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Abstract

It is possible to accomplish multiple goals when available resources are abundant, but when the tasks are difficult and
resources are limited, it is better to focus on one task and complete it successfully than to divide your efforts and fail on
both. Previous research has shown that people rarely apply this logic when faced with prioritizing dilemmas. The pairs of
tasks in previous research had equal utility, which according to some models, can disrupt decision-making. We investigated
whether the equivalence of two tasks contributes to suboptimal decisions about how to prioritize them. If so, removing or
manipulating the arbitrary nature of the decision between options should facilitate optimal decisions about whether to focus
effort on one goal or divide effort over two. Across all three experiments, however, participants did not appropriately adjust
their decisions with task difficulty. The only condition in which participants adopted a strategy that approached optimal was
when they had voluntarily placed more reward on one task over the other. For the task that was more rewarded, choices were
modified more effectively with task difficulty. However, participants were more likely to choose to distribute rewards equally
than unequally. The results demonstrate that situations involving choices between options with equal utility are not avoided
and are even slightly preferred over unequal options, despite unequal options having larger potential gains and leading to
more effective prioritizing strategies.
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A hungry donkey placed equidistant from two bales of hay
will starve to death; at least, this is what happens in the
“Buridan’s Ass” paradox. Expected utility theory (EUT)
posits that a decision maker, such as the donkey in this par-
adox, will select the option with the highest expected util-
ity—that is, the product of the option’s value as an outcome
and the probability of this outcome (Mongin, 1997; Von
Neumann & Morgenstern, 1947). The obvious limit to this
strategy comes from estimating and comparing the value and
probability of outcomes, a process which can be cognitively
demanding, or even intractable (see Bossaerts & Murawski,
2017, for a discussion of this). Bounded rationality (Simon,
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1990) refers to the idea that people make decisions that are
optimal given the limitations of their own memory and atten-
tion. A less obvious limitation of EUT is that even for simple
choices between a limited set of options, such as choosing
between two bales of hay, an equivalence of outcomes risks
a decision paralysis like that described in the Buridan’s Ass
paradox. The current set of experiments explores the extent
to which the presence of equivalent options can disrupt
decision-making more globally, causing failures in efficient
resource allocation.

Framing and option equivalence

A decision bias applied to options with the same expected
utility can cause one to be selected in spite of their objec-
tive equivalence. Contextual factors that can bias decisions
are broadly known as framing effects. Several classic exam-
ples of framing effects were presented by Kahneman and
Tversky (1979) as a challenge to EUT. For example, people
tend to make different choices between options when the
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outcomes are framed in terms of possible gain compared
with possible loss. To account for this and several other
framing effects, Kahneman and Tversky devised prospect
theory as an alternative model to EUT. In prospect theory,
options are represented in terms of relative, subjective gains
and losses, rather than absolute value, and the psychophysi-
cal function describing the relationship between actual and
perceived loss or gain is distinct and nonlinear. Although
prospect theory provides an appealing alternative to EUT,
other modifications to EUT have been proposed that can also
account for many framing effects. Regret theory, for exam-
ple, suggests differences in choice bias for gains and losses
can be considered rational once the emotional effect of the
choice is factored into its utility (Loomes & Sugden, 1982).
That is, included in a given option’s expected utility is not
just the loss or gain that is the consequence of the choice, but
the emotional value associated with the act of choosing and
reflecting on that choice. Neither of these theories, however,
specifically address the situation of how to choose between
subjectively equal alternatives.

Specifically relevant to the Buridan’s Ass dilemma, in
contrast, another proposal to account for framing effects is
Salience Theory, which adds an element of decision weights
to the calculation of utility (Bordalo et al., 2012). In this
model, choice variation under different frames reflects the
chooser’s attention to different payoffs, some of which might
stand out for reasons that are not relevant to their utility. For
example, if the donkey spots a particularly juicy-looking bit
of hay in one of the two equal piles, and that payoff is given
a higher decision weight, this breaks the impasse. In other
words, salience could provide an escape from the Buridan’s
Ass dilemma, in that two options of equal global objective
utility could be valued differently, depending on attention to
particular local details. This kind of “local thinking” (e.g.,
Gennaioli & Shleifer, 2010) could, if the options were une-
qual, steer the donkey to the less optimal pile of hay, but in
the case where they are roughly equivalent, and/or utility is
difficult to calculate, salience could bring what could be a
lengthy or infinite deliberation to a more efficient end.

In more mechanistic terms, decision-making has been
modeled as a dynamic accumulation process, where the
expected payoffs of different aspects of options are retrieved
and compared sequentially and in a random order, until a
threshold is reached (e.g., decision field theory; Busemeyer
& Townsend, 1993). A multitude of variations of this kind
of model have been proposed, but as noted by Teodorescu
and Usher (2013), differences between most of these vari-
ations in terms of how well they fit decisions and their tim-
ing is negligible. One important distinction these authors
do draw, however, is whether there is an independent race
between the options or a more direct competition. In com-
petitive models, the accumulation of evidence in favor of one
option can affect the accumulation rate for the others, and/
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or the threshold for one choice is set as a difference, relative
to the others (e.g., Ratcliff & Smith, 2004). Independent
versus competitive models lead to distinct predictions about
deliberation time (i.e., reaction time [RT] in a forced-choice
task). For independent models, deliberation time is largely
independent of the alternatives, but in competition models,
the accumulation rate and/or threshold will change system-
atically with the context of alternative options, leading to
changes in RT. In perceptual decision tasks, Teodorescu and
Usher (2013) present evidence that the competitive models
provide the better fit with empirical data.

The Buridan’s Ass scenario does not pose a problem for
independent race models of decision-making. The presence
of equal options would not delay accumulation or change
the threshold; equally valuable locations would cross the
threshold at different times simply because the rate of accu-
mulation is noisy. In contrast, competitive models tend to
predict longer deliberation when the differences between
options become less obvious; the existence of these delays,
as noted above, has been used as evidence that competi-
tive models are a good description of the decision-making
process. While it seems unlikely that delays in choice could
become infinite in practical terms, other kinds of measurable
disruptions could result from equivalent options, such as the
development of “superstitious” behaviour (Skinner, 1948)—
that is, particular decisions might become favoured because
they are mistakenly attributed to coincidental reward.

The focus-or-divide decision paradigm

A variant of the Buridan’s Ass decision problem can be illus-
trated as follows:

Imagine a hungry donkey in a herd of other hungry
donkeys, and two empty troughs. The donkey does
not know which trough the farmer will deposit the
hay into. Once the hay has been dropped off, the don-
key will want to reach the trough as quickly as pos-
sible before the hay is devoured by the others. Where
should the donkey wait for the farmer? The donkey
could stand midway between the two troughs, and
possibly reach either through fast enough to get at
least some hay. If the troughs are far apart, though,
standing between them will mean most of the hay will
be gone before she gets there. Standing close to one
trough will give her a 50% chance of getting lots of
hay. To maximize how much hay she gets, therefore,
the donkey should stand between the troughs when
they are close together, and next to one trough when
they are far apart.

We call this a focus-or-divide dilemma. It is an exam-
ple of a resource-allocation problem and is a simplified
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Fig.1 Schematic example of the new donkey dilemma. A measures
how difficult the two goals A and B are to complete. In our case, A
measures the distance from the midpoint to either goal. ¢ represents
the position the donkey chooses with respect to the relative probabil-

version of a problem we face routinely in daily life: for
example, in deciding which projects to try and accom-
plish in a given timeframe or deciding where to wait for
a person when our rendezvous point was vaguely defined.
These problems have in common that we have to choose
between dividing our resources over multiple options
or focusing on one. The optimal decision depends on
evaluating available resources and selecting and focus-
ing exclusively on just one option if we do not have the
capability to complete or attend to both.

