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Abstract—Exploring adversarial attacks and studying their
effects on machine learning algorithms has been of interest to
researchers. Deep neural networks working with time series
data have received lesser interest compared to their image
counterparts in this context. In a recent finding, it has been
revealed that current state-of-the-art deep learning time series
classifiers are vulnerable to adversarial attacks. In this paper,
we introduce neural data augmentation techniques and show that
classifier trained with such augmented data obtains state-of-the-
art classification accuracy as well as adversarial accuracy against
Fast Gradient Sign Method (FGSM) and Basic Iterative Method
(BIM) on various time series benchmarks.

Index Terms—time series classification, adversarial training,
gradient based adversarial attacks

I. INTRODUCTION AND RELATED WORK

Deep Neural Networks have displayed impressive results

on many machine learning tasks on image ( [1]–[5]), natural

language processing ( [6]–[9]) and time series classification

( [10]–[13]). However, their fragility to small adversarial

perturbations is a matter of concern for researchers. A targeted

black-box attack on neural networks for image classification

was formulated as an optimization problem in [14], and further

improved in [15]. A targeted l0 norm attack discussed in [16],

aims to minimize the number of modified pixels in an image to

cause mis-classification as a particular target class. Adversarial

attacks intended to lower reliability of neural networks are

also explored. Of these, gradient based l∞ norm attacks such

as [17] and [18] are very popular. Various techniques to

understand and mitigate effects of adversarial perturbations

have also been studied [19], [21], [22], [23], [20], [47]. An

excellent review of adversarial attacks on machine learning

systems can be found in [26]. The reliability and security

concerns raised by adversarial attacks have been one of the

main reasons for deep neural networks not yet becoming

popular with safety critical applications where the cost of

failure is high.

Time series data is omnipresent and classification tasks on

time series data finds its applications in health care ( [27]),

power consumption monitoring ( [28]), food safety ( [29],

[30]), security ( [31]) etc. Current state-of-the-art deep neural

networks can achieve impressive performance at classifying

time series data ( [10]–[12]) on various datasets ( [32], [33]).

However, these networks suffer in the same way to adversarial

inputs as their image counterparts. A recent finding ( [34])

shows that vulnerability of state-of-the-art time series classi-

fication networks to simple adversarial attacks, such as Fast

Gradient Sign Method (FGSM) and Basic Iterative Method

(BIM), bring back the focus on building more robust time

series classifiers.
FGSM [17] uses the gradient of the loss with respect to the

input data, then adjusts the input data to maximize the loss.

This can be summarised using the following expression:

zadv = z + ε ∗ sign(∇zJ(θ, z, y))

where original input data and its corresponding output label are

represented as z and y respectively, θ denotes parameters of

the classifier, J(θ, z, y) denotes the loss or objective function

and the obtained adversarial data is represented as zadv . Note

that ε is used as a multiplier to ensure small perturbations. BIM

[18] extends FGSM by applying it iteratively with a small step

size and clip the obtained time series elements after each step

to ensure that they are in an ε-neighborhood of the original

input data.
It has been shown ( [35], [36]) that data augmentation

increases the size and diversity of the training set resulting in

improved classification accuracy on time series data. Further,

in order to achieve adversarial robustness, the classifiers should

be robust to noise-corrupted data ( [37]). In this paper, we pro-

pose data augmentation techniques for time series data, which

helps in improving the robustness of the classifier against

adversarial attacks. Our contributions can be summarized as

follows:

1) We propose Input gradient based Data Augmenta-
tion method. We show that classifier trained with this

augmented dataset achieves state-of-the-art classification

accuracy on adversarially perturbed UCR time series

datasets using FGSM and BIM attacks.

2) We also propose Output gradient based Data Aug-
mentation method. We show that classifier trained with

this augmented dataset further improve the state-of-the-

art classification accuracy on adversarially perturbed

UCR time series datasets using FGSM and BIM attacks.

