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Abstract—Detection of burn marks due to wildfires in inacces-
sible rain forests is important for various disaster management
and ecological studies. Diverse cropping patterns and the frag-
mented nature of arable landscapes amidst similar looking land
patterns often thwart the precise mapping of burn scars. Recent
advances in remote-sensing and availability of multimodal data
offer a viable time-sensitive solution to classical methods, which
often requires human expert intervention. However, computer
vision based segmentation methods have not been used, largely
due to lack of labelled datasets.

In this work we present AmazonNET – a convolutional based
network that allows extracting of burn patters from multimodal
remote sensing images. The network consists of UNet- a well-
known encoder decoder type of architecture with skip connec-
tions commonly used in biomedical segmentation. The proposed
framework utilises stacked RGB-NIR channels to segment burn
scars from the pastures by training on a new weakly labelled
noisy dataset from Amazonia.

Our model illustrates superior performance by correctly iden-
tifying partially labelled burn scars and rejecting incorrectly
labelled samples, demonstrating our approach as one of the first
to effectively utilise deep learning based segmentation models in
multimodal burn scar identification.

Index Terms—U-Net, segmentation, weakly, fragmented, burn,
scars, wildfires, Amazon, noisy, remote sensing, multimodal

I. INTRODUCTION

IN AMAZONIA, fire is associated with several land-
practices. Slash-and-Burn is one of the most used prac-

tices in Brazilian agriculture (as part of a seasonal cycle
called "queimada" [1]). Whether for opening and cleaning
agricultural areas or renewing pastures, its importance in the
agricultural chain is undeniable. Unfortunately, this is often
the cause of wildfires in forests. [2]–[4]

Amazon rainforests are a major reservoir for flora and
billions of tons of carbon, release of which can cause a major
increase in temperatures. Recent news of wildfires in Amazon
therefore, caused major uproar and concern (Fig. 1).

Uncontrollable fires, especially in dry season, have major
local & regional impacts, leading to destruction of natural
biomes, extinction of animal & plant species, pollution, ero-
sion and an imbalance in the carbon cycle. Such disturbances
affect agricultural production as well. Thus, many environ-
mental studies & resources management activities require
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Fig. 1. Overview of burnings in the vicinity of BR-163 highway, Para,
northern Brazil, in Amazon region. Taken from [5]

accurate identification of burned areas for monitoring the af-
fected regions (the so-called scars from burning) spatially and
temporally in order to understand and assess the vulnerability
of these areas and to promote sustainable development. Due
to the large geographical extent of fires at regional and global
scales and the limited accessibility of the areas affected by
fire, remote sensing approaches have become cost effective
alternatives in the last few years, capable of collecting burned
area information at adequate spatial and temporal resolutions.
Remote sensing technologies can provide useful data for
fire management, estimation & detection, fuel mapping, to
post wildfire monitoring, including burn area and severity
estimation [6].

II. PROBLEM STATEMENT

Current non-deep learning methods heavily rely on domain
knowledge and manual input from the user and are unable
to extract the abstract representations from the data. Deep
learning attempts to resolve these problems however, they
remain largely neglected in burn scar prediction due to general
lack of any labelled data. In this work, we leverage the
recent advances in sensing leading to ubiquitous availability
of multimodal data and computer vision in remote sensing to
utilise noisy, weakly labelled data to identify fragmented burn
scars using UNet, making our approach one of the first to
utilise deep learning based segmentation models in multimodal
burn scar identification. The same has been illustrated in Fig.2.
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Fig. 2. Generic schematic of a multi-modal noisy, weakly labelled burn scar identification. (a) Unlabelled/Correctly labelled burn scars (b) Visible Band (c)
Near Infrared Band (d) Unknown Model (e) Partially/ Noisy training labels (f) Output burn scar map