We can formalize the focus-or-divide dilemma with math-
ematics rather than donkeys. Let E represent the participant’s
expected accuracy under some behaviour ¢. In the scenario
outlined above, we have:

E(¢) = P.(A)Py(Al$) + P.(B)P(B|-¢) )

where A and B are two possible tasks, one of which will be
selected with probabilities P.(A) =1 — P.(B). We do not
know ahead of time which task will be required, but we can
choose whether to prioritize one goal over the other (i.e., ¢
=1 or ¢ = —1) or equally prepare for both possibilities (¢ =
0). Once we have set ¢, the goal (A or B) is selected, and our
chance of succeeding is given by P (Al¢g) or P (Bl¢). In some
versions of this task, ¢ = —1, 0 or 1 (Morvan & Maloney,
2012), while in others, intermediate levels of prioritization
are allowed (Clarke & Hunt, 2016).

Previous work on this choice paradigm has, to our knowl-
edge, been restricted to the case where A and B are equal

ity of success to achieve A or B (from —1 to 1, where 0 is equal).
When A is small, both A and B are easy to complete, and so the don-
key should position itself equally between them, (¢ = 0)

and symmetric goals: both A and B are equally likely to be
selected (i.e., P,(A) = P,(B) = 0.5), while the difficulty of
the two tasks, P,(A) = P(B), has been systematically varied
with respect to a parameter A:

E($,A) = P(A) P(A|$,A)+P.(B) P(B|-¢,4)  (2)

In our donkey example, A represents the distance
from the midpoint to each of the two troughs. When
A is small, such that P (Al¢ = 0, A) > 0.5, setting ¢
= 0 maximizes our expected accuracy'. If we increase
the difficulty so that P(Al¢ =0, A) < 0.5, preparing
equally for both potential tasks is no longer optimal,
and instead we should opt to gamble on either task A or
task B being selected (i.e., ¢ = 1 or ¢ = —1). Figure 1
shows a schematic representation of the task. In more
general terms, the solution to this decision dilemma is
to focus on a single goal when the demands of achiev-
ing multiple goals exceed the available resources. When
both goals are achievable given the constraints, one can

! This requires a few assumptions about the nature of f{A) =
P (Al¢p =0, A). For example, when A is small, the centre strat-
egy is optimal if f(A — ¢) + (A + ¢) < 2f(A). When A is large,
we require f(0) + f(2A) < f(¢p) + f(2A — ¢). A formal descrip-
tion of the family of functions for which this holds is outside
the scope of this paper. We have verified that these criteria hold
for the vast majority of empirical psychometric curves collected
during our experiments.
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focus on achieving both. Throughout this manuscript,
we will refer to the success rate that could be expected
under the optimal strategy as “optimal accuracy.”

In experiments that present focus-or-divide dilemmas,
people consistently demonstrate poor strategies (Clarke &
Hunt, 2016; James et al., 2017; James et al., 2019; Mor-
van & Maloney, 2012). That is, the majority of people,
across a broad range of task contexts, do not alter their
decisions about whether to pursue one goal or two with
the difficulty of achieving the goals. By not following
this relatively simple logic, the rate of success can fall
far below that which would be expected had the optimal
strategy been implemented. The focus-or-divide dilemma
is unlikely to push the limits of our cognitive systems.
The solution is not difficult to compute, and implement-
ing even an approximation of the optimal solution leads
to accuracy that matches optimal accuracy. Participants
have been shown to have all the information they need
to implement the correct solution (James et al., 2017).
Moreover, participants who explicitly understand the
optimal solution can implement it easily (Hunt et al.,
2019). In other words, this decision problem has an obvi-
ous-in-retrospect solution, but something about the way
the problem has been presented to participants prevents
them from discovering or implementing it.

In the case of the focus-or-divide dilemma we use in this
series of experiments, we replicate the methods of Experi-
ment 2 in Clarke and Hunt (2016), in which participants are
required to throw a beanbag into one of two hoops. Impor-
tantly, they are only told which hoop is the target after
they have chosen a standing position. To maximize their
chance of successfully hitting one of the hoops, partici-
pants should stand between the hoops when they are close
together, and next to one hoop when they are far apart. In
previous versions of this experiment, participants tend to
vary their standing position choices, sometimes standing in
the middle, and sometimes closer to one or the other hoop.
But the variation in standing position choices did not vary
systematically with the distance between hoops (Clarke &
Hunt, 2016; James et al., 2017), and as a result, throwing
performance fell short of what could have been attained
with a more optimal strategy. These are concrete decisions
(where to stand) with easily observable outcomes (did the
beanbag land in the hoop?). Consequently, we expect the
results would generalize more readily to the kinds of deci-
sions people make in daily life, compared with abstract and
hypothetical choice problems often used to evaluate human
decisions, with participants being expected to imagine they
are in a situation where choosing either option would result
in one of the two stated outcomes, which may not repre-
sent the behaviour of people in real life situations (e.g.,
Camerer & Hobbs, 2017).
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Prioritization when options are equivalent

In the context of previous experiments using the focus-or-
divide dilemma, choosing to focus on one objective entails
an arbitrary decision about which objective to focus on. That
is, the expected utility is the same regardless of whether par-
ticipants choose to prioritize A or B. This decision presents a
Buridan’s Ass dilemma that is specific to the “focus” side of
the focus-or-divide dilemma. Although participants in previ-
ous research do eventually decide upon a course of action,
they also do not make rational focus-or-divide choices.

One possible response to an arbitrary choice between
two objectives might be to avoid making it altogether,
which participants could accomplish by always pursuing
both goals, regardless of their difficulty. This behaviour
was adopted by a small but consistent subset of partici-
pants in Clarke and Hunt’s (2016) experiments. Another
possible response could be to overgeneralize—that is, even
though only a component of the overall choice problem is
arbitrary, participants may make choices that are entirely
arbitrary, making their choices variable, but insensitive
to the difficulty of the tasks. This describes the behav-
iour of the majority of participants in the experiments of
Clarke and Hunt (2016). In both cases, the presence of a
Buridan’s Ass dilemma could be the source of poor deci-
sions in the focus-or-divide dilemma. If so, poor decisions
would be limited to conditions involving a choice between
two equivalent options. This result would be consistent
with competitive models of decision, in which direct com-
petition between equivalent alternatives disrupts global
decision-making. Alternatively, the presence of equivalent
options may not be disruptive to decision-making in the
focus-or-divide dilemma, consistent with independent race
models, in which evidence in favour of each of the possible
standing positions would accumulate in parallel until one
crosses the threshold. Even if the ground truth is that some
positions are equally best, noise in the accumulator would
push one over the threshold ahead of the others.