3) Additionally, We propose a spectral density based
Data Augmentation method. Our experimental finding

suggests that, combination of Output gradient based
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Fig. 1. ODENet building blocks. Parameters of ODENet are shared across
times.

Data Augmentation method and Feature Similarity based

regularized training method achieves the best classi-

fication accuracy on standard adversarial attacks such

as FGSM and BIM across different UCR time series

dataset.

For models to be useful in the real world, they need to

be both accurate on a held-out set of time series data, which

we refer to as clean accuracy, and robust on corrupted time

series, which we refer to as robustness. It is believed that

there exists a fundamental trade-off between the two ( [38]).

Our observation has been that though the trade-off exists, it

is possible to build robust systems with very minimal or no

drop in clean accuracy.

II. GRADIENT BASED AUGMENTATION TECHNIQUES

In the time series classification paradigm, neural networks

are maximum likelihood estimators. The neural network tends

to learn the input features that are important for classification,

even if those features look incomprehensible to humans. It

has been shown that simple gradient based perturbations in

the input signal can cause a trained network to misclassify (

[17], [18]). We first assume a threat model (black-box or white

box) and generate adversarial samples based on that model. We

augment original train data with adversarial samples and then

train a reference neural network with this data. We evaluate

the trained network on standard adversarial attacks on time

series data ( [34]).

A. Input gradient based Data Augmentation and Training
method

STEP-1: Neural networks were used to model Ordinary

Differential Equations(ODE) ( [39]). We define a time-series

z(t) as a sequence of 1-D values z(t0), z(t1), ..., z(tn). We

model the continuous dynamics of the input time series using

an ODE specified by a neural network(f), parameterized by θ:

dz(t)

dt
= f(z(t), t, θ) (1)

We refer such neural network as ODENet as shown in fig.1.

We use ODE solver as a sequential generative model to predict

Fig. 2. Input gradient based adversarial sample generation. Each point in
the timeseries is perturbed by a random number in range [0,ε]. The direction
of change is determined by the local gradient of x.

successive samples of the time-series. More specifically, we

compute z(ti) from known z(ti−1) as:

z(ti) = z(ti−1) +

∫ ti

ti−1

f(z(t), t, θ)dt (2)

We predict the values of z(t1), z(t2), ..., z(tn) by iteratively

following 2. The value predicted at time step ti is treated as

the initial value for the computation of z(ti+1). We minimize

MSE loss between predicted and true sequence, in order to

find the optimum parameter set of ODENet,θopt, which can

capture the continuous dynamics of z(t) at any given point as

follows:
dz(ti)

dt
= f(z(ti), ti, θopt) (3)

Adam optimizer with a learning rate of 0.0003 and weight

decay factor of 10−3 was used for training the ODENet.

STEP-2: Once the ODENet is trained, we use it to compute

the gradient of a timeseries at any given time point using eq. 3.

we add carefully crafted perturbation guided by the direction

of gradient at each time point, which allows to preserve the

overall structure of the original input time series.

Accordingly the augmented samples are generated using the

below equation:

zaug(ti) = z(ti) + clamp(
dz(ti)

dt
) (4)

clamp(z) =

⎧⎪⎨
⎪⎩
z |z| < β

β z > β

−β z < −β

(5)

zaug(ti) and z(ti) are respectively augmented timeseries and

original timeseries at timestep ti. β is a small positive constant.

Note that by perturbing the samples as given in equation (4),

the change in magnitude of each sample in the augmented

timeseries has an upper limit of β compared to the original

timeseries. This inherently sets an upper limit on the change

in gradient to 2∗β/δt as shown in fig 2. Figure 3(a),(b) shows

example timeseries data augmented using this technique. We

term this augmentation method as In-Clamp-Grad.

Training Objective of Classification Network: We define

a multiclass classification setup where the input-label pairs
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Fig. 3. Two randomly selected samples and their corresponding adversarial samples obtained using (a),(b) Input gradient, (c),(d) Output gradient, (e),(f)
Spectral Density based adversarial sample generation techniques. (a),(c) and (e) are from Adiac time series dataset while (b),(d) and (f) from 50words dataset.