III. RELATED WORK

Semantic Segmentation Semantic Segmentation is an im-
portant problem in computer vision. It involves the clustering
of various pixels together if they belong to the same object
class. Due to their ability to capture semantic context with pre-
cise localisation, they have been used for various applications
in autonomous driving [7]–[9], human-machine interaction
[10], diagnosis and detection [11], [12], remote sensing [13]–
[15] etc. Before the advent of DNNs, variety of features
were used for semantic segmentation, such as K-means [16],
Histogram of oriented gradients [17], Scale-invariant feature
transform [18], [19] etc. Today, many encoder-decoder net-
works and their variants like SegNet [20], have been proposed.
Specialized applications have led to novel improvements like
UNet for Medical Image Segmentation [21], CRFs based
networks for fine segmentation [22]

Multimodal data in remote sensing Multimodal segmen-
tation in remote sensing involves utilising various strategies to
efficiently combine information contained in multiple modal-
ities to generate a single, rich, fused representation beneficial
for accurate land use classification. Common methods involve
concatenation channels at input stage [23], concatenation of
features extracted from unimodal networks like CNNs, as in
[24], [25] to generate land mapping segmentation. Recent
works involve more sophisticated ideas like ‘cross-attention’

[26] to fuse multiple modalities and generate attentive spectral
and spatial representations.

Burn Scar Identification Simultaneous availability of
multimodal data has led to recent advances in locating fires and
in quantifying the area burned. Each modality provides dis-
criminating information about the same geographical region,
helping in mapping amidst adverse conditions like spectral
confusion (like due to cloud shadowing) & variability in
burn scars making distinguishing between vegetation difficult.
Majority of work done in this domain involves methods like
auto-correlation [6], self-organizing maps [27], linear spectral
mixture model [28], SVM [29], random forests [30]. However,
no recent works seem to utilise current deep learning methods
like CNN or encoder-decoder models like SegNet or UNet,
presumably due to lack of labelled data.

IV. PROPOSED METHOD

The objective of this work is to perform semantic seg-
mentation and identify burn scars by harnessing the spatio-
spectral information constituted in visible and near infrared.
To accomplish this task, we consider RGB and NIR samples
X = {xiRGB , xiNIR}ni=1 with the ground truth Y = {yi}ni=1.

Here, xiRGB ∈ RM×N×B1 and xiNIR ∈ RM×N×B2 where,
B1 and B2 denote the number of channels, while n denotes
the number of available samples. The ground-truth labels
yni ∈ {0, 1}, where 0 represents ‘no burn scar’ ∈ {river, green

Conv + BN + ReLu
MaxPool +Dropout

Conv + Softmax/SigmoidUpsample + Conv
Concat

10
24

1 + 3 16

51
2

16 32

51
2

32

25
6

10
24

64

25
6

64

12
8

128

12
8

128

64

256

64

256

12
8

128

12
8

128

25
6

64

25
6

64

51
2

32

51
2

32

10
24

16

10
24

1

10
24

Vis

NIR

Predicted
Burn Scars

Fig. 3. Architecture of U-net model: AmazonNet (presented on Amazon dataset). Input consists of 4 channel concatenated input corresponding to RGB and
NIR (colormap: hsv). ReLu activation is used. 3x3 Convolution and 2x2 Max Pool are used thruout the network.
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pastures, brown pastures} and 1 represents ‘burn scar’. The
samples are sent to the proposed AmazonNet model which
get processed as discussed ahead.

A. Architecture

In remote sensing, computer vision based methods are
difficult to apply, due to lack of good labelled datasets, because
the required data processing and labelling can only be done
by field experts, making labelled data rare or unavailable.
Similar problems arise in medical image segmentation, and
so common approaches in remote sensing are sometimes
inspired from medical segmentation domain. For burn scar
segmentation task, we base our network on the UNet [21]
architecture, where the feature activations from encoder were
stored and transferred to corresponding decoder layer for
concatenation.

Encoder The encoder network consists of 3x3 convolution
layers along with batch normalization layers, ReLU non-linear
activation layers, and 2x2 max-pooling layers.

Decoder The decoder network consists of UpSampling lay-
ers, which performs 3x3 Conv2DTranspose, 3x3 Convolution
along with batch-normalization layers and Dropout2D layers
with a dropout value of 0.1. The output results are thresholded

to obtain a binary output map denoting the burn scars.