Our key question is therefore whether reframing the
same decision problem but with nonequivalent options
could facilitate decisions. That is, does a Buridan’s Ass
dilemma interfere with the process of weighing up alter-
natives and selecting actions that maximize utility, and
can this explain the sub-optimal decisions observed in
other studies that involve choices between equal options
(e.g., Clarke & Hunt, 2016; James et al., 2017; Morvan &
Maloney, 2012)? If so, breaking the symmetry between
A and B will lead participants to make more optimal
focus-or-divide decisions. We test this hypothesis in
three different ways. In Experiment 1, we introduce a
rationale for choosing one of the two options by making
one easier than the other. In Experiment 2, we compare
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the standard condition, in which only one of the poten-
tial goals becomes the target, to a condition where both
potential goals are known to be the target. Experiment
3 gives participants the opportunity to introduce their
own asymmetry to the problem by letting them decide
how to split a monetary reward between the two potential
targets. Across all three experiments, the basic decision
dilemma and the solution remains the same: We present
trials where the two targets are close enough that both can
be reached from a central position, and trials where they
are far enough apart that participants would achieve better
accuracy by committing to one or the other. Breaking the
symmetry between the two targets has little bearing on
the first choice (whether to hedge or commit) but makes a
key aspect of second choice (which one to commit to) no
longer arbitrary. If this equality between the two goals was
the reason for the poor decisions, we should see choices
that are closer to optimal when we break the symmetry
between goals. If found, this pattern of results would serve
two useful functions. First, it would supply an explanation
for poor decision-making in previous focus-divide dilem-
mas, which have until now gone unexplained. Second, it
would provide further support for competitive, as opposed
to independent, models of decision-making by showing
how the disruptive effects of equivalent options can extend
into the broader decision-making context.

Experiment 1: Unequal difficulty

We created an asymmetry between the two potential target
locations by making one of the options more difficult—that
is, P(Alg, A) # P(Bl¢, A). Similar to Clarke and Hunt
(2016), we asked participants to decide where to position
themselves in order to throw a beanbag into one of two
hoops, but one of the hoops was smaller than the other. The
participants know the distance between the hoops and their
relative size when they decide where to stand, but they do
not yet know which of the two hoops is the target. To maxi-
mize success, participants should stand closer to the smaller
hoop, in proportion to the size difference. Such a strategy
would demonstrate that participants are sensitive to the rela-
tive size manipulation and can use expected performance
to modify their standing position choices. This would be
consistent with results from James et al. (2017), who demon-
strated that participants have reasonably accurate insight into
their own throwing ability in this task. Taking the probability
of success for each of the targets into account in choosing
a standing position would also be consistent with spatial
averaging (Chapman et al., 2010), a behaviour observed in
visually guided reaching. In these experiments, participants
need to begin a reach before a target location is known, and

reaching trajectories tend to be spatially weighted to reflect
the probability of different locations becoming targets.

If having a reason to choose one hoop over the other
facilitates optimal decisions, we should see optimal choices
in standing position as the distance between the hoops var-
ies. That is, participants will choose to stand centrally, but
slightly closer to the small hoop, when expected accuracy
from this central position is greater than 50%. As in Clarke
and Hunt (2016), we also included distances where accuracy
from a central position would be less than 50%; at these dis-
tances, standing next to the smaller hoop will ensure accu-
racy of at least 50%.

Methods
Participants

There were 21 (four male) participants in Experiment 1. All
participants were recruited from the University of Aberdeen
community via word of mouth. The protocol for this and all
other experiments reported here were reviewed and approved
by the Aberdeen Psychology Ethics Committee. None of the
participants had taken part in related studies run by our lab.

Power analysis

The power analysis was carried out using bootstrapping
methods and previously collected datasets. We fit beta dis-
tributions to each of the participants in the throwing experi-
ment (2) of Clarke and Hunt (2016) and simulated the hoop
size manipulation by shifting the distributions towards the
small hoop by 0.05 of the normalized range, where O is
the center and 1 is the hoop position. We used these dis-
tributions to simulate experiments with a range of differ-
ent sample sizes from 3 to 24. The uncertainty around the
estimate of the mean difference between hoop size condi-
tions plateaued around N = 15. This demonstrates that the
conclusions based on a sample size of at least 15 are highly
unlikely to change with any additional participants. Further
details of this analysis are presented in the Supplementary
Material. The power analysis generalizes to apply to detect-
ing any shift in standing position greater than 0.05 of the
normalized range from the center to the hoop—therefore,
based on this power analysis, the sample size in this and all
subsequent experiments is greater than 15.

Equipment
The experiment was conducted in a sheltered, outside, paved
area. Participants were required to throw bean bags into

hoops placed on the ground. The paving slabs (each measur-
ing 0.46 cm X 0.61 cm) acted as a convenient unit by which
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Fig.2 Methods for Experiment 1. The top panel shows a schematic outline of the setup for the second session of Experiment 1. The bottom

panel shows the area in which the experiment took place

to record the placement of hoops and where participants
chose to stand. Figure 2 shows an image of the testing area
and setup. The targets were flat plastic hoops of two sizes
(diameters of 63.5 cm and 35.5 cm) and three colors (blue,
yellow, and red). Beanbag colors matched the hoops (three
each of blue, yellow, and red).

Procedure

This experiment was based on the throwing task described
by Clarke and Hunt (2016) and was conducted over two ses-
sions, conducted on different days at least 1 week apart.”
The first session allowed us to measure P (Alg) for each
participant, while session two involved the focus-or-divide
decision paradigm.

Session 1 (measuring throwing performance over dis-
tance) The goal of this session was to obtain a throwing
performance curve over distance for each participant for
the two hoop sizes. The large hoops were tested at a set of

2 The week’s delay was for logistical reasons; a group of seven
undergraduate students helped with data collection as part of a
research methods class, and the week delay between sessions simpli-
fied coordination of testing.
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seven distances between 7 and 25 slabs (3.22 m—11.5 m).
The small hoops were tested at seven distances from 3 to
19 slabs (1.38 m—8.74 m). Participants threw 12 bean bags
into each hoop size at each of seven distances, for a total
of 168 throws. Two different directions were used (hereby
referred to as North and South) with the starting direction
counterbalanced across participants. The results of Session
1 (presented in full in the Supplementary Information) were
used to model the relationship between accuracy, distance
and hoop diameter for each participant using a generalized
linear model.

Session 2 (choosing a standing position) Session 2 pre-
sented the focus-or-divide dilemma, by asking partici-
pants to choose where to stand before the target hoop
had been specified. Six hoops, of three different colours,
were placed on the paved area (see Fig. 2). The red hoops
were always closest together, the yellow hoops further
out, and the blue hoops the furthest apart. For each pair
of hoops there was a small hoop and a large hoop. The
hoop positions in Session 2 were determined by each
individual’s throwing ability, to equate overall expected
accuracy across participants. To do this, we calculated the
distances at which a participant would be 10%, 50%, and
90% accurate for both hoop sizes based on the model of
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their throwing performance in Session 1. The midpoint of
these values was then taken so that there would be a com-
mon central point for both sizes of hoops. For example, if
a given participant was 50% accurate when the large hoop
was 10 slabs away, and 50% accurate when the small hoop
was eight slabs away, the small and large hoops would
both be placed nine slabs from the centre point in Ses-
sion 2, to approximate an expected overall accuracy from
the centre point of 50%. Each colour pair corresponded
to expected throwing accuracy (Red = 90%, Yellow =
50%, Blue = 10%) as measured from an unmarked cen-
tral position, equidistant from both hoops. Hoop size was
alternated.