(z, y) ∈ (χ x λ) are sampled from data distribution D. A

neural network is trained as a classifier whose goal is to predict

the class label y for a given input z. The training objective

of the classifier is to find parameters φ that minimize the

multiclass cross entropy loss:

min
φ

IE(zaug,y)[CELoss(gφ(zaug, y))] (6)

Here, gφ represents the neural network classifier with param-

eters φ. We augment the input dataset with the perturbed

examples obtained using equation (4). The labels for the

perturbed examples are set to be same as the original example

from which it was obtained. Thus, training the neural network

classifier with this augmented dataset follows 6. We used

Adam optimizer with a learning rate of 0.0002 with a weight

decay of 10−3 for all the experiments involving training the

classifier network in this paper. We denote (zaug, y) as input-

label pairs of augmented dataset.

We also experimented with a slight modification of equation

(4) as given below:

zaug(ti) = z(ti) + ε ∗ sign(dz(ti)
dt

) (7)

Here, ε is a random value between 0.0 and 0.33. We term this

augmentation method as In-Sign-Grad.

B. Output gradient based Data Augmentation Method

In this case, we assume the adversary has knowledge of the

model and its parameters. We perturb the input samples based

on the derivatives of classifier output w.r.t input. If g() is the

transformation applied by the neural network and z is the input

timeseries data, then the derivative of classifier output w.r.t the

time variable is governed by the following chain rule:

dy

dt
=

dg(z)

dz

dz

dt
(8)

As done in section II-A, dz
dt is computed using an ODENet.

dg(z)
dz is computed using the automatic differentiation in Py-

torch. Using the derivative of classifier output w.r.t the time

variable, we define a perturbed time series as below:

zaug(t) = z(t) + sign(
dg(z)

dz
) abs(clamp(

dz

dt
)) (9)

where, sign(dg(z)dz ) is an indication of the direction of

maximum change in classifier output w.r.t input. For cross

entropy loss, changing the input along this direction maximizes

the loss term. dz
dt is the gradient of input w.r.t time. The

function clamp is defined in equation (5). Thus, the direction

of perturbation is defined by (dg(z)dz ), while the magnitude of

perturbation is defined by dz
dt and it is limited by a small

positive number (β), which helps in preserving the overall

structure of original time series. As done in section II-A,

we augmented the input dataset with perturbed samples and

trained a neural network for classification. The trained neural

network achieves state-of-the-art results on different UCR time

series test datasets with FGSM and BIM perturbations. Figure

3(c),(d) shows example timeseries data augmented using this

technique. We term this augmentation method as Out-Sign-
Grad.

Note that in figure 3, sample generated using output gradient

based technique has much more fluctuation compared to

sample generated using input gradient based technique. This

is intuitive, because in Out-Sign-Grad technique, at each time

point, perturbation direction is guided by gradient of classifier

output w.r.t input at that point. Hence, such perturbation can

behave in arbitrary manner and have no relation with original

time series. But in In-Sign-Grad technique, the perturbation

direction is guided by the “learned” gradient of the original

input time series at that time point. As a result, input gradient

based augmented time series preserves the shape of original

input time series better compared to output gradient based

augmented time series.

To validate the significance of sign(dg(z)dz ) in the generation

of perturbed samples, we replaced this with random sign for

each time step.
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zaug(t) = z(t) + random([−1,+1]) abs(clamp(
dz

dt
)) (10)

A neural network trained with such augmented data, which

we termed as Rand-Grad, was found to provide lesser ac-

curacy compared to the network trained using the augmented

data obtained using Out-Sign-Grad.

C. Spectral density based Data Augmentation method

In the techniques described in previous sections, we intro-

duced perturbations at each timestep of the input timeseries.