B. Datasets

This dataset consists of a visible and near infrared satellite
imagery from LANDSAT8 of the Amazon Rainforest. The
dataset was acquired for 2017 and 2018 from over 4 states,
namely Tocantins, Maranhao, Mato Grosso, Para covering
over four terrestrial Brazilian biomes namely Cerrado, Amazo-
nia, Caatinga, Pantanal. It consists of 299 samples VIS-NIR
image pairs of size 1024x1024 with ground truth, which are
binary images, in which 1 represent burn scars in the forest
and 0 are areas that were not affected by the fire.

The dataset can be visualised in Fig 2. As can be seen the
ground truth is noisy and also partially labelled, sometimes
mislabelled as can be seen in Fig 2 (a). The dataset was curated
by National Institute for Space Research (INPE) as part of the
Quiemadas Project [31].

C. Inference and Training

The output map is subjected to a binary crossentropy loss
which is backpropagated to train the AmazonNet model in
an end-to-end fashion. Concatenated [xiRGB , xi

NIR] is fed to
the network. Adam Optimizer with a starting learning rate

(a) Visible (b) Near Infrared (e)Binary Scar Map(d)Predicted Scars

Black
contour
indicates
labelled
data (c) Labels

Fig. 4. Results: The network correctly segments burn scars, rejecting incorrectly labelled spots and correctly identifying partially labelled or unlabelled
samples. (a) Visible Channel (b) Near Infrared channel (false coloured hsv) (c) Available Labels (including partial/ incorrect labels) (d) Predicted Burn Scars
(e) Binary Burn Scars. The black contour in (a) & (b) denote contour for labelled data(c) for easy visualisation. Yellow boxes denote burn scars which are
correctly labelled or unlabelled. White boxes denote mislabelled/misidentified burn scars.
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Fig. 5. Minor defects in segmented burn scars: The network incorrectly segments rivers, meanders, ox-bow lakes and clouds as burn scars. The black contour
in (a) & (b) denote contour for labelled data(c) for easy visualisation. Yellow boxes denote burn scars which are correctly labelled or unlabelled. White
boxes denote mislabelled/misidentified burn scars. The defects are attributed to no segmented labels available and negligible instances of these features in the
data-set.

of 0.0001 is used for minimizing the loss function. The
model was fine-tuned for 50 epochs. The batch size of the
training datasets was eight whereas, for validation datasets,
the batch-size of 4 was chosen. Inbuilt callbacks functions,
namely EarlyStopping, ReduceLROnPlateau & ModelCheck-
point were used for training our model.

V. RESULTS

The model obtained a training accuracy of 69.51% & a
validation accuracy of 63.33%. The results are presented in Fig
2 (f) & Fig 4 validating the efficacy of the utilising U-net based
segmentation in burn scar identification. As can be seen in Fig
4, the network correctly identifies unlabelled fragmented burn
scars (denoted as yellow-dash boxes) and deselects wrongly
labelled areas (denoted as white-dash boxes) in the output
binary map (correctly labelled outputs are highlighted as
yellow and deselected labels as white).

Our network, however, fails to distinguish river and cloud
patterns from burn scars as can be seen in Fig 5. Defects
emerge when our network segments (a) river (b) meanders
and ox-bow lake and (c) clouds as burn scar patterns.

It is interesting how in sample 2 and 3 in Fig 5, the network
accurately segments the small fragmented burn scars but
absolutely fails to reject these. This can be attributed primarily
to (i) lack of any labelled examples and (ii) negligible samples

containing the above geographical features in the dataset.

VI. CONCLUSION AND FUTURE WORK

We utilised a partially/mis-labelled dataset representing burn
patterns in Amazon rainforest to propose U-net based seg-
mentation network to correctly identify burn scars & reject
incorrect labels, demonstrating the effectiveness of AI in frag-
mented burn scar identification. We presented shortcomings &
consider resolving these as future work.
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