To sample across a range of separations between hoops,
the second block was set up the same way as the first set
(with a hoop pair, defined by color, at each of the three sepa-
rations), but with a different set of separations. The red pair
(one large and one small) was positioned one slab closer
than their 50% slab (called 50%—1), the yellow at the 50%+1
slabs, and the blue at the 50%+2 slabs. The two sets of three
hoop separations were tested in two blocks of 45 trials each,
for a total of 90 standing position decisions per participant
in Session 2.

On each trial, participants would draw one beanbag at
random from a bag. The colour of the beanbag indicated
which pair of hoops would be the target for that trial; so,
for example, if the participant drew a red beanbag from the
bag, they now knew that the two red hoops were the possi-
ble targets on that trial. The point of this random draw was
to mix up the trial order so that trials with different hoop
separations were distributed across the experimental session.
The bag contained nine beanbags (three of each colour: red,
yellow, and blue). Once thrown, each beanbag was removed
from the paved area. After all nine had been removed from
the bag and thrown, the bag was refilled. The bag was set
off to the side of the paved area so all participants had to
return to this location before each trial. Participants were
told that they were allowed to stand anywhere they wanted
on the paved area. They were also informed that each hoop
was equally likely to be the target, and that the order of target
hoops had been predetermined in a random fashion. The
data recording sheet used by the experimenter included a
printed sequence of 90 targets to follow, on which the target
on each trial had been independent and randomly selected
between north and south hoops. Once participants had stood
in their chosen position and informed the experimenter they
were ready, their standing position was recorded (in slab
units) and they were told which hoop to aim for (as either
the “North” or “South” hoop, with the participant reading
this off from the predetermined list). The experimenter then
recorded throwing accuracy, collected the beanbag, and
instructed the participant to draw a new beanbag for the
next trial.

Analysis

All analyses for this and subsequent experiments were
carried out using R (Version 3.4.3; R Core Team, 2016)
with the tidyverse collection of packages (Version 1.3.0;
Wickham et al., 2019). Our main goal in the current
experiment was to assess whether or not standing posi-
tion decisions improved with unequal hoops sizes, and
this question can be addressed through a simple pres-
entation of the data. To keep the results section simple
and focused on this question, we present a descriptive
analysis of the Session 2 results below. For the purpose
of replication or extension of these results, a brief report
of the modelling results is presented here with the full
reporting of all the data from both sessions in the Supple-
mentary Materials. This analysis made use of the brms
package (Version 2.8.0; Burkner, 2017, 2018). Because
the descriptive analysis of results addresses the questions
the experiments are designed to answer, and the models
of the data are complex and lengthy to describe, a similar
approach to the results was taken in all the experiments
presented in this report.

Results
Standing position

The results, summarized in Fig. 3a, show the effect of the
manipulation of hoop size on standing position choices.
Participants tended to stand closer to the smaller, harder-
to-hit hoop than the larger one. This demonstrates that par-
ticipants are motivated and capable of responding rationally
to changes in the task structure in order to improve their
accuracy. However, using hoops of unequal size did not help
participants to solve the focus-or-divide task optimally, as
there is no systematic tendency to shift from centre to side
positions as A increases. This replicates previous versions
of this experiment (Clarke & Hunt, 2016; James et al., 2017,
James et al., 2019).

Standing position data were modelled using a
Bayesian Beta regression. The data were transformed
so that 0 < standing position < 1 in order to fit a
Beta distribution. The data were coded so that =0
meant the participant stood next to the big hoop, 0.5
was the centre, and =1 reflected the small hoop. The
priors for this model were relatively wide Student T
distributions all centred on 0, indicating no bias in
favour of either side and no effect of distance (Fig. 4,
top panel). The model results suggested that partici-
pants, in general, had a bias towards standing closer to
the small hoop (mean of 0.549, 95% HDPI of 10.508,
0.5911). We can be reasonably confident about this
result because the probability that the mean is greater
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Fig.3 Experiment 1 results. a The histograms show the distribu-
tion of standing positions for each value of A (the distance from the
center to each of the hoops). The increments of A increase on the
y-axis from C (the closest distance, where expected accuracy from
center is 90%) to F (the farthest distance, with expected accuracy of
10%), with the 0 point being where the expected accuracy from center
is 50%. The colour of the histogram indicates the optimal strategy,
with blue representing cases when the participants should have stood

Small Hoop

60% 4

40% 4

Expected Accuracy

20% 1

C -1 0 +1 +2 F
Hoop Delta (A)

near the centre, and yellow the cases where standing next to the small
hoop was the best strategy. b The black lines show expected accuracy
for each participant for each of the six hoop distances (with close (C)
to far (F) distances now shown on the x-axis). The green shaded area
shows the range of optimal accuracy for this group of participants,
and the red shows their minimum accuracy (the range of accuracy
that would be expected if participants chose the least optimal stand-
ing position). (Colour figure online)

0.0 1

Big Hoop

Centre

Small Hoop

0_

Big Hoop

Distance Type D Close

Fig.4 Bayesian model of Experiment 1 data. The top panel shows
the prior predictions for standing position choices. The bottom panel
shows the posterior predictions once the model had been condi-

than 0.5 given the data is 98.8%. This can be seen
in the posterior in the bottom panel of Fig. 4. Also,
note that distance did not appear to have an effect on
position, that is, participants were generally biased
slightly towards the smaller hoop across all distances
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tioned on the data. The analysis confirms that standing position is not
adjusted with the distance between the hoops (close, mid, far). (Col-
our figure online)

tested. This indicates that participants did not even
approach an optimal strategy, and instead chose a
place to stand that would (on average) somewhat bal-
ance their chance of success for each hoop, irrespec-
tive of the distance between them.
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Accuracy

We use the performance data collected in Session 1 to calcu-
late each participant’s optimal accuracy, by estimating what
their throwing accuracy would have been had they chosen
the optimal place to stand. To obtain a lower bound, we esti-
mate each participant’s minimum expected accuracy based
on a counter-optimal standing position. In this experiment,
the counter-optimal strategy would be to stand next to one
of the hoops when they are close together, and in the centre
when they are far apart, as this would produce the lowest
expected chance of success. Both of these measures vary
across different participants, and the ranges are shown in
Fig. 3b. We can compare these to the accuracy that would
be expected given a participant’s actual standing position
choices in Session 2, using their performance in Session 1.
We present this measure instead of actual throwing accuracy
in order to remove variability due to chance and variation in
throwing accuracy from one trial to the next, and to provide
an estimate that is more directly comparable to the estimates
for optimal and counter-optimal accuracy.

From Fig. 3D, it is clear that none of the participants made
use of the optimal strategy. Expected accuracy fell far short
of optimal accuracy. This is expected from the standing posi-
tion results, as the majority of participants did not modify
their standing position with the distance between hoops. The
decrease in accuracy as distance increases is consistent with
previous studies and reflects the fact that the decisions have
less effect on accuracy when the two tasks are easy.

Discussion

The aim of this experiment was to provide participants with
a concrete and intuitive difference between the two targets
to use in guiding their decisions. We can conclude from
this experiment that participants are sensitive to the differ-
ences in hoop size and adjust their behaviour to increase
their expected accuracy. However, creating an asymmetrical
decision did not help participants solve the focus-or-divide
problem. Participants stood in a central location just as often
when the two targets were close together as when they were
far apart. This led to accuracy rates that fell far short of what
they could have been had an optimal strategy been adopted.