The perturbations added were functions of derivatives of inputs

w.r.t the time and/or derivatives of classifier output w.r.t the

input. In this section, we describe the perturbations added

based on the frequency domain characteristics of the input

signals. The energy of a signal is given by Parseval’s theorem:

E(z) =

N−1∑
n=0

|z[n]|2 =
1

N

N−1∑
k=0

|Z[k]|2 (11)

Where, Z[k] is the Discrete Fourier Transform of z[n], both

of length N .

We now obtain a new perturbed Discrete Fourier Transform

Zaug[k] as described below. The sequence Z[k] is sorted in

descending order to obtain Zsorted.

Zsorted = sort(|Z[k]|) (12)

We then find the index C such that:

C∑
k=0

|Zsorted[k]|2 ≥ 0.9 ∗ E(z) >

C−1∑
k=0

|Zsorted[k]|2 (13)

We apply perturbations to the frequency components in the

sorted sequence (Zsorted[k]) which lie above the index C. Let

Z1, Z2 and Z3 be three consecutive frequency components in

Zsorted[k] which lie above the index C, while Z1p, Z2p and

Z3p be the corresponding perturbed components. Then, the

perturbed frequency domain components are obtained as:

Z1p = Z1 +
Z2

4
, Z2p = Z2 +

Z2

2
, Z3p = Z3 +

Z2

4
(14)

We apply such perturbation on upto 75% of the components

which lie above the index C. All components below index

C remain same. The perturbed time domain timeseries is

obtained by taking inverse DFT of the perturbed frequency

domain components. Thus, we only redistribute energy in the

frequency components forming less than 10% of the energy

of the signal. Figure 3(e),(f) shows example timeseries data

augmented using this technique. We term such augmentation

method as Spec-Den.

III. EXPERIMENTS AND RESULTS

A. Network Architecture

1) ODENet: The timeseries dynamics of the input are

modelled using differential equations. A neural network is

trained to compute the gradients of input timeseries at any

given timestep (eq. 3). The neural network f() consists of two

hidden layers of 25 neurons. Each hidden layer is followed

by batch normalization and ELU activation. The value of the

input timeseries at a given time (z(ti)) and the timestep (ti)
form the input to the neural network. The network predicts

the gradient of input time series at timestep (ti).
2) Classification Network: The neural network for time-

series classification follows the ResNet architecture as defined

in [34], which is depicted in fig 4 . The input to this network is

a time series of length T. The output of the network is a prob-

ability distribution over the K possible classes in the dataset.

The network consists of 9 convolutional layers, grouped into

three residual blocks. Each layer is followed by a Rectified

Linear (ReLU) activation and batch normalization. This is

followed by a global average pooling layer and a softmax

classification layer. We retain the same network architecture

and train it with the dataset augmented with our proposed

methods. This allows us to compare the effectiveness of our

techniques with the baseline in [34].

Fig. 4. Reference ResNet architecture of the neural network used for all
experiments in this paper (from [34])

B. Datasets

We use the UCR timeseries dataset ( [32]) for all the experi-

ments described in this paper. Table I summarizes the datasets

used, along with the baseline true classification accuracy of

the ResNet classifier, baseline adversarial accuracy measured

on the test data perturbed using FGSM ( [17]) and BIM ( [18])

attack on the ResNet classifier (as reported in [34]).

Using the techniques described in section II, we augment

the datasets listed in table I. We use the augmented dataset

to train the baseline classification network defined in section

III-A2. The timeseries signals of all the datasets used in our

experiments displayed an amplitude range close to 6 units.

The value of β (equation 5) was chosen to be 0.33 and ε
(equation 7) was a random number in range [0.0,0.33] for

all the experiments described in this paper. Note that, We

choose the value of β and ε in such a way, so as to limit the

perturbation range to be almost 1
10 th of the amplitude range

of the original time series.

C. Additional Technique

In addition to the techniques already described for ad-

versarial sample generation, we experimented with following

regularization technique to improve the classification accuracy.

