)). For the trapped particle, the parallel velocity changes sign.

When the particle trajectory is integrated along +dθ we have +σ and once the particle

bounces we now integrate along −dθ where −σ; thus breaking up the integral into two

parts gives

τb =
qsR

v
√
2ϵ

[∫ θb

−θb

dθ

σ
√
k2 − sin2 (θ/2)

+

∫ θb

−θb

−dθ
−σ
√
k2 − sin2 (θ/2)

]

=
2qsR

v
√
2ϵ

∫ θb

−θb

dθ√
k2 − sin2 (θ/2)

.

The trapped particle case is similar to the pendulum system with large angle, where small

angle approximation cannot be use, i.e. we cannot use sin θ ≈ θ. In the pendulum case

k = sin (θmax/2), where θmax is the maximum angle the pendulum reaches. Therefore, for

the trapped particle case, this maximum angle is the bounce angle θb, hence k = sin (θb/2).

Note that, from the last integral expression above, the term in the square root is not negative

since k < 1; like before, we will express the integral for trapped particles in terms of elliptic

integrals. Let k sinx = sin y (which means k cosx dx = cos y dy), where y = θ/2 like before.

Using these new variables we get for the above integral

I =

∫ θb

−θb

dθ√
k2 − sin2 (θ/2)

= 2

∫ θb

0

dθ√
k2 − sin2 (θ/2)

= 4

∫ θb/2

0

dy√
k2 − sin2 (y)

,



123

which further simplifies to

I = 4

∫ θb/2

0

dy

k
√

1− k−2 sin2 (y)
= 4

∫ θb/2

0

(k cosx/ cos y) dx

k
√
1− sin2 x

= 4

∫ θb/2

0

(cosx/ cos y) dx√
1− sin2 x

.

Note that since for trapped particles k = sin (θb/2), the limits of integration in the new

variable becomes

sinx = k−1 sin (θb/2) = 1 =⇒ x = sin−1 (1) =
π

2
.

Using the identity cosα =
√
1− sin2 α and the new limits of integration gives

I = 4

∫ π/2

0

dx√
1− sin2 y

= 4

∫ π/2

0

dx√
1− k2 sin2 x

,

where for the last term k sinx = sin y was used. Now that we have the elliptic integral for

the passing case, we get the final expression

τb =
8qsR

v
√
2ϵ

∫ π/2

0

dx√
1− k2 sin2 x

=
8qsR

v
√
2ϵ
K (k) . (D.4)

APPENDIX E

Serendipity Shape Functions

The explicit forms for the complete Serendipity shape functions used for computation

are given here. Serendipity shape functions up to third-order can be found in textbooks, e.g.

Zienkiewicz et al. (2005), while the fourth-order is harder to find. The reduced (incomplete)

Serendipity shape functions are not given here, but can be easily built using the method

given in Chapter 4.
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Biquartic Shape Functions
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