We confirmed and extended this conclusion in an experi-
ment presented in the Supplementary Material, using a dif-
ferent manipulation of the symmetry between the two pos-
sible targets and a different task context. Briefly, we used
an eye-movement task and presented a small, brief target
inside either a left or right square (see also Clarke & Hunt,
2016; James et al., 2019; Morvan & Maloney, 2012). Par-
ticipants had to choose a place to fixate in anticipation of the
target appearing. The distance between the squares deter-
mined whether the best location to fixate was between the

two squares (when they were closer), or inside one of the
two squares (when they were too far apart to be visible from
the center). We manipulated the probability of the target
appearing in one square over the other (with an 80/20 share
across the two locations). The results are in line with the
results we observed above: participants adjust their fixation
decisions to match the probability manipulation, but do not
make more optimal fixation decisions with respect to the
distance between the squares.

Experiment 2: Two throws

Even though there was a logical reason to favour one hoop
over the other in Experiment 1, participants would still expe-
rience positive feedback (i.e., they would achieve the goal
on that trial) when selecting the hoop that happened to be
designated as the target on that trial, and negative feedback
(i.e., they would miss) when selecting the nondesignated
hoop. The sequence of which of the two hoops (North or
South) was designated as the target was predetermined and
unpredictable, so when participants did stand near one hoop,
they could expect to have guessed correctly on about half
the trials. Even though participants are informed that the
sequence of north and south designations is random, and
the experimenter is clearly reading it off a list, the partici-
pant might question whether the sequence is truly random,
especially when streaks or other specious patterns happen
to emerge (e.g., Nickerson, 2002). Searching for patterns is
a cognitively demanding task in itself (Wolford et al., 2004),
which may have distracted participants from making better
focus-or-divide decisions. It is also possible that choosing to
stand near what turns out to be the target or nontarget hoop
on any given trial could influence decisions on subsequent
trials, leading to less optimal choices, similar to those pre-
dicted by regret theory (Loomes & Sugden, 1982). In other
words, choosing to stand near one hoop and having it turn
out not to be the target could instill a negative emotional
response, which would lower the expected utility of standing
near either hoop relative to standing in the center.

In Experiment 2, participants completed two blocked
conditions. One block was the same as the previous experi-
ments, in which participants choose a place to stand and then
are told which of the two hoops is their target on that trial. In
the other block, instead of only one of the hoops becoming
the target, participants threw two beanbags—one at each
hoop—on every trial. In the nomenclature presented in the
introduction: P.(A) = P(B) = 1. This change to the experi-
ment removes any reason for participants to try and “dis-
cover” an underlying pattern in the task, because there are no
random variables except which beanbag color is drawn from
the bag (and the participant does the drawing). Throwing at
both hoops also removes any disappointment associated with
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Fig.5 Results of Experiment 2. a The boxplots show the distribution
of standing positions across the distances tested in this experiment.
Please note that these boxplots are highly skewed in all cases; the
median standing position was the center. b The black lines show the
expected accuracy for each participant based on their standing posi-

selecting and standing near the “wrong” hoop. Importantly,
to maximize accuracy to achieve both goals, the optimal
strategy remains the same. Standing in the center when the
hoops are close together will increase the likelihood that
participants will hit both, and standing next to one when
they are far apart will ensure that at least one of the goals
will be achieved.

Methods
Participants

Eighteen participants (eight male) took part in this experi-
ment, with an average age of 22 years (between 19 and 30).
Participants were recruited via word of mouth. None had
previously participated in any related experiments.

Procedure

This experiment followed the same protocol as in Experiment
1, with the following exceptions. First, each hoop was the
same size (0.4 m in diameter) so standing equidistant from
both would give participants an equal chance at each target.
The Supplementary Materials present individual throwing
performance from Session 1, which was used to determine
the hoop positions for each participant in Session 2, using the
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tions across the distances tested. The shaded areas represent bounda-
ries on accuracy, with green showing expected accuracy for optimal
decisions and orange for counter-optimal decisions. (Colour figure
online)

same methods described in Experiment 1. Session 2 was split
into two blocked conditions: the one-throw and the two-throw
condition. The order of these blocks was counterbalanced
across participants. The one-throw condition followed the
same procedure as in Experiment 1. In the two-throw condi-
tion, participants still selected one bean bag at a time from a
bag containing nine, with three of each colour. They were then
handed a second bean bag of the same colour from a separate
pile. Participants were then, as in Experiment 1, instructed to
choose somewhere to stand, at which point they would notify
the experimenter. They would then throw each bean bag to
each of the two hoops of the same colour, in whichever order
they preferred. The stated goal for both conditions was to get
as many bean bags into the hoops as possible. As before, the
experimenter would record the standing position and throwing
accuracy on each trial, and clear the beanbag from the paved
area after each throw.

Results

Standing position

From Fig. 5a, it is clear that there was little change in stand-
ing position with increasing distance between hoops in

either the one-throw or the two-throw condition. In the two-
throw condition, participants opted more often to stand in
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Fig.6 Bayesian model of Experiment 2 data. The top panel shows the
prior predictions for the Two-Throw Experiment across three hoop
separations (the three panels: close, mid, and far). The bottom panel
shows the posterior predictions. The analysis confirms that standing

the centre overall. This was particularly true for the closest
hoop separation, but the standing position remained closer
to center for the two-throw condition across all separations.
The benefit of consistently standing near the center when the
hoops are close together does not outweigh the cost of stand-
ing near the center when they are far apart. Consequently,
participants (as a whole) did not perform the task in a more
optimal way (see accuracy results below).

The model for this experiment was a beta regression with
no intercept parameter. The analysis suggested that there was
a greater tendency for participants to stand further from the
centre in the one-throw condition (mean of 0.222, 95% HPDI
0f 10.126 , 0.313) than in the two-throw condition (mean of
0.15,95% HPDI of 10.083 , 0.229) with P(Onethrow > Two-
throw | data) = 91%. However, as can be seen from Fig. 6,
the difference is generally small and consistent across all
distances. This means that when participants were given the
opportunity to throw to both hoops (i.e., in the two-throw
condition), they were still suboptimal in their performance
if not even less optimal as they generally opted for more
central standing positions even in the most difficult setting.

Accuracy

Figure 5b shows that most participants’ accuracy (black
lines) dropped below that which would be expected had
they employed the optimal strategy (green). Note that, like
for Experiment 1, we are calculating an estimate of accu-
racy based on the standing position choices and throwing

position is similar across hoop separations for both the one-throw and
the two-throw condition, and that throwing to both hoops is associ-
ated with standing closer to the middle

performance of each individual, to remove variability and
ease comparison to optimal and suboptimal baselines.
One of the 18 participants was close to achieving optimal
expected accuracy in both conditions. This is consistent with
other results showing the occasional participant approaching
an optimal strategy, but the majority performing far below
this (e.g., in Clarke & Hunt, 2016, Experiment 2, one of the
12 participants approached optimal).

Discussion

Most participants failed to perform optimally in the
task, whether they had to throw a beanbag into one
hoop, or both. The results rule out a search for patterns
or choice regret as the reason for suboptimal decisions
because the decisions are similarly sub-optimal in the
absence of any uncertainty about which hoop would be
the target. The results also suggest that the potential
regret associated with selecting the wrong target (e.g.,
Loomes & Sugden, 1982) is not the reason participants
stand in the center when they should be standing near
one of the targets. Instead, we see participants stand
even closer to the center in the two-throw condition,
when the potential for this regret is no longer present.
One potentially important feature of the two-throw con-
dition is that moving to stand next to one hoop all but
guarantees the participant will miss when they have
to throw to the other one. The prospect of a certain
miss may have outweighed the increased probability of
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success that would have been gained by moving closer
to one hoop, consistent with the predictions of prospect
theory (Kahneman & Tversky, 1979). That is, people
appear to slightly prefer the prospect of probably miss-
ing both targets over definitely missing one and defi-
nitely hitting the other one. It is important to note that
even though participants did keep closer to the center in
the two-throw condition on average, they also selected
a range of different standing positions in both condi-
tions, which loss aversion cannot explain. In any case,
the results rule out an explanation for poor prioritizing
decisions based on people trying to predict which hoop
would be the target, and/or being disappointed when
they guessed incorrectly.