We describe this below:
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TABLE I
COMPARISON OF TRUE, ADVERSARIAL CLASSIFICATION ACCURACY ON NETWORKS WHERE TRAINING DATA IS AUGMENTED USING TECHNIQUES

DESCRIBED IN SECTION II AND BASELINE TRUE, ADVERSARIAL ACCURACY

Baseline Input Gradient Method Output Gradient Method Spectral Density
No Augment In-Clamp/In-sign-Grad Out-Sign-Grad Spec-DenDataset

True FGSM BIM True FGSM BIM True FGSM BIM True FGSM BIM
CricketX 79.00 35.4 20.8 79.49 47.95 38.72 79.49 72.31 72.05 79.23 46.67 37.44
CricketZ 81.5 27.7 16.2 82.31 43.33 34.87 81.79 42.82 37.18 81.03 40.26 33.08
50Words 73.2 17.1 8.8 74.73 38.46 29.23 76.04 67.25 52.97 74.07 25.5 12.09
UWaveGestureLibrary X 78.0 32.1 11.1 78.28 46.76 20.91 79.23 71.19 55.05 77.11 40.90 19.88
InsectWingbeatSound 50.6 17.7 15.7 50.81 25.81 21.72 53.48 39.14 38.13 51.16 25.20 20.05
Adiac 83.1 3.1 1.5 83.38 6.39 3.84 83.63 45.27 25.83 83.38 5.63 4.09
TwoLeadECG 100 5.3 0.4 100 14.05 7.64 100 61.98 31.69 100 14.72 7.20
UWaveGestureLibrary Y 66.7 27.7 14.9 67.03 36.24 17.64 67.06 57.96 47.35 66.14 35.87 18.01

TABLE II
ADVERSARIAL ACCURACY ON NETWORKS TRAINED USING ADDITIONAL FEAT-SIM REGULARIZER.

(A): Input Gradient Method + Feat-Sim (B):Out-Sign-Grad+Feat-Sim
Dataset In-Clamp-Grad+FS In-Sign-Grad+FS Out-Sign-Grad+FS

True FGSM BIM True FGSM BIM True FGSM BIM
CricketX 79.23 47.18 37.44 79.23 51.28 42.05 79.49 75.90 76.41
CricketZ 81.54 40.00 31.03 82.31 45.90 36.15 81.73 66.41 66.15
50Words 74.07 40.66 30.33 73.20 34.73 19.34 76.04 69.23 55.82
UWaveGestureLibraryX 78.42 51.90 28.25 78.03 47.74 24.06 78.53 72.47 62.62
InsectWingBeatSound 49.85 26.41 22.42 49.29 28.23 23.38 51.87 43.74 42.17
Adiac 79.28 7.16 5.09 82.61 6.65 4.86 83.38 46.29 28.64
TwoLeadECG 100 38.81 29.06 100 29.24 21.60 100 73.40 30.38
UWaveGestureLibraryY 66.86 36.71 20.69 66.95 41.54 25.43 67.07 59.35 58.15

1) Feature Similarity: Distance metric for large margin

nearest neighbour classification was introduced in [46] and

later used for face recognition and clustering in [48]. Let zc
be a time series sample of a specific class c. Let zp be the

augmented sample obtained by perturbing zc using techniques

described in section II. Let zic′ be a randomly chosen time

series sample of any other class c′ �= c. The augmented

sample obtained by perturbing zic′ is given by zip′ . g(z) ∈ R

represents the d-dimensional embedding of the timeseries z
obtained by the neural network. Then, the loss function that

is being minimized has an additional term (along with cross

entropy) given by

LFS = ||g(zc)− g(zp)||22 + α− ||g(zc)− g(zip′)||22 (15)

where α is a margin that is enforced between positive and

negative pairs. We also ensured that the embedding to lives

on the d-dimensional hypersphere, i.e. ||g(z)||2 = 1. We term

this regularized training strategy as Feat-Sim(FS).