Experiment 3: Unequal reward

The expected utility of a particular course of action is the
sum of the expected gain or value of each possible outcome
multiplied by the probability of each of these outcomes
occurring. Thus far, the “gain” associated with each target
was still symmetric: leaving aside the intrinsic reward of get-
ting the beanbag in the hoop, in terms of monetary value, the
two goals were equally null. In Experiment 3, we introduced
monetary rewards for accurate performance, resulting in the
new expectation:

E(¢,A) = R,P.(AP(Alp, A) + RyP (BP,(Bl—-h,A) (3)

where R, and Ry are the rewards for achieving goals A and
B.

In the previous experiments using this paradigm, R,
= Ry. In the current experiment, we asked participants
to choose the relative value of the two targets. Before
each trial, we asked them to choose either an equal split
(R4 = Ryp), or to assign 80% of the reward to one target
and 20% to the other (i.e., R, = 0.8, Ry = 0.2). With this
design, participants are offered the chance to avoid the
Buridan’s Ass dilemma altogether, by ensuring that they
are no longer equidistant from two equally rewarding
options. This allows us to evaluate participants’ prefer-
ence for symmetrical options, as well as the effect of
asymmetrical values on their decisions (presuming they
choose these).

Rewards have been shown to improve decisions in some
contexts (e.g., Goodnow, 1955; Phillips & Edwards, 1966),
although there are limits (for a review, see Camerer & Hog-
arth, 1999). In a gamified version of the focus-or-divide
dilemma (James et al., 2019), in which a penguin character
could earn fish rewards for accurate performance, partici-
pants improved their performance on the task relative to
participants who were not given this additional motivation.
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However, the reason for the improvement was not partici-
pants making better prioritizing decisions. Rather, decisions
with this additional motivation remained equivalently sub-
optimal, and instead participants performed better in other
aspects of the task (such as making fewer key-press errors,
and monitoring locations more vigilantly). Similarly, offer-
ing financial incentives for accuracy (Morvan & Maloney,
2012) did not improve decisions relative to not doing so
(Clarke & Hunt, 2016). Overall, this suggests a lack of
extrinsic reward is unlikely to explain the suboptimal deci-
sions observed in the throwing experiments.

The current experiment goes beyond simply assess-
ing the effect of rewards, by providing insight into how
the Buridan’s Ass dilemma is regarded by participants.
Before they made a decision about where to stand, they
could designate one of the targets as more valuable than
the other. The choice with the highest expected payoff,
irrespective of distance between hoops, is to always
choose an unequal split and then stand next to the hoop
with the greater value. Therefore, in this experiment, not
only do equally rewarding and equally difficult hoops
create a Buridan’s Ass dilemma, they also decrease the
potential winnings of participants. The conditions of this
experiment enable participants to avoid this equivalent-
options scenario entirely, by always splitting the reward
unevenly. In so doing, participants would also be adopting
a more financially rewarding strategy.

A related question is whether consistent relationships
will emerge between hoop distance, people’s choices of how
to split the reward, and their choices in where to stand.
The requirement to judge how to divide the reward might
nudge people to think about the consequence of the hoop
separation more carefully. As the hoop separation increases,
they may consider splitting the reward unevenly, because
they recognize that they are likely to fail from using a cen-
tral strategy at far hoop separations. Thus, there may be a
tendency, at least among some participants, to divide the
reward unevenly at larger hoop separations. Among these
participants, they may also commit to standing closer to the
hoop they have made more valuable. Indirectly, this could
lead participants who split the reward unevenly to approach
an optimal strategy.

Methods
Participants

Twenty participants took part in this experiment (15
female) with an average age of 22.6 years (between 20
and 30). All participants were recruited via word of mouth
at the University of Aberdeen. The power analysis was the
same as for the previous experiment.
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Procedure

Participants signed a consent form which contained
details about the reward schedule and how much they
could expect to earn on average. All participants were
given £4 as a baseline and were told that they could
expect to earn an additional amount ranging from £0 to
£4.80 depending on their performance. They were also
told that we expected them to earn between £1.50 and
£2.50 on average.

This experiment followed a similar procedure to that
of Experiments 1 and 2. However, in this experiment,
both the measuring and decision sessions took place in
one session. First, participants were taken to the paved
area in order to measure their throwing ability across the
same eight distances used for the small hoops in Experi-
ment 1 (slabs 3 to 19 slabs or 1.38 m to 8.74 m), with
participants throwing 12 bean bags for each distance (96
trials total). After this, they performed a brief computer-
based task in the lab. The task was a brief pilot of an
unrelated experiment, which involved detecting shapes
among cluttered and uncluttered scenes. This was done
only to make efficient use of participants’ time while
the experimenter calculated their performance curves
and set up the hoops for the second session, much in the
same way as before. For the final task, participants were
taken back to the paved area to complete the decision
session, as follows.

There were two main changes to the paradigm.
First, four hoop distances were used: the distances
at which participants were 90%, 75%, 25%, and 10%
accurate, based on their individual Session 1 perfor-
mance. Each of these distances was tested 3 times
for a total of 12 trials. Second, participants were told
they had 50p to split between the two target items in
one of two ways. They could either split it equally
across both potential targets (25p/25p) or make it an
80/20 split (40p/10p). Participants were asked how
they would like to split the money before they made a
choice about where to stand. If they opted to make an
unequal split, they were asked which hoop they would
like to be worth 40p and which 10p. Participants were
informed that the target hoop had been randomly
predetermined so that each hoop was equally likely
to be the target on each trial. It was reaffirmed that
any money they earned by successfully throwing the
bean bag into the target hoop would be given to them
upon completing the experiment. Participants would
then pick a place to stand, at which point they would
be told which hoop was the target for that trial. The
experimenter recorded standing position and throw-
ing accuracy and cleared each beanbag from the area
after each throw.

Results
Splitting the reward

We can see from Fig. 7a that participants selected the 50/50
and 80/20 reward splits about equally often, with a slight
favouring of the equal split. There is also an increased ten-
dency towards the unequal split as A increases, but even at
the farthest hoop distance, participants choose equal splits
around 40% of the time. Figure 7b shows individual choices
of how to split the reward. From this figure we can see that it
is not that some participants choose uneven splits and some
choose even splits; rather, all participants choose uneven
on some trials and even splits on others. Five participants
opted for an unequal split most of the time, but no partici-
pants followed the optimal rule of always splitting the value
unequally and standing next to the more valuable target.