D. Results

In this section, we describe and summarize the classification

accuracy observed on the reference ResNet based classifica-

tion network (section III-A2), where the training dataset is

augmented using techniques summarized in section II.

Comparison with baseline: Table I reports the comparison

between baseline accuracy and the best accuracy achieved

using our following proposed augmentation methods: Output

Gradient based Augmentation, Input Gradient based augmen-

tation and spectral Density based augmentation.We observe

that even the Input Gradient based augmentation methods

(equations 4, 7) significantly improve the adversarial classi-

fication accuracies (FGSM and BIM). For every dataset, we

highlight the Input Gradient Based technique that provided

highest adversarial classification accuracy with blue and the

Output Gradient based technique that provided highest adver-

sarial classification accuracy with green. In both cases, the

true accuracy was either same or better than the Baseline

true classfication accuracy of reference network. Reference

network trained with augmented data obtained using Output

Gradient based methods performed much better than the

ones trained with data obtained using Input Gradient based

method. This made intuitive sense because output gradient

based method use the gradient of output of the network w.r.t

input variable while input gradient based techniques use no

knowledge of the network.

Comparison between different Input and Output Gradi-
ent based Augmentation methods: Table III in Appendix,

we provide detailed comparison between different Input and

Output Gradient based Augmentation methods. We observe

that different input gradient based techniques were found to

provide best adversarial classification accuracies for different

datasets. This too made intuitive sense because these tech-

niques are based on the gradients of the input time series itself,

and hence it was unlikely that any one technique would give

best results for all datasets. We also observe that true and

adversarial accuracies achieved using Out-Sign-Grad method

is much higher compared to Rand-Grad method.This result

justify the significance of signdg(z)
dz term in equation 9.

Adversarial accuracy improvement with additional tech-
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Fig. 5. PCA plots of latent representation of randomly selected samples from the 50Words dataset for network trained with various methods. (a) reference
network, (b) In-Clamp-Grad, (c) In-Sign-Grad, (d) Spec-Den (e) Out-Sign-Grad, (f) Out-Sign-Grad + Feat-Sim

Fig. 6. PCA plots of latent representation of randomly selected samples from the Adiac dataset for (a) reference network and (b) Out-Sign-Grad + Feat-Sim

nique: Table II: We also observed that there was signif-

icant improvement in the adversarial classification accuracy

when we employed additional Feat-Sim regularizer (described

in section III-C) while training the reference classification

network. These are summarized in table II. It can be seen

that a network trained with the combination of Out-Sign-

Grad(Augmentation) and Feat-Sim(Regularizer) (refer table II)

provides the best adversarial classification accuracies along

with significant improvements in true accuracies for all cases.

Validation In this section, we describe an independent

technique that we used to validate the augmentation methods

described in this paper.

a) Principal Component Analysis: In order to visualize

the effect of augmentation methods along with additional

regularizer technique described in section III-C on the latent

representation of timeseries samples, we obtained PCA plots

of the latent representation of randomly selected samples

from the 50Words dataset. This is shown in figure 5. Here,

we can observe that the clustering of samples are better

in (b) and (c) (networks trained with augmented samples

obtained using input gradient based methods) compared to (a)

(reference network). However, (e) and (f) (networks trained

with augmented samples obtained using output gradient based

methods) progressively improve the clustering, especially for

the samples that lie at the intersection of clusters formed by

different classes. This is inline with the results observed in

table I and II.

IV. DISCUSSION

In this paper, we have introduced input gradient and out-

put gradient based augmentation methods. We showed that

networks trained using these augmented samples were more

robust against standard adversarial attacks without compro-

mising the true accuracy. We have also introduced spectral

density based augmentation technique which also improved

the robustness of the reference classification network. We have
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also demonstrated that networks trained with the augmented

data are able to cluster the samples in latent space much better

than the reference network. However, in (fig 6) we have also

observed that the samples belonging to certain classes are

still inseparable in latent space. We would like to investigate

this further and build more robust time series classifiers in

our future work. We hope our findings should encourage

the researchers to construct more efficient adversarial attack

strategy for time series classifiers and should also open the

door for new research in the area of adversarial robustness of

time series classifier.
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V. APPENDIX

A. Detailed results of different augmentation methods

Table III depicts detailed results of different input and output

gradient based augmentation techniques as described in section

II-A and II-B.