Standing position

Standing position choices are shown in Fig. 7c. When com-
pared with the results of Experiments 1 and 2 (Figs. 3a and
4a), standing position choices in this experiment are more
sensitive to A. This sensitivity was especially pronounced
when participants had opted for an unequal split, shown in
the red box plots. As in the previous analyses, we applied
a Bayesian regression model using a Beta family of distri-
butions with no intercept parameter. The predicted value
(standing position) was normalized so 0 would equate to
a participant standing in the centre, and 1 next to one of
the target hoops. Due to the use of the Beta family, trials in
which participants stood outside the range (of which there
were six in total) were excluded from the analysis. The pre-
dictors of interest were split type (i.e., equal or unequal),
and target separation. Target separation (Delta) was scaled
so 1 represented the furthest separation for each individual
participant. The output of this model can be seen in Fig. 8.
The model suggested that participants were more likely to
stand closer to one of the two hoops when the hoops were
far apart. This confirms the descriptive results suggesting
that participants made some use of the distance information
available to them to adjust their standing position, unlike the
previous two experiments.

This adjustment in standing position with hoop distance
was more pronounced for trials in which participants had
opted to split the reward unequally across the two options.
This resulted in participants standing closer to the side hoop
in for unequal trials (mean of 0.613, 95% HPDI of 10.488,
0.731) than when they had opted for an equal split (mean of
0.417, 95% HPDI of 10.25, 0.5821) with the P(Unequal >
Equal | data) = 95.7%. Although this goes in the direction
that participants were more optimal in the presence of une-
qual financial rewards, they did not follow the truly optimal
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Fig.7 Results from Experiment 3. a The proportion of times that par-
ticipants opted for an equal split across the different distances. b This
panel shows the same data as in panel a, but each participant has a
unique line to trace their decisions across each distance. ¢ Boxplots
indicating the standing positions for the four distances tested with the

strategy as the truly optimal strategy was to split the money
unequally on every trial and stand next to the target worth
the larger amount.

Expected earnings

Figure 7d presents the expected earnings per trial. This value
represents the expected earnings based on Session 1 throw-
ing performance and the chosen standing positions, in order
to ease comparison with the optimal expected earnings: this
is what participants would have earned if they had adopted
the optimal strategy of splitting the money unequally
and then standing close to the more valuable hoop. Most
participants fall far short of this. The lower bound is the
counter-optimal earnings: This is what participants would
have earned if they had made the poorest possible choices.
The poorest possible choice would be to split the monetary
reward unequally and then standing next to the lower value
option for all distances except the furthest, in which case,
standing in the centre was the worst choice for participants.
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Discussion

The optimal strategy in this task was to always split the
reward unevenly and then stand next to the hoop with greater
value at all hoop separations. However, participants slightly
favoured the even split. This even-split choice had two neg-
ative consequences; first, the possible gains were smaller,
particularly when the hoop separation was large. Second,
when they chose the even split, participants were more likely
to stand closer to the center when the hoop separation was
large, relative to when they chose an uneven split. The bias
towards the even split despite its negative consequences for
financial reward is clear evidence that participants do not
avoid Buridan’s Ass dilemmas when given the opportunity.

An additional interesting observation from this experi-
ment was that standing position was modified by A more in
this experiment than had been observed in the previous ones,
suggesting that reward does facilitate optimal decisions in
a focus-or-divide dilemma. However, reward for successful
performance is only part of the story. On trials in which
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Fig.8 Bayesian model of Experiment 3 data. The top two plots
show the predictions for the model that only sampled from the prior.
The bottom plots show the results when the model had been condi-

participants chose to split the reward unequally, they were
more likely to choose standing positions that were closer
to one of the potential target hoops than had they opted for
an equal split. Therefore, participants needed not only a
reward, but also the option to split the money unequally,
before they were willing to move away from one target when
the two targets were too far away to achieve success from the
center. We can therefore conclude that the introduction of
a monetary incentive to prioritize one target over the other
was indeed effective in causing some participants to vary
their strategy with distance more consistently. Given this,
it is striking that participants persist in splitting the reward
equally on the majority of trials. Even when the two targets
were at the furthest separation, participants chose an equal
split on over a third of the trials, leading to losses in poten-
tial monetary gains. Not only did participants stand to gain
less money if they were successful when they had split the
money equally, but participants were also less likely to be
successful when they split the money equally, because they
were less likely to adopt the optimal strategy of standing
next to one hoop.

General discussion

The current study rules out the Buridan’s Ass dilemma as a
potential cause of poor resource-allocation decisions shown
in previous studies (Clarke & Hunt, 2016; James et al.,
2017; James et al., 2019;Morvan & Maloney, 2012). We

tioned on the data, split into the two closer hoop conditions (where
they should stand in the center) and the two farther hoop conditions
(where they should stand next to one)

had speculated that participants’ ability to adjust behaviour
¢ to maximize expected accuracy E(¢, A) might depend on
having clearly different expected utility levels for tasks A
and B for a given ¢. That is, for this decision problem:

The hypothesis was that participants may be able to adjust
¢ to maximize E only when P (A) # P (B). We found consist-
ent evidence against this hypothesis, that is, poor focus-or-
divide decisions persisted even when A and B were unequal.
In exploring this question, we extended the previous find-
ings of suboptimal decisions to include conditions where
the decision between the two goals is no longer arbitrary, or
even necessary. Moreover, participants do not consistently
take advantage of opportunities to avoid choosing between
equal options, even when they could benefit financially from
doing so.

In all three experiments, we replicated previous experi-
ments showing that participants do not approach an opti-
mal strategy in a focus-or-divide dilemma, and as a result,
achieve throwing accuracy far lower than could have been
achieved if they had. In Experiment 1 of this series, one of
the two target hoops was smaller than the other. Participants
tended to stand closer to the smaller hoop than the larger
one, demonstrating that they are sufficiently motivated to use
hoop size information to boost their chances of success, and
capable of implementing an effective strategy to do so (simi-
lar to optimal spatial averaging in visually-guided reach-
ing, reported by Chapman et al., 2010; see also Hesse et al.,
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2020). Nonetheless, participants were not able to maximize
their chances of success by modifying their standing posi-
tion decisions as the distance between the hoops changed.
This resulted in accuracy that was far worse than could have
been achieved, particularly when the hoops were far apart
and participants persistently stood close to the center, caus-
ing their throwing accuracy to fall far short of 50%. These
results show that giving participants a reason to prioritize
one target over another did not lead to more optimal focus-
or-divide decisions. A similar experiment in the supplemen-
tary material manipulated probability and showed a similar
pattern, with participants usually (but not always) prioritiz-
ing the more likely target. These results support the notion
that people are sensitive to information about the expected
utility of different options and make use of it when making
decisions (Gao & Corter, 2015; Wolford et al., 2004; Yel-
lott, 1969). This is further evidence against the argument
that perhaps participants are not sufficiently motivated to
maximize success in this task; they are clearly monitoring
their environment and exploiting opportunities to improve
success rates where they perceive them. This aligns with
previous results showing gamification of a focus-or-divide
task, while improving other aspects of performance, does
not bring participants any closer to optimal decisions about
whether to stay in the center or shift to one target (James
etal., 2019).