TABLE III
ADVERSARIAL CLASSIFICATION ACCURACY ON NETWORK WHERE

TRAINING DATA IS AUGMENTED USING TECHNIQUES DESCRIBED IN

SECTION II-A,II-B

Input Gradient Methods Output Gradient Methods
In-Clamp-Grad In-Sign-Grad Out-Sign-Grad Rand-Grad*Dataset

True FGSM BIM True FGSM BIM True FGSM BIM True FGSM BIM
CricketX 79.74 44.36 31.28 79.49 47.95 38.72 79.49 72.31 72.05 78.21 41.54 31.03
CricketZ 82.31 40.00 30.00 82.31 43.33 34.87 81.79 42.82 37.18 76.92 34.87 27.95
50Words 74.73 38.46 29.23 74.29 33.19 16.70 76.04 67.25 52.97 74.29 33.63 26.59
UWaveGestureLibrary X 78.03 46.18 21.11 78.28 46.76 20.91 79.23 71.19 55.05 76.33 56.53 34.09
InsectWingbeatSound 50.81 25.81 21.72 49.29 27.27 23.23 53.48 39.14 38.13 48.44 26.06 23.79
Adiac 83.38 6.39 3.84 82.10 6.14 4.86 83.63 45.27 25.83 81.07 17.14 11.76
TwoLeadECG 100 13.61 6.85 100 14.05 7.64 100 61.98 31.69 99.74 17.38 6.85
UWaveGestureLibrary Y 67.0 35.32 18.31 67.03 36.24 17.64 67.06 57.96 47.35 65.01 35.21 17.61

* Not a whitebox technique, but used here for comparison

B. Bound on energy difference between original and aug-
mented sample augmented using spectral density based aug-
mentation method

if Z1, Z2 ∈ R with Z1, Z2 > 0 and |Z1| > |Z2|, then

|Z1 + δ|2 > |Z2 + δ|2 (16)

Thus, if Z1, Z2, Z3 are the magnitudes of three consecutive

frequency components from Zsorted, then the perturbed com-

ponents are given by equation 14. The energy difference in

these components introduced due to this operation is given

by:

Eδ = (|Z1p|2+|Z2p|2+|Z3p|2)−(|Z1|2+|Z2|2+|Z3|2) (17)

To maximize the difference between Z1 and Z1p, the

component added to Z1 (i.e., Z2/4) should be maximum. But

since Z1 ≥ Z2, Z2 = Z1 provides the maximum difference

between Z1 and Z1p. Along the same lines, we find that Eδ

is maximized when Z1 = Z2 = Z3.

max(|Z2
1p − Z2

1 |) = (Z1 +
Z1

4
)2 − Z2

1 (18)

max(|Z2
2p − Z2

2 |) = (Z1 − Z1

2
)2 − Z2

1 (19)

max(|Z2
3p − Z2

3 |) = (Z1 +
Z1

4
)2 − Z2

1 (20)

Or,

max(Eδ) = 3.375Z2
1 − 3Z2

1 (21)

max(Eδ)

Eoriginal
=

3.375Z2
1 − 3Z2

1

3Z2
1

= 0.125 (22)

Where Eoriginal is the energy of the three signal components

that are perturbed. Thus, the maximum difference in energy

after the perturbation (equation 14) is 12.5% of the original

energy present in the three components that are perturbed.

We have assumed (equation 13) that the perturbed compo-

nents form 10% of the signal energy. Hence, max(Eδ) forms

1.25% of the energy of entire signal.
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