Experiment 2 included a condition where participants had
to throw two beanbags, one at each hoop. In the two-throw
conditions, participants no longer had to guess which hoop
was likely to be the target; they knew both were targets.
We reasoned that the two-throw condition should improve
accuracy relative to the one-throw condition, if uncertainty
about which hoop would be the target and the regret associ-
ated with selecting the “wrong” hoop had been dissuading
people from implementing the optimal strategy. Inconsistent
with this prediction, the mean throwing accuracy for the two
hoops that would be expected based on where participants
chose to stand in the farthest hoop separation condition was
22% and 21% in the one-throw and two-throw conditions,
respectively. Not only are these values similar, they are far
lower than the 50% accuracy that would be expected if par-
ticipants had chosen to stand close to one hoop when they
were far apart. We conclude that suboptimal choices are not
due to the effects of trying to predict random sequences of
targets, or to the regret associated with these predictions.
This is not to say that under the one-throw condition par-
ticipants do not try to find patterns in sequences of targets,
or that they do not feel disappointment when they select
the wrong hoop. Indeed, many of our participants verbally
report engaging in prediction and experiencing regret when
they are wrong. There are also certainly many circumstances
in which trying to discern patterns in random sequences can
lead to suboptimal choices, such as in the classic probability
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matching bias (e.g., Gaissmaier & Schooler, 2008), which
we also observed in the experiment presented in supplemen-
tary materials. As noted in the introduction, the negative
experience of regret can account for deviations from predic-
tions of choice based on classic definitions of expected util-
ity (Loomes & Sugden, 1982). In this focus-or-divide deci-
sion problem, however, the poor prioritizing choices persist
even in conditions where explanations based on prediction
and regret are no longer viable.

In Experiment 3, participants were given the choice
to split a monetary award equally or unequally across the
two hoops. It was on the trials where they split the reward
unevenly that participants tended to vary their strategy
more appropriately with task difficulty. This suggests that
the interaction between asymmetry and financial reward
facilitates the use of a more optimal strategy. Interest-
ingly, however, none of our participants managed to con-
sistently follow the optimal strategy of opting for an une-
qual split, then standing next to the most valuable target.
Indeed, overall, they slightly preferred to evenly split the
reward, choosing to do so on over half of trials overall.
This result suggests that unequal rewards can lead to bet-
ter focus-or-divide decisions®. The fact that participants
did not seem to recognize that unequal rewards had this
double benefit of both directly increasing potential win-
nings and indirectly facilitating more optimal decisions
reinforces the previous findings that participants’ insight
into the relatively simple logic of the optimal strategy
is limited (Hunt et al., 2019). Participants are not easily
“nudged” into better performance.

One caveat about the final experiment is that it is pos-
sible we sampled a group of participants who were more
likely to make better focus-or-divide decisions in the first
place. In previous experiments, a handful of individuals
do approach optimal strategies in this task, so having
more of these participants in the sample could lead to
the impression that the conditions improved their perfor-
mance, rather than having been better in the first place,
which is why we have made within-group comparisons
wherever possible in these experiments. More generally,
individual differences in decision strategies are com-
mon, and present an important challenge for explaining
the biases and heuristics people tend to use (e.g., Clarke
et al., 2019; Jasper et al., 2017; Zhang et al., 2012). In
our particular decision problem, the solution is trivially
easy to implement when it is known (Hunt et al., 2019),

3 We do not know, nor is it within the scope of the current investiga-
tion, whether the agency of the participant in allocating the reward
to the targets is a necessary condition of this improvement. It is an
interesting and open question whether this improvement would still
be observed if it was the experimenter who assigned monetary values
to the targets.
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so it is important to ensure the participants have not been
exposed to the decision problem before. Our participants
were naive insofar as they had not participated in any of
our previous decision experiments, but we are sampling
from a population of undergraduates who all complete
psychology experiments regularly, and may communicate
with one another about different experiments they have
participated in. An experiment which involves throw-
ing beanbags at hoops may stand out among the others,
which tend to involve computer-based tasks and ques-
tionnaires, so the population we sampled from might
be less naive than the general population. Given that
this was the last in a series of similar experiments, this
population may have had more knowledge of the opti-
mal solution than was the case earlier for the previous
experiments. Another potentially important distinction
between Experiment 3 and the previous two is that par-
ticipants completed the two sessions of the experiment
(measuring throwing accuracy task and the decision ses-
sion) on the same day, while in Experiments 1 and 2 they
were separated by a week. It could be that the fresher
memory of throwing performance facilitated better use
of that information in making decisions. That said, the
fact that the participants made better decisions overall in
this task does not undermine the conclusions that partici-
pants chose to divide the reward unequally relatively less
often than equally, despite this leading to lower expected
payoffs as well as worse decision-making.

The current results have some common ground with
previous findings suggesting that people avoid situations
that have the potential to incur a sure loss (Chapman
et al., 2010; Hudson et al., 2007; Kahneman & Tver-
sky, 1979). That is, participants may prefer equally poor
chances across both targets over certain success for one
and certain failure for the other. This preference may
contribute to some participants’ choices, but it cannot
be the entire explanation for poor decisions in the focus-
or-divide dilemma, because if this were the case, partici-
pants would consistently “divide” instead of focus—in
the beanbag throwing task, this would lead participants
to consistently stand at, or at least near, the center. This is
not the pattern that is observed in studies so far, including
the experiments in the present series—some participants
do stand in the center consistently, but just as many shift
towards one target or another (see Supplementary Mate-
rial to see the full range of individual decisions), and most
make a wide range of different decisions about where
to stand from trial to trial. The main consistent finding
across experiments is that participants do not adjust their
strategy as the distance between the hoops increases, but
the behaviours they adopt instead of this adjustment are
widely varied and cannot be accounted for solely by a bias
to equate the odds of success across both hoops.

The results of this series of experiments also shed
new light on how equivalent alternatives influence
choice. In the introduction, we noted that some dynamic
accumulator models assume options are evaluated inde-
pendently, and the random noise in the accumulation of
evidence about each option means that rarely are deci-
sion thresholds for different options crossed at the same
time. In more general terms, the Buridan’s Ass dilemma
can be easily resolved by random variation in atten-
tion or the relative salience of different features of the
options (e.g., Bordalo et al., 2012). Alternatively, direct
competition between different options (e.g., Teodorescu
& Usher, 2013) can lead to protracted deliberation when
the options are the same. Here, we tested the hypoth-
esis that the presence of equal options might globally
disrupt decision strategies. If so, competition between
options could explain the poor prioritizing decisions
observed previously, in which options were equivalent.
There was very little evidence to support this hypoth-
esis. We cannot interpret this as direct evidence against
competition between options, because the competition
might delay choice, while not affecting global strategy.
We did not measure decision time in these experiments,
nor would it be straightforward to do so. We can, how-
ever, rule out the possibility that competition between
equivalent options can explain the general failure to
solve the focus-or-divide dilemma observed across a
large set of conditions. The results also clearly demon-
strate that people do not avoid Buridan’s ass dilemmas
when given the opportunity. In fact, they seem to prefer
them over unequal options.

Decisions about how to prioritize tasks and goals are
a common feature of daily life, and can carry large con-
sequences, such as deciding how to invest limited time,
money, and effort when faced with multiple options. Pre-
vious research has shown a persistent failure to prioritize
tasks in a way that reflects the limits of our resources
across a broad set of different task settings, including
throwing and memory tasks (Clarke & Hunt, 2016), eye
movements and visual detection (James et al., 2019;
Morvan & Maloney, 2012) and visually guided reach-
ing (Hesse et al., 2020). The current study extends this
observation of poor prioritization even further, to condi-
tions where the need to make arbitrary choices between
options is no longer present. It seems likely, but remains
to be established, whether this clear tendency to make sub-
optimal prioritization decisions in controlled laboratory
conditions has measurable real-world consequences. If so,
simple interventions to improve these decisions could have
wide-ranging implications.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.3758/s13421-022-01356-5